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Electronic response of graphene to linelike charge perturbations

B.-Y. Jiang and M. M. Fogler
Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

(Dated: May 5, 2015)

The problem of electrostatic screening of a charged line by undoped or weakly doped graphene is
treated beyond the linear-response theory. The induced electron density is found to be approximately
doping independent, n(x) ∼ x−2 log2 x, at intermediate distances x from the charged line. At
larger x, twin p-n junctions may form if the external perturbation is repulsive for graphene charge
carriers. The effect of such inhomogeneities on conductance and quantum capacitance of graphene
is calculated. The results are relevant for transport properties of graphene grain boundaries and for
local electrostatic control of graphene with ultrathin gates.

I. INTRODUCTION

One of the properties that make graphene an attractive
platform for electronic devices is tunability of its charge
carrier density through electrostatic gating. The gates
can be brought into immediate proximity of graphene,
which enables one to control doping of this material
very efficiently. Local gating on ultrasmall lengthscales
is attainable by utilizing nanowire1 or nanotube2 gates
[Fig. 1(a)]. Physical insight into fundamental charac-
teristics of such devices can be gained from a simplified
problem of how graphene responds to a linelike external
charge [Fig. 1(c)]. This problem is also relevant for under-
standing properties of grain-boundary defects [Fig. 1(b)]
in graphene grown by chemical-vapor deposition.3–5

The problem of screening of a linelike charge by elec-
trons in graphene is an interesting challenge because the
usual linear-response theory6 fails when the line is highly
charged and/or when graphene is lightly doped. Previ-
ous studies of one-dimensional charge perturbations in
graphene eschewed solving this difficult problem resort-
ing instead to ad hoc approximations for the induced
carrier density profile.1,7 Accurate determination of this
profile requires numerical calculations, e.g., finding the
self-consistent solution of the Dirac equation for electron
wavefunctions and the Poisson equation for the electro-
static potential Φ(x) as a function of the in-plane coor-
dinate x transverse to the charged line. However, if Φ(x)
varies smoothly on the scale of the local Fermi length
k−1
F (x), a simpler approach based on the Thomas-Fermi

approximation (TFA) can be applied.8 We show that ap-
proximate solutions of the TFA equations for the electron
density can be derived in certain limits. Using these ana-
lytical solutions and numerical simulations, we compute
two other important observables amenable to experimen-
tal probes: the conductance and the gate capacitance.

Let us introduce our key notations and assumptions.
We denote the linear charge density of the external per-
turbation by eλ. Without loss of generality, we take λ to
be positive (unless specified otherwise). We assume that
the unperturbed electron density n∞ of graphene is uni-
form. To distinguish between n-type and p-type doping,
we define the Fermi momentum corresponding to n∞ as

a signed quantity,

k∞ = sgn(n∞)|πn∞|1/2. (1)

We assume that the external charge enext(x) has a
Lorentzian density distribution,

next(x) =
λ

π

a

x2 + a2
. (2)

The actual profile of the external charge may of course be
somewhat different. For example, the charge distribution
of a grain boundary probably does not have power-law
tails. However, the role of parameter a in Eq. (2) is
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FIG. 1. (Color online) Models of linear charged perturba-
tions in graphene devices. (a) Nanowire top gate. The bot-
tom gate separated from graphene by an insulator of high
dielectric constant κ may be useful for additional control. (b)
Grain boundary (pentagon-heptagon chain) with charged ad-
sorbates (circles). (c) Charged string off the graphene plane.
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mainly to regularize the response of graphene at very
short distances,9 i.e., it serves as a short-distance cutoff.
As long as we are not interested in microscopic physics
at |x| . a, Eq. (2) can be adopted as a convenient model.
In all examples mentioned above (nanowire and nanotube
gates and also grain boundaries in graphene) realistically
achievable a can be as small as a few nanometers. The
particular functional form of Eq. (2) corresponds to the
idealized model shown in Fig. 1(c) where the external
charge is located off the graphene plane and is truly one-
dimensional. This can be seen from the fact that the
electrostatic potential created in the graphene plane by
the out-of-plane charged line is equal to that created by
the in-plane Lorentzian charge distribution (2):

Φext(x) =
e

κ

∞
∫

−∞

dx′next(x
′) log

1

(x− x′)2
(3)

=
eλ

κ
log

1

x2 + a2
. (4)

