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Electronic States of Heavily Doped Molecular Crystals-Naphthalene. I. Theoretical*' 

'HWEI-KwAN HONG AND G. WILSE ROBINSON 

. Arthur A. Noyes Laboratory of Chemical Physics,t California Institute of Technology, Pasadena, California 91109 

(Received 1 August 1969) . 

The energy spectrum of heavily doped molecular crystals was treated in the Green's function formulation. 
The mixed-crystal Green's function was obtained by averaging over all possible impurity distributions. 
The resulting Green's function, which takes the form of an infinite perturbation expansion, was further 
approximated by a closed form suitable for numerical calculations. The density-of-states functions and 
optical spectra for binary mixtures of normal naphthalene and"'deuterated~naphthalene were calculated 
using the pure-crystal density-of-states functions. The results showed that when the trap depth is large 
two separate energy bands persist, but when the trap depth is small only a single band exists. Furthermore, 
in the former case it was found that the intensities of the outer Davydov bands are enhanced whereas 
the inner bands are weakened. Comparisons with previous theoretical calculations and expetimental results 
are also made. 

I. INTRODUCTION 

The quantum states of solids are characterized by 
energy bands. The periodicity of the lattice requires the 
stationary-state wavefunctions to transform like the 

representations of the translational group, each associ­
ated with the reduced vector k. Solid-state phenomena 
such as excitons,1,2 phonons,3 and magnons4 are con­
veniently described within this group theoretical frame­
work. In each case, the quasimomentum fik is always a 
good quantum number and is suitable for the descrip­
tion of energy systematics. On the other hand, many 
important physical systems, such as doped molecular 
crystals, alloys, copolymers, and some important 
biological macromolecules do not possess translational 
symmetry. The studies of their physical properties are 
usually hindred by the lack of symmetry. However, 
when the system does not deviate too much"'from a 
periodic system, theoretical analysis can usually be 
carried out by setting up the stationary-state wave­
functions for the periodic system and, then, allowing 
them to mix when the imperfection is introduced. One 
of the simplest systems for which this perturbation 
technique can be utilized is the system of isotopically 
mixed molecular crystals. 

In the discussion of mixed molecular crystals, two 
different cases can be distinguished: (a) infinitely 
dilute mixed crystals and (b) heavily doped mixed 
crystals. Case (a) has been studied extensively during 

... This work was supported in part by the U.S. Army Research 
Office-Durham, Contract No. DA-31-124-ARO-D-370. 

t Contribution No. 3914. 
1 (a) J. Frenkel, Phys. Rev. 37, 17, 1276 (1931); (b) A. S. 

Davydov, Theory of Molecular Excitons (McGraw-Hill Book Co., 
New York, 1<)62); (c) A. S. Davydov, Usp. Fiz. Nauk 82, 393 
(1964) [Sov. Phys.-Usp. 7, 145 (1964)]. 

2 (a) D. P. Craig and S. H. Walmsley, Physics and Chemistry 
of the Organic Solid State, 'D. Fox, M. M. Labes, and A. Weiss­
berger, Eds. (Interscience Publishers, Inc., New York, 1963) , 
Vol. 1, Chap. 10; (b) S. A. Rice and J. Jortner, Physics and 
Chemistry of the Organic Solid State State, D. Fox, M. M. Labes, 
and A. Weissberger, Eds. (Interscience Publishers, Inc., New 
York, 1967), Vol. 3, Chap. 4. 

3 C. Kittel, Quantum Theory of Solids (John Wiley & Sons, 
Inc., New' York, 1963). 

4 Excitons, Magnons and Phonons, A. B. Zahlan, Ed. (Cam­
bridge University Press, London, 1968). 

the last decade both in theory and experiment. Experi~ 
ments have been performed to study exciton trapping,·,6 
exciton migration,7 and, more fundamentally, the in­
termolecular interactions that are responsible for the 
entire exciton band structure.s Considerable theo­
retical work,9-19 mostly based on Koster and Slater's20-22 

formulation, was also carried out. This study was 
facilitated by the fact that, at very low concentrations 
of impurities, guest-guest interactions can be neglected. 

In the absence of such interactions, the exact site oc­
cupied by the impurity need not be specified and thus 
the disorder is actually minimized in this case. 

For Case (b) I the designation of guest and host is no 
longer very meaningful. Interactions between like 
molecules must now be taken into account. The situ­
ation is further complicated by the fact that the 
Hamiltonian of the system is only defined in an average 
sense. The ordering of the guests (or conversely, the 
ordering of the hosts) affects the energy spectrum of 
the system. A complete analysis would have to involve 
a statistical averaging of all the possible configurations. 

Previous work on Case (b) is rather limited compared 

5 G. C. Nieman and G. W. Robinson, J. Chern. Phys. 39, 1298 
(1963). 

6 M. A. EI-Sayed, M. T. Wauk, and G. W. Robinson, Mol. Phys. 
5,205 (1962). 

7 S. D. Colson and G. W. Robinson, J. Chern. Phys. 48, 2550 
(1968). 

8 D. M. Hanson, R. Kopelman, and G. W. Robinson, J. Chern. 
Phys. 51, 212 (1969) . 

9 E. I. Rashba, Opt. Spektrosk. 2, 568 (1957). 
10 E. I. Rashba, Fiz. Tverd. Tela 4,3301 (1962) [Sov. Phys.-

Solid State 4, 2417 (1963) J. 
11 R. G. Body and I. G. Ross, Australian J. Chern. 19, 1 (1966). 
12 S. Takeno, J. Chem. Phys. 44, 853 (1966). 
13 D. P. Craig and M. R. Philpott, Proc. Roy. Soc. (London) 

A290,583 (1966). 
14 D. P. Craig and M. R. Philpott, Proc. Roy. Soc. (London) 

A290, 602 (1966). 
15 D. P. Craig and M. R. Philpott, Proc. Roy. Soc. (London) 

A293,213 (1966). 
16 B. S. Sommer and J. Jortner, J. Chem. Phys. 50,187 (1969). 
17 B. S. Sommer and J. Jortner, J. Chem. Phys. 50, 822 (1969). 
18 I. M. Lifschitz, Advan. Phys. 13, 483 (1964). 
19 Y. A. Izyumov, Advan. Phys. 14, 569 (1965). 
20 G. F. Koster and~. C. Slater, Phys. Rev. 95, 1167 (1954). 
21 G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954). 
22 G. F. Koster, Phys. Rev. 95,1436 (1954). 
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with Case (a). Broude and Rashba's method,23 which 

is based on the assumption that like molecules at like 

sites have the same excitation amplitude, is expected 

to be useful only for equimolecular admixtures. Craig 
and Philpott'sI3-15 super-lattice method, while mathe­

matically more manageable, is limited by the size of 

the supercell that can be handled. Since a finite number 

of molecules are treated, a finite number of states are 

obtained. In addition, only discrete compositions can 

be considered. In order to approach the true situation, 

the supercell has to be enormously large. The most 

serious drawback to the latter approach seems to rest 

with the basic assumption that impurities are arranged 

on a superlattice in translationally equivalent sets. 

This immediately leaves out all the aperiodic distribu­

tions in the averaging process. When attempts are 

made to remedy this situation, and bigger cells are 

chosen, the problem becomes computationally intrac­

table. In actual numerical calculations, Craig and Phil­

pott calculated only the k= 0 component of the density 

of states for naphthalene-hs and ds. They did not treat 

spectra involving shallower energy gaps. 

The only experiments to date on concentrated mixed 

crystals have been those of Broude and Rashba23 and 

Sheka24 .25 on benzenes and naphthalenes, respectively. 

Sheka's experiments were carried out at 22°K. The 

spectra obtained were rather broad and some of the 

fine structure caused by "cluster states" typically 

observed in the spectra of certain mixed crystals 

became obscure. Furthermore, in this work weighed 

samples with known concentrations were not used. 

Rather, Broude and Rashba's approximate formula was 

fit to the spectra in order to determine the concentra­

tions. Thus, on the experimental side, additional work 

using weighed samples at lower temperatures seems 

desirable. 

In Part I of this series, we consider the general 

formulation for isotopically mixed crystals with various 

compositions using the Green's function method. Exact 

expressions for the mixed-crystal Green's function are 

presented in terms of an infinite perturbation expansion. 

An approximate formula in closed form suitable for 

actual numerical calculations is also given and applied 

specifically to the mixed crystals of naphthalenes with 

different trap depths. Density-of-states functions and 

optical spectra for the mixed crystals were calculated 

using two different sets of pure-crystal density-of-states 
functions, one based on Craig and Walmsley's26 octo­

pole model and the other experimentally determined 

by Colson et al.27 In Part II new experimental data on 

the absorption spectra and emission spectra at dif-

~3 v. L. Broude and E. r. Rashba, Fiz. Tverd. Tela 3, 1941 
(1961) [Sov. Phys.-Solid State 3, 1415 (1962)]' 

24 E. F. Sheka, Opt. Spektrosk. 10, 684 (1961) [Opt. Spectrosc. 
10, 360 (1961)]. 

2. E. F. Sheka, Bull. Acad. Sci. USSR Phys. Ser. 27, 501 (1963). 
2' D. P. Craig and S. H. Walmsley, Mol. Phys. 4,113 (1961). 
27 S. D. Colson, D. M. Hanson, R. Kopelman, and G. W. Robin-

son, J. Chern. Phys. 48, 2215 (1968). 

ferent temperatures will be analyzed and discussed in 

the light of the theoretical model. 

The purpose of the present work is manyfold: (a) As a 

prototype of disordered systems, heavily doped mixed 

crystals present a physically amenable system for more 

or less exact treatment. Understanding the electronic 

states of this system is the first step toward the under­

standing of more complicated disordered systems. 

(b) A unified theory connecting the electronic states 

and optical properties of pure crystals on the one hand 

and infinitely dilute mixed crystals on the other is long 

overdue. The present investigation will in many ways 

help fill the gap. (c) Heavily doped mixed crystals 

provide additional detailed information concerning the 

guest-guest interactions in molecular crystals. An 

exact theoretical analysis of this system not only 

provides a check on the gross density-of-states function 

but also allows the individual pairwise interactions to 

be determined. (d) These studies also provide answers 

to the question of whether Davydov splitting is 

primarily due to symmetry relations or resonance 

coupling, as raised frequently by some of the workers 
in this field.2b 16 

Among the general theories of disordered solids, the 

multiple-scattering formulation of Lax28 has been the 

most successful. This pioneering work was followed by 

the elegant mathematical analysis of Yonezawa and 

Matsubara29 (YM). The present theoretical develop­

ment parallels closely YM's work except that their 

theory is generalized to the case of multiple-branched 

exciton bands and particularized to the problem of 

isotopically mixed crystals. 

II. THEORY 

A. Perturbation Method for Isotopically Mixed Crystals 

The system under discussion consists of two types of 

molecules with different excitation energies. For dilute 

mixed crystals, it is common practice to denote the 

major component as the host and the minor com­

ponent as the guest. However, in the case of heavily 

doped mixed crystals, the distinction between the host 

and the guest is not very meaningful. We will simply 

refer to them as the A component and the B com­

ponent. We take the A component to have the higher 

excitation energy (e.g., naphthalene with a higher 

degree of deuteration). 

We start with the total Hamiltonian of a pure crystal 

composed of A molecules 

HO= L: HiA+ L: L: Vi/A, (1) 
i i>i 

where H;A is the Hamiltonian of an A molecule at site 

i, and Vi.!A is the interaction between an A molecule 

28 M. Lax, Rev. Mod. Phys. 23, 287 (1951); Phys. Rev. 85, 621 
(1952). 

29 (a) F. Yonezawa and T. Matsubara, Progr. Theoret. Phys. 
(Kyoto) 35,357 (1966); (b) 35,759 (1966); (c) 37, 1346 (1967). 
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at site i and an A molecule at site }. When the B 

component is introduced as an impurity, the Hamil­
tonian becomes 

H' = L H;A+ L HpB+ L L Vi.fA+ L VplB 
i p i>i p>q 

i p 

where H;A is the Hamiltonian of an A molecule at site i, 

HpB is the Hamiltonian of a B molecule at site p, 
V;.fA is the interaction between an A molecule at site i 
and an A molecule at site j, VpqBB is the interaction 

between a B molecule at site p and a B molecule at 

site q, and V;pAB is the interaction between an A mole­

cule at site i and a B molecule at site p. 
We limit our discussion to the case of isotopically 

mixed crystals. In this case, all the interactions between 

A and A, Band B, and A and B can be assumed to be 
equal; hence, 

p n>m 

where Vnm is the interaction between molecules without 
making a distinction between A and B. 

The mixed-crystal Hamiltonian can be expressed in 
terms of the pure-crystal Hamiltonian and a perturba­
tion: 

(4) 
p 

where tp= HpB_HpA is the localized perturbation acting 

only on the pth site occupied by the B molecule. For 

isotopically mixed crystals, the tp's arise primarily 

from the change in nuclear kinetic energy as a result of 
isotopic substitution. 

In the present discussion, the zero-zero band of an 
electronic transition is considered as an isolated Frenkel 

exciton band. It has been shownl3 that under the 

assumption of a localized perturbation, which is 

implied in Eq. (4), the introduction of isotopic im­

purities does not cause the mixing between different 

excited states if initially they are constructed properly 

to include possible configurational interactions. The 

existence of vibrational sublevels in a particular 
electronic state also has little effect on the pure elec­

tronic transition. In the limit of weak coupling, the 

vibrational spacings are certainly larger than the exciton 

bandwidth. Within this limit it was pointed out by 

several authorsl3.l6 that the one-band approximation is 

very likely adequate for most purposes. 
The eigenvunctions of the pure-crystal Hamiltonian 

can be constructed from site functions with Bloch 
symmetry30 : 

'lI(k) = L exp(ik·Ri)<p;, (5) 
; 

where 

is the wavefunction corresponding to the excitation 

localized at site i. There are as many such "site func­

tions" as the number of molecules per unit cell. These 

site functions reduce the Hamiltonian matrix to small 
blocks characterized by their wave vectors. Further 

reduction within the block is not possible except in 

some special cases, for example, the k= 0 block. 

However, in the limit of short-range interactions such 

as those encountered in molecular crystals of benzene 
and naphthalene, Colson et at.30 have shown that the 

factor-group operations can be applied to all the k 
blocks, and simple linear combinations of site functions 

can be used for all the k states. The approximation 
greatly simplifies the theoretical derivations, as will be 

seen later in Sec. II.C. Using this approximation for the 

lowest excited singlet state (IB2,,) of the naphthalene 

crystal (two molecules per unit cell) the two site 
functions are3l 

'i'A.(k) =N-l/2['lI,,(k)+'i'~(k) J=N-l/2[ L exp(ik·R,,) I a)+ L exp(ik·R~) I.8)J, 

" ~ 

'l'B.(k) =N-l/2['l',,(k) -'l'/l(k) J=N-l/2[ L exp(ik·Ra) I a)- L exp(ik·R/l) I.8)J, 
(3 

(6) 

where I a) is the wavefunction corresponding to the 

excitation at a sites, I (3) is the wavefunction cor­
responding to the excitation at (3 sites, and the sum­

mation is carried over all the a sites and all the (3 sites. 
The corresponding energies are found to be 

EA.(k) = fA+Iaa(k)+Ia/l(k), 

EB.(k) = fA +Iaa(k) -IaJ3(k) , (7) 

where Iaa and IaJ3 are the modulated sums2a of trans­
lationally equivalent and inequivalent interactions, 

respectively. fA corresponds to the mean of the exciton 

band. It is also equal to the gas-phase transition energy 
minus the site shift that is caused by the static inter­

actions between the molecule and its environment. 
We now expand the mixed-crystal wavefunctions in 

terms of the complete set of pure-crystal wavefunctions: 

y;= Lf(k+) I k+)+ Lf(lr) Ilr), (8) 

where I k+)='l'A.(k) and Ilr)='l'B.(k). For con­
venience we have put k= k+ for A" states and k= lr 

30 S. D. Colson, R. Kopelmen, and G. W. Robinson, J. Chern. Phys. 47, 27 (1967). 
31 The molecular axes are assigned according to the same convention as in Ref. 27. The C2 interchange operation was used rather 

than the reflection operation cf. Ref. 26). 
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k 

k' 

(21/-"'" 

7(1) "'" k--k-' -k" 

k' 

(21/-"'" 

k-/--((_1111 k-' -""'-- k" 

(0) 

(b) 

FIG. 1. Possible scattering routes contained in M2 for (a) 
single-branched exciton band and (b) double-branched exciton 
band. Route (1) corresponds to o (/JI)o(h) =1, and Route (2) 
corresponds to Il(Pl+P,) =1. The definition of the delta function 
used here is given in the text. 

B" states. As a vector, k+ may be equal to lr but 
I k+) is uniquely different from Ilr). The correspond­
ing energies for the k+ and lr states are 

Ek+=eA+e(k+) , 

Ek-=eA+e(lr), (9) 

with e(k+) = Io;a+lo;fJ and e(lr) = Io;o;-IafJ· 

In the derivation of secular equations, we note that 
tp acts only on the nuclear part of the Born-Oppen­
heimer wavefunctions. The following expressions can 
be easily obtained: 

{<Pi I tp I <Pi) = 0 if i~j, 

(<Pi I tp I <Pi) = (A*-AO)c'lip+':~.o, 

A*= (x* I t I x*), 

AO= (X0 I t I XU), (10) 

I f 
+ ~ + 

+ /1\\ 
+ ••• 

FIG. 2. Diagrams representing the expansion of the true 
propagator in terms of the free propagator. 

where x* and XO are the nuclear wavefunctions for the 
excited and ground states, respectively, of the A mole­
cule. We drop the site index because the expressions are 
independent of site. A* corresponds to the first-order 
value of the zero-point energy difference between A 
and B in the excited state, and AO corresponds to the 
same quantity at the ground state. Since the wave­
functions for A and B are expected to be very similar 
we can assume that the first-order correction is ade­
quate and set A*-Ao equal to EB-EA , i.e., the dif­
ference in excitation energies or simply the trap depth 
A. 

Notice that if the site shift does not depend on 
isotopic substitution, which is the case in naphtha­
leneS but not in benzene,32 we can set A=en-eA, 

where EB is the mean of the exciton band for the B 
molecule. 

+~ 

~x"x. 

+ illl + ••• 

FIG. 3. Diagrams representing the expansion terms to be 
summed if the last propagator Go in Fig. 2 is replaced by the true 
propagator [Gl 

With the aid of Eq. (10), the secular equations are 
found to be 

(E+NBALEk+)f(k+) = (AIN) 

X { L:f(k'+) [Pa(k+- k'+) +Pil(k+- k'+) ] 
k'+ 

+ L:f(k'-) [Po;(k+-k'-) -pp(k+-k'-) J}, (l1a) 
k'-

(E+NBALEk-)f(lr) = (AlN) 

X { L:f(k'+) [Po; (lr-k'+) -pp(lr-k'+) ] 
k'+ 

+ L:f(k'-) [po;(lr-k'-)+PfJ(lr-k'-) ]1, (l1b) 

where 

k'-

Pa(k-k') = L: exp[ -i(k-k') oRaJ, 
a 

Pil(k-k') = L: exp[ -i(k-k') o RfJJ, 
fJ 

Nn=total number of B molecules. 

The summations L:o; and L:fJ are carried out over all 
a sites and {3 sites occupied by the B molecules. If we 
use the mixed-crystal ground state as the energy zero, 
NnAo terms can be dropped. The solutions of Eqs. (11) 
would correspond to the exact excitation energies in 
mixed crystals. 

32 S. D. Colson, J. Chern. Phys. 48, 3324 (1968). 
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Several features of the secular equations can be 

noted: 

(1) The introduction of impurities not only causes 

the mixing among the k+ states and the lr states, but 
it also causes the mixing between k+ states and lr 
states. For a multiple-branched exciton band, the full 

interaction matrix must be used to calculate the per­

turbed energy states. 
(2) It is apparent that for a single impurity molecule 

there is no need to specify whether the impurity 

occupies the a or fJ site. However, when more than one 

The upper sign must be used for translationally equiv­

alent dimers, and the lower sign must be used for 

translationally inequivalent dimers. R is the distance 

between the impurities. Similar expressions were ob­
tained by Craig and Philpott.14 

In the next section we will use the secular equations 

(lla) and (llb) to derive the Green's function. By 

solving the Green's function we can calculate the 
density-of-states function and also the opti~al ab­

sorption spectrum for heavily doped mixed crystals. 

B. The Green's Function Method 

A Green's function is conveniently defined by the 
operator equation 

G= (E-H')-r, (12) 

where H' is the Hamiltonian of the system. In terms of 

any complete orthonormal set {k}, Eq. (12) can be 

written in a matrix representation: 

L: (E-H'hk"Gk"k,=okk" (13a) 
kll 

It follows immediately that 

Gkk,= L: [f,,*(k)jn(k')/(E-En )], (13b) 

where En is an eigenvalue of H', and j,,(k) is the 

j /J4.\ 
---- + ~ + ~ 

lX, .x\ 

+ J..l:...;. 

+ ••• 

FIG. 4. Diagrams representing the expansion terms to be 
summed if all but the first propagator in Fig. 2 are replaced by 
the true propagator [G]. 

impurity is present, the energy states depend on the 

exact sites occupied by the impurities. This is mani­

fested by the fact that the coupling matrix elements 

among all k states depend on whether the impurities 

occupy a or (3 sites. 
We have derived the secular equations using a de­

localized representation. For dilute mixed crystals, the 

corresponding equations can be converted to a localized 

set. This is essentially the method of Koster and 
Slater.20-22 For example, the energy matrix for dimers 

is found to be 

=0. 

1-~ L: _i_ 
N aUkE-Ek 

expansion coefficient of the eigenstate I n) onto the 

basis state I k), or equivalently jn(k) = (k In). 
Following Goodings and Mozer,33 we define a 

weighted density-of-states function: 

gkk' (E) = L:jn *(k)jn(k')o(E-En). (14) 
n 

Equation (13b) can then be written in an integral 

form, 

Gkk,(E) =J[gkk,(E')dE'/(E-E')]. 

Using the symbolic identity (~) 

(E+iE- E')-l= P(E-E')-l+i7ro(E-E') , 

the Green's function can be separated into a real part 

and an imaginary part: 

ReGkk,(E+iE) = PJ[gkk,(E')dE'/(E-E')], (1sa) 

ImGkk, (E+iE) = 7rgkk' (E). (1sb) 

The energy states of the condensed system can be 

best described by a normalized density-of-states 
function D(E) defined as the fraction of states per unit 

energy or 

Through Eqs. (14) and (15), D(E) is related to the 

Green's function by the expression 

D(E) =N-l Trg= (N7r)-l 1m TrG(E+iE). (16) 

If we identify the {k} set as the delocalized basis set in 
Eq. (6), the familar k= 0 selection rule implies that the 
transition probability to an eigenstate I n) is equal to 
the square of its projection onto the k= 0 state times the 
square of the transition moment of the k= 0 state. 

33 D. A. Goodings and B. Mozer, Phys. Rev. A136, 1093 (1964). 
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K 

(bJ 

KZ 

FIG. 5. Possible scattering routes given by il(k-kl+k.-k.) X 
o(k1-k.+k3-k) according to our definition of the delta functions. 
Terms to be summed are those in (a) and terms not to be summed 
are those in (b). 

Since two Davydov components exist, we define two 

optical absorption functions IA.(E) and ls.(E) as 

n 

n 

The product of I(E) and the square of the transition 

moment will yield the actual spectrum. Using Eqs. 
(14) and (15), the I(E)'s are related to the Green's 

function by the expressions 

Hamiltonian, either for a pure or a mixed crystal. Now 

we are in a position to use the result and to apply it to 
our problem. We can easily recognize that the secular 

Eqs. (lla) and (llb) involve nothing but the inverse 

of the Green's function in a k representation. These 

equations can be rewritten as 

L (E-H'hkf(k') =0 
k' 

or 

L Gkk,-Y(k') =0, (19) 
k' 

where 

with 

~k+k'+= ~k-k'-= (~/N) [Pa(k-k')+p,s(k-k')], 

~k-k' += ~k~'-= (AlN) [Pa(k- k') -Pfl(k-k')], 

150 200 200 300 

Energy (cm- I ) ~ 

FIG. 7. Density-of-states function according to the octopole 
model of Craig and Walmsley.26 The dots indicate the actual IA.(E) = 71'-1 ImGk+=o,k+=o(E+if), 

IB.(E) =71'-1 ImGk-=o,k-=o(E+if). (
18) values. A smooth curve has been drawn to show the approximate 

shape of the function. 

IA.(E) and h.(E) will give the "normalized" spectra 

of mixed crystals polarized along band ac, respectively. 
The foregoing expressions with the exception of Eqs. 

(17) and (18) are quite general. {k} can be any basis 
set, either localized or delocalized, and H' can be any 

til 

'" 
2 
(f) 

b 

~ 
u; 
c 
(lJ 

o 

100 9S 150 200 250 

Energy (cm-1J 

and the summations are over all k' of both exciton 

branches. Substituting Eq. (9) into Eq. (19), we have 

Gkk,-I= [E-fA -f(k) ]Okk'-~kk" (20) 

We further define 

Gkk,O=Okk,/[E-fA -f(k)]= GO(k)Okk'. (21) 

It can be noted that Go(k) is the Green's function for 
a pure crystal consisting of A only. Such a crystal 
possesses periodicity, i.e., the quasimomentum iik 
is a good quantum number. Mixing between the k 

states then comes from the perturbation ~kk" Equation 
(20) can be converted by matrix inversion to yield the 
Green's function. With the aid of Eq. (21), we find 

Gkk,=Go(k)Okk+Go(k) L ~kk"Gk"k" (22) 
k" 

FIG. 6. Density-of-states function obtained experimentally by This is exactly the matrix form of the operator equation 
Colson et al.27 The two Davydov components are represented by 
two heavy vertical bars. (E-H')-I= (E-HO)-I+ (E-HO)-I~(E-H')-I. 
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Equation (22) can now be solved by iteration, and we 

have 

Gkk, = GOCk)Okk'+ (D.jN)GoCk)pCk- k')GoCk') 

+ (D.jN)2GoCk) L p(k-kl)Go(k")p(k"_k')Go(k') 
kll 

+ C~/N)aGo(k) L L p(k- kl)GoCkl)p(k"---' kill) 
kll k'lI 

XGO(klll)p(k'"- k')GoCk') + 000, (23) 

where 

tion (Gkk, > is found from Eq. (23) to be 

(Gkk' > = Go( k) Okk+ C~/ N) GoCk) Ml C k- k') GoC k') 

+C~/N)2GoCk) L M2(k-k", kl-k')GoCk")Go(k') 

+(~/N)3GoCk) L L M3(k-klll, k'"-k", k"-k') 
kll k'lI 

XGO(klll)GoCk")Go(k') + ° ° o. (25) 

The average over all impurity distributions can be 
effected by replacing the sum over all impurity sites 

or 

p(k-k') =p,,(k-k')+p~Ck-k') by the sum over all lattice sites multiplied by the 

impurity concentration: 

= Pa(k- k') - p~(k- k'), 

depending upon whether I k), I k') belong to the same 
branch or not. 

At this point, it is necessary to average over over all 
impurity distributions to obtain an average Green's 
function. It is exactly this complication that makes the 
heavily doped mixed crystal much more involved. 
Similar problems involving the electronic states of 
a random lattice occupied by two types of atoms have 
been taken up by Y onezawa and Matsubara.29a The 
corresponding problem for lattice vibrations was also 
treated by Leath and Goodman34 using essentially the 
same formulation. However, only a simple lattice 
with but one molecule per unit cell was considered in 
any of these papers. For most organic solids of interest 
the very existence of multiple exciton branches deserves 
more careful consideration. In the following section we 
will proceed with the averaging process to see what 
complications, if any, arise for the case of multiple 
exciton branches. 

Co The Average Green's Function 

To find the average Green's function, it is necessary 
to evaluate the s moments of the p's defined as 

M8 (Pl, P2, pa, ° 0 0, P8) = (p (Pl) p (P2) p (Pa) ° 0 0 p (P8) )Av 

(24) 

with 

Pl=k-k', Pa = k" - kill, etc. 

L~CBL, 
II] n 

where {l} means the average over all possible distribu­
tions of l impurities. In doing this, we must take 
special care in the cases where impurity sites coincide 
in the summation of Eq. (24). We will evaluate directly 
some moments of p to illustrate the general approach to 

this problem. 
For s= 1, two cases can be distinguished: 

(I) I k), I k') belong to the same exciton branch, 

M1(Pl) = (L exp( -iploRla)+ L exp( -ipl°Rm~) )AV, 
la m~ 

where I impurities occupy IX sites and m impurities 
occupy {3 sites with l+m= CBN, the total number of 
impurities. Replacing the impurity sum by a lattice 

sum, we have 

where na and n{3 run over all IX sites and (3 sites. There­

fore, 
(26a) 

(II) I k), I k') belong to different branches, 

M1(Pl) = (L exp( -iploRz,.) - L exp( -ipl°Rm~) )A' 
la m~ 

=0. C26b) 

In terms of these moments, the average Green's func- Similarly, for s= 2 we have three cases: 

(I) \ k), \ k'), and \ k") all belong to the same branch, 

M2(Pl, P2) = ([ L exp( -iploRza)+ L exp( -iPloRm~) J[ L exp( -ip2oR zJ + L exp( -ip2oRm~)J)Av 
~ ~ ~ ~ 

= (L exp[ -i(Pl+P2) oRlaJ+ L exp[ -i(Pl+P2) oRm~J)Av+ (L L exp[ -i(PloRza+P2oRza') J 
la mfJ la'¢la' 

+ L L exp[ -i(PloRzQ+P2oRm~) J+ L L exp[ -i(PloRm~+P2·Rmff')J+ L L exp[ -i(Pl·Rm~+P2oRza)J)AV' 
la m~ mf1"'m~' lQ m~ 

34 P. L. Leath and B. Goodman, Phys. Rev. 148,968 (1966). 
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Replacing the impurity sum by a lattice sum, 

+CB2{ L: L: exp[ -i(PI,Rn" +p2·R,.",) J+ L: L: exp[ -i(PI,Rn" +P2· Rnp) J 
na¢na' no: nfJ 

+ L: L: exp[ -i(PI·R,.p+P2,Rnp') J+ L: L: exp[ -i(PI·R,.p+P2·R,.,,) Jl· 
npnp' np n" 

Using theequality: 

[L: exp( -iPl' Rn,,) + L: exp( -ipI,Rnp) J[ L: exp( -iP2· Rn,,) + L: exp( -iP2·Rn~)] 
na np na: n{J 

+ L: L: exp[ -i(PI·Rn " +p2,Rn,,') J+ L: L: exp[-i(PI,R,.a +P2·R,.~) J 
na¢na' nIX nfj 

+ L: L: exp[ -i(PI·Rnp+P2,Rnp') J+ L: L: exp[ -i(PI·R,.~+P2'R,.,,)], 
np"'np' np na 

we have 
M2(PI, P2) =CBNo(PI+PZ) + CB2[No (PI) No (P2) -NO(PI+P2) J 

= CBW ZO(PI)O(P2) + (CB-CB2)No(Pl+P2). (27a) 

(II) I k), I k') belong to the same branch and I k") belongs to the other, 

M2(PI, P2) = ([ L: exp( -ipI,R I,,)+ L: exp( -ipI·Rmp)][ L: exp( -ip2·R la) - L: exp( -ipz·Rmp) J)A,. 
I" m~ la mp 

Using the same method, we find that 
M2(PI, P2) = o. (27b) 

(III) I k), I k") belong to the same branch, and I k') belongs to the other, 

MZ(PI, P2) = ([ L: exp( -ipI·R I.)- L: exp( -ipI·Rmp)J[ L: exp( -ip2·RI.,) - L: exp( -ipz,Rmp) J)A, 
~ ~ ~ ~ 

It is clear that these expressions can be combined into 
a single formula if we define the delta function in a 
broader sense. As an example, take the case of the 
naphthalene pure crystal where the eigenstates in the 
Au branch can have the same k as the eigenstates in the 
B" branch. In the normal sense o(k- k') = 1 if k= k' 
no matter whether I k), I k') belong to the same branch 
or not. Using this notation, we will have to treat all 
possible cases separately as we did above. However, 
we can define our delta function as 

O(Pl+p2+P3+" 'P.) 

=>O(PI+P2+Pa+' •. Ps)H[( -1) nJ, (28) 

where H[( -l)1'J is the Heaviside step function and n 
is the number of p's that connect k in one branch and 
k' in the other; so 

H[(-l)nJ=O 

H[( -l)nJ= 1 

if n=odd, 

if n=even. 

By this definition, we can combine Eqs. (26a), (26b), 
and (27a)-(27c)to yield a simple expression for MI 

(27c) 

(29a) 

M2(PI, P2) =CBW20(PI)O(P2)+ (CB-CB2)No(Pl+P2)' 

(29b) 

It can be seen that M2 in Case (II) is equal to zero 

because O(P2) =0, O(PI+P2) =0, and M2 in Case (III) 
is equal to N(CB-CB2)O(PI+P2) because O(PI) = 
O(P2) =0. 

Formally, Eqs. (29a) and (29b) are analogous to the 
expressions obtained by YM for the electronic state of 
binary solids composed of two types of atoms. Physi­
cally, we can say that the existence of two branches 
of exciton states increases the number of intermediate 
states to which the exciton under scattering can go. 
Furthermore, in addition to the normal conservation 
of momentum for the ,simple case of one molecule per 
unit cell, the factor-group symmetry must also be re­
tained (vide infra). In Fig. 1, we illustrate all these 
different situations diagrammatically by drawing the 
possible scattering routes. The correspondence be-
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FIG. 8. Calculated density-of-states function (dotted line) and optical spectrum (solid line) for naphthalene-ks and ds, using the 
experimental density-of-states function of Colson et aJ.27 fA and EB are band centers for naphthalene-ks and ds, respectively. The con­
centration ratios given correspond to naphthalene-ks: naphthalene-ds. 

tween systems with one exciton branch and two 
exciton branches can be readily seen. 

To proceed with the general s moment, we follow 
YM29a and define a "restricted" lattice average as 

• 
= L: L: L: ... L: (±) exp( -i L: Pt·Rn,) , (30) 

where nl~n2~n3··· ~n. means that all nt's are dif­
ferent from one another. Two possible forms of V's are 

involved: 

Y+(p) = L: exp( -ip·Rn,.) + L: exp( -ip·Rn~), 

depending upon whether I k), I k') belong to the same 
branch (p = k- k'). The signs in front of the exponen­
tial depend on whether Rn , is R, or R il . They also de­

pend on whether Y is Y+ or Y-. 
This definition immediately yields the following 
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relation: 

eXPL[ L tXj(Y(pj) )AvJ= (exPL[ L tXiY(Pi) 
j i 

+ L L tXitXjY(Pi+Pi) + ... J)AV, (31) 
;,,<j 

where expL is the "leveled exponential" introduced 
by Kubo,3. 

eXPL( LXi) = 1+xi+x2+" • + XiX2+X2X3+ ••• 

+XiX2X3+"', (32) 

with each term containing only the first power of any 

35 R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962). 

Xj. Equation (31) enables us to express the s moment 
of yes> 1) by a sum over various products of the first 
moment of Y. The result is 

(Y(pl) Y(P2)'" Y(p.) )A'= (-1)' L II [- (im-l)!J 
1m) m 

where Yim is the first moment of Y with its argument 

equal to the sum of the im p's in the mth compartment 
of a particular partition. Lim) is carried over all the 
possible partitions 1m}. Notice that 

L im=s. 
m 
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Careful examination of the Y1m's results in the follow­
ing conclusions: 

(i) If there is an even number of p's connecting k 
in one branch and k' in the other, 

Y1m= L exp[ -i(Pl .. +P2,.+P3 .. +·· • Pi .. ) .R,.,,] 

np 

= No (Plm +P2 .. +Pa .. + ••• Pi.,). 

(ii) If there is an odd number of p's connecting k 
in one branch and k' in the other, 

Y1m= L exp[ -i(Pl .. +P2 .. +Pa .. +·· • Pi.,) .R",,] 
n" 

- L exp[ -i(P1m+P2m+Pa .. +·· • Pi,.) • Rnp] 
np 

=0. 

If we again define the delta function in a broader sense 
as in Eq. (28), we can use a single formula for all the 
cases, 

Y1m=No(Pl .. +p2 .. +Pa .. +·· ·Pi,.). (34) 

Formally this is again equivalent to the results of 
YM.29a 

A comment should be made at this point. Although 
the present discussions are limited to the case of two 
molecules per unit cell, with special reference to the 
naphthalene singlet, the results we have obtained so 
far can be extended to more complicated systems 
such as benzene with four molecules per unit cell. The 
crucial assumption that has to be made is the one we 
used in Sec. II.A, namely that the exact crystal 
waveiunctions can be approximated by a simple linear 
combination of site functions as a result of weak 
translationally equivalent ip.teractions. It can be noted 
that the first factor on the right-hand side of Eq. (28) 
has to do with the translational symmetry of the 
lattice, while the second factor has to do with the 
interchange symmetry of the lattice. In the "restricted" 
Frenkellimit,30 the basis functions in Eq. (6) are con­
structed so that they belong to the irreducible repre­
sentations of both the translational group and the 
interchange group. Equation (28) simply states 
that a scattering route is allowed if the product 
of the characters of these irreducible representa­
tions (or states involved in the scattering processes), 
i.e., r(k) r*(k') r(k") r*(k"') •• • contains the char­
acters of the totally symmetric representations of 
both the translational group (i.e., P= k-k'+k"­
k"'· •• = 0) and the interchange group (i.e., n= 
even). This is a general rule and is suitable for all the 
multiple-branched exciton bands. 

For molecular crystals that do have strong trans­
lationally equivalent interactions, the assumption that 
factor-group operations can be applied to all the k 
states is no longer valid. The wavefunctions would be 

(for two molecules per unit cell) 

\[rj(k) = N-l/2[A (k, j)\[r,,(k) + B(k,j)\[rJ3(k)], 

where the j's denote different exciton branches. Al­
though the formulation presented so far would still be 
applicable, the lattice sum now takes the following 
form: 

Y1m(Pl,. +P2., + ••• Pi,,.) 

= { LA (k,j)A (k',j')A (k',j')A (k",j") .•. 
n" 

Xexp[ -i(pl.,+p2m+·· 'PiJ ·R,.a] 

+ L B(k,j)B(k',j')B(k',j')B(k",j")··· 
np 

Xexp[ -i(Plm +P2m + ••• Pi .. ) .R,.,B}' 

No simple expressions can be written. The A (k, j) 's 
and B(k, j) 's would have to be evaluated in order to 
do further calculations. Fortunately, most low-lying 
states of molecular crystals seem not to fall into such 
categories. 

To relate the moments of P to the moments of Y, 
we further define 

• 
= L L ... L (±) exp( -i L Pt·RI,), (35) 

1~127'·"""I. t=1 

where LI is the sum over all impurity sites and Zl~ 
12 , • ·Z. means that all R/,'s are different. 

The relation between the moments of X and the 
moments of Y can be easily established: 

(X(Pl)X(P2)" ·X(P.) )AV 

=CB·(Y(Pl) Y(P2)'" Y(P.) )AV. (36) 

An expression similar to Eq. (31) now relates the 
moments of P to the moments of X: 

(expL[ L Oijp(pj) ])Av= (expL[ L OijX(pj) 
j j 

+ L L OiiOijX(Pi+Pj)+ ... ])AV. (37) 
i7"'j 

Equations (33)-(37) would enable us to evaluate the 
various moments and the average Green's function. 
The final expression for the moments can be conveni­
ently given in terms of the cumulants29a through the 
following equations: 

(expL L Oijp(Pi) )AV= eXPL[(exPL{ L OijP(Pi) j-l).]. 
i i 

(38a) 
The s cumulant is, in turn, given as 

(p(Pl)p(PZ) •• ·p(P.) ).=P.(CB )No(Pl+P2+·· ·P.), 

(38b) 

where P.(CB) is given by a generating function 

.. P.(CB)x" 
10g[1-CB+CB exp(x)]= L ; (38c) 

.=1 sl 
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for example, 

PI (CB) =CB, 

P 2(CB ) =CB-C1l, 

P3(CB ) =CB-3CB2+2CB3, 

P 4 ( CB) = CB -7CB2+ 12CB3- 6CB4, etc. 

The function p.(CB ) can be viewed as a probabilistic 

weighting function and the delta functions contain the 

"selection rules" of scattering. As shown in the earlier 

sections, for multiple-branched exciton bands in the 
"restricted" Frenkel limit, no complications involving 

the P.'s result; however, the delta functions will have 
to be modified to account for the conservation of 

factor-group symmetries. Using these equations, the 
average Green's function is found to be 

(Gkk' ) = GoCk) Okk+ (.:l/ N) Okk,N PI (CB) GoC k) Go (k') 

+ (.:l/ N)20kk' {N2PI2( CB)Go(k) Go(k)Go(k') 

+NP2(CB )Go(k) L Go (k") Go(k') I 
k" 

+ (.:l/ N)30kk, {N3PI 3( CB)Go(k)Go(k) Go(k)GoCk') 

+N2PI(CB)P2(CB)Go(k) L Go(k)GoCk")GoCk') 
kll 

kll 

+NP3(CB )Go(k) L L GO(kl)Go(k"')Go(k') I 
k" k'lI 

+.... (39) 

~otice that any summation Lk includes all the k states 
in all the branches. 

A diagrammatic method in which each expansion 

term is represented by a diagram drawn in momentum 
space has been developed by Edwards36 and Klauder.37 

Equation (39) is depicted diagrammatically in Fig. 2. 

We have represented the true Green's function by a 
heavy horizontal line and the free propagator Go by 

a thinner line. Each vertex is associated with a poly­
nomial p.(CB ), where s equals the number of inter­

action lines connecting the impurity Crepresented by a 
cross) and the exciton line. Each interaction line is 

associated with a momentum transfer p= k 1- k2, 
and since the next momentum transfer to a single 

impurity is zero, each vertex also carries a delta func­

tion No (PI+P2+ .. ·P.). The expansion can thus be 
written down easily by enumerating all the possible 

diagrams. 
These diagrams have the general form of an exciton 

line with a series of self-energy parts. At this point we 
define a "proper" self-energy part to be a self-energy 

part that cannot be split into two parts by cutting 

the exciton line once. It can be shown that by replacing 

the last free propagator Go with the true propagator 

(G), it is now only necessary to sum over all proper self­

energy parts. This is demonstrated diagrammatically 

in Fig. 3. Further simplification can be achieved if all 

but the first free propagator Go in each term is replaced 

by the true (G). All the proper self-energy parts that 
can be broken down into two proper self-energy 

parts by a closed line cutting through the exciton line 

twice can be eliminated. This is again shown in Fig. 4. 
Equation (39) now takes the simpler form 

(G(k»= Go(k) +GoCk) L* (k) (GCk». (40) 

This is the familiar Dyson equation}S L*(k) denotes 

the sum of all the irreducible proper self-energy parts 
and is called the exciton self-energy. Alternately, we can 
rewrite Eq. (40) as 

(G(k, E»= 1/[Go-l(k, E) - L*(k, E)]. (41) 

The argument E is introduced here to denote the E 
dependence. 

In order to obtain expressions that are more sym­
metric with respect to both components, the first 
constant term in the self-energy can be absorbed into 
Go-l(k, E). If we define 

L(k, E) = L*(k, E) -.:lCB, 

Eq. (41) now becomes 

(G(k, E»= 1/[E-CAEA -CBEB-E(k) - L(k, E)]. 

(42a) 

36 S. F. Edwards, Phil. Mag. 3,1020 (1958). 
37 R. Klauder, Ann. Phys. (U.S.) 14,43 (1961). 
3S See, for example, R. D. Mattuck, A Guide to Feynman 

Diagrams in Many-Body Problems (McGraw-Hill Book Co., 
New York, 1967). 
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The self-energy, thus defined, can be obtained from Fig, 
4 by removing the first diagram from the summation: 

L (k, E) = (t:.jN)2NP2(CB ) L (C(k', E» 
k' 

+ (t:.jN)3NP3(CB ) L L (C(k', E) )(C(k", E» 
kl kll 

+ (t:.jN)WP4 (CB ) L L L (C(k', E» 
k' k" k"' 

x (C(k", E»X (C(klll,E» 

+ (t:.jN) W2P22 (CB ) L L L o(k-k'+k"- kill) 
k' kll k"' 

Xo(k'-k"+klll-k) (C(k', E) >(C(k", E) > 

X (C(klll , E»+ .. '. (42b) 

We have thus extended YM's results to more compli­

cated systems using a physically reasonable approxima­
tion, namely, the neglect of all but short-range forces 

in the molecular crystal. Equations (42a) and (42b) 
then become the master equations with which the 

energy spectrum of mixed crystals can be calculated. 
It can be seen that the self-energy includes terms that 
arise from multiple scattering by a single impurity 
[such as the first, second, and third terms in Eq. 
(42b) ] and also terms that arise from interference 
scattering by the multiple centers [such as the fourth 
term in Eq. (42b)]. The former bear no explicit k 
dependence and hence can be calculated if the density­
of-states function is known, whereas the latter have 
to be evaluated from the dispersion relation. A word of 
caution has to be made about the fourth term and 
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similar terms associated with two impurities in the 

expansion. According to our definition of the delta 

function we draw all the possible scattering routes in 

Fig. 5. Terms to be included in the sum are those given 
in Fig. 5(a) and terms to be excluded are those in Fig. 

S(b). (We assume k=k+.) If we define 

fleE, R) = L exp(ik+·R) (G(k+, E» 
k+ 

+ L exp(ik-.R) (G(k+, E», 
k-

h(E, R) = L exp(ik+·R) (G(k+, E» 
k+ 

- L exp(ik-.R) (G(k+, E», 
k-

we can rewrite the fourth term as 

(A/N)W2P22(CB) L L L o(k-k'+k"-k"') 
k' k" k'" 

Xo(k'-k"+k'''-k) (G(k', E) )(G(k", E» 

x (G(k"', E»= (A/N) W2P22 (CB ) N-l 

X[Lexp(ik·Re)!I(E,Re) l!l(E,Re) 12 
R. 

+ L exp(ik.Ri)!2(E, Ri) 1!2(E, Ri) 1
2J, 

Ri 

where Re is the separation between two translationally 

equivalent impurities and Ri is the separation between 
two translationally inequivalent impurities. The neces­

sity of using two! functions to associate with dimers 

is rather unique for multiple-branch exciton bands. 

As has been shown in Sec. ILA, energy expressions for 
translationally equivalent dimers and translationally 

inequivalent dimers are different. The way we define 
our delta function will automatically take care of this. 

YM29b have obtained the second-order self-energy by 

summing all the diagrams associated with two im­

purities. They also showed that at low concentrations 
the second-order self-energy gives the energies of 

dimers with variable separations consistent with the 

Koster-Slater equations. A parallel treatment of the 
present problem would lead to the same conclusion, 
both the translationally equivalent dimers and in­
equivalent dimers being obtained in the same limit. 
Expressions similar to those we have derived in Sec. 
ILA can be shown to be included in the second-order 

self-energy. 
Although the exact expression of the average Green's 

function can be written down in an expansion, no 
closed form has yet been obtained. This is quite ex­
pected in view of the fact that we are trying to describe 
a highly discontinuous function by an analytical ex­

pression. In the next section, we will derive an ap­
proximation for the average Green's function and 
apply it to actual numerical calculations. 

D. Approximate Green's Function and the Calculation 
of the Naphthalene Mixed-Crystal 

Energy Spectrum 

If we substitute the expressions for the Pa's in terms 

of CA and CB into Eq. (42b) , we have 

L (k, E) =A2CACB[N-l L (G(k', E»J 
k' 

+A3CACB(CA-CB) [N-l L (G(k', E»J2 
k' 

k' 

k' k" k'" 

Xo(k'-k"+k'''-k) (G(k', E) )(G(k", E» 

where 

(G(E) ) 

X (G(k"', E) ) J 

= A2CA CB (G(E) )[l-A(CB-CA) 

X (G(E»+···], (43) 

=N-l L (G(k', E» 
k' 

(44) 

This suggests an approximate closed form of the follow­
ing type: 

If we investigate the asymptotic behavