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Graphene is the first example of truly two-dimensional crystals – it’s just one layer of carbon atoms. It 

turns out that graphene is a gapless semiconductor with unique electronic properties resulting from the 

fact that charge carriers in graphene obey linear dispersion relation, thus mimicking massless relativistic 

particles. This results in the observation of a number of very peculiar electronic properties – from an 

anomalous quantum Hall effect to the absence of localization. It also provides a bridge between con-

densed matter physics and quantum electrodynamics and opens new perspectives for carbon-based elec-

tronics. 

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Historical overview 

Carbon demonstrates unusually complicated behavior, forming a number of very different structures. As 

well as diamond and graphite, which have been known since ancient times, recently discovered fullere-

nes [1–3] and nanotubes [4] are currently a focus of attention for many physicists and chemists. Thus, 

only 3-dimensional (diamond, graphite), 1-dimensional (nanotubes), and 0-dimensional (fullerenes) 

allotropes of carbon were known. The two-dimensional form was conspicuously missing, resisting any 

attempt at experimental observation – until recently. 

 The elusive two-dimensional form of carbon is named graphene, and, ironically, it is probably the 

best-studied carbon allotrope theoretically. Graphene – planar, hexagonal arrangements of carbon atoms 

– is the starting point for all calculations on graphite, carbon nanotubes, and fullerenes. At the same time, 

numerous attempts to synthesize these two-dimensional atomic crystals have usually failed, producing 

instead nanometer-size crystallites [5]. These difficulties are not surprising in light of the common belief 

that truly two-dimensional crystals cannot exist [6–10] (in contrast to the numerous known quasi-two-

dimensional systems). Moreover, during synthesis, any graphene nucleation sites will have very large 

perimeter-to-surface ratios, thus promoting collapse into other carbon allotropes. 
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 In 2004, a very different and, at first glance, even naive approach to obtain graphene lead to a revolu-

tion in the field [11–13]. A single sheet (a monolayer of atoms) was extracted from 3-dimensional 

graphite using a technique called micromechanical cleavage. Graphite is a layered material and can be 

viewed as a number of two-dimensional graphene crystals weakly coupled together. By using this top-

down approach and starting with large, three-dimensional crystals, the researchers avoided all the issues 

with the stability of small crystallites. Furthermore, the same technique has been used to obtain two-

dimensional crystals of other materials [11], such as boron-nitride, some dichalcogenides and high-

temperature superconductor Bi–Sr–Ca–Cu–O. This astonishing finding sends an important message: 

two-dimensional crystals do exist and they are stable at ambient conditions. 

 Amazingly, this humble approach allows easy production of large (up to 100 µm in size), high-quality 

graphene crystallites, and immediately triggered enormous experimental activity [14, 15]. Moreover, the 

quality of the samples produced are so good that ballistic transport [12] and a quantum Hall effect (QHE) 

[14, 15] can be observed easily. The former makes this new material a promising candidate for future 

electronic applications, such as ballistic field-effect transistors (FETs). However, while this approach 

suits all research needs [16], other techniques that provide a high yield of graphene are required for in-

dustrial production. Among the promising candidate, one should mention exfoliation of intercalated 

graphitic compounds [17–21] and Si sublimation from SiC substrates [22, 23]. 

2 Linear spectra 

From the point of view of its electronic properties, graphene is a two-dimensional zero-gap semiconductor 

and its low-energy quasiparticles formally described by the Dirac-like Hamiltonian 
F

H i v σ�= - — , where 
6

F
10v ª m/s is the Fermi velocity, and ( )

x y
σ σ σ= ,  are the Pauli matrices [24–27]. Neglecting many-body 

effects, this description is accurate theoretically and has also been proven experimentally by measuring the 

energy-dependent cyclotron mass in graphene (which yields its linear energy spectrum) and, most clearly, 

by the observation of a relativistic analogue of the integer QHE which will be discussed below. 

 The fact that charge carriers in graphene are described by the Dirac-like equation rather than the usual 

Schrödinger equation can be seen as a consequence of graphene’s crystal structure, which consists of two 

equivalent carbon sublattices A and B. Quantum mechanical hopping between the sublattices leads to the 

formation of two energy bands, and their intersection near the edges of the Brillouin zone yields the 

conical energy spectrum near the “Dirac” points K and K′. As a result, quasiparticles in graphene exhibit 

the linear dispersion relation 
F

E kv�=  as if they were massless relativistic particles, with the role of the 

speed of light played by the Fermi velocity 
F

300v c≈ / . Due to the linear spectrum, one can expect that 

graphene’s quasiparticles behave differently from those in conventional metals and semiconductors 

where the energy spectrum can be approximated by a parabolic (free-electron-like) dispersion relation. 

