Electronic Spectra of (Mg,Co)₂P₂O₇ Phases Enrique J. Baran,^a Anders G. Nord,^{b,*} Ekkehard Diemann^c and Tore Ericsson^d Baran, J.E., Nord, A.G., Diemann, E. and Ericsson, T., 1990. Electronic Spectra of (Mg,Co)₂P₂O₇ Phases. – Acta Chem. Scand. 44: 513–515. As a continuation of a series of studies on the spectroscopic properties of different oxosalts and to obtain a wider insight into the electronic characteristics of metal-oxygen chromophores, we have now investigated the electronic spectra of a series of solid solutions of the type $(Mg,Co)_2P_2O_7$, isostructural with α -Mg,P₂O₇. The crystal structure of α -Mg₂P₂O₇ was determined in 1967 by Calvo.¹ Later Krishnamachari and Calvo have shown that α -Co₂P₂O₇ is isostructural with α -Mg₂P₂O₇.² The monoclinic space group symmetry is $B2_1/c$ (No. 14), with one distinct five- and one six-coordinated metal site (Z=8). The average metal—oxygen distances are 2.044 Å (five-coordination; range 1.985–2.120) and 2.103 Å (six-coordination; range 2.059–2.142) in α -Mg₂P₂O₇,¹ and 2.049 (1.957–2.110) and 2.116 Å (2.062–2.183), respectively, in α -Co₂P₂O₇.² The MO_6 groups are fairly regular octahedra, while the MO_5 polyhedra should rather be described as square pyramids. ## **Experimental** Pure diphosphates of magnesium and cobalt (II) and four α -(Mg_{1-x}Co_x)₂P₂O₇ solid solutions (x = 0.2, 0.4, 0.6 and 0.8) were prepared as described earlier.³ X-Ray powder diffraction data were obtained with a Guinier-Hägg camera (Cr $K\alpha_1$ radiation, $\lambda=2.28975$ Å, R=50.00 mm, KCl internal standard) and evaluated with the computer program system by Nord and Forsberg⁴ to give the unit-cell dimensions presented in Table 1. The figures of merit are according to de Wolff.⁵ The electronic reflectance spectra were recorded with a Beckman ACTA-IV instrument between 250 and 870 nm, with an integrating sphere employing TiO₂ as a standard. ## Results and discussion The reflectance spectra of the $(Mg,Co)_2P_2O_7$ phases are similar to each other (Fig.1). A larger cobalt content implies more CoO_n chromophores and also a better defined spectrum. Spectra of phases with lower cobalt contents show some broadening of the bands at 21.5×10^3 and 19.23×10^3 cm⁻¹, but the transition energies do not change significantly with the composition. Two different chromophoric groups are present in this structure, and the observed transitions must therefore be related to the CoO_6 and CoO_5 groups. For the octahedral CoO_6 chromophore two electronic bands are expected in the measured range⁶ and have been assigned to the strong | Table 1. Unit-cell | dimensions for | the α-(Ma.Co |) ₂ P ₂ O ₂ diphosphates. | |--------------------|----------------|--------------|--| | Phase ^a | a/Å | b/Å | c/Å | β/° | <i>V</i> /ų | N⁵ | M(20)° | |-----------------------------------|-----------|----------|----------|-----------|-------------|----|--------| | Mg ₁₀₀ | 13.240(4) | 8.291(2) | 9.050(3) | 104.65(3) | 961.2(6) | 38 | 103 | | Mg ₈₀ Co ₂₀ | 13.242(5) | 8.298(4) | 9.038(4) | 104.57(5) | 961.2(9) | 32 | 89 | | Mg ₆₀ Co ₄₀ | 13.253(6) | 8.306(5) | 9.032(5) | 104.59(6) | 962.2(11) | 28 | 76 | | Mg ₄₀ Co ₆₀ | 13.252(7) | 8.322(5) | 9.020(5) | 104.59(7) | 962.7(14) | 25 | 58 | | Mg ₂₀ Co ₈₀ | 13.248(9) | 8.327(7) | 9.014(8) | 104.62(9) | 962.2(16) | 22 | 43 | | Co ₁₀₀ | 13.249(3) | 8.341(2) | 9.003(2) | 104.64(2) | 962.6(6) | 36 | 93 | $[^]a$ Mg₁₀₀ stands for pure α -Mg₂P₂O₇, Mg₈₀Co₂₀ for α -(Mg_{0.80}Co_{0.20})₂P₂O₇, and so forth. b N = number of reflections used in the refinements. c M(20) = figure of merit according to de Wolff. 5 ^aFacultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900-La Plata, Argentina, ^bDepartment of Structural Chemistry, Arrhenius Laboratory, S-10691 Stockholm, Sweden, ^cFakultät für Chemie der Universität Bielefeld, D-4800 Bielefeld, F.R.G. and ^dDepartment of Mineralogy and Petrology, Institute of Geology, University of Uppsala, Box 555, S-751 22 Uppsala, Sweden ^{*}To whom correspondence should be addressed. Fig. 1. Spectrum for the solid solution α -(Mg_{0.20}Co_{0.80})₂P₂O₇ (reflectance versus TiO₂). bands at 585 nm $(17.10\times10^3~{\rm cm^{-1}})$ and 520 nm $(19.23\times10^3~{\rm cm^{-1}})$. These are related to the ${}^4F_{1g} \rightarrow {}^4A_{2g}$ (F) and ${}^4F_{1g} \rightarrow {}^4F_{1g}$ (P) transitions, respectively. A third band, corresponding to the ${}^4F_{1g} \rightarrow {}^4F_{2g}$ (F) transition, is expected to lie at around $8.5\times10^3~{\rm cm^{-1}}$ as predicted from the known relation $v_2/v_1 \approx 2$ (Ref. 6). For the assignment of the transitions of the square-pyramidal CoO_5 chromophore (C_{4v} symmetry) we have used the energy-level diagram proposed by Ciampolini and Bertini, based on the weak-field scheme with F-P term intermixing (cf. Fig. 2 and Ref. 8). According to this scheme, the following band assignments can be proposed: 465 nm $$(21.5 \times 10^3 \text{ cm}^{-1})$$ to ${}^4A_2 \rightarrow {}^4A_2$ (P) 585 nm (17.1×10³ cm⁻¹) to $${}^{4}A_{2} \rightarrow {}^{4}E$$ (P) 835 nm (12.0×10³ cm⁻¹) to $${}^{4}A_{2} \rightarrow {}^{4}B_{1}$$. A fourth transition, expected at around $(7-8)\times10^3$ cm⁻¹ and assignable to the $^4A_2 \rightarrow ^4E$ transition, lies outside the range of our instrument. The second transition of the CoO_5 chromophore coincides with the ${}^4F_{1g} \rightarrow {}^4A_{2g}$ transition of the CoO_6 group. This explains the intensity enhancement observed for this band. In an octahedral environment this band usually has a lower intensity than that corresponding to the ${}^4F_{1g} \rightarrow {}^4F_{1g}$ (P) transition. Moreover, in square-pyramidal environments this band generally presents an intensity comparable to that of the ${}^4A_2 \rightarrow {}^4A_2$ (P) transition. ${}^{6-8}$ A similar intensity enhancement has also been found previously in cobalt-containing solid solutions isomorphous with γ -Zn₃(PO₄)₂, in which octahedral CoO_6 groups and distorted trigonal bipyramids CoO_5 are found together. The last very weak band located at 320 nm (31.25×10³ cm⁻¹) can probably be as- signed to a spin-forbidden transition which involves a level originating from higher doublet terms.⁹ The cation distribution in two $(Mg,Co)_3(PO_4)_2$ solid solutions has earlier been determined from X-ray diffraction data, ¹⁰ showing that there is a slight tendency for Co^{2+} to enter preferably the five-coordinated site rather than the six-coordinated site $(K_D\approx 2)$. The metal-oxygen distances are comparable to those of the (Mg,Co) diphosphates, but the MO_5 group should rather be described as a distorted trigonal bipyramid. For instance, in $(Mg_{0.5}Co_{0.5})_3$ $(PO_4)_2$ the respective average metal-oxygen distances are 2.06 Å Fig. 2. Schematical splitting of Co(II) free-ion levels in $C_{\rm 4v}$ symmetry. (five-coordination; range 1.94–2.21) and 2.08 Å (six-coordination; range 2.04–2.11). 10 A comparison of the electronic spectra recorded earlier for some (Mg,Co) orthophosphates¹¹ and here reported for four α -(Mg,Co)₂P₂O₇ phases suggests that in the latter phases also Co²⁺ prefers to enter the five-coordinated site. This is in accordance with Burns' observation that Co²⁺ ions are enriched in distorted and small-dimension sites, while magnesium seems to have a greater tendency for octahedral sites.¹² The present results also extend our knowledge in relation to MO_6 and MO_5 chromophores, and show that the spectra of CoO₅ chromophores with a square-pyramidal configuration are, within the resolution of our instrument, very similar to those of trigonal-bipyramidal systems, as is known for some other Co²⁺ compounds.^{6,7} ## References 1. Calvo, C. Acta Crystallogr. 23 (1967) 289. - Krishnamachari, N. and Calvo, C. Acta Crystallogr., Sect. B 28 (1982) 2883. - 3. Nord, A. G. and Kierkegaard, P. Chem Scr. 15 (1980) 27. - Nord, A. G. and Forsberg, L. Geol. Fören. Stockholms Förhandl. 103 (1981) 343. - 5. de Wolff, P. M. J. Appl. Crystallogr. 1 (1968) 108. - Lever, A. P. Inorganic Electronic Spectroscopy, 2nd Ed., Elsevier, Amsterdam 1984, p. 150. - 7. Ciampolini, C. and Bertini, I. J. Chem. Soc. A (1968) 2241. - 8. Catterick, J. and Thornton, P. J. Chem. Soc., Dalton Trans. (1976) 1634. - Baran, E. J., Diemann, E. and Nord, A.G. Solid State Commun. 61 (1987) 441. - 10. Nord, A. G. and Stefanidis, T. Z. Kristallogr. 153 (1980) 141. - Baran, E. J., Nord, A. G. and Diemann, E. J. Phys. Chem. Solids 50 (1989) 983. - 12. Burns, R. G. *Mineralogical Applications of Crystal Field Theory*, Cambridge University Press, Cambridge, U.K. 1970, Chaps. 2 and 6. Received September 21, 1989.