In general, the effective width parameter a should be
taken as the larger of the actual physical width of the
charge distribution and its distance to the graphene
plane. In this article we assume that electron-electron
interaction in graphene is weak, i.e., we consider the di-
mensionless coupling constant α = e2/κ~v a small pa-
rameter in the problem.10 Here v = 108 cm s−1 is the
graphene Fermi velocity. By choosing a substrate with
a large dielectric constant κ [Fig. 1(a)], it is possible to
make α ≃ 2.2/κ significantly smaller than unity. How-
ever, it is difficult to make α truly small, so as a rule
we do not treat logα as a small parameter. Finally, we
assume that the graphene is not too highly doped,

|k∞| ≪ 1

αa
. (5)

Depending on the relation between λ, k∞, and x, the
response of graphene can be either weak or strong and
either linear or nonlinear (Fig. 2). The degree of nonlin-
earity is controlled by the dimensionless parameter

λ̃ =
αλ

k∞
. (6)

Linear screening is realized if λ̃ ≪ 1 (the bottom part of
the ‘weak’ region in Fig. 2) where the induced electron
density

nind(x) ≡ n(x)− n∞ (7)

scales linearly with λ. On the other hand, if λ̃ > 1,
the response is nonlinear. A conspicuous manifesta-
tion of the nonlinearity is found in the region labeled
‘strong’ in Fig. 2, where the induced density can be ap-
proximated by a ‘universal’ (doping-independent) form
nind(x) ∼ x−2 log2 x. In the large-x ‘asymptotic’ regime
of Fig. 2, the induced density exhibit a power-law decay

nind(x) ≃
b

x2
, (8)
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FIG. 2. Schematic diagram of screening regimes. In the
‘weak’ region screening of the external potential is poor; the
response is linear [Eq. (15)] at λ < k∞/α and nonlinear
[Eq. (24)] at larger λ. In the ‘strong’ regime the external
potential is greatly reduced and the induced density profile
is given by Eq. (24). In the ‘asymptotic’ regime the den-
sity profile follows Eq. (8). In the ‘perfect’ regime graphene
maintains local charge neutrality, apart from small corrections
[Eq. (30)]. This diagram is drawn assuming graphene is not
too heavily doped, Eq. (5); otherwise, the ‘weak’ and ‘strong’
screening regions would disappear.

where the dependence of b on λ is linear [Eq. (11) of

Sec. II] if λ̃ is small and logarithmic if λ̃ is large [Eq. (27)].
The ‘perfect’ screening region is included in Fig. 2 for
completeness. Here graphene maintains charge neutrality
locally, i.e., the induced density is close to the external
one, nind(x) ≃ next(x), so that the model assumption (2)
must be critically revisited.
The crossovers among the predicted screening regimes

can be systematically studied in experiments using de-
vices that have both top and bottom gates, Fig. 1(a).
High linear charge densities with αλ ∼ (1 nm)−1 are
quite feasible to achieve with top gate voltages V ∼ 1V.
For lightly doped graphene, n∞ = 1011 cm−2, the corre-
sponding λ̃ ∼ 20 is deep in the nonlinear regime.
In the remainder of this article we derive detailed for-

mulas for the carrier density profiles, verify them by nu-
merical simulations, then make predictions for capaci-
tance and transport measurements.

II. LINEAR RESPONSE

Linear screening of linelike charges by doped graphene
has been studied in previous literature.6 We include a
brief summary of the relevant results for later comparison
with our nonlinear response theory. Linear screening is
realized when the external charge is not too high or when
graphene doping level is not too low. The quantitative
criterion λ̃ ≪ 1 is derived below. Within the linear-
response theory, the induced electron density is given by

nind(x) =

∞
∫

−∞

dq

2π

[

1− 1

ǫ(q)

]

λe−a|q|+iqx , (9)
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FIG. 3. (Color online) Comparison of induced electron density profile from the numerical solutions of the TFA equations (blue
dots) and analytical formulas (black lines) in three screening regimes. The red curves (labeled ‘Perfect’) in each panel represent
next(x). Units for density n, distance x, and linear number density λ are respectively (4π3α2a2)−1, a, and (4π3α2a)−1. (a)
Linear screening regime realized for λ = 0.1 and n∞ = 4. The induced density is much smaller than n∞. (b) Nonlinear regime
realized for λ = 0.4 and n∞ = 0. Density profile characterized by screening length xs ≈ 25. (c) Near-perfect screening for
λ = 1000 and n∞ = 0. Note the double logarithmic scale.