 Although the linear spectrum is important, it is not the only essential feature that underpins the de-

scription of quantum transport in graphene by the Dirac equation. Above zero energy, the current carry-

ing states in graphene are, as usual, electron-like and negatively charged. At negative energies, if the 

valence band is not completely filled, its unoccupied electronic states behave as positively charged qua-

siparticles (holes), which are often viewed as a condensed-matter equivalent of positrons. Note however 

that electrons and holes in condensed matter physics are normally described by separate Schrödinger 

equations, which are not in any way connected (as a consequence of the Seitz sum rule, the equations 

should also involve different effective masses). In contrast, electron and hole states in graphene are inter-

connected, exhibiting properties analogous to the charge-conjugation symmetry in QED. For the case of 

graphene, the latter symmetry is a consequence of its crystal symmetry because graphene’s quasiparticles 

have to be described by two-component wavefunctions, which is needed to define relative contributions 

of sublattices A and B in the quasiparticles’ make-up. The two-component description for graphene is 

very similar to the one by spinor wavefunctions in QED but the “spin” index for graphene indicates 

sublattices rather than the real spin of electrons and is usually referred to as pseudospin σ. 

 There are further analogies with QED. The conical spectrum of graphene is the result of intersection 

of the energy bands originating from sublattices A and B and, accordingly, an electron with energy E 
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propagating in the positive direction originates from the same branch of the electronic spectrum as the 

hole with energy –E propagating in the opposite direction. This yields that electrons and holes belonging 

to the same branch have pseudospin σ pointing in the same direction, which is parallel to the momentum 

for electrons and antiparallel for holes. This allows one to introduce chirality [27], that is formally a 

projection of pseudospin on the direction of motion, which is positive and negative for electrons and 

holes, respectively. 

 An alternative view on the origin of the chirality in graphene is based on the concept of “Berry phase”. 

Since the electron wave function is a two-component spinor, it has to change sign when the electron 

moves along the closed contour. Thus the wave function gains an additional phase π. 

3 Electric field effect 

In the absence of quality graphene wafers, most experimental groups are currently using samples ob-

tained by the original technique of micromechanical cleavage [11, 12], which provides high-quality crys-

tallites up to 1000 µm2 in size, which are sufficient for most research purposes and to prove concepts. 

Superficially, the technique resembles nothing more sophisticated than drawing with a pencil [12] or 

repeated peeling of graphite by adhesive tape [11] until the thinnest flakes are found. The critical ingre-

dient that made those efforts successful was that graphene becomes visible in an optical microscope if 

placed on top of a Si wafer with a carefully chosen thickness of SiO2, owing to a very feeble interfer-

ence-like contrast with respect to an empty wafer [28]. If not for this simple yet effective way to scan 

substrates in search of individual graphene crystallites, they would most probably remain undiscovered 

today. Even if one would search for graphene ignoring its theoretical impossibility, more sophisticated 

techniques usually employed for investigating atomically thin and small objects (such as scanning-probe 

microscopy) have too low throughput to allow for finding of rare and isolated graphene crystals, whereas 

scanning electron microscopy is also unsuitable because of the absence of clear signatures for the num-

ber of atomic layers. Note however that graphene was recently found to have a clear signature in Raman 

microscopy [29, 30], which is likely to make this technique widely used for thickness inspection, al-

though potential crystals would still have to be identified optically first. 

 SiO2 also serves as an insulating layer, so a back-gate voltage can be applied to vary carrier concentra-

tion. Graphene is found to exhibit a pronounced ambipolar electric field effect (Fig. 1) such that charge 

carriers can be tuned continuously between electrons to holes in concentrations n as high as 1013 cm–2 

and their mobilities can exceed 10000 cm2/Vs and is practically temperature independent [12]. This 

translates into ballistic transport on submicron scales. The room-temperature mobility is limited by im-

purities or corrugations of the graphene surface, which means that it can still be improved significantly, 

perhaps up to 100.00 cm2/Vs. 

 

  

Fig. 1 (online colour at: www.pss-b.com) Ambipolar electric field 

effect in single-layer graphene. Positive (negative) Vg induce elec-

trons (holes) in concentrations 
g

n Vα=  where the coefficient 
10

7 2 10α ≈ . ¥  cm–2/V for our field-effect devices with a 300 nm SiO2 

layer used as a dielectric. The rapid decrease in resistivity with 

adding charge carriers indicates their high mobility (in this case, 

5000µ ≈  cm2/Vs and does not practically change with temperature 

up to 300 K). 
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 Another important observation is that graphene’s zero-field conductivity σ does not disappear in the 

limit of vanishing n but instead exhibits values close to the conductivity quantum 2
/e h  per carrier type 

