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We study the electronic structure of finite armchair graphene nanoribbons using density-functional theory and

the Hubbard model, concentrating on the states localized at the zigzag termini. We show that the energy gaps

between end-localized states are sensitive to doping, and that in doped systems, the gap between the end-localized

states decreases exponentially as a function of the ribbon length. Doping also quenches the antiferromagnetic

coupling between the end-localized states leading to a spin-split gap in neutral ribbons. By comparing dI/dV

maps calculated using the many-body Hubbard model, its mean-field approximation and density-functional

theory, we show that the use of a single-particle description is justified for graphene π states in case spin

properties are not the main interest. Furthermore, we study the effect of structural defects in the ribbons on their

electronic structure. Defects at one ribbon terminus do not significantly modify the electronic states localized

at the intact end. This provides further evidence for the interpretation of a multipeak structure in a recent

scanning tunneling spectroscopy (STS) experiment resulting from inelastic tunneling processes [van der Lit et al.,

Nat. Commun. 4, 2023 (2013)]. Finally, we show that the hydrogen termination at the flake edges leaves

identifiable fingerprints on the positive bias side of STS measurements, thus possibly aiding the experimental

identification of graphene structures.

DOI: 10.1103/PhysRevB.88.075429 PACS number(s): 73.22.Pr, 71.10.Fd, 68.37.Ef

I. INTRODUCTION

At zigzag-terminated graphene edges, the presence of
nondispersive, edge-localized states was predicted nearly
20 years ago based on the tight-binding model.1 Taking
electron-electron interaction into account by using density-
functional theory (DFT)2 or the Hubbard model at the mean-
field level3 opens a gap between the doubly degenerate
edge-localized states, with a magnitude that is inversely
proportional to the ribbon width. Moreover, the edges show an-
tiferromagnetic order with respect to each other, with the elec-
trons belonging to the two spin channels predominantly occu-
pying opposite edges, and ferromagnetic order within a given
edge.2 The spin properties of infinitely long zigzag nanorib-
bons have been studied as a function of doping, finding that
the spin order at the edges is sensitive to doping.3–5 Recently,
the magnetic correlations in finite armchair nanoribbons were
studied in detail using an effective low-energy model.6,7 Thus
far, only few observations of this spin-split gap have been
reported in large-scale graphene nanoribbons for which the
structure of the edge is not known with atomic detail.8–10

Using top-down methods, such as etching two-dimensional

graphene or unzipping carbon nanotubes, the preparation of

graphene nanoribbons with atomically well-defined edges is

challenging. Recently, a bottom-up approach based on the

on-surface polymerization of 10,10’-dibromo-9,9’-bianthryl

precursors was introduced.11 The advantage of this approach

is that the structure of the precursor molecule determines also

the edge termination of the resulting ribbon. Thus the synthesis

of seven carbon rows wide armchair nanoribbons (7-AGNRs)

with zigzag-terminated ends is well established. Also double-

and triple-width ribbons have been reported.12 The electronic

structure of these ribbons has been widely studied,13–18 finding

a bulk band gap of 2.3–5.1 eV using scanning tunneling

spectroscopy (STS),13–17 angle-resolved photoelectron spec-

troscopy (ARPES),13 and optical methods.16,18 Within the

bulk gap, states localized at the ribbon zigzag ends have

been observed.14,17,18 A double-peak structure resembling the

spin-split zigzag end states was indeed recently found in STS

measurements.17 It was, however, found to arise from phonon-

assisted tunneling, since the side peak energies agreed well

with ribbon phonon frequencies, and the peak shapes agreed

with theoretical predictions for phonon-assisted tunneling.

Computational studies have accompanied the experiments

on the surface-deposited ribbons but the end-localized elec-

tronic states in the finite ribbons have not been thoroughly

addressed. The effect of ribbon length as well as that of

doping caused by the substrate on the spin-split gap and

ribbon electronic structure, in general, remains unknown. In

the scanning tunneling microscopy experiments, states with

different spatial dI/dV maps have been observed at the

ribbon ends, and these states have been attributed to different

hydrogen terminations at the ends by comparing experiments

to computational simulations.13–15 The effect of structural im-

perfections at the armchair edges, experimentally introduced

by applying voltage pulses,14,17 on the low-bias electronic

structure and dI/dV measurements is yet to be addressed.

In this paper, we study the electronic states in finite

7-AGNRs, concentrating on states localized at the zigzag

termini. Using the Hubbard model and density-functional

theory, we address the role of correlation phenomena in neutral

and charged flakes, as well as justify the use of Kohn-Sham

energy levels and wave functions to model STS. Furthermore,
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FIG. 1. (Color online) The nearly degenerate end-localized or-

bitals, ψa and ψb, from a tight-binding calculation. Their energy

difference is ≈0.05 eV and it decreases with an increasing ribbon

length. Both figures are on the same scale, and the area of the lattice

sites correspond to the amplitude of the wave function (the maximum

value 0.323), and the light red/blue (gray/dark) color indicates the

sign of the wave function. The gray background marks the lattice

sites belonging to one monomer unit.

in relation to experiments presented in Ref. 17, we show that

modifying one ribbon end does not alter the electronic states

localized at the intact end. This supports the conclusion of

Ref. 17 that the peak structure arises from phonons. Finally,

we simulate dI/dV maps for ribbons with different edge

hydrogenation patterns, and identify their fingerprints in the

dI/dV maps.

II. COMPUTATIONAL METHODS

The modeled 7-AGNR structures consist of three to nine
monomer units, their length thus ranging from approximately
2.5 to 7.5 nm. Figure 1 shows a three-monomer ribbon with
the 28-atom monomer unit marked by a gray background. As
the interaction between the Au(111) surface and the ribbons is
weak,17 we model freestanding ribbon fragments and take the
presence of the substrate into account only through doping.19

In addition to doping, the substrate is also expected to screen
electron-electron interactions.20 Including the substrate in the
calculation would, however, be computationally extremely
demanding, especially for longer ribbons.

We use both the Hubbard model21 and density-functional
theory (DFT) to study freestanding finite 7-AGNRs. The
Hubbard Hamiltonian for the π electrons is defined on the
lattice formed by the carbon atoms as

H =
∑

σ ;i,j

tijc
†
iσ cjσ + U

∑

i

ni↑ni↓, (1)

where i and j denote the lattice sites, tij are the tight-binding
hopping elements between sites i and j , U is the on-site
repulsion, ciσ annihilates a spin-σ electron from site i, and

niσ = c
†
iσ ciσ is the site occupation operator. The tight-binding

model corresponds to Eq. (1) with U = 0. We use the
parameters t1 = −2.7 eV, t2 = −0.2 eV, and t3 = −0.18 eV,
between sites that are first, second, and third-nearest neighbors,
and the Hubbard on-site interaction parameter is U = 2 eV.22

The many-body calculation utilizes the Lanczos algorithm
to solve ∼100 lowest many-body eigenstates accurately.
The state space is formed from a given symmetry sector
by constructing many-body configurations of tight-binding
orbitals, and by ordering them according to the energy of
the tight-binding part of the Hamiltonian. Of these config-
urations, roughly the 106 lowest in energy are included in
the many-body basis used in the calculation. This constitutes
an orbital-dependent approximation with fast convergence.
Due to the associated computational effort, we focused on
a three-monomer ribbon using this approach.

In the mean-field approximation, the two-body interaction
is reduced to a one-body potential that is determined by the
electron density of the opposite-spin electrons on each site,

ni↑ni↓ �→ 〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉, (2)

where 〈niσ 〉 denotes the site occupation. The resulting mean-
field Hamiltonian is solved self-consistently for both spin
components, until the electron densities and ground-state
energy have converged.

The DFT calculations were performed using the all-electron
code “FHI-aims.”23 The “tight” basis defaults for numeric
atom-centered orbitals, as defined in the FHI-aims distribution,
were used. In calculations using a hybrid functional, the
“light” defaults were chosen to reduce computational cost. The
structures were relaxed using the Perdew-Burke-Ernzerhof
(PBE)24 exchange-correlation functional until the total forces
acting on atoms were less than 10−3 eV/Å, and the total
energy was converged to 10−6 eV. The spin initialization
used was that of a neutral, fully hydrogenated ribbon, with
antiferromagnetic coupling between the ribbon ends. The PBE
exchange-correlation functional was used unless otherwise
specified. Additionally, some structures were calculated with
the B3LYP hybrid functional to find out the effect of the
inclusion of explicit Hartree-Fock exchange, improving the
description of electron-electron interactions. In calculations
with a nonzero z component of the total spin, Sz = (Nel,↑ −
Nel,↓)/2, the number of spin-up and spin-down electrons was
fixed.

Differential conductance maps were simulated based on
the Tersoff-Hamann model,25 according to which the dI/dV

signal of an s-wave tip is proportional to the local density of
states ρ(
r,E) (LDOS) in the sample,

dI (
r,V )

dV
∝ ρ(
r,EF + eV )

=
∑

n

|�n(
r)|2 δ(EF + eV − En). (3)

Here, V is the bias voltage, and (�n, En) are the molecular
orbitals and the corresponding eigenenergies. Experimental
dI/dV peaks are broadened in energy due to the weak
interaction with the substrate, temperature, and instrumental
precision. Thus the energy delta function is broadened into a
Lorentzian,

δ(ǫ) = 1

π

η

ǫ2 + η2
, (4)

where η is the broadening parameter, chosen to be 50 meV in
the present study. The exact value mainly affects the width of
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the peaks in the density of states (DOS) figures, and has only
little effect on the simulated dI/dV maps.

In the STS experiments, the current flowing between the
substrate and the tip is measured. Depending on the applied
bias voltage, the tunneling occurs either from the tip to the sub-
strate or vice versa. In general, STM and STS probe the hybrid
substrate-molecule system, and the signal is also dependent on
the tip characteristics, as well as the strength of the coupling to
the tip that is assumed to be weak. For a weak enough coupling
between the substrate and the molecule, the lifetime of the
charge carrier on the molecule is long, and the molecular or-
bitals are probed. At negative and positive biases, the molecule
is temporarily hole-doped and electron-doped, respectively.

In theoretical modeling based on DFT or other effective
single-electron models, the molecular orbitals of the N -
electron system are used to model the measurements both on
the negative and positive bias sides (occupied and unoccupied
orbitals, respectively). The change of electron occupation is
not taken into account. Moreover, these are single-particle
orbitals, whereas the experiment actually probes transitions
between many-body states. In order to evaluate the validity of
this approach, it is interesting to compare the simulated DOS
and dI/dV maps given by the effective one-body descriptions,
DFT and the mean-field Hubbard model, to the spectral
function given by a full many-body calculation that includes
the effects due to the changing electron occupation.

The local density of states is generalized to the many-body
picture by the spectral function, whose diagonal elements are
defined for N = (N↑,N↓) particles at zero temperature as

A(νσ ; ω) = −2 Im[GR(νσ ; ω)]

=
∑

k

∥

∥

〈

�
(Nσ +1)
k

∣

∣ c†νσ

∣

∣�
(N)
0

〉∥

∥

2

× 2πδ
(

ω − E
(Nσ +1)
k + E

(N)
0

)

+
∑

k

∥

∥

〈

�
(Nσ −1)
k

∣

∣ cνσ

∣

∣�
(N)
0

〉∥

∥

2

× 2πδ
(

ω + E
(Nσ −1)
k − E

(N)
0

)

, (5)

where |�(N)
k 〉 is the kth many-body eigenstate with energy

E
(N)
k , and ν (σ ) is the single-electron state (spin) index. In the

position basis, the spectral function diagonal corresponds to
the LDOS, and to dI/dV maps in tunneling spectroscopy. In
corollary, tracing over the single-particle orbitals ν produces
an equivalent of the density of states multiplied by a factor of
2π . In fact, the noninteracting case reduces to Eq. (3).

The original Tersoff-Hamann model considers only spher-
ically symmetric s-wave tips.25 The model was later extended
to other tip symmetries, such as p-wave tips, and the extension
was formulated in terms of a simple derivative rule.26,27

Writing the tunneling matrix element in Eq. (3) as Ms =
|�n(
r)|2, the corresponding matrix elements for px and py

type tips are given by Mpx
(
r) = |∂�(
r)/∂x|2 and Mpy

(
r) =
|∂�(
r)/∂y|2. A cylindrically symmetric CO tip is obtained by
combining M(
r) = Mpx

(
r) + Mpy
(
r), and tips mixing both s

and p character are also possible.27

In the experiment, the distance between the sample and the
tip can be rather large, up to 10 Å. In the DFT calculation,
the atom-centered numeric basis set has to be cut off at

some distance, and due to excessive computational effort,
equally large distances cannot be achieved. In the simulated
dI/dV maps, a height of 3.5 Å was chosen. The results are
qualitatively insensitive to the exact height, as long as it is
large enough to exclude most of the σ -type orbital contribution
forming the in-plane carbon-carbon bonds. A minimal height
of 2 Å was found to be sufficient in the current DFT calculation.
As the Hubbard model is defined on a set of lattice sites, the
lattice basis has to be transformed into a basis of real space
orbitals in order to evaluate the LDOS at position 
r for the
dI/dV maps. An analytical carbon pz orbital28 is placed onto
each lattice site, and the LDOS is evaluated at a tip height
of 4.0 Å in the Hubbard calculations. The gray scale of the
dI/dV maps in the figures has been normalized separately in
each map, ranging from white (highest intensity) to black (no
intensity). The associated DOS plots can be used to compare
the magnitudes of the simulated maps.

Unless otherwise specified, in the DFT calculations, the
position of zero energy has been fixed to the middle of the gap
between the highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO). This energy is
referred to as Eref .

III. RESULTS

A. Neutral hydrogenated ribbon

As the tight-binding and Hubbard models assume passive,
hydrogen-terminated edges, we first consider a neutral fully
hydrogenated flake and compare the simulated dI/dV maps
to results obtained using DFT. At half-filling, the tight-binding
model [corresponding to Eq. (1) with U = 0] predicts two
eigenstates localized at the zigzag-terminated ribbon ends that
are nearly degenerate, and occur on both sides of the Fermi
energy EF . In fact, in the limit of long ribbons, the energy
gap between the end states vanishes, whereas the gaps to
states below and above them stay finite (0.580 and 0.688 eV,
respectively). As the end-localized states lie close to each other
in energy, even a weak interaction results in correlations.

The two end states, denoted a and b with wave functions
ψa and ψb, are illustrated in Fig. 1 for the three-monomer
7-AGNR. Regardless of the ribbon length, ψa and ψb are
localized at the zigzag ends, having the same exponential decay
towards the ribbon center. In state ψa , the ends are of opposite
sign, whereas in ψb they are of the same sign. This motivates
to write ψa = 1√

2
(ψl − ψr ) and ψb = 1√

2
(ψl + ψr ), where ψl

and ψr are states localized at the left and right end of the
ribbon, respectively, and each one resides mainly on one of
the two sublattices.

The lowest eigenstates of the many-body Hubbard model
at half-filling, spanned by the end orbital occupations, can be
approximately written as

|0S=0〉 = g†(αc
†
a↑c

†
a↓ − βc

†
b↑c

†
b↓) |0〉, (6)

|0S=1〉 = g†c
†
a↑c

†
b↑ |0〉, (7)

|1−〉 = g† 1√
2
(c

†
a↑c

†
b↓ + c

†
b↑c

†
a↓) |0〉, (8)

|1+〉 = g†(βc
†
a↑c

†
a↓ + αc

†
b↑c

†
b↓) |0〉, (9)
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where c
†
aσ and c

†
bσ create the end orbitals a and b, and

g† creates the frozen core of the lower bulk orbitals, and
the coefficients α,β � 0. These states approximate the exact
eigenstates in the sense that, in the numerical calculations,
the other configurations have only minimal weights. For the
three-monomer 7-AGNR, for instance, the coefficients are
α2 ≈ 0.69, β2 ≈ 0.28, and all the others have a squared weight
of ≈0.02 in total. Since the energy gap between the end orbitals
ψa and ψb decreases as a function of ribbon length, also α,β

balance and seem to converge to a common value. For instance,
in a five-monomer ribbon, α2 ≈ 0.51 and β2 ≈ 0.48.

The exact eigenstates corresponding to |0S=0〉 and |0S=1〉
are the two lowest in energy, and they are almost degenerate.
They have total spins S = 0 and 1, as embedded in the notation.
The other two states |1±〉 are also almost degenerate, but
their energies are significantly higher than that of the ground
state. They have a total spin of S = 0. For the three-monomer
7-AGNR, the exact state corresponding to |0S=0〉 is the ground
state. However, with increasing ribbon length, both states
(|0S=0〉 and |0S=1〉) converge in a similar manner and seem
to approach each other in energy. It is also worth noting
that without the second-nearest-neighbor couplings (t2), Lieb’s
theorem29 would imply a ground state with S = 0 due to the
sublattice balance of the bipartite lattice.

The magnetic properties at the ribbon ends are more easily
grasped if the states ψa and ψb are written in the basis of the
left- and right-localized orbitals ψl and ψr . The transformation

is given by c
†
l = 1√

2
(c

†
a + c

†
b), and c

†
r = 1√

2
(−c

†
a + c

†
b). The

eigenstates are then given by

|0S=0〉 = −g† 1

2
[(α + β)(c

†
l↑c

†
r↓ + c

†
r↑c

†
l↓).

+ (β − α)(c
†
l↑c

†
l↓ + c

†
r↑c

†
r↓)] |0〉, (10)

|0S=1〉 = g†c
†
l↑c

†
r↑ |0〉, (11)

|1−〉 = g† 1√
2

(c
†
l↑c

†
l↓ − c

†
r↑c

†
r↓) |0〉, and (12)

|1+〉 = g† 1

2
[(α − β)(c

†
l↑c

†
r↓ + c

†
r↑c

†
l↓).

+ (α + β)(c
†
l↑c

†
l↓ + c

†
r↑c

†
r↓)] |0〉. (13)

The state |0S=0〉 is antiferromagnetic across the two ribbon
ends, as the first term with coefficient (α + β) dominates.
Namely, measuring a spin-up particle at the left end results in
spin-down particles more likely being found at the opposite end
and vice versa. Similarly, |0S=1〉 is ferromagnetic across the
two ends. The magnetic properties are related to the energetics,
as the Hubbard interaction energy is larger for states of type

c
†
l↑c

†
l↓ |0〉 localized at single end appearing in |1±〉, than for

states of type c
†
l↑c

†
r↓ |0〉 present on both ribbon ends. Therefore,

the antiferromagnetic state |0S=0〉, or the state |0S=1〉 with only
one spin species at the ends, are the lowest in energy.

The fundamental gap Eg at half-filling is the gap between
the peaks in the spectral function due to electron annihilation
and creation [see Eq. (5)]. This gap would be seen in STS
experiments as the spin-split gap. Assuming a frozen core
below the end orbitals, Eg at half-filling with N↑ = N↓

particles (Sz = 0) or N↑ = N↓ − 2 particles (Sz = 1), is

Eg = E
(N↑+1,N↓)

0 − 2E
(N↑,N↓)

0 + E
(N↑,N↓−1)

0

= U
∑

sites i

|φa(i)|2[|φa(i)|2 + |φb(i)|2] (14)

large ribbon−→ 0.104 U. (15)

The ground states of the half-filled and (N↑,N↓ − 1)-particle
systems are characterized by zero end-end interaction energies.
In the numerical many-body calculation with U = 2 eV, the
fundamental gap of the three-monomer 7-AGNR is 0.167 eV,
whereas the mean-field model gives 0.256 eV. In the limit of
a long ribbon, the mean-field fundamental gap is 0.254 eV.
The gap given by density functional calculations (0.43 eV) is,
however, much higher, suggesting that the Hubbard parameter
U should take a larger value in finite-sized ribbons. It should
be also noted that the Hubbard model provides only a minimal
description of the electron-electron interaction, as the longer-
range components of the Coulomb interaction are not explicitly
taken into account.

The LDOS at the single-particle energies of DFT and
the mean-field Hubbard model, or diagonal elements of the
many-body spectral function, are shown in Fig. 2 in a simulated
dI/dV measurement. The plot on the right shows the energies
corresponding to the maps. In terms of spatial profiles, the
three models agree remarkably well, clearly reproducing the
same end-localized states close to the Fermi energy. In these
states, most of the contribution is from the zigzag end atoms,
and the highest amplitude resides on the middle zigzag site.
For the spectral functions of the many-body Hubbard model,
these maps arise directly from creation or annihilation of the
end-localized states ψa and ψb. The first bulk states also have
similar spatial profiles regardless of the model used. In contrast
to the states close to EF , their amplitude is largest at the
armchair edges, and they have little contribution from the
zigzag ends.

FIG. 2. A comparison between DFT, mean-field (MF) Hubbard

model and the many-body (MB) Hubbard model used for simulating

the dI/dV maps of a three-monomer ribbon with a s-wave tip. The

maps have been calculated at the molecular orbital energies (DFT,

mean-field Hubbard) or at the peak positions of the many-body

spectral function. On the right, peak energies are indicated. In the

many-body spectra, the energy reference has been set to the middle

of the first peaks obtained by creation and annihilation. The different

markers link the dI/dV maps and corresponding energies.
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The two lowest exact many-body eigenstates, correspond-
ing to |0S=0〉 and |0S=1〉, are close to each other in energy,
and increasing the length of the ribbon decreases the energy
gap between them. Simultaneously, numerical approximations
become less accurate. Consequently, choosing one of them as
the initial state for the zero temperature spectral function is
questionable. Therefore the many-body DOS, i.e., the trace
over the spectral function, is plotted in Fig. 3(a) for the
three-monomer ribbon, assuming both states individually as
the initial state. At a finite temperature, one would take an
average of the two plots, weighted with Boltzmann factors.
The spectra have a double-peak structure at both sides of
the Fermi level, seen also in the many-body energy levels
on the right side of Fig. 2. This is explained by noting that
the lowest eigenstates of the N ± 1-particle systems are well
described as single Slater determinants of the tight-binding
orbitals. Therefore, for instance, the first peaks by annihilation

correspond to transitions to states g†c
†
a↑ |0〉 and g†c

†
b↑ |0〉.

Since the end orbital ψa has a slightly lower energy than ψb,
the double peaks are observed. Similar deduction holds on
the creation side. Furthermore, the spectra differ in amplitude
close to the Fermi level for the case with |0S=0〉 as the initial
state, since the weights α > β are not equal [see Eq. (6)]. In
longer ribbons, this difference in the height of the peaks cannot
be observed, as α and β converge to a common value when
the ribbon length is increased.

To summarize our findings, comparing the effective one-
body models to the full many-body treatment using the
Hubbard model, we note that the dI/dV simulations are in
good agreement. Correlation phenomena are important only
in the shell formed from the nearly degenerate end-localized
states, and in this case, mean-field treatments cannot fully
capture physics related to spin-dependent properties. DFT,
however, predicts a much larger spin-split gap at the zigzag
edge in the uncharged ribbon than the Hubbard model with
U = 2 eV.

B. Doped ribbons

Even in the limit of weak coupling to the substrate, charge
transfer between the ribbon and the substrate can occur.30–32 In
the experiments,15,17,18 the zigzag end state peak is observed
at positive bias, suggesting that the ribbons are hole-doped.
Recently, the interface between Au(111) electrodes and finite
armchair GNRs with rounded termini was studied using DFT,
and a charge transfer of up to 0.05 electrons per carbon atom
from the ribbon to the electrode was found.19 Thus, in finite
ribbons, a doping level of few electrons is realistic. The doping
of the ribbon might also be noninteger but, for simplicity, we
do not consider fractional doping.

Doping the finite ribbons has a profound effect on the gap
between end-localized states. The gap of an uncharged ribbon
is constant as a function of ribbon length both in calculations
using DFT and the Hubbard model, see the inset in Fig. 3(b) for
the DFT result. This agrees with previous DFT calculations.33

In contrast, the gap between the end-localized states is reduced
by an order of magnitude in hole-doped ribbons (q = 1) of
three monomer units in length, and decreases exponentially
with the length of the ribbon. The DFT calculation shown in
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FIG. 3. (Color online) (a) Hubbard model many-body density of

states at half-filling of the three-monomer 7-AGNR. On the left, the

initial state is |0S=0〉, and on the right, the initial state is |0S=1〉 taken

as the Sz = 0 projection. (b) Kohn-Sham energy levels of both spin

species for the doped three-monomer ribbon. The energy zero (E0)

has been normalized to the midpoint of the end-localized states. Lines

refer to molecular orbitals, and blue/dark and red/gray triangles refer

to the occupied states in the two spin channels. For the uncharged

case, the energy levels are shown both for antiferromagnetic (AF)

and ferromagnetic (F) coupling between end-localized states. (c)

Gap between end-localized states as a function of the number

of monomers in the ribbon for the uncharged (q = 0, inset) and

hole-doped (q = 1,2) ribbons, calculated by DFT. The inset axis

labels are the same as in the main figure. (d) Many-body density of

states, now at various values of doping with integer excess charge q.