where the term λe−a|q| is the Fourier transform of the
effective external charge next(x) [Eq. (2)] at momentum
q. As we are primarily concerned with distances x ≫
k−1
∞ where the TFA is valid, the dielectric function of

graphene can be approximated by10–12

ǫ(q) = 1 +
qTF

|q| , qTF = 4α|k∞| . (10)

A particularly simple analytical expression for nind(x)
can be derived in the ‘asymptotic’ regime, cf. Fig. 2.
Carrying out the integration in Eq. (9) by the steepest-
descent method, one finds the leading-order approxima-
tion for the induced density to be6

nind(x) ≃
b

x2
, b =

λ

π

(

a+ q−1
TF

)

. (11)

(In contrast, nind ∝ x−3 for a pointlike charge perturba-
tion.12) Note that the coefficient b in Eq. (11) is much
larger than λa/π under the assumed condition (5), so
that nind(x) ≫ next(x). Such an ‘overshoot’ is typical for
screening of localized perturbations in metals. Metallic
systems possess the overall charge neutrality. However,
at distances shorter than the local screening length from
the perturbation screening is necessarily weak. There-
fore, there is a missing charge at short distances, which
has to be compensated at large x. However, the electric
field is not overscreened: it is of the same sign as the
external one but reduced in magnitude.
The analytical Eq. (11) agrees well with our numerical

simulations shown in Fig. 3(a). For these simulations we
used previously developed codes13 with suitable modifi-
cations. In brief, the electron density n(x) to be found
was defined on a grid of x with periodic boundary condi-
tions. The solution was obtained by minimizing the total
energy of the system (kinetic plus electrostatic) within
the TFA using standard technical computing software.14

Refinement of Eq. (10) can be obtained through the
random-phase approximation (RPA). Within the RPA,
the dielectric function of graphene coincides with Eq. (10)
at 0 < |q| < 2 |k∞| but at |q| > 2 |k∞| it is given by a
different formula11,12

ǫ(q) = 1 +
qTF

|q| − qTF

2|q|

√

1−
∣

∣

∣

∣

2k∞
q

∣

∣

∣

∣

2

+ α cos−1

∣

∣

∣

∣

2k∞
q

∣

∣

∣

∣

, |q| > 2|k∞| .
(12)

Notably, ǫ ≃ 1 + πα/2 becomes doping independent at
|q| ≫ 2 |k∞| where the response is dominated by virtual
interband transitions. (For corrections to the last result
beyond RPA, see Refs. 10 and 15.)
Substituting Eq. (12) in Eq. (9) and using contour in-

tegration techniques to evaluate the integral, we find the
RPA correction to nind:

∆nRPA
ind (x) ≃ b1

cos
(

2 |k∞x|+ π
4

)

|k∞x|5/2 , |k∞x| ≫ 1 , (13)

b1 = − λ

2
√
π

α|k∞|
(1 + 2α)2

, (14)

which is a particular case of the Friedel oscillations.16 At
intermediate distances, Eq. (9) yields6

nind(x) ≃
λqTF

π
log

0.561

|qTFx|
, 1 ≪ |k∞x| ≪ α−1 . (15)

Finally, let us estimate the region of validity of the linear-
response theory. This theory applies if the induced car-
rier density is smaller than the original one, nind ≪ n∞

or, equivalently, if the local Fermi momentum,

kF (x) = sgn
(

n(x)
)

|πn(x)|1/2 (16)
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is perturbed slightly compared to k∞ [Eq. (1)]. Naively,
one may require the condition [kF (x) − k∞]/k∞ ≪ 1 to
hold at all distances of interest, x ≫ a. In fact, the
validity region is wider because the nonlinearity affects
only the response at momenta q < 2 |k∞|. (As mentioned
above, the response at q > 2 |k∞| is essentially doping-
independent.) Therefore, the smallest number we should
use in the argument of nind(x) for our estimate is x ∼
|k∞|−1. From Eqs. (7), (15), and (16) we get

max

[

kF (x)

k∞
− 1

]

≃ 2αλ

k∞
log

(

1

α

)

. (17)

Neglecting the logarithmic factor, which is never large in
practice, we arrive at |λ̃| ≪ 1 as the criterion of linear
screening.