[14]. We emphasize that it is the resistivity (conductivity) rather than the resistance (conductance) that is 

quantized, in contrast to all other known quantum transport phenomena. Minimum quantum conductivity 

has been predicted for Dirac fermions by a number of theories [31–37]. Some of them rely on a vanish-

ing density of states for the linear 2D spectrum. However, comparison between the behaviour of mass-

less and massive Dirac fermions in graphene and its bilayer allows one to distinguish between chirality- 

and masslessness-related effects. To this end, bilayer graphene also exhibits a minimum conductivity of 

the order of 2
/e h  per carrier type which indicates that it is chirality, rather than the linear spectrum, that is 

more important [38]. Moreover, most theories suggest 2

max
π /4h eρ = , which is π times larger than the 

typical value observed experimentally. This disagreement has become known as “the mystery of a miss-

ing pie”, and it remains unclear whether it is due to approximations used by theory or because the ex-

periment probed only a limited range of possible sample parameters. In particular, experiments indicate 

that, at low concentrations (
11

10n <  cm 2- ), graphene conducts as a random network of electron and hole 

puddles. Such microscopic inhomogeneity is inherent to the neutrality point but has so far not been taken 

into account by theory. Furthermore, macroscopic inhomogeneity (on the scale larger than the mean free 

path l) may also play an important role. Experiments show that, improving sample homogeneity by 

thermal annealing or using smaller samples, changes 
max

ρ  so that it gets closer to 2
/4h e . 

4 Quantum Hall effect 

At this early stage, main experimental efforts have been focused on electronic properties in graphene, 

trying to understand the consequences of its QED-like spectrum. Among the most spectacular phenom-

ena found in graphene so far are two new (“chiral”) quantum Hall effects. 

 

 

  

Fig. 2 Hallmark of the QHE for massless Dirac fermions is plateaux 

in 
xy

σ  (top panel) at half integers of 2
4 /e h  whereas 

xx
ρ  (bottom panel) 

vanishes for the same carrier concentrations n. T = 4 K; B = 14 T. 
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 Figure 2 shows the QHE behaviour observed in graphene. QHE in single layer graphene shows up as an 

uninterrupted ladder of equidistant steps in Hall conductivity 
xy

σ  which persists through the neutrality 

(Dirac) point, where charge carriers change from electrons to holes (Fig. 2). The sequence is shifted with 

respect to the “standard” QHE sequence by 1 2/ , so that 24 / ( 1 2)
xy

e h Nσ = ± + /  where N is the Landau 

level (LL) index and factor 4 appears due to double valley and double spin degeneracy. The QHE has 

been dubbed “half-integer” to reflect both the shift and the fact that, although it is not a fractional QHE, 

it is not the integer QHE either. The unusual sequence is now well understood as arising due to the  

QED-like quantization of  graphene’s  electronic  spectrum in magnetic  field B, which is described by 

F
2

N
E v e BN�= ±  where sign ± refers to electrons and holes [26, 27, 39–41]. The existence of a quantized 

level at zero E, which is shared by electrons and holes, is essentially everything one needs to know to 

explain the anomalous QHE sequence [38, 40, 41]. An alternative explanation for the half-integer QHE 

is to invoke the coupling between pseudospin and orbital motion, which gives rise to a Berry phase of π 

accumulated along cyclotron trajectories [14, 15]. The additional phase leads to a half-period shift in the 

phase of quantum oscillations and, in the QHE limit, to a half-step shift [14, 15]. 

 Graphene linear spectra and the large value of the Fermi velocity ensures huge orbital splitting. The 

energy gap between N = 0 and 1N = ±  Landau levels is given by 400E ≈D  (K) B , where B is magnetic 

field in Tesla. This implies that at B = 30 T the splitting is of the order of 2200 K, almost an order of 

magnitude higher than the room temperature. Moreover, temperature independent high mobility ensures 

that the high field limit 1Bµ �◊  is satisfied in a modest field of a few Tesla. These led to observation of 

QHE at room temperatures [42] (Fig. 3), which is very promising for metrology applications. 

5 Conclusions 

Graphene is the first example of a truly two-dimensional crystal. This opens many interesting questions 

concerning the thermodynamics, lattice dynamics, and structural properties of such systems. Being a 

gapless semiconductor with a linear energy spectrum, single-layer graphene realizes a two-dimensional, 

massless Dirac fermion system that is of crucial importance for understanding unusual electronic proper-

ties, such as an anomalous QHE, absence of the Anderson localization, etc. These peculiarities are im-

portant for developing new electronic devices. 
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Fig. 3 Room-temperature quantum Hall effect. Because 

quasiparticles in graphene behave as massless Dirac fer-

mions and exhibit little scattering even under ambient 

conditions, the QHE survives up to room T. The dotted 

curve is the Hall conductivity 
xy

σ  that exhibits clear pla-

teaux at 2
2 /e h  for both electrons and holes. The longitudi-

nal conductivity 
xx

ρ  (solid curve) reaches zero at the same 

gate voltages. 
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