The purple curves correspond to transitions by annihilation, and the

gray curves correspond to transitions by creation of an electron.
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FIG. 4. The DFT-calculated density of states (DOS) and simulated dI/dV maps for fully hydrogenated ribbons at different values of

doping. The energy scale of the DOS figure applies also to the dI/dV maps in the sense that they range from −1 to 1 eV in steps of

0.2 eV. (a) Antiferromagnetic uncharged system (b) Ferromagnetic uncharged system (c) Hole-doped system with q = 1 (d) Hole-doped system

with q = 2. The density of states plots show the energies of the molecular orbitals, as well as indicate the overall magnitude of the individual

dI/dV maps.

Fig. 3(b) illustrates this. The Hubbard model gives the same
trend when the ribbon length is increased.

Due to the presence of additional charge, the HOMO-
LUMO gap in doped ribbons does not correspond to the
gap between the end states. With an even number of added
or removed electrons, the ground state is nonmagnetic with
no spin polarization and all DFT energy levels are spin-
degenerate. Figure 3(c) illustrates the Kohn-Sham energy
level structure of the three-monomer flake as the deviation
of the number of electrons from half-filling, or excess charge
q, ranges from four added to four removed electrons. The
energy zero has been set to the midpoint of end-localized state
energies. The gap between the end-localized states in both
spin channels is greatly reduced when the ribbon is charged.
With an odd number of electrons, for which Sz = 1/2, there is

an energy split between the end states belonging to different
spin channels. It is also worth noting that the position of the
end-localized states shift within the bulk gap depending on the
amount of doping.

The many-body DOS of the Hubbard model for the three-
monomer 7-AGNR is shown in Fig. 3(d) for integer values
of excess charge between q = −3 and 3. The purple lines
describe the spectra obtained by annihilation of electrons
from the initial state, whereas the gray lines describe the
spectra obtained by electron creation. The DOS can be directly
compared to the corresponding Kohn-Sham energy levels in
Fig. 3(c). Qualitatively, the DFT and many-body DOS plots
are surprisingly similar, aside from the half-filled S = 0 case
with the double-peak structure on both sides of the Fermi
level in the Hubbard calculation. This is no surprise, since the
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many-body eigenstates for the doped ribbons, at least the few
lowest ones, are well described in the single particle picture.
Furthermore, they are close to intuitive excitations from one
tight-binding orbital to another.

Figure 3(c) shows the molecular orbital energies at q = 0
for states with both antiferromagnetic (AF) and ferromagnetic
(F) coupling between the ribbon ends, i.e., with Sz = 0
and Sz = 1, respectively. In the ferromagnetic case, the spin
degeneracy of the end-localized states is broken, and a small
gap appears between the end-localized states of the same spin,
similar to the case of general doping. It is worth noting that
these two DFT states correspond to the states |0S=0〉 and |0S=1〉
of the many-body calculation. DFT does not, however, allow
one to determine the total spin of a given ground state, only the
value of Sz. The energy difference between the AF and F states
in the uncharged ribbons decreases when the length of the
ribbon is increased, and reduces from the order of 0.001 eV for
the three-monomer flake to the limit of numerical accuracy in
a nine-monomer flake. This is in agreement with the Hubbard
model results for |0S=0〉 and |0S=1〉.

As the experimental ribbons are rather long, the AF and
F states are practically degenerate, and especially at low
temperatures, both of them might be observed. Figures 4(a) and
4(b) show the DFT-simulated DOS and dI/dV maps for the
three-monomer ribbon in the AF and F states, respectively, for
energies ranging from −1 to 1 eV. The maps evaluated between
the orbital energies (seen as peaks in the DOS figure) show a
mix of the orbitals due to energy broadening. Figure 4(a) also
illustrates the difference between s- and p-wave tips. Areas
that are bright in the s-wave simulations turn into rings in the p-
wave simulations. This effect is demonstrated experimentally
in Fig. 5, which compares constant height dI/dV maps of
the end-localized state measured with a metal-terminated and
carbon monoxide-terminated tips. In addition, dI/dV maps at
the onset of the valence and conduction bands measured with
a CO terminated tip are shown. The simulations correspond
well to the experimental measurements, if a tip with mixed

FIG. 5. A comparison between experimental dI/dV measure-

ments and DFT simulations. (See Ref. 17 for experimental de-

tails.) Top row: experimental measurements, measured with a CO-

terminated tip, apart from the second column from the left that is

measured using a metal-terminated tip. Bottom row: DFT (PBE

functional) simulations, six-monomer fully hydrogenated neutral

ribbon. A mixed tip with both s- and p-wave character is used

(M = 0.15Ms + Mpx
+ Mpy

), apart from the second column from

the left in which the tip has pure s-wave character. The energies

corresponding to the maps are indicated in the figure.

s- and p-wave character is assumed, with the tunneling matrix
element given by M = 0.15Ms + Mpx

+ Mpy
.34

As seen in Figs. 4(a) and 4(b), the dI/dV -maps for the
F and AF states as well as the DOS plots are practically
indistinguishable. In addition, the energies of the occupied
and unoccupied states are similar. Consequently, the AF and
F states cannot be distinguished with STM using nonmagnetic
tips. The only noticeable difference is in the peak amplitudes
due to the many-body nature of the states, but this could be
hard to pinpoint clearly in an experiment. STM experiments
using a spin-polarized tip or measurements performed in a
magnetic field could possibly be used to distinguish between
the magnetic states.

The effect of doping on the DFT-calculated dI/dV maps is
illustrated in Figs. 4(c) and 4(d) for q = 1 and 2, respectively.
Even though the energy level spacings are clearly changed
upon doping, the orbitals remain spatially similar. The main
effect of doping on the dI/dV maps is a shift of the energy
axis. The end state resonance moves to the occupied side of
the spectrum as the amount of hole-doping increases.

The amount of doping required to quench the antiferro-
magnetic coupling between the ends of a finite AGNR, and the
associated spin-split gap, has not been previously addressed.
Kunstmann et al.35 found that for an infinite 12-ZGNR, whose
width corresponds to the length of the three-monomer ribbon,
a doping level of 0.5 electrons per edge atom was enough to
destroy the spin moments. This corresponds to a doping of
three electrons in the finite ribbons. Our calculations indicate
that doping by even a single charge carrier is enough to quench
the antiferromagnetic order.

C. Effect of defects

Despite describing only the graphene π electrons, the
Hubbard model seems to at least qualitatively agree with the
DFT results. Being computationally inexpensive, the mean-
field approximation allows one to reach large system sizes. The
neglect of the s and σ electrons in the lattice approach makes
this method, in principle, less well suited to study defects
affecting also the carbon atom hybridization or coordination.
Simple defects, however, can be modeled in a crude way, and
below, we will compare mean-field Hubbard calculations to
DFT results to study the usefulness of this approach.

Figure 6 compares the simulated dI/dV spectra from DFT
and the mean-field Hubbard model for a three-monomer ribbon
with a single CH2 group at the armchair edge, modeled as
an edge vacancy in the Hubbard model. The structure of the
defected ribbon is shown in Fig. 7(a). Even though the vacancy
description qualitatively reproduces the defect-localized state
of the DFT calculation, the nodal plane structure in the vicinity
of the defect is missing from the map calculated using the
mean-field Hubbard model. In the DFT-calculated map, for
instance, there is some amplitude on the added hydrogen
atom, whereas the lattice model gives most weight to the
dangling carbon site at the armchair edge next to the defect
and naturally none to the defect site. It is thus clear that such
a simplified description is unable to capture all characteristics
and, consequently, in further studies on defects and edge
hydrogenation, we only use DFT.
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FIG. 6. A comparison between DFT (top row) and the mean-field

Hubbard model (bottom row) in modeling the dI/dV maps of a

three-monomer ribbon with a CH2 group at the armchair edge on the

fourth armchair carbon atom [see Fig. 7(a) for the structure].

FIG. 7. (Color online) Considered structures for defected finite

ribbons. Different possible positions for a defect type have been

marked using numbers. (a) CH2 group at the fourth armchair

edge atom [CH2(4)]. (b) CH2 group at ribbon end [CH2]. (c)

Asymmetrically missing hydrogen atom at the middle zigzag carbon

[nmH/H]. (d) Missing CH group at the end [penta]. (e) Missing CH at

the armchair edge, at the third armchair dent [penta(3)]. The colored

circles highlight the positions of the defects (missing hydrogen atom:

blue, CH2 group: red, pentagon: purple).

We will consider two main classes of defects. The
first kind, additional hydrogen atoms at the edge forming
CH2 groups [see Figs. 7(a) and 7(b)], has been observed
experimentally.14,17 In Refs. 14 and 17, the appearance of the
end-localized states could be modified by dehydrogenating the
flake ends. Similarly, defects can be introduced at the armchair
edge. Thus we include a ribbon with a removed middle zigzag
hydrogen atom at one terminus [see Fig. 7(c)]. The last defect
type mixes the sublattices by removing a CH group, forming
thus a pentagon at the ribbon end or edge [see Figs. 7(d) and
7(d)]. Little is known about how such structural defects affect
the electronic structure of finite ribbons. The effect of the
defect position is studied both for a CH2 group and a pentagon
at the ribbon edge. The distance of the defect from the ribbon
end is measured in units of armchair edge carbon atoms.

Some structural defects can be unambiguously identified
using AFM measurements. Figure 8 shows experimental
AFM and dI/dV measurements of a ribbon with a tilted
terminating monomer unit, as well as the corresponding
theoretical calculations of the spin density, and a dI/dV map
of the end states. For details on the nanoribbon synthesis as
well as the STM and AFM measurements, please refer to
Ref. 17. dI/dV fingerprints may aid in identifying various
defect types, especially if AFM maps are not available.

Figure 9(a) shows for different defected structures the spin
densities in red/gray and blue/dark for the two spin species, and
Fig. 9(b) the maximal spin moments μmax at both the defected
end (purple/dark) and at the intact end (gray) for the different
defect structures. Apart from few exceptions, the maximal
moment at the intact end is little affected, and μmax ≈ 0.2μB is
very close to the value of a pristine, fully hydrogenated ribbon
(μmax = 0.202μB ). At the defected end, however, the behavior
depends both on the defect type and its distance from the ribbon
end. Removing the middle zigzag hydrogen atom only from
one end (nmH/H) leads to an electron almost fully localized at

FIG. 8. (Color online) Ribbon with a misplaced monomer at one

terminus. (a) Experimental AFM scan showing the single pentagon

in the carbon backbone. (b) Experimental STM topographic map

(10 mV, 100 pA) Both experimental images have been obtained

using a carbon monoxide terminated tip. For experimental details,

see Ref. 17. (c) Structure and spin density given by DFT. Maximal

spin polarizations: intact end, μ = 0.198 μB , and defected end,

μ = 0.182 μB . (d) DFT simulation of the low-bias dI/dV map at

0 eV, using a mixed s- and p-wave tip (M = 0.15Ms + Mpx
+ Mpy

).
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µ
µ

FIG. 9. (Color online) Defected ribbons (a) The structure and the spin density for both spin species (red/gray and blue/dark, isosurface

value 0.01 e/Å3). (b) The maximal spin moment μmax (c) The local density of states in the middle of the zigzag termini. In (b) and (c), the

colors refer to the ribbon ends. Purple/dark–the end closer to the defect, gray–the intact end.

the defect site, with a spin moment of 0.95 μB , assuming no
coupling with the substrate. On the other hand, a CH2 (named
CH2 in Fig. 9) group or missing CH group (named penta) at
the zigzag end completely quenches the spin polarization at
the affected end. As the corresponding π electron is removed
from the π system, the sublattice-alternating pattern of the
end state is no longer possible. When the CH2 defect is moved
along the armchair edge farther away from the ribbon end, an
oscillating behavior is observed as a function of the distance
from the terminus [see Fig. 9(b)] The spin moment is quenched
if the CH2 group is attached to a carbon atom belonging to the
same sublattice as the zigzag end atoms in the closer ribbon
termini. Again, the quenching of the end state is related to the
elimination of a site with a large contribution to the zigzag end
state.

In order to better understand the oscillating behavior caused
by the CH2 defect, Fig. 10 compares the maximum spin
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FIG. 10. (Color online) The maximal spin moment |μ| and the

binding energy at the defected end (purple/dark) and the intact end

(gray) as a function of the distance of the CH2 defect from the ribbon

termini. Crosses are three-monomer ribbon, circles are five-monomer

ribbon.

moments at the defected (purple/dark) and intact end (gray),
as well as the binding energy of the second added hydrogen
atom to the different edge sites, defined as

EB = Eribbon+H − Eribbon − 1
2
EH2

. (16)

A positive EB thus implies that the binding of a second
hydrogen atom to a site is energetically unfavorable. Results
for both three- and five-monomer ribbons are shown in
Fig. 10, marked with crosses and circles, respectively. The H
binding energy EB is found to increase with the distance from
the terminus, superimposed with the sublattice-dependent
oscillation, and the attachment of a hydrogen atom becomes
more unfavorable. EB is smaller for sites belonging to the
same sublattice as the zigzag end state, and thus quenching
the spin moment at the defected end is actually energetically
favored. In the case of quenching, the local density of states at
the defected end [see Fig. 9(c)] does not show end-localized
molecular orbitals close to EF . For defects attached to a carbon
atom belonging to the other sublattice, the magnetic moment
at the terminus closer to the defect decreases as a function of
distance toward the value in pristine ribbons.

Defects located far away from the terminus in a five-
monomer ribbon, more precisely at locations 8 and 9, form
a localized state at the armchair edge that quenches the zigzag
end state at both termini. For some defect positions, multiple
magnetic states are possible. For instance, in the case of the
CH2(3) defect [see Fig. 9], the ribbon termini may show either
AF or F order with respect to each other. With AF order, the
state localized on the defect may correspond to either of the
spin species. The energy differences between the different
magnetic states are of the order of tens of meV, and the
magnetic state has only a minor effect on the LDOS curves.

A pentagon defect at the armchair edge always quenches
the spin moments at the end closer to the defect, as the end-
localized states are pushed up in energy to the unoccupied side
of the spectrum. The electronic structure at the intact end is
almost unchanged [see Fig. 9], and the energy split between
the end-localized states remains roughly constant at 0.4 eV.
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FIG. 11. s-wave dI/dV map simulations for some of the defected

ribbons. The top end is closer to the defect. For an illustration on the

structures and naming conventions, see Fig. 7.

The states may, however, shift with respect to the HOMO and
LUMO of the defected system.

Figure 11 shows simulated s-wave tip maps for defected
ribbons with different defect types. Depending on the defect
type, the zigzag end state is observed only at one end, or at
both ends at different bias voltages. A CH2 group at the ribbon
end completely quenches the zigzag end state, as observed
experimentally.14,17 Both CH2 and pentagon defects at the edge
show a state localized at the defect but with different nodal
patterns. This suggests that, in addition to AFM, defects can
be identified using dI/dV imaging.

D. Different edge hydrogenation patterns

We will now address the effect of different edge termi-
nations on the electronic structure and end-localized states by
considering a three-monomer ribbon. The structures are shown
on the left in Fig. 12. In addition to the fully hydrogenated
ribbon (fullH) [Fig. 12(a)], we compare dI/dV simulations
for a structure having no middle zigzag hydrogen atoms
at either end, thus resembling the monomer structure after
the detachment of a bromine atom (nmH) [Fig. 12(b)], no
hydrogen atoms at the zigzag edge (nzzH) [Fig. 12(c)],
no hydrogen atoms at the armchair-terminated edge (nacH)

[Fig. 12(d)], no hydrogen atom at the middle zigzag carbon or
at the armchair edges (nmH-nacH) [Fig. 12(e)], and a structure
completely stripped of terminating hydrogen atoms (noH)
[Fig. 12(f)]. One could also consider a structure in which
the precursor bromine atoms have not been detached from
the ribbon termini. We have excluded this structure from our
analysis as it has been considered in Ref. 15. We first discuss
the bulk states, which have the largest contribution to the
LDOS at the armchair edges, before moving to the zigzag end
states.

On the occupied side of the spectrum (at negative energies),
the LDOS as well as the simulated dI/dV maps are rather
similar regardless of the edge termination for the bulk states, as
seen in Fig. 12. On the unoccupied side (at positive energies),
on the other hand, the simulated dI/dV maps show marked
differences between the edge terminations. Firstly, a hydrogen
atom missing at the middle zigzag carbon manifests itself as
a strongly localized state around 0.5 eV as seen in Figs. 12(b)
and 12(e). Secondly, the absence of armchair hydrogen atoms
leads to states localized at the armchair edge, unambiguously
identifiable as a row of strong resonances in the s-wave image
[nacH, nmH-nacH, and noH, see Figs. 12(d), 12(e), and 12(f),
respectively]. A similar localized edge resonance is seen at
the dehydrogenated zigzag edge (nzzH) but, in this case,
extending to all three zigzag carbon atoms. Dehydrogenated
carbon atoms at the zigzag and armchair edges can be expected
to be reactive. For ribbons on surfaces, this will lead to
bond formation with the substrate17 and thus possibly to the
suppression of the armchair edge states. In the case of infinite
zigzag ribbons, binding between unhydrogenated edge carbon
atoms and Au(111) has been predicted.36 This causes curving
of the ribbon and quenches the edge magnetization.

Comparing the simulated dI/dV maps to the experimental
maps shown in Refs. 15 and 17, we conclude that it is
unlikely that the armchair edge hydrogen atoms are miss-
ing, as the typical row of strong resonances for structures
without armchair H has not been observed in experiments.
Moreover, the dehydrogenated edge would probably bind to
the substrate. Also a missing zigzag hydrogen atom should be
observable as a bright, localized resonance. When comparing
the simulations with experiment, one needs to remember
that for molecular systems, the experimental peak positions
also contain contribution from the charging energy that is
missing from the picture based on the Kohn-Sham eigenvalues.
Moreover, the unoccupied DFT can at most be treated as a
rough approximation to the measurements at positive voltage.

We now turn to the states localized at the zigzag termini
of the ribbons. Figure 12 shows that the spatial profile of
the zigzag end state in the dI/dV -maps around zero energy is
similar regardless of the end-terminating hydrogen atoms. This
state is characterized by five bright lobes at the carbon atoms
belonging to the same sublattice as the terminating zigzag
carbons. The noH structure is an exception as around zero
energy, only four lobes are seen, and the five-lobe edge state
occurs at around 0.6 eV.

The gap between the HOMO and the LUMO, corresponding
to the end-localized zigzag edge states in all structures but noH,
is indicated with double arrows in the DOS plot in Fig. 12. The
removal of the middle zigzag hydrogen atom or the armchair
hydrogens atoms does not strongly modify this gap (the gap
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FIG. 12. (Color online) DFT-calculated density of states (DOS) showing the energies of the molecular orbitals, marked using red/gray

lines, as well as simulated s-wave dI/dV maps for three-monomer undoped 7-AGNRs with different edge terminations. The energy scale

of the DOS figure applies also to the dI/dV maps in the sense that they range from −1 to 1 eV in steps of 0.2 eV. Negative and positive

energies correspond to occupied and unoccupied states, respectively. Structural images are shown on the left [red atoms in (a) mark a structural

monomer], and the magnitude of the HOMO-LUMO gap is indicated with a double arrow in the DOS panel. The maximal spin polarization

μmax and the energy difference between antiferromagnetically and ferromagnetically ordered end states, �EAF−F, is shown for each structure.

From top to bottom: full hydrogenation (fullH), missing H in the middle zigzag site (nmH), missing H at zigzag edge (nzzH), missing armchair

H (nacH), missing middle zigzag H and armchair H (nmH-nacH), and completely dehydrogenated structure (noH).
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between end-localized states), which is around 0.5 eV in the
fullH, nmH, nmH-nacH, and nacH structures. In contrast, the
removal of all zigzag hydrogen atoms increases the gap to
0.74 eV when the armchair hydrogenation is intact, and
decreases the HOMO-LUMO gap of the four-lobe states to
0.11 eV for the completely dehydrogenated structure. In the
noH structure, the HOMO and the LUMO form a second pair
of end-localized states, in addition to the five-lobed end state,
with an energy split of 0.27 eV around 0.6 eV. It is worth noting
that the gap between end-localized states is independent of the
number of monomers in the ribbon, see the inset in Fig. 3(a).
This is dissimilar to periodic zigzag nanoribbons, in which the
split is roughly inversely proportional to the ribbon width.2

It is well known that the PBE-functional underestimates
band gaps, and thus the calculated bulk states are at lower
energies on the unoccupied side than expected based on the
experimentally determined band gap (2.3–5.1 eV).13,15,16,18

Using the PBE functional, the onset of the occupied and
unoccupied bulk states occurs at −0.8 to −1.1 eV and at 0.3
to 1.0 eV, respectively, for the different edge terminations.
The use of the B3LYP hybrid functional increases the energy
level spacing. In the fullH structure, the end-state gap and
the bulk gap increase from 0.43 to 1.46 eV, and from 2.00 to
2.94 eV, respectively, when the B3LYP functional is used.
Thus the spacing between localized states increases more
than that of extended states but the simulated dI/dV maps
remain, however, qualitatively similar. The larger shift for
more localized states is also seen in the nmH structure. The
localized resonance at the site with a missing hydrogen atom
is pushed to higher energy with respect to the first bulk state,
and the gap between the localized state and the onset of bulk
states decreases from 0.47 to 0.20 eV for PBE and B3LYP,
respectively. Our results, acquired using a hybrid functional,
are in line with previous investigations. Hod et al.37 found a
spin split of 1.38 eV between the end-localized zigzag states
in finite 9-AGNR.

IV. CONCLUSIONS

We have studied the electronic states localized at the zigzag
termini of finite 7-AGNRs using the Hubbard model and

density-functional theory. We have shown that the dI/dV

maps calculated with DFT and the Hubbard model match
qualitatively. Furthermore, correlation phenomena are only
relevant in the nearly degenerate shell formed by the end-
localized states of uncharged ribbons, as the states of the
charged ribbons can be well described in the single-particle
picture.

By studying both hole- and electron-doped ribbons, we have
shown that the energy gap between the end-localized states is
greatly reduced as compared to neutral ribbons. Furthermore,
the spacing between the experimentally observable dI/dV

peaks decreases to the order of a few meV, and it also decreases
as a function of ribbon length. In dI/dV maps, a charged state
of a ribbon manifests itself mostly as a shift of the energy axis.
Our results indicate that the experimentally observed double
peak17 at low positive bias in the STS spectrum measured at
the ribbon ends cannot arise from two distinct electronic states.
By considering ribbons with defects at one end, we provide
further evidence for this interpretation.

In the experiment,17 modifying one ribbon end leads to
suppression of the double peak located at higher energy at the
intact end. We found, however, little changes in the electronic
structure of the intact end, when the other end was modified
with a CH2 group, a pentagon defect or a missing hydrogen
atom. Finally, we have calculated dI/dV maps for ribbons
with different edge hydrogen terminations, which may aid in
the interpretation of STS experiments.
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Zhang, X. Feng, K. Müllen, H. Fuchs, L. Chi, and H. Zacharias,

Phys. Rev. Lett. 108, 216801 (2012).
17J. van der Lit, M. P. Boneschanscher, D. Vanmaekelbergh, M.

Ijäs, A. Uppstu, M. Ervasti, A. Harju, P. Liljeroth, and I. Swart,

Nat. Commun. 4, 2023 (2013).
18C. Bronner, F. Leyssner, S. Stremlau, M. Utecht, P. Saalfrank,

T. Klamroth, and P. Tegeder, Phys. Rev. B 86, 085444 (2012).
19C. Archambault and A. Rochefort, ACS Nano 7, 5414 (2013).
20C. Hwang, D. A. Siegel, S.-K. Mo, W. Regan, A. Ismach, Y. Zhang,

A. Zettl, and A. Lanzara, Sci. Rep. 2, 590 (2012).
21J. J. Hubbard, Proc. Phys. Soc. London A 276, 238 (1963).
22Y. Hancock, A. Uppstu, K. Saloriutta, A. Harju, and M. J. Puska,

Phys. Rev. B 81, 245402 (2010).
23V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K.

Reuter, and M. Scheffler, Comput. Phys. Commun. 180, 2175

(2009).
24J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996).
25J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).

26C. J. Chen, Phys. Rev. B 42, 8841 (1990).
27L. Gross, N. Moll, F. Mohn, A. Curioni, G. Meyer, F. Hanke, and

M. Persson, Phys. Rev. Lett. 107, 086101 (2011).
28A. A. Radzig and B. Smirnov, Reference Data on Atoms, Molecules,

and Ions, Springer Series in Chemical Physics Vol. 31 (Springer-

Verlag Berlin-Heidelberg, 1985).
29E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
30P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van

den Brink, and P. J. Kelly, Phys. Rev. B 79, 195425 (2009).
31J. Repp, G. Meyer, F. E. Olsson, and M. Persson, Science 305, 493

(2004).
32I. Swart, T. Sonnleitner, and J. Repp, Nano Lett. 11, 1580 (2011).
33P. Shemella, Y. Zhang, M. Mailman, P. M. Ajayan, and S. K. Nayak,

Appl. Phys. Lett. 91, 042101 (2007).
34The magnitude of the s- and p-wave contributions vary spatially.27,38

The relative tip contributions in the simulations should thus not be

used directly to characterize the experimental tip.
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