III. NONLINEAR RESPONSE

In this Section we treat a more difficult case λ̃ ≫ 1
where screening is nonlinear. Our approach to this prob-
lem is to solve the TFA equations analytically and nu-
merically. The first of these equations is

µ(x)− eΦ(x) = 0 , (18)

where

µ(x) = ~vkF (x) (19)

is the local chemical potential of graphene (assuming the
linear Dirac dispersion of quasiparticles). The second
equation links the total charge density and the electro-
static potential,

Φ(x) =
2e

κ

∫

dx′ log |x− x′|[nind(x
′)− next(x

′)] . (20)

This relation can be inverted by exploiting techniques
from the theory of analytic functions:

nind(x)− next(x) =
κ

π2e
P

∞
∫

0

x′dx′

x′2 − x2

dΦ

dx′
, (21)

where P stands for the Cauchy principal value. If desired,
Eqs. (18)–(21) can be combined into a single nonlinear
integral equation for n(x). The TFA is valid if 8

d

dx
k−1
F (x) ≪ 1 . (22)

The problem we want to solve can be separated into two
parts, depending on whether nind(x) is greater or smaller
than n∞. The latter situation occurs at large x, where
we expect screening behavior akin to linear response. In-
deed, it is easily seen that nind(x) follows Eq. (8) provided
the integral in Eq. (21) is dominated by x′ ≪ x. Invok-
ing Eq. (18), we then obtain the asymptotic behavior
Φ ∼ x−2 for x ≫ x∞, where

x∞ = |k∞|−1|πb|1/2 (23)

and b is to be determined below.
The analytical form of nind(x) at x ≪ x∞ is not im-

mediately obvious. Fortunately, were are able to find (by
trial and error) the following approximate solution:

nind(x) ≃
1

4π3α2

1

(x− xs)2
log2

(

x

xs

)

, (24)

which is characterized by a nonlinear screening length xs.
This length is found from the argument that at small x
the external field is nearly unscreened, so that the to-
tal and the external potentials differ only by some con-
stant: Φ(x) ≃ Φext(x) + const = −2λ(e2/κ) log x+ const
[Eq. (4)]. Comparing with Eq. (24) at x ≪ xs, we get

xs =
1

4πα2λ
. (25)

From Eqs. (22) and (25) we see that Eq. (24) is valid
at x ≫ 2παxs. At smaller x the density and the Fermi
momentum presumably tend to a finite maximum, i.e,

max kF (x) ≃ kF (2παxs) ≃ 2αλ log

(

1

α

)

. (26)

The last logarithmic factor is valid if α ≪ 1; otherwise,
it should be replaced by a number of the order of unity.
Equation (26) is consistent with Eq. (17) for the linear
regime. Hence, in both regimes the nonlinearity parame-
ter λ̃ [Eq. (6)] has the physical meaning of the maximum
relative change in the Fermi momentum (kF − k∞)/k∞
caused by the perturbation.
To fix the so far undetermined coefficient b, we require

a smooth matching of Eq. (8) and Eq. (24), which yields

b ≃ 1

4π3α2
log2 |λ̃| , x∞ ≃ 1

2παk∞
log |λ̃| . (27)

More accurate expression for nind(x) can be obtained
by iterations using Eq. (24) as the input to the TFA equa-
tions. Namely, substituting it into Eq. (18), we can get
Φ(x), which we can then insert into Eq. (21) to obtain an
improved approximation for nind(x). The first iteration
yields

n
(1)
ind(x) =

1

4π3α2

[

π2

2

1

(x+ xs)2

+ log2
(

x

xs

)

x2 + x2
s

(x2 − x2
s)

2
− 2

log(x/xs)

x2 − x2
s

]

,

(28)

which demonstrates a good agreement with our numeri-
cal simulations, see Fig. 3(b).
For completeness, we consider the case of

λ >
1

4πα2a
, (29)

where nonlinear screening affects distances shorter than
our cutoff length a. At such large λ, a highly doped re-
gion appears at x < a, where screening is nearly perfect,
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i.e., where the difference between nind(x) and next(x) is
relatively small and the system is able to maintain the lo-
cal charge neutrality. The solution for nind(x) can again
be obtained by iterations. The input to Eq. (21) is now
nind(x) = next(x). The first correction is

nind(x)−next(x) ≃
√
λa

π2α

[

x sinh−1 x
a

(x2 + a2)
3

2

− 1

x2 + a2

]

. (30)

Its range of validity x < xp can be estimated from the
requirement that at x = xp this correction is no longer
small, which implies

log(xp/a) ∼ πα
√
λa . (31)

Furthermore, one can check that at x = xp Eq. (30)
matches by the order of magnitude with nind(x) given by
Eq. (24) with xs set to a. This leads to us conclude that
at x > xp Eq. (24) and then at x > x∞ Eq. (8) must
still hold with xs ∼ a. Because of the exponentially large
magnitude of xp, we could verify numerically only the
x < xp case. Comparison of simulations with Eq. (30) in
Fig. 3(c) indeed shows a good agreement.

If xp >
√
λa/k∞, which corresponds to

λ >
1

π2α2a
log2

(

1

αak∞

)

, (32)

the screening should be nearly ‘perfect’ for all x > a,
cf. Fig. 2.
When λ and n∞ have opposite signs, twin p-n junctions

appear at |x| ∼ x∞. The density profile near a graphene
p-n junction has been studied in Ref. 13. These results
should more or less carry over to the present problem, so
they will not be repeated. In the following Sections we
focus on computing the effect of nonlinear screening on
transport and capacitance characteristics of the system.

IV. QUANTUM CAPACITANCE

The charge density λ is a natural parameter for
graphene grain boundaries [Fig. 1(b)]. In contrast,
linelike perturbation created by means of narrow gates
[Fig. 1(a)] are controlled by the voltage V with respect
to graphene while λ has to be found by integrating the
differential gate capacitance

C(V ) = e
dλ

dV
. (33)

It is important that V is not simply equal to the electro-
static potential difference ∆Φ between the gate and the
graphene sample. It has another contribution from the
graphene chemical potential:

V = ∆Φ+ (µ/e) . (34)

As a result, the differential gate capacitance C has two
components, the classical (or geometrical) one Cg and
the so-called quantum one Cq, which add in series:

C−1 = C−1
g + C−1

q . (35)

Our goal in this Section is to derive the quantum capaci-
tance of a device with an ultranarrow top gate, Fig. 1(a).
However, it is useful to review the conventional planar-
gate geometry first. Here the classical capacitance per
unit area Cg = κ/(4πd) is inversely proportional to the
separation d between graphene and the planar gate. In
turn, the quantum capacitance is proportional to the
thermodynamical density of states, Cq = e2(dn/dµ).
This quantity can also be written in terms of the inverse
Thomas-Fermi screening length qTF:

Cq =
κ

2π
qTF . (36)

The net result of having a finite screening length is equiv-
alent to replacing the physical gate-graphene separation
by an effective one:

deff = d+
1

2
q−1
TF . (37)

Although in this article we use the free-fermion approxi-
mation [Eq. (10)] for the linear-response screening length
q−1
TF, in reality it is modified by many-body interactions
and disorder (see, e.g., Refs. 17 and 18). Recently quan-
tum capacitance measurements have been used to probe
such effects of graphene.19,20

If the gate is now a long metallic string or radius l ≪ a,
the capacitances per unit length are relevant. In order
to derive C−1 we start with a general expression for the
electrostatic potential difference between the string and
the graphene sample,

∆Φ(x) =
eλ

κ
log

(

x2 + a2

l2

)

+
e

κ

∞
∫

−∞

dx′nind(x
′) log

x′2 + a2

(x− x′)2
,

(38)

which follows from Eqs. (3) and (20). If we set nind =
next, we obtain ∆Φ = (eλ/κ) log(4a2/l2) = const.
Hence, the geometric capacitance of the system is

C−1
g =

∆Φ

eλ
=

2

κ
log

(

2a

l

)

, (39)

which can be alternatively derived by the method of im-
ages. Next, combining Eqs. (18), (20), (33), (34), (38),
and subtracting C−1

g , we find

C−1
q =

1

eλ

∞
∫

−∞

dxnext(x)
∂

∂λ
Φ(x) . (40)

We can now use this expression for analytical and nu-
merical calculations. Our analytical formulas for positive
λ̃ ≡ λ/(αk∞) are as follows:

κ

2
C−1

q ≃
{

−e2aqTFEi(−2aqTF) , λ̃ ≪ 1, (41a)

− log(4πα2aλ) , λ̃ ≫ 1, (41b)
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where Ei(z) is the exponential integral. These equations
describe, respectively, the linear and the ‘strong’ regimes
of Fig. 2. They can be commonly written as

C−1
q ≃ 2

κ
log

(xsc

2a

)

, (42)

where xsc is equal to (in the same order) q−1
TF and xs. We

conclude that the total capacitance can be modeled after
the geometric one,

C−1 =
2

κ
log

(

2aeff
l

)

(43)

with the effective gate-graphene separation

aeff = a+
xsc

2
, (44)

where a on the right-hand side was added by hand to
recover the result aeff = a expected for a perfect metal,
xsc = 0. The similarity of Eqs. (37) and (44) illustrates
once again that quantum capacitance is a measure of the
screening length of a system. Whereas in the planar-gate
geometry this length is formally divergent for undoped
graphene, for the linelike gate the divergence is regular-
ized by nonlinearity. Numerically, we find that C−1

q as a
function of λ approaches a universal envelope curve (41b)
shown by the dashed line in Fig. 4.
For completeness, we consider the ‘perfect’ screening

regime where

eΦ(x) ≃ next(x)
dµ

dn
(45)

for all relevant x, so that Eq. (40) becomes

C−1
q ≃ 1

e2

∞
∫

−∞

dx

λ2
n2
ext(x)

dµ

dn
. (46)

The inverse thermodynamic density of states dµ/dn in
Eqs. (45) and (46) is to be evaluated at n = n∞+next(x).
For n∞ = 0 where the integrand scales as |λ|1/2, we find
the analytical result

κ

2
C−1

q ≃ 1

2πα
√
λa

, λ >
1

α2a
, (47)

which agrees with our numerical simulations (the dashed-
dotted curve in Fig. 4).

If λ̃ is negative, i.e., if λ and k∞ have opposite signs,
the twin p-n junctions form at some λ which can be esti-
mated from Eq. (17) setting kF (0) to zero. This event —
the onset of the ambipolar regime — is marked by a max-
imum in κC−1

q , which is absent in the unipolar trace for
the same |k∞|, see Fig 4. From dimensional arguments,
as k∞ approaches zero, the height of the maximum in
κC−1

q measured with respect to its plateau at λ = 0
should approach a universal number. Figure 4 suggests
that number is about 1.5. However, such dimensional ar-
guments assume the TFA is valid, which, similar to the
case of a single p-n junction,13 is the case at small α. To
treat a more typical case α ∼ 1 one needs to go beyond
the TFA, which may be a problem for future research.

λ

κ
C

−
1

q
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FIG. 4. (Color online) Inverse quantum capacitance as a func-
tion of the gate charge. The curves are from numerical cal-
culations for k∞ specified in the legend. The units of λ and
k∞ are (4π3α2a)−1 and (π3αa)−1. The triangles, the dashed
line, and the dash-dotted line correspond, respectively, to the
asymptotic limits of the linear, nonlinear, and near-perfect
screening, Eqs. (41a), (41b), and (47). The difference be-
tween the curves and the triangles at smaller k∞ are due to
finite-size effects in the simulation. The peaks of the k∞ < 0
curves signal the formation of the twin p-n junctions.

V. CONDUCTANCE

Charged linelike defects are known to significantly in-
fluence electron transport in graphene. Grain bound-
aries strongly reduce the sheet conductivity of large-area
graphene,21 while bipolar junctions created by nanowire
gates cause conductance oscillations.1 In this section we
find expressions for the graphene conductance G relevant
for both situations.
We consider a scattering problem for a massless Dirac

particle with initial momentum k = |k∞|(cos θ, sin θ)
subject to the potential perturbation

− eΦ(x) = µ(n∞)− µ(n) = ~v[k∞ − kF (x)] . (48)

The intermediate equation follows from the TFA,
Eq. (18). For a weak potential, we can apply the stan-
dard perturbation theory to the massless Dirac equation
to obtain the reflection coefficient

r(θ) = i tan θ

∞
∫

−∞

e2ikxxkF (x)dx , (49)

which is similar to the first Born approximation formula
for the Schrödinger equation.8 The region of validity of
this formula can be extended beyond the perturbative
regime if in the argument of the exponential we replace
kx by kF (0) cos θ, the local momentum at the x = 0 point
where the scattering potential is the ‘most’ nonanalytic.8

However, this is permissible only if kF (x) is real at all x,
i.e., if all points on the quasiparticle path are classically
allowed (no quantum tunneling occurs).
The conductance G is found by summing the transmit-
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tances T (θ) of all the ky = k∞ sin θ channels:

G =
4e2

h

∑

ky

T (θ) , T (θ) = 1− |r(θ)|2 . (50)

In the absence of scattering, λ = 0, the conductance is

G0 =
4e2

h

|k∞|W
π

, (51)

where W is the width of the graphene sheet. Assuming
W ≫ k−1

∞ , we can compute G at λ 6= 0 by replacing the
summation with the integration over θ. However, |r(θ)|
diverges as |θ| tends to π/2, so that the first Born approx-
imation cannot be used. In fact, the absolute value of the
exact reflection coefficient must be approaching unity in-
stead of diverging. We account for this by cutting off the
integration limits at θ̄ where |r(θ̄)| ∼ 1:

G = G0

θ̄
∫

0

T (θ) cos θdθ . (52)

For the linear screening regime, λ̃ ≪ 1 [Eq. (6)], we ob-
tain

G0 −G

G0
≃















λ̃2

α2
log2 |λ̃| , |λ̃| ≪ α2 ,

π
∣

∣λ̃−1 + δ−1
∣

∣

, α2 ≪ |λ̃| ≪ δ .
(53)

Accordingly, the conductance G as a function of λ̃ ex-
hibits an asymmetric maximum at λ̃ = 0 drawn schemat-
ically in Fig. 5. The asymmetry becomes pronounced
when λ̃ approaches δ = 1/(2 logα−1), where the screen-

ing begins to cross over into the nonlinear regime. If λ̃ is
positive, kF (x) becomes essentially independent of k∞.
Using Eqs. (24) and (26) and changing the integration
variable x → λx in Eq. (49) one can show that r(θ) does
not depend on λ any more in this regime. Actually, this
is clear from dimensional argument: since r(θ) is dimen-
sionless, it may not depend on λ, which has the units of
inverse length. This implies that G ceases to decrease
with λ̃, leveling at a plateau, (G0 −G)/G0 ≃ πδ. If λ̃ is
negative, the situation is quite different. The scattering
potential is repulsive. At large |λ̃| it causes the twin p-n
junctions to appear at |x| ∼ x∞ [Eq. (27)], which act
as tunneling barriers. Here even the modified Born ap-
proximation fails completely. The transmittance Tpn(θ)
of each p-n junction is given instead by22

Tpn(θ) = exp

(

−π~vk2∞
F

sin2 θ

)

, (54)

where

F = 2.5 ~vα1/3|n′|2/3 (55)

is the electric field at the junction,13 with n′ being the
density gradient. Combining these equation, we obtain

Tpn(θ) = exp

(

−b2
α

sin2 θ

)

, b2 ∼ log2/3 |λ̃| . (56)

Multiple reflections of the quasiparticles in the region
between the p-n junctions lead to the conductance oscil-
lations and resonances. The net transmittance is given
approximately by the Fabry-Pérot-like formula1

T (θ) =

∣

∣

∣

∣

Tpn(θ)

1− [1− Tpn(θ)]eiφ

∣

∣

∣

∣

2

, (57)

where φ is the phase acquired by a quasiparticle after one
roundtrip between the junctions:

φ ≃ 2

x∞
∫

−x∞

dx kF (x) ≃
1

πα
log2 |λ̃| . (58)

The last estimate is obtained using Eqs. (24) and (27).
Conductance minima arise at φ = (2m+1)π, where m is

an integer. They have the magnitude Gmin/G0 ∼
√

α/b2
because the transmittance of each junction is appreciable
only at small angles22 θ <

√

α/b2, cf. Eq. (56). Con-
ductance maxima are found at φm = 2mπ, which cor-
respond to |λ̃m| ∼ exp(π

√
2αm ). The widths of these

maxima and the distance from one to the next increase
exponentially as a function of m. The heights of these
maxima approach G0, which is a manifestation of the res-
onant tunneling phenomenon. In practice, observation of
the resonant tunneling requires samples with the mean
free path longer than the roundtrip distance 4x∞; oth-
erwise, the conductance is influenced by diffusive trans-
port between and across the p-n junctions.23 In previous
experiments with nanowire-gated graphene devices,1 the
conductance maxima were found to be significantly lower
than G0 and decreasing with the top gate voltage, i.e.,
|λ|, presumably due to disorder scattering.

If the conductance can also be measured in the di-
rection parallel to the gate, we expect it to show a de-
pendence consisting of a smooth increase with |λ| with
superimposed small oscillations due to quantization of
the quasi-bound resonant modes. This oscillating part
would have the same period as the Fabry-Pérot oscil-
lations in the transverse conductance discussed above.
At small gate voltages, both longitudinal and transverse
conductances are expected to show additional fine fea-
tures related to the analog of the Goos-Hänchen effect in
graphene,24 which is a lateral displacement of a quasipar-
ticle trajectory along the p-n interface during reflection.
This effect can be included using a more accurate equa-
tion for φ that incorporates both the path length contri-
bution expressed by Eq. (58) and the phase shift of the
reflections at the p-n interfaces.
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G/G0

 λ
δ

1

−δ−1

α

δ

FIG. 5. Reduced conductance G/G0 as a function of λ̃
(schematically). A monotonic decrease is expected in the

unipolar case, λ̃ > 0, while Fabry-Pèrot oscillations with a
period determined by Eq. (58) should dominate for negative

and large λ̃ where the p-n junctions form. Parameter δ is
defined in the text.

VI. DISCUSSION

In this work we considered linelike charged perturba-
tions on graphene and derived analytical expressions for
the induced density profiles in both linear and nonlin-
ear screening regimes. These results were applied to the
analysis of two types of electronic properties. The first
one is the quantum correction to the classical capacitance
between the narrow gate and graphene as a function of
the top gate voltage. Measuring this quantity will be a
direct way for observing the crossovers among different
screening regimes and testing our predictions. For exam-
ple, we showed that the divergence of the inverse quan-
tum capacitance of undoped graphene predicted from the
naive linear-response theory will be curbed by nonlinear
screening effects. If the gate creates a strong repulsive
potential for charge carriers in graphene, it can induce
twin p-n junctions. Our calculations indicate that the
onset of this ambipolar regime is signaled by a peak in
the inverse quantum capacitance.

The second quantity we studied is the transverse elec-
trical conductance of the system. Our predictions for
the ambipolar regime, where the conductance oscillates
as a function of gate voltage, include formulas for the
maxima, minima, and the oscillation period. Our theory
holds in the ballistic transport regime, which was diffi-
cult to probe in earlier experiments on such systems.1

We hope that modern higher-quality devices that utilize
graphene encapsulated in boron nitride25 and single-wall
nanotube gates of smallest possible diameter, would en-
able a systematic investigation of nonlinear screening and
resonant tunneling phenomena we discussed.

Conductance of graphene with charged grain bound-
aries was previously studied analytically and numerically
in Refs. 6, 26, and 27. In Ref. 6 transport properties

were computed modeling charged grain boundaries as
short line segments of length W ≪ k−1

∞ . However, the
screening was treated assuming that the boundaries are
infinitely long, which seems to require the opposite in-
equality. These incompatible assumptions make a direct
comparison between our analytical results for the conduc-
tance difficult. As for screening, only the linear regime
was considered in Ref. 6, and for this our results agree.
Our findings have further implication for experiments

using novel scanned-probe techniques. Linear charged
defects in the form of grain boundaries have been shown
to reflect surface plasmon polaritons7,28,29 and induce
photocurrent,30 both of which can be imaged with
nanoscale resolution using scanning near-field optical mi-
croscopy. Scanning tunneling microscopy is another av-
enue of approach to measure local density of states.31,32

We will apply our theory to interpretation of such mea-
surements in a future work.2

Finally, let us comment on the proposals33 that
graphene is a condensed-matter laboratory for exotic ef-
fects predicted in other fields of physics. For example,
electronic response of graphene to a pointlike charge has
an interesting analogy to the atomic collapse of super-
heavy elements.34,35 It has been shown9,10,36–40 that in
graphene subcritical Z < Zc and supercritical Z > Zc

charges produce qualitatively different behavior of the
screened electrostatic potential at large distances from
the perturbation, the critical charge Zc being of the or-
der of 1/α. Characteristic oscillations of the local density
of states that appear in the supercritical case have been
recently detected experimentally.41 Phenomena similar
to atomic collapse have been also studied theoretically
in the context of narrow-band gap semiconductors and
Weyl semimetals.42 In turn, our problem of screening of
a linelike charge perturbation in graphene have interest-
ing analogies in cosmology (screening of a hypothetical
cosmic string by vacuum polarization43) and polyelec-
trolyte physics (Onsager-Manning condensation of coun-
terions44,45). Our results imply that in graphene non-
linear screening plays a greater role for linelike charges
compared to the pointlike ones: the former are always

supercritical, e.g., there is no threshold λ for the appear-
ance of Friedel oscillations. Finally, our analytical formu-
las assume α ≪ 1, which can be realized using a high-κ
dielectric substrate [Fig. 1(a)], such as SrTiO3 [Refs. 46–
49]. For such gate dielectrics it may be important to con-
sider electric-field dependence of κ in nonlinear screening
regimes.50
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