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Abstract. Graphene antidot lattices constitute a novel class of nano-engineered
graphene devices with controllable electronic and optical properties. An antidot
lattice consists of a periodic array of holes that causes a band gap to
open up around the Fermi level, turning graphene from a semimetal into a
semiconductor. We calculate the electronic band structure of graphene antidot
lattices using three numerical approaches with different levels of computational
complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac
equation capture qualitative features of the band structure, while full tight-
binding calculations and density functional theory (DFT) are necessary for more
reliable predictions of the band structure. We compare the three computational
approaches and investigate the role of hydrogen passivation within our DFT
scheme.
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1. Introduction

Since its discovery in 2004 [1, 2], graphene has become a research field of tremendous
interest within the solid-state physics community [3]. The interest stems from the particular
electronic properties of graphene as well as the promising perspectives for future technological
applications [4]. The electronic excitations around the Fermi level of graphene resemble those of
massless, relativistic Dirac fermions, allowing predictions from quantum electrodynamics to be
tested in a solid-state system [5]. From a technological point of view, several future applications
have already been envisioned. These include the use of graphene for single molecule gas
detection [6], graphene-based field-effect transistors [1] and quantum information processing
in nano-engineered graphene sheets [7]. Additionally, graphene is the strongest material ever
tested, suggesting the use of carbon-fiber reinforcements in novel material composites [8].

Metamaterials constitute another popular field of research in contemporary science. In
contrast with conventional, naturally occurring materials, metamaterials derive their properties
from their artificial, man-made, periodic small-scale structure rather than their chemical or
atomic composition [9]. When properly designed and fabricated, metamaterials offer optimized
and unusual, sometimes even counter-intuitive, responses to specific excitations [10]. Examples
include metamaterials with negative permittivity and permeability [11], superlenses [12, 13]
and cloaking devices [14]. Photonic [15, 16] and phononic [17] crystals are closely related to
metamaterials, although they are typically designed to alter the response to electromagnetic
and acoustic excitations, respectively, at wavelengths similar to the dimensions of the small-
scale structure. The realization of artificial band structures in two-dimensional electron gases
may be pursued with similar approaches [18, 19], allowing the formation of e.g. Dirac cones in
conventional antidot lattices [20, 21].

Based on the above ideas, some of us have recently proposed to alter in a controllable
manner the electronic and optical properties of graphene by fabricating a periodic arrangement
of perforations or holes in a graphene sheet [22]. We refer to this kind of structure as a graphene
antidot lattice owing to its close resemblance to conventional antidot lattices defined on top
of a two-dimensional electron gas in a semiconductor heterostructure [23, 24]. Using tight-
binding (TB) calculations we have shown that such a periodic array of holes in a graphene
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sheet causes a band gap to open up around the Fermi level [22], changing graphene from
a semimetal to a semiconductor with corresponding clear signatures in the optical excitation
spectrum [25]. Soon after our proposal, graphene antidot lattices were realized experimentally
by Shen et al [26] and Eroms and Weiss [27] with lattice constants below 100 nm. The rapidly
improving ability to pattern monolayer films with e-beam lithography suggests that graphene
antidot lattices with typical dimensions towards the 10 nm scale may be within reach [28, 29].
Furthermore, Girit et al recently monitored the dynamics at the edges of a growing hole in
real time using a transmission electron microscope [30], and Jia et al demonstrated a method
for producing graphitic nanoribbon edges in a controlled manner via Joule heating [31]. Very
recently, Rodriguez-Manzo and Banhart [32] created individual vacancies in carbon nanotubes
using a 1 Å diameter e-beam. These advances suggest that fabrication of nano-scale graphene
antidot lattices with desired hole geometries may be possible in the near future.

In the endeavors of modeling these structures one is faced with a compromise between
computational efficiency and accuracy. Small-scale lattices with perfect periodicity and identical
few-nm sized holes can be treated accurately with density functional theory (DFT), but this is a
computationally heavy and time consuming approach, which limits the possibilities performing
large, systematic studies. For example, in order to model lattice disorder, such as variations in
the hole geometry and alignment, it may be necessary to form a super cell containing several
holes at the cost of an increased computational time. In order to circumvent this problem, one
can make use of the pseudo-relativistic behavior of electrons in bulk graphene close to the Fermi
level and solve the corresponding Dirac equation (DE) using computationally cheaper methods,
possibly however, at the cost of decreased computational accuracy.

The aim of this paper is to study the band structure of graphene antidot lattices using three
numerical approaches of different computational complexity, efficiency and accuracy. We first
develop a computationally cheap scheme based on a finite-element solution of the DE. This
method gives reasonable predictions for the size of the band gap due to the antidot lattice, but
has limited accuracy in predicting the full band structure. For better predictions of the band
structure, we employ a π -orbital TB scheme, which is still numerically cheap and capable of
treating larger antidot lattices. The results are compared with computationally demanding, full-
fledged ab initio calculations, based on DFT, which we expect to predict the band structure
with the highest accuracy. The TB calculations agree well with qualitative features of the band
structure calculations based on DFT, although some differences are found on a quantitative level.
Finally, we discuss hydrogen passivation along the edges of the holes in a graphene antidot
lattice and study the influence on the electronic properties using DFT.

The paper is organized as follows: in section 2, we introduce graphene antidot lattices and
give a brief overview of the existing literature on the topic. In section 3, we describe our three
computational approaches: finite-element solutions of the DE, a π -orbital TB scheme and DFT
calculations. A comparison and discussion of the results obtained using the three methods are
given in section 4. Finally, we discuss in section 5 the influence of hydrogen passivation on the
band structure, before stating our conclusions in section 6.

2. Graphene antidot lattices

A graphene antidot lattice consists of a periodic arrangement of holes in a graphene sheet [22].
In the following, we consider a hexagonal lattice of circular holes, but other lattice structures,
e.g. square lattices, with different holes shapes are expected to exhibit similar physics. In
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{12, 3} {7,3} {10, 6.4}

R

L

Figure 1. Unit cells of three hexagonal graphene antidot lattices with different
side lengths L and hole radii R. The structures are denoted as {L , R} with both
lengths measured in units of the graphene lattice constant a ≃ 2.46 Å. Here,
we have assumed that the edges of the holes have been hydrogen-passivated
(hydrogen shown as white atoms).

particular, we anticipate an opening of a band gap around the Fermi level for a large class of
antidot lattices [33]. The hexagonal unit cells with different hole sizes are shown in figure 1. The
structures are characterized by the side lengths L of the hexagonal unit cells and the approximate
radii R of the holes, both measured in units of the graphene lattice constant a =

√
3lC ≃ 2.46 Å,

where lC = 1.42 Å is the bond length between neighboring carbon atoms. In figure 1, the holes
are assumed to be passivated with hydrogen, using the bond length 1.1 Å between neighboring
carbon and hydrogen atoms. Throughout the paper, we denote a given structure as {L , R}, where
L is an integer, but R not necessarily. We will consider only very small structures with L ∼ 10.
Although it may not be conceivable to fabricate such small structures within the near future,
the small unit cells allow for systematic comparisons of our three computational schemes.
In particular, with small unit cells we can perform computationally heavy DFT calculations.
Importantly, simple scaling relations have been demonstrated for the size of the band gap in
terms of the total number of atoms and the number of removed atoms within a unit cell, making
it possible to extrapolate results to larger geometries [22]. Such scaling relations may be helpful
when modeling on-going experiments on graphene antidot lattices [26, 27].

In our original proposal for graphene antidot lattices, we focused on the possibility of
fabricating intentional ‘defects’ by leaving out one or more holes in the otherwise periodic
structure [22]. As we showed, such defects lead to the formation of localized electronic states at
the locations of the defects with energies inside the band gap. Several such (possibly coupled)
defects would then form a platform for coupled electronic spin qubits in a graphene-based
quantum computing architecture [22]. Similar ideas based on conventional antidot lattices
defined on a two-dimensional gas in a semiconductor heterostructure have previously been
studied by some of us [18, 19]. However, as already mentioned, the perfectly periodic graphene
antidot lattice constitutes an interesting structure on its own. In particular, the controllable
opening of a band gap may potentially pave the way for graphene-based semiconductor devices.
In [25], some of us studied the optical properties of graphene antidot lattices, showing that
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they behave as dipole-allowed direct gap two-dimensional semiconductors with a pronounced
optical absorption edge. Additional studies of the electronic properties have been performed by
Vanević et al [34] as well as by some of us [33]. Vanević et al studied in detail the occurrence
of flat bands due to sublattice imbalances and irregularities in the hole shapes at the atomic
level. In our study, we addressed the roles of geometry relaxation and electron spin using
DFT calculations. Very recently, Rosales et al studied the transport properties of antidot lattices
along graphene nanoribbons [35]. Turning around the ideas of making graphene semiconducting
using periodic superlattices, it has recently been shown that periodic potential modulations
may create graphene-like electronic band structures of two-dimensional gases in semiconductor
heterostructures [20, 21]. In that case, the possibility to control the slope of the linear bands and
thus the velocity of the Dirac fermions is of great interest.

3. Computational methods

In the following, we outline the three computational methods employed in this work. As a
computationally cheap approach, we consider first finite-element solutions of the DE. Within
this approach, large unit cells can be treated and the computations are fast. The method relies
on the linear bands of bulk graphene around the Fermi level. As a more refined approach, we
consider next π -orbital TB calculations. This method goes beyond the assumption of a linear
band structure of bulk graphene, and the edges of the antidot holes can be carefully treated,
including possible effects due to valley mixing. Finally, we consider fully-fledged ab initio

calculations using DFT. While this method is computationally heavy, DFT is a widely used
standard for doing first principles calculations and we expect it to provide the most detailed
description of the electronic structure.

3.1. Dirac equation (DE)

We first describe our finite-element solutions of the DE. The method is based on the band
structure of bulk graphene close to the two Dirac points being linear and well described by the
DE [3]. Within this picture, the atomic honeycomb lattice structure of graphene is replaced by an
effective continuum description. As an example, we show in figures 2(a) and (b), respectively,
a graphene antidot lattice unit cell and the corresponding continuum domain on which the DE
is solved. The hole in the unit cell is mimicked with a mass term M(r) in the DE at the location
of the hole; see explanation following equation (2). For large masses, the Dirac fermions
are effectively excluded from the location of the hole and the mass term can be replaced by
appropriate boundary conditions along the edge of the hole, indicated with red in figure 2(c). In
figure 2(c), we also show an example of the finite-element mesh on which the DE is discretized
and solved. Periodic Bloch boundary conditions are imposed on the outer edges of the unit cell,
making the problem equivalent to that of an infinitely large graphene antidot lattice.

Electronic states close to one of the two Dirac points of bulk graphene can be expressed
in terms of envelope wavefunctions contained in the two-component spinor |9〉 with one
component corresponding to each of the two sublattices in the honeycomb structure of
graphene [3]. Spinors corresponding to states close to one of the Dirac points satisfy
the DE

Ĥ |9〉 =
[

υF p̂ · σ̂ + M(r̂)σ̂z

]

|ψ〉 = E |9〉, (1)
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M (r)

n
φ

(a) (b) (c)

Figure 2. Unit cell, continuum domain and finite-element mesh. (a) Hexagonal
unit cell of the {7, 3} graphene antidot lattice. (b) Corresponding continuum
domain on which the DE is solved. The hole (hatched area) is modeled with a
mass term M(r) in the DE. The normal vector to the hole n, forming the angle φ
with the horizontal axis, is used to define appropriate boundary conditions along
the edge of the hole (see text). (c) Corresponding finite-element mesh on which
we solve the DE. The edge of the hole is shown in red. Periodic Bloch conditions
are imposed on the outer boundary of the unit cell.

where υF ≃ 106 m s−1 is the Fermi velocity [2], p̂ = [ p̂x , p̂y] is the momentum, σ̂ = [σ̂x , σ̂y]
is the pseudo-spin corresponding to the two sublattices and M(r̂) is the mass that couples to
σ̂z and is nonzero only inside the holes. Spinors associated with the other Dirac point satisfy
equation (1) with the replacement σ̂ → σ̂

∗ = [σ̂x ,−σ̂y]. Within this description, states close to
different Dirac points are assumed not to couple. The real-space representation of the spinor |9〉
is 9(r)≡ 〈r|9〉 = [ψ1(r), ψ2(r)]T, where ψ1 and ψ2 are the envelope functions corresponding
to each of the two sublattices. Equation (1) is correspondingly written

[

M(r) −ih̄υF(∂x − i∂y)

−ih̄υF(∂x + i∂y) −M(r)

] [

ψ1(r)

ψ2(r)

]

= E

[

ψ1(r)

ψ2(r)

]

. (2)

We now consider the situation where Dirac fermions are excluded from the holes by taking
the limit M(r)→ ∞ inside the holes. In that limit, we can derive the appropriate boundary
conditions for the spinor along the edges of a hole and solve the resulting problem outside the
holes. The boundary conditions are derived by requiring that no particle current runs into a
hole. The particle current operator is ĵ ≡ ∇p̂ Ĥ = υF σ̂ , and the local particle current density in
the state9(r) is j(r)=9†(r)ĵ9(r). Imposing n · j(r)= 0 along the edge of a hole with n being
the outward-pointing normal vector to the hole, one can derive the condition ψ1(r)= ie−iφψ2(r)

along the boundary, where the angle φ is defined in figure 2(b). This procedure was originally
developed by Berry and Mondragon in studies of neutrino billiards [36] and more recently
employed by Tworzydło et al in the context of graphene [37]. Along the outer boundaries of the
unit cell we impose periodic Bloch boundary conditions, and we are thus left with a system of
coupled differential equations on a finite-size domain with well-defined boundary conditions.
Problems of this type are well suited for commercially available finite-element solvers, and
the numerical implementation is relatively straightforward and fast using the standard finite-
element package COMSOL Multiphysics [38]. The finite-element solver discretizes and solves
the problem on an optimized mesh of the finite-size domain. The mesh shown in figure 2(c) was
generated with COMSOL Multiphysics.
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3.2. Tight binding (TB)

We next describe our TB scheme. The DE approach introduced above is a continuum description
of the electronic properties, ignoring the detailed atomic structure of graphene and the edges of
the holes, which may lead to scattering between the two Dirac points. It moreover assumes linear
bands of bulk graphene. To capture effects of the atomic structure, including the influence of
edge geometry, and in order to incorporate a realistic description of the band structure of bulk
graphene, we need to go beyond the simple Dirac fermion picture. In our TB scheme, the starting
point is the Schrödinger equation for a single electron in real-space representation

H TBψ(r)=
[

− h̄2

2me
∇2 + V (r)

]

ψ(r)= ǫψ(r), (3)

where V is an effective potential and me is the electron mass. The unknown eigenstate |ψ〉 is
subsequently expanded in a set of localized ‘atomic’ wavefunctions | ER, l〉 as a superposition
|ψ〉 = ∑

C ER,l | ER, l〉 with expansion coefficients C ER,l . Here, each atomic state is labeled by
the orbital symmetry (l = s, px , pz . . .) and the position of the atom ER. This transforms the
Schrödinger equation into a matrix equation reading

∑

ER′,l ′

〈 ER, l|H TB| ER′, l ′〉C ER′,l ′ = ǫ
∑

ER′,l ′

〈 ER, l| ER′, l ′〉C ER′,l ′ . (4)

At this point, several approximations can be adopted in order to simplify the
calculations. Firstly, the atomic orbitals are usually taken to be orthogonal, i.e. 〈 ER, l| ER′, l ′〉 =
δ ER, ER′δl,l ′ . This means that the matrix problem becomes a simple rather than a generalized
eigenvalue problem. Secondly, the matrix elements of H TB are regarded as empirical parameters
fitted, usually, to experimental data. In the simplest TB description of planar carbon structures
contained in the (x, y)-plane, just a single pz or π -orbital on each site is considered and only
nearest-neighbor matrix elements are retained. This ‘hopping integral’ is denoted as −β, with
β ≈ 3.033 eV [39]. Other values of the hopping integral can also be found in the literature.
For example, the choice β ≈ 2.7 eV provides low-energy band structures for bulk graphene
consistently with DFT calculations [40]. However, the Fermi velocity is determined by the
relation υF =

√
3βa/2h̄ and by choosing β ≈ 3.033 eV, we obtain υF = 9.9 × 105 ms−1 in good

agreement with experiments [2].
The reason for considering only π -orbitals is that π -orbitals with odd z-parity decouple

from the σ -orbitals spanned by s, px , and py states that all have even z-parity. Moreover,
the bands in the vicinity of the band gap are all produced by the loosely bound π -orbitals.
Hence, for all structures considered in the present work, we need only include π -orbitals
explicitly. Also, even though realistic structures will contain hydrogen-terminated edges, the
hydrogen atoms couple only to the σ -orbitals and are therefore irrelevant for π -states. In a more
sophisticated model, bare or hydrogen-terminated edges lead to a small modification of the
π -electron hopping integrals near an edge due to relaxation of the geometry. This modification
is ignored as it simply leads to a small additional opening of the band gap [22].

3.3. Density functional theory (DFT)

Finally, we discuss our DFT calculations. This method provides the most detailed description
of graphene antidot lattices, and we expect it to yield the most accurate results. The accuracy
comes at the cost of the method being numerically demanding and the required computational
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resources exceed those typically available on a standard PC. DFT is a widely used standard
for electronic structure calculations and we shall here only briefly outline the underlying
theory [41].

The method takes as its starting point the full interacting many-body system involving
all electrons and atom nuclei making up the graphene antidot lattice. Diagonalizing the
corresponding many-body Hamiltonian is a tremendous task, but the problem can be brought to
a somewhat simpler form using the Born–Oppenheimer approximation in which the positions
of the nuclei are fixed. We are then considering a system of interacting electrons moving in
an external potential created by the nuclei at fixed positions. This is still a difficult many-body
problem, but further advances can be made following Hohenberg and Kohn who showed that
the ground state energy is uniquely determined by the ground state electron density [42]. Kohn
and Sham (KS) later realized that this density can be obtained from a single-particle picture of
non-interacting electrons. The corresponding Hamiltonian for the single-particle KS orbitals ψi

is expressed by the KS equations as [43]

H KSψi(r)=
[

−1
2∇2 + Veff(r)

]

ψi(r)= ǫiψi(r), (5)

where the effective potential

Veff(r)=
∫

dr′ ρ(r
′)

|r − r
′| + Va(r, {Ria

})+
δExc[ρ(r)]

δρ(r)
(6)

depends explicitly on the density ρ(r)= ∑

io
|ψi(r)|2 with the sum running over occupied

KS orbitals. Here, Va(r, {Ria
}) is the external potential due to the atoms at positions Ria

.
The so-called exchange-correlation term Exc(r) accounts for all many-body effects and is not
known exactly, but must be appropriately approximated. Finally, the ground state energy of the
interacting problem is

E[ρ(r)] = T [ρ(r)] +
∫

dr ρ(r)Va(r, {Ria
})+

1

2

∫∫

dr dr′ ρ(r)ρ(r
′)

|r − r
′| + Exc[ρ(r)], (7)

where T is the kinetic energy corresponding to the density ρ(r).
We are now left with the problem of determining the density ρ(r). The density is a function

of only three coordinates, unlike the N -particle wavefunction of 3N coordinates. The set of
KS equations is solved self-consistently: starting from an initial density, the effective potential
is computed together with the KS orbitals and the corresponding density, and this procedure
is repeated until convergence has been reached. The band structure can then by calculated
corresponding to the chosen coordinates of the nuclei Ria

. The total energy of the system can
further be minimized with respect to the coordinates of the nuclei. This is referred to as geometry
relaxation. The method can easily be extended to include spin as well as different species of
nuclei. In this work, we use spin-polarized DFT as implemented in the Siesta code [44]. The
structures are relaxed using computationally cheaper DFT-based TB methods [45]. Performing
electronic structure calculations using DFT on geometries relaxed in this way is known to
provide accurate results [33]. As commonly done, the core electrons are replaced by pseudo-
potentials and the remaining valence electrons are described with localized atomic orbitals.
For the exchange-correlation potential, we employ the widely used Perdew–Burke–Ernzerhof
parametrization of the generalized gradient approximation [46]. We mainly use a so-called
double-ζ polarized (DZP) basis set size, consisting of 13 functions per carbon atom. Unlike
the DE and TB methods, the antidot edges are hydrogen-passivated in the DFT calculations.
The effects of passivation are discussed in section 5. Further details of our DFT calculations can
be found in [33].
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Figure 3. Band structures of three representative graphene antidot lattices. Full
lines indicate results obtained by solving the DE, while TB results are shown
with red dashed lines. Within these computational approaches we have exact
particle-hole symmetry, and consequently only positive energies are shown. Note
the different energy scale on the leftmost figure.

4. Band structures

We now present and compare our results for the electronic band structure obtained using the
three methods described in the previous section. This provides valuable insight into the physics
dominating the electronic properties of graphene antidot lattices as well as an indication of
the range of validity of the less computationally expensive methods. Both the finite-element
solutions of the DE and our TB calculations were carried out on a standard PC, and a single
band structure calculation could typically be performed in a few minutes for the relatively small-
scale graphene antidot lattices considered in the following. The DFT calculations were carried
out on eight AMD Opteron CPUs in parallel and typically lasted around 48 h. Unlike the TB
and the DFT methods, the computational time of our DE scheme does not increase with the size
of the unit cell, determined by L , but only depends on the ratio R/L . For large unit cells, the DE
scheme will therefore outperform both the TB and the DFT methods in terms of computational
time.

In figure 3, we show band structure results for three representative graphene antidot lattices
using the DE and TB. Both methods predict band gaps of a few hundred meVs for these
relatively small dimensions of graphene antidot lattices. For low energies, the DE predicts well
the qualitative features of the bands obtained using TB, but the deviations become pronounced at
higher energies. This is not surprising as the DE is only a valid description at low energies, where
the band structure of bulk graphene is linear. Roughly, this means energies below 0.1β ≃ 0.3 eV.
Additionally, the increased kinetic energy due to the confinement of the particles renders the
DE results less accurate for large antidot radii relative to the dimensions of the unit cell. This
is apparent in the figure, where the bands at higher energies become increasingly inaccurate
as the antidot radius is increased. However, even for the {L , R} = {10, 6.4} structure, there is
a qualitative agreement between the shapes of the bands at low energies found using the two
methods.
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Table 1. Band gaps of three representative graphene antidot lattices obtained by
solving the DE, via TB, and using DFT. Values in parentheses are obtained using
the DE and corrected for the low-radius behavior (see text). The band gaps are
given in eV as well as in dimensionless values relative to the size of the band gap
for the {L , R} = {12, 3} structure.

{12, 3} {7, 3} {10, 6.4}
eV 1{12,3} eV 1{12,3} eV 1{12,3}

DE 0.54 (0.29) 1 1.27 (0.82) 2.35 (2.83) 1.53 (1.22) 2.83 (4.21)
TB 0.23 1 0.74 3.22 1.01 4.39
DFT 0.19 1 0.61 3.21 0.82 4.32

While the shapes of the bands at low energies are approximately the same for the DE and
TB approaches, the sizes of the band gaps vary significantly. For the {L , R} = {12, 3} structure,
the band gap predicted by the DE is more than twice as large as that obtained using TB. These
differences may be traced back to two of the underlying assumptions of the DE: linear bands of
bulk graphene and the absence of scattering between the two Dirac points. In order to illuminate
the discrepancy, we consider two limiting cases. We first consider the limit of large unit cells,
i.e. large values of L . By investigating a large sample of different graphene antidot lattice using
TB, some of us have demonstrated a simple scaling-law between the hole size and the band gap
Eg, showing that Eg ∝ √

Nhole/Ncell for small values of the ratio R/L [22]. Here, Nhole ∝ R2 is
the number of carbon atoms that have been removed from the intact unit cell in order to create
the hole, and Ncell ∝ L2 is the total number of carbon atoms in the intact unit cell (before the
hole is made). We then find Eg ∝ (R/L)/L , showing that for a fixed value of the geometric ratio
R/L , the band gap Eg falls off as 1/L with increasing L . For sufficiently large unit cells, we
thus expect the band gap to be well within the energy window for which the electronic bands
of bulk graphene in fact are linear, and the band gaps obtained using the DE should thus agree
better with TB. The limit of small holes, i.e. R going to 0, is another important check point of
our methods. In the DE approach, the boundary condition along the edge of a hole enforces a
phase shift between the two spinor components, given by the angle φ indicated in figure 2(b).
With R going to 0, the phase shift must occur at a single point in space, resulting in a completely
undetermined phase relationship at this point. Consequently, there is no adiabatic transition from
a graphene antidot lattice to bulk graphene in the limit of vanishing hole sizes. Indeed, for small
values of R, we find a non-vanishing band gap using the DE, and extrapolating the results to
R = 0, we find a band gap of the approximate size 1.02β/L . If we correct for this by simply
subtracting this value from the band gaps calculated using the DE, we find better agreement
with the results obtained using TB, as shown in table 1. For large values of L , the correction
tends to zero, as we would expect.

In table 1, we also show results for the band gaps using DFT. The band gaps calculated
using DFT are within 30% of the corresponding TB results, with DFT consistently reporting
lower band gaps than TB. This follows the general tendency that energy gaps are underestimated
in DFT [47]. For the three structures shown here, the band gaps increase with increasing relative
hole size. This trend is captured well by all three methods. The band structures calculated with
DFT are shown in figure 4, together with results obtained using TB for comparison. Generally,
there is a reasonable qualitative agreement between the two methods in terms of the shapes of
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Figure 4. Band structures of three representative graphene antidot lattices. Full
lines indicate results obtained using DFT, while TB results are shown with red
dashed lines. Within the DFT scheme, particle-hole symmetry is not assumed,
and we thus show results for energies both above and below the Fermi energy at
zero.

the bands, in particular, at energies close to the Fermi level. At larger energies, the qualitative
features start to deviate significantly. Unlike the TB calculations, the DFT approach does not
imply particle-hole symmetry and the corresponding band structures are not symmetric around
the Fermi level at zero. This difference is clearly seen in the figure.

In contrast to the DE and TB calculations, our DFT scheme also includes the spin degree
of freedom and is thereby able to predict the magnetic properties of the graphene antidot
lattice. Within the TB description, graphene is considered a bipartite lattice structure with
two sublattices, A and B, with nonzero hopping elements between different sublattice sites
only. In that case, the total magnetic moment per unit cell M , can be determined from Lieb’s
theorem [48], stating that M = NA − NB with NA(B) being the number of sites of sublattice A(B)

in the unit cell. By inspection of the structures in figure 1, we see that they have zero sublattice
imbalance, i.e. NA = NB , and we thus expect a zero total magnetic moment according to Lieb’s
theorem. Although our DFT calculations are not based on a description of graphene in terms of
two sublattices with only nearest-neighbor coupling, we still find a zero total magnetic moment.
Additionally, we find that no local magnetic moments are formed in any of the investigated
structures. Lieb’s theorem does not concern the formation of local magnetic moments, but the
absence in the present cases can be understood from the circular shapes of the holes, which
inhibit the formation of longer zigzag shaped parts of the edge. This is similar to results obtained
for graphene flakes, where relatively large zigzag parts are needed for local magnetic moments
to form [49]. We thus conclude that the bands are all spin degenerate in the cases we have
investigated.

Within our DFT scheme, the computational time can be reduced by using a smaller basis
set. We thus compare results obtained with the double-ζ polarized (DZP) basis set involving
13 basis functions per carbon atom, used thus far, and results obtained using a single-ζ (SZ)
basis with only four basis functions per carbon atom. Results for the band structures obtained
using the two different basis sets are shown in figure 5. The band structures obtained using the
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Figure 5. Band structures of three representative graphene antidot lattices
calculated with DFT. Full lines indicate results obtained using the DZP basis
set, while dashed lines correspond to the smaller SZ basis set (see text). The
real-space representations of the states corresponding to the points a and b are
shown in figure 6.

Figure 6. Real-space representation of electronic states. The left panel
corresponds to the point on the flat band in figure 5 indicated by a. For
comparison, the right panel shows the state corresponding to the point b in
figure 5. We show the absolute square of the wavefunctions.

smaller SZ basis agree well with those obtained using the DZP basis, and the computational time
is significantly reduced. An interesting difference between the band structures obtained using
DFT compared to the DE and TB, is the very low dispersion of the band roughly 0.5 eV below
the Fermi level for the {L , R} = {10, 6.4} structure. The absolute square of the wavefunction for
one of the spin degenerate states at the Ŵ-point, denoted by a in figure 5, is shown in figure 6.
For comparison, we also show the state denoted by b in figure 5. The state on the flat band
is strongly localized on the zigzag parts of the edge. The lower dispersion compared to TB is
possibly due to the gradually increasing total electronic potential within DFT, when approaching
the edge of a hole. The increased on-site energy of the edge atoms within DFT may thus cause
stronger localization.
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Figure 7. The unit cell of the {L , R} = {4, 2} structure. The structure is shown
with (right) and without (left) complete hydrogen passivation of the carbon atoms
along the edge of the hole.

5. Passivation

Finally, we discuss the influence of edge passivation of the holes with hydrogen. In order to
address this question, we employ our DFT scheme. Details of the edges are not considered
within our finite-element solutions of the DE, and within a TB description, passivation is
typically included simply as a shift of the hopping integral between carbon atoms along the
edges due to the relaxed carbon–carbon bond length [50]. This correction leads to slightly
increased energy gaps but has been ignored in the TB calculations in the present work.
In contrast, DFT carefully treats the presence of hydrogen along the edge of a hole, and,
importantly, the method includes the spin degrees of freedom, which turns out to be crucial
in determining the influence of passivation on the electronic properties. We consider as an
illustrative example the structure {L , R} = {4, 2} depicted in figure 7, shown with and without
hydrogen passivation. We note that the hole geometry in this case is hexagonal, leading again to
a vanishing magnetic moment without passivation.

The resulting band structures, shown in figure 8, with and without passivation are very
different. With full hydrogen passivation, several bands are spin degenerate. This degeneracy is
lifted without passivation, and low dispersion bands stemming from dangling bonds are clearly
present. The dispersions of these bands arise due to coupling between neighboring edge atoms.
Each dangling bond introduces a calculated spin of one Bohr magneton, 1.00µB, giving a total
magnetization of 12.00µB per cell, causing the lifting of the spin degeneracy. This magnetization
involves only the sp2-orbitals and is strongly localized at the sites of the dangling bonds. We
find that structural relaxation has no qualitative impact on the results in these two cases.

Next, we investigate the effects of a single carbon vacancy at the edge. This introduces a
sublattice imbalance of |NA − NB| = 1, resulting in an expected nonzero total magnetic moment
according to Lieb’s theorem. Elaborating on Lieb’s work, Inui et al [51] have shown that such
a sublattice imbalance is accompanied by at least |NA − NB| midgap states with zero energy
for a perfect bipartite lattice. A recent discussion of similar statements can be found in [52].
In figure 9 we show the geometries of a single carbon vacancy at the edge, both with and
without hydrogen passivation, as well as with and without having relaxed the geometries. The
corresponding band structures are shown in figure 10. Generally, we find two low dispersion
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Figure 8. Band structure of the {L , R} = {4, 2} graphene antidot lattice
calculated with DFT. The left (right) panel shows the band structure without
(with full) hydrogen passivation, corresponding to the unit cells in figure 7. The
systems are fully relaxed and the spin degree of freedom is included. Majority
(minority) spin is shown with black (green). The Fermi level is at E = 0.

1.0µB 1.0µB

1.0µB 0.5µB

Figure 9. Single carbon vacancy at the edge of the hole in the {L , R} = {4, 2}
structure. In the left (right) panels the structures have not been (have been)
relaxed. In the upper (lower) panels, the carbon atoms next to the vacancy have
(have not) been passivated with hydrogen. The calculated magnetic moment is
indicated in each panel.

bands close to the Fermi level. These are the midgap states with an induced spin splitting. The
spin degeneracy is lifted for all bands due to the nonzero total magnetic moment. The main
finding in the case without passivation of the atoms close to the vacancy are the two flat bands
stemming from the dangling bonds, indicated with arrows in figure 10. The dangling bonds are
found to overlap in the case of which it is energetically most favorable for the dangling bonds
to have zero total spin as our calculations show. We find a magnetization of 1.00µB per unit
cell for both systems in the unrelaxed case. This magnetization is entirely due to the sublattice

New Journal of Physics 11 (2009) 095020 (http://www.njp.org/)

http://www.njp.org/


15

E
(e
V
)

K Γ M K K Γ M K

Unpassivated Passivated

Figure 10. Band structures of the {L , R} = {4, 2} graphene antidot lattice with
a single carbon vacancy in the unit cell. Dashed lines indicate band structures
for the unrelaxed geometry shown in figure 9, panels (a) and (c), while full lines
are the corresponding results for the relaxed structures, panels (b) and (d). The
unfilled bands of the dangling bonds are indicated in the left panel by horizontal
arrows. The corresponding filled bands at lower energies are not shown in the
plot. Majority (minority) spin is shown with black (green). The Fermi level is at
E = 0.

imbalance, and is, in contrast to the case of dangling bonds, largely non-local, residing mainly
on the π -orbitals.

Whereas relaxation has minor effects when passivation is included, the opposite is true for
carbon vacancies without passivation. In that case, the two unpassivated carbon atoms at the
edge approach each other, forming a pentagon as seen in figure 9(d). A similar phenomenon
has been observed theoretically for single carbon vacancies in bulk graphene, where the spin of
such vacancies can usually be understood as an unsaturated dangling bond on the neighboring
carbon atom, not forming the pentagon [53]–[55]. This results in a calculated magnetic moment
of around 1µB. In our case, however, there are only two neighboring atoms. In fact, in both
cases the magnetic moment is better understood using Lieb’s theorem, as discussed by Palacios
et al, in the case of carbon vacancies in bulk graphene [56]. In the pentagon geometry, two sites
belonging to the same sublattice bond stronger to each other, which is reflected in the smaller
bond length of 1.67 Å compared to 2.46 Å in the case without relaxation. Consequently, the
dangling bonds are then saturated and the corresponding flat bands are not present. Additionally,
the bipartite lattice symmetry is broken, causing a reduction in the magnetic moment from
1.00µB to 0.50µB. Consequently, the spin splitting of the bands is reduced. The midgap states
are still observed, but in this case with more dispersion. The features of the bipartite lattice are
thus maintained in a moderated version, when pentagons are formed due to a carbon vacancy
along the edge of the hole. We stress that while the magnetization arising from Lieb’s theorem is
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predictable, the magnetization due to dangling bonds is merely a result of energy optimization
and is therefore harder to predict.

6. Conclusions

We have carried out a numerical study of the band structures of graphene antidot lattices,
using three different computational approaches of varying levels of complexity and accuracy.
Finite-element solutions of the DE provide a simple and fast scheme, capturing essential
qualitative features of the band structures and band gaps. For more reliable predictions of the
band structures, we employed a π -orbital TB scheme as well as computationally heavy DFT
calculations. The three methods all predict an opening of a band gap of the order of a few
hundred meVs for the nano-scale structured graphene antidot lattices studied in this work.
Qualitative similarities were found for the band structures calculated with the three different
methods. Finally, we discussed the effects of hydrogen passivation along the edges of the holes.
Passivation was found to have a significant influence on the band structures and the presence of
carbon vacancies along the hole edges was shown to induce midgap bands.
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