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Extra Dirac points in the energy spectrum for superlattices on single-layer graphene

M. Barbier,1 P. Vasilopoulos,2 and F. M. Peeters1

1Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
2Department of Physics, Concordia University, 7141 Sherbrooke Ouest, Montréal, Quebec, Canada H4B 1R6

�Received 14 September 2009; revised manuscript received 9 December 2009; published 25 February 2010�

We investigate the emergence of extra Dirac points in the electronic structure of a periodically spaced barrier

system, i.e., a superlattice, on single-layer graphene, using a Dirac-type Hamiltonian. Using square barriers

allows us to find analytic expressions for the occurrence and location of these new Dirac points in k space and

for the renormalization of the electron velocity near them in the low-energy range. In the general case of

unequal barrier and well widths the new Dirac points move away from the Fermi level and for given heights

of the potential barriers there is a minimum and maximum barrier width outside of which the new Dirac points

disappear. The effect of these extra Dirac points on the density of states and on the conductivity is investigated.

DOI: 10.1103/PhysRevB.81.075438 PACS number�s�: 71.10.Pm, 73.21.�b, 81.05.U�

I. INTRODUCTION

Graphene, a one-atom thick layer of carbon atoms, has

been a topic of intense study since its experimental

realization1 in 2004. Interest in graphene results, in particu-

lar, from the prediction that carriers in it behave as massless,

chiral Dirac fermions, moving in a two-dimensional �2D�
plane and described by a Dirac-type Hamiltonian. This

model predicts unusual electronic properties such as the gap-

less electronic spectrum, the perfect transmission at normal

incidence through any potential barrier, i.e., the Klein

paradox2,3 which was recently addressed experimentally,4 the

zitterbewegung recently verified,5 etc., see Ref. 6 for a recent

review.

Motivated by all these properties, condensed matter

physicists started extending the known properties of a two-

dimensional electron gas �2DEG� in semiconductor materials

to the relativistic 2D fermions �Dirac electrons� in graphene.

Another particularly interesting system to consider is the ap-

plication of a periodic potential to graphene, that is, a super-

lattice �SL�, which under special conditions leads to collima-

tion of electron beams.7–9

As found recently in Ref. 10, using a tight-binding for-

malism, the dispersion relation for such a SL can reveal extra

Dirac points at the Fermi level.11 Close to the Fermi level the

electronic properties of graphene are well described by the

massless 2D Dirac equation. In two recent studies, Refs. 12

and 13, an exact condition was found for the emergence of

extra Dirac points �zero modes� in the presence of a sinu-

soidal or square-wave SL potential. However, both studies

are not able to describe the character and spatial distribution

in k space of these new Dirac points, as they expand the

spectrum for small ky. In this work we describe under which

condition this is possible and also where these extra Dirac

points arise in the electronic structure of massless Dirac fer-

mions in single-layer graphene when a square-wave periodic

potential is applied. Further, we analytically investigate the

anisotropic renormalization of the group velocities at these

new Dirac points, and find that the degree of the renormal-

ization depends on the parameter u�V0L, which is linear in

the barrier height V0 and period L of the SL, in the sense that,

vx�vy holds for u such that an extra Dirac point arises while

for very high values u we have vx�vy. Moreover, we also

consider the case of unequal barrier and well widths, not

treated previously, that results in a qualitatively different

electronic spectrum.

We organize the paper as follows. In Sec. II we introduce

our model. In Sec. III we investigate the emergence of the

extra Dirac points, approximate the implicit dispersion rela-

tion for small energies, and take a closer look at the group

velocity near the extra Dirac points. Further we investigate

the influence of the features of the spectrum on the density of

states and conductivity. Finally, we make a summary and

concluding remarks in Sec. IV.

II. MODEL

We describe the electronic structure of an infinitely large

flat graphene flake by the nearest-neighbor, tight-binding

model and consider solutions with energy and wave vector

close to the K point. The relevant Hamiltonian is H

=vF�� · p�̂ +1 V, with 1 the 2�2 unit matrix. Explicitly H is

given by

H = � V − ivF���x − i�y�

− ivF���x + i�y� V
� , �1�

where p� is the momentum operator and vF�106 m /s the

Fermi velocity. In the presence of a one-dimensional �1D�
square-wave potential V�x�, such as the one shown in Fig. 1,

the equation �H−E��=0 admits solutions of the form

��x�eikyy with

V(x)

WV
0

x

bWw

L

FIG. 1. Schematics of the superlattice potential V�x� consisting

of square barriers.
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��x� = � 1

sei	 �ei
x, ��x� = � 1

− se−i	 �e−i
x, �2�


= ���−u�x��2−ky
2�1/2, tan 	=ky /
, s=sgn��−u�x��,

�=E /vF�, and u�x�=V�x� /vF�; the parameters � and u�x�
are in units of inverse length.

Square-barrier superlattice

We consider an infinite number of periodically spaced

barriers, as shown in Fig. 1, with unit cell length L and

barrier �well� width Wb �Ww�. It is convenient to

introduce the dimensionless variables �→�L, ky→kyL,

kx→kxL, u→u0L=V0L /vF�, x→x /L, Wb→Wb /L, and

Ww→1−Wb /L. The wave function of this periodic system is

a Bloch function and the transfer matrix T pertinent to it

leads to an expression for the dispersion relation, see Appen-

dix A. For �ky�� ��w� and �w as in Eq. �6�, the transfer matrix

T can be written as14

T = �w z

z� w�
�; �3�

then the dispersion relation becomes

cos�kx� = R	e−i
w
 , �4�

with w given by

w = ei
Wb�cos �Wb − iG sin �Wb� �5�

and

�w = � + uWb, �b = � − uWw, G = ��w�b − ky
2�/
� ,


 = ��w
2 − ky

2�1/2, � = ��b
2 − ky

2�1/2. �6�

Writing the rhs of Eq. �4� explicitly gives

cos kx = cos 
Ww cos �Wb − G sin 
Ww sin �Wb. �7�

Although this derivation is only correct for �ky�� ��w�, Eq.

�7� is also valid beyond this limitation, see Ref. 15. From Eq.

�7� it can be seen that the dispersion relation possesses the

symmetry property �→−� for Wb↔Ww. The asymmetric

spectrum is not unexpected because the symmetry of the po-

tential about the Fermi level is lost for Wb�1 /2. For Wb

=1 /2 we have

cos kx = cos



2
cos

�

2
− G sin




2
sin

�

2
, �8�

where �w=�+u /2 and �b=�−u /2. For this interesting case,

the potential possesses particle-hole symmetry and the extra

Dirac points originate at the Fermi level; we will show their

arrangement, in k space, in Sec. III A.

In Fig. 2�a� the spectrum resulting from Eq. �8� for equal

barrier and well widths, i.e., for Ww=Wb=1 /2, is plotted for

u=10. As can be seen, the spectrum is symmetric about the

Fermi level; there are two extra Dirac points on both sides of

the main Dirac point, and their velocities are renormalized.

The anisotropic behavior of the new Dirac cones is clearer in

the projection of the conduction band shown in Fig. 2�b�.

Further details about the renormalization of the velocities

will be given in Sec. III C.

For unequal barrier and well widths the spectrum is

shown in Fig. 3�a� for Wb=1−Ww=0.4 and u=6. The spec-

trum is no longer symmetric about the Fermi level, the two

extra Dirac points are shifted in energy relative to the main

point and their velocities are renormalized. The location of

the extra Dirac points will be investigated in Sec. III.

III. ELECTRONIC STRUCTURE

A. Appearance of extra Dirac points

In order to find the location of the Dirac points we assume

kx=0, �=0, and Wb=Ww=1 /2 in Eq. �8�. Then Eq. �8� be-

comes

1 = cos2 
/2 + ��u2
/4 + ky

2�/�u2
/4 − ky

2��sin2 
/2, �9�

which has solutions for u2
/4−ky

2=u2
/4+ky

2 or sin2 
 /2=0.

For the first possibility ky =0 is the only solution and corre-

sponds to the usual Dirac point. The second possibility leads

to 
 /2= j with j�0, because 
=0 makes the denominator

u2
/4−ky

2=
2 vanish and does not lead to a solution. For


 /2= j we have

(a) (b)

FIG. 2. �Color online� �a� Valence and conduction bands of the

spectrum of a SL with square barriers of width Wb=1 /2 and height

u=10. �b� Contour plot of the conduction band.

(a)

(b)

(c)

FIG. 3. �Color online� �a� Valence and conduction bands of the

spectrum of a SL with barriers of width Wb=0.4 and height

u=6. �b� and �c�: projection contours of the conduction and va-

lence band, respectively, on the �kx ,ky� plane.
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ky j,�
= ��u2

4
− 4j22 = ��� V0

2�vF

�2

− �2j

L
�2

,

�10�

where we reinserted the dimensions after the second equality

sign. As such, Eq. �10� describes the spatial arrangement of

the extra Dirac points along the ky axis. Also, it clearly

shows how many points we have at particular values of u,

namely, 2� �u mod 4�, and where they are located in k

space. Each time u becomes a multiple of 4 a new pair of

Dirac points is generated for ky =0. The condition j�0 gives

us a threshold value of u=4 for the emergence of the first

pair. The integer j denotes the jth extra Dirac point, so the

outer extra Dirac points have j=1 as they are generated first.

In Fig. 4�a� we show slices of the SL spectrum along ky

for kx=0 and u=6. The solid red, dash-dotted green, and

dashed blue dashed curves correspond to barrier widths Wb

=0.5, 0.6, and 0.7 respectively. The thin black line is the

curve on which the extra Dirac points, on the left of the main

one at ky =0, are located for various Wb. In Fig. 4�b� we show

slices of the spectrum along ky for kx=0. The solid red, dot-

dot-dashed black, dashed green, and dash-dotted blue curves

are for different values of the barrier height such that

u /2=2, 3, 4, and 6 respectively. For values of u /2

which are multiples of 2, new Dirac points are generated.

Interestingly, if new extra points are to arise, the dispersion

becomes almost flat along the ky axis at the Dirac point, i.e.,

collimation occurs. We will come back to this issue in Sec.

III C.

Unequal well and barrier widths. We return to the more

general case of unequal well and barrier widths for which

Wb�1 /2. It is more difficult to locate the extra Dirac points

which no longer occur at the Fermi level as seen from the

green and blue curves in Fig. 4�a� showing slices of spectra

from Eq. �7� for kx=0. By means of the symmetry �→−� for

Wb↔Ww, we know the complementary plots for

Wb→1−Wb. As can be seen, the extra Dirac points shift

mainly down �up� in energy as Wb increases �decreases�. To

find their coordinates �� ,kx=0,ky� we assume sin�
Ww�

=sin��Wb�=0 and cos�
Ww�=cos��Wb�= �1.16 This gives

�Appendix B�

� j,m =
u

2
�1 − 2Wb� +

2

2u
� j2

Ww
2

−
�j + 2m�2

Wb
2 � ,

ky j,m
= � ��� j,m + uWb�2 − �j/Ww�2�1/2, �11�

where j and m are integers. This method also shows higher

and lower crossing points if m�0. In Fig. 4�a� the extra

Dirac points on the left, obtained with this method, are indi-

cated by open circles and the thin black curve shows their

trajectory in �E ,ky� space as the width Wb varies. For a par-

ticular u there is a minimal width Wb �and a corresponding

maximal width Wb→1−Wb� below �above� which the vari-

ous extra Dirac points disappear. In Fig. 4�a� the “Dirac

cones” at these crossing points for m=0 are not only re-

shaped with a renormalized anisotropic velocity but, as

shown by the blue dashed curve, the “extra Dirac point” is

not at a local minimum �maximum� of the conduction �va-

lence� band.

B. Analytical expression for the spectrum for small energies ε

As the purpose is to have a closer look at the behavior of

the extra Dirac points and we cannot prohibit ky from being

large, we expand Eq. �8� for small energies, up to second

order in �, and obtain the following explicit dispersion rela-

tion:

�� = � � 4�a2�2�ky
2 sin2�a/2� + a2 sin2�kx/2��

ky
4
a sin a + a2u4

/16 − 2ky
2
u2 sin2�a/2�

1/2

,

�12�

with a= �u2
/4−ky

2�1/2.

If we only need the behavior of the spectrum near the K

point �for small kx and ky�, it suffices to make an expansion

for small � and ky in Eq. �8�, up to third order in products of

� and ky since this is the first order with an energy depen-

dence. The result is

2 cos kx − 2 + �2 − ky
2 sin2�u/4�/�u/4�2 = 0. �13�

Then we solve for the energy � and obtain

� � � �4 sin2 kx/2 + ky
2 sin2�u/4�/�u/4�2�1/2. �14�

In Fig. 5�a� we show � from Eq. �12� and compare it with

the exact dispersion relation, for kx=0, following from Eq.

�8�. The expansion �12� is rather good for low energies near

the extra Dirac points; accordingly, we will use Eq. �12� to

further assess their behavior.

C. Anisotropic velocity renormalization at the (extra)

Dirac point(s)

The spectrum in the low-energy range consists of two

kinds of valleys, one near the main Dirac point and the other

near the extra Dirac points. Near the original Dirac point the

spectrum is almost linear, perpendicular to the barriers, and

zero parallel to them, whereas near the extra Dirac points the

(b)(a)

FIG. 4. �Color online� Slices of the SL spectrum along ky with

kx=0 and u=6. �a� The solid red, dash-dotted green, and dashed

blue curves correspond to barrier widths Wb=0.5, 0.6, and 0.7, re-

spectively. The thin black line is the curve on which the extra Dirac

point, to the left of the main one at ky =0, is located for various Wb.

Only the new points to the left of the main one are shown. �b� As in

�a� for fixed Wb=0.5. The solid red, dot-dot-dashed black, dashed

green, and dash-dotted blue curves are for different values of the

barrier height such that u /2=2, 3, 4, and 6, respectively.
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situation can be reversed depending on the height of the

barriers.

Group velocity along the x-axis at the Dirac point. To

compare with the collimation found by Park et al.,8 we no-

tice that in Fig. 4�b�, for the solid red, dashed green, and

dash-dotted blue curves, corresponding to barrier heights

which are multiples of 4, the dispersion becomes more flat

for small ky. From Eq. �14� we could already expect that, to

order ky
2, the ky dependence disappears for these values of u.

Further, if we expand Eq. �12� in powers of ky we obtain

� = sin�u/4�/�u/4�ky − �2/u5�

��u3 cos�u/4� + 4u2 sin�u/4� − 128 sin3�u/4��ky
3 + O�ky

5� ,

�15�

which is linear in ky, for small ky, and the velocity becomes

vy/vF = ��/�ky � sin�u/4�/�u/4� . �16�

In Fig. 6 the velocities of the Dirac point, in the x and y

directions, are given by the j=0 curves. For u /2=2j we

have

� � � ky
3
/8j22 + O�ky

5� , �17�

which is cubic in ky for small ky. If j and consequently u

become larger the dispersion gets flatter. In Fig. 5�b� we plot

Eq. �17� for u=4 and u=8 as dashed curves, which cor-

respond, respectively, to the zoomed-in plots of the solid red

and dashed green curves of Fig. 4�b�, shown here as blue and

red curves.

Group velocity along the y-axis at the extra Dirac points.

The dispersion relation �12� for the ky values of the extra

Dirac points, determined by ky j,�
= � �u2

/4− �2j�2�1/2, gives

us an idea of how dispersionless the spectrum near these

points is along the x-direction. If ky j,�
exists, Eq. �12� be-

comes

� � 322j2 sin��kx�/2�/u2, �18�

and the partial derivative16 of � with respect to kx is

vx/vF = ��/�kx � sgn�kx�162j2 cos�kx/2�/u2. �19�

This means that for smaller j �the most distant extra Dirac

points� the group velocity along the x direction is strongly

suppressed. Further, as u�4j must hold in order for ky j,�
to

be real, �vx� is smaller than 1��vF� at kx=0. Only for the

special values u=4j, for which new Dirac points appear,

we have �v jx�=1.

Meanwhile the dispersion in the ky direction is also of

interest. First, let us take kx=0 and expand the dispersion

relation �12� for ky −ky j,�
�1. To first order in this difference

we obtain

� � � �4ky j,�

2
/u2��ky − ky j,�

� . �20�

This gives the velocity vy at the extra Dirac points

vy

vF

= ��/�ky � 4ky j,�

2
/u2 = 4�u2

/4 − 4j22�/u2. �21�

Since the coordinates of the extra Dirac points should be

real, ky j,�

2 is positive and smaller than u2
/4 and we have

vy �1 �the outer Dirac points, for j=1, show the largest vy�.
This entails that both vx and vy are renormalized at the new

Dirac points. A plot of the velocities of the extra Dirac

points, in the x and y directions, given by Eqs. �19� and �21�,
is shown in Fig. 6. As seen, for the extra Dirac points, v jx,

shown by the dashed red curves, starts from vF and decreases

to zero with increasing u while v jy �dash-dotted blue curves�,
starts from zero and approaches vF slowly for large u. The

thin solid black curves show the velocities for j=1, obtained

numerically from Eq. �8�. As can be seen, the two curves

match almost perfectly.

D. Density of states and conductivity

Density of states. At zero temperature the density of states

�DOS� D�E� is given by

D�E� = �
n,k

��E − Enk� , �22�

with E the energy. We show the DOS in Fig. 7, for

Wb=0.5 �solid red curve� and Wb=0.4 �dashed blue curve�,

(b)(a)

FIG. 5. �Color online� �a� Plot of the dispersion relation result-

ing from Eq. �12� �dashed blue curve� versus the exact one obtained

from Eq. �8� �solid red curve� for kx=0 and u=6. �b� The solid

blue and red curves show, respectively, the zoomed-in plots of the

solid red and dashed green curves of Fig. 4�b�, i.e., for u=4 and

u=8, respectively, and Wb=Ww=1 /2. The approximation of these

curves by Eq. �17� are the dashed curves.

FIG. 6. �Color online� Velocities v0x and v0y �dash-dot-dotted

red and solid blue curves, respectively�, vs u at the original Dirac

point and v jx and v jy �dashed red and dash-dotted blue curves, re-

spectively�, given by Eqs. �19� and �21�, vs u at the extra Dirac

points j=1,2 ,3. The thin black curves for the j=1 Dirac point, are

obtained numerically from Eq. �8�.
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as well as the DOS for graphene without any SL

potential �dash-dotted black curve�; the latter is given by

D���=�D0 /2, with D0=L /�vF the amount of states per

unit area and L is the period of the SL. The DOS shows an

oscillating behavior. The dips in it are located at the crossing

points in the energy bands for ky =0 ��=n�, while the peaks

marked by a star are ascribed to the saddle points between

the crossing points for kx=0 and to the minima of the energy

bands at the edge of the Brillouin zone, kx= �, marked by

a cross. For Wb=0.4�Ww the DOS �dashed blue curve� does

not vanish at �=0 nor is it symmetric about this energy.

Conductivity tensor �. The diffusive dc conductivity ���

for the SL system can be readily calculated from the spec-

trum if we assume a nearly constant relaxation time

��EF���F. It is given by17

����EF� =
e2��F

A
�
n,k

vn�vn�fnk�1 − fnk� , �23�

with A the area of the system, n the energy band index,

� ,�=x ,y, and fnk=1 / 	exp���EF−Enk��+1
 the equilibrium

Fermi-Dirac distribution function; EF is the Fermi energy

and �=1 /kBT.

In Figs. 8�a� and 8�b� we show, respectively, �xx and �yy

for a SL with u=6, and the temperature dependence is

given by �=�vF /kBTL=20 �in dimensionless units�. The

solid red and dashed blue curves correspond to Wb=0.5 and

Wb=0.4, respectively. The dash-dotted black curve shows the

conductivity at zero temperature and in the absence of a SL

potential, �xx=�yy =�F�0 /4, with �F=EFL /�vF and

�0=e2
/�. Notice that �xx is an oscillating function of the

Fermi level and recovers a quasi linear behavior similar to

that in graphene without a SL potential when �F is well

above the barrier height, as shown in the inset, i.e., with the

x axis displaced over the potential height or well depth, i.e.,

u /2=3. On the average �yy increases with �F and ap-

proaches the result without a SL for large energies.

The oscillations in both �xx and �yy result from the mo-

tion of the Fermi level through the different SL minibands.

Notice that for Wb=0.4 the conductivities are asymmetric

with respect to electron and hole conduction. In both cases,

Wb=Ww=0.5 and Wb=0.4, �xx shows dips at �F=n, where

energy band crossings occur in the spectrum for ky =0. In the

former case the DOS has dips occurring at the same energy

values that are dominated by the same crossings. In the latter

case we see that, unlike the DOS, �xx is almost unaffected by

the extra Dirac points for low energies since the spectrum is

almost flat near these points. Similarly, for Wb=0.4 we see

that the minimum in �yy is located at �F�1, that is, the

energy value for which the two extra Dirac points occur in

the spectrum.

In Figs. 8�c� and 8�d� we show, respectively, �xx and �yy,

for a SL with Wb=Ww=0.5, for different potential heights,

such that u=0, 4, 4.5, 6, 7.5, and �=�vF /kBTL=20.

Notice that the conductivity �yy, in the low-energy range

��F�1�, is lower than that in the absence of a SL potential

while its slope increases as the potential barriers become

higher. This is due to the extra Dirac points that appear for

larger potential heights, near which the velocity is larger

along the y axis. Notice that for �F�1 we have �xx��yy as

a result of the inequality vx�vy near the Dirac point.

IV. CONCLUSIONS

We investigated the appearance of zero modes, touching

points at the Fermi level �extra Dirac points� in the spectrum

of single-layer graphene in the presence of a 1D superlattice

�SL�. The system was described by a Dirac-type Hamil-

tonian, and the SL barriers were square.

In the general case of unequal well and barrier widths,

there is no particle-hole symmetry and the extra Dirac points

are no longer located at the Fermi level. We obtained an

analytical expression for the position of the crossing points

in the spectrum. The extra “Dirac cones” that appear at the

FIG. 7. �Color online� The DOS, for u=6, and Wb=0.5 and 0.4

is shown by, respectively, the solid red and dashed blue curve. Stars

and crosses placed near the peaks of the solid red curve �for nega-

tive energies� are ascribed, respectively, to saddle points in the

spectrum, for kx=0, and to minima for kx=. The DOS without a

SL potential is shown by the dash-dotted black curve.

(b)(a)

(c) (d)

FIG. 8. �Color online� �a� and �b� show the conductivities �xx

and �yy vs Fermi energy for a SL with u=6. The solid red and

dashed blue curves are, respectively, for Wb=0.5 and Wb=0.4

�Ww=1−Wb�. The dash-dotted black curves show the conductivities

in the absence of the SL potential, �xx=�yy =�F�0 /4. The inset in

�a� shows the zoomed-out conductivity �xx, for Wb=0.5, and the

dashed lines are the conductivities of graphene in the absence of a

SL but with a constant nonzero potential applied, −V0 /2 and +V0 /2,

so that EF is displaced by V0 /2 and u /2=3. The inset in �b� is a

zoom on �yy for small energies. �c� and �d� show �xx and �yy, for

Wb=Ww=0.5 for different potential heights, such that u=4, 4.5,

6, 7.5, and small energies.
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various crossing points are reshaped, i.e., they are no longer
circular symmetric and the slope is renormalized. For fixed
height of the barriers, we found lower and upper bounds for
the barrier and well widths for the occurrence of these extra
Dirac cones.

For a SL with equal well and barrier widths we comple-
mented the investigations of Refs. 12 and 13, which numeri-
cally demonstrated the emergence of extra Dirac points �zero
modes�. In doing so we found a simple analytical expression
for the spatial distribution of these points in k space as well
as a threshold value of the potential strength for their appear-
ance. Further, we approximated the dispersion relation for
energies close to the Fermi energy and found an explicit
expression for the k space behavior of the extra Dirac points
at the Fermi level. Using this expression we showed how the
group velocities at the various extra Dirac points are renor-

malized in the x and y directions. We also quantified how

dispersionless the spectrum is in the neighborhood of a Dirac

point along the y direction and the emergence of new points

at which the conduction and the valence bands touch each

other.

Finally, we obtained numerically the density of states

�DOS�, which exhibits an interesting oscillatory behavior

and is reflected in the conductivity of the system. We found

that the dips in the DOS, for symmetric SLs, are located at

the touching points in the spectrum for k=0, i.e., for �=n.

For asymmetric SLs these dips persist but extra dips due to

the extra Dirac points arise. The conductivity �xx was found

to have dips at the same values for �F as the DOS while the

main features of �yy in the low-energy range are due to the

spectrum near the extra Dirac points. We notice in passing

that the influence of velocity renormalization on transport

was not studied in Refs. 12 and 13 nor the modification of

the extra Dirac points for unequal well and barrier widths.
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APPENDIX A: DISPERSION RELATION FOR PERIODIC

SYSTEMS

The wave functions in the regions before and after the

barrier, labeled, respectively, by j=1 and j=2, can be written

as � j�x�=� j�x�A j, with

� = � 1 1

sei	 − se−i	 �, A = �A

B
� . �A1�

Since the wave function of the entire periodic system is a

Bloch function and the transfer matrix T connects the regions

before and after the barriers, we have

��1� = eikx��0�, A1 = TA2, �A2�

with kx the Bloch wave vector. From these boundary condi-

tions we extract the relation �
= ��2−ky
2�1/2�

e−ikxei
�zA2 = TA2, with T = �w z

z� w�
� . �A3�

For nontrivial solutions of Eq. �A3�, the determinant of

A2= �A , B�T must be zero, i.e.,

det�e−ikxei
 − w − z

− z� e−ikxe−i
 − w�
� = 0. �A4�

Evaluating the determinant gives the dispersion relation

cos kx = R	we−i

 = cos��t + 
�/�t� , �A5�

with 1 /w= t= �t�ei�t.

APPENDIX B: CROSSING POINTS FOR UNEQUAL

BARRIER AND WELL WIDTHS

Suppose a solution �� ,kx=0,ky� of the dispersion relation

�7� is known for which the derivative �� /�ky at a certain ky

value is undefined; then this ky value can be a crossing point.

The condition for such a solution is sin�
Ww�=sin��Wb�
=0, and cos�
Ww�=cos��Wb�= �1, which entails


Ww = j ,

�Wb = �j + 2m� , �B1�

with j and m integers. Explicitly we obtain

��� + uWb�2 − ky
2�Ww

2 = �j�2,

	�� − u�1 − Wb��2 − ky
2
Wb

2 = ��j + 2m��2. �B2�

Subtracting the second equation from the first one in Eq.

�B2� gives

2u� − u2�1 − 2Wb� = 2� j2

Ww
2

−
�j + 2m�2

Wb
2 � , �B3�

from which the corresponding value of the energy � can be

extracted. Substituting this value in the first of Eqs. �B2� one

obtains

� j,m =
u

2
�1 − 2Wb� +

2

2u
� j2

Ww
2

−
�j + 2m�2

Wb
2 � ,

ky j,m
= � ��� j,m + uWb�2 − �j/Ww�2�1/2. �B4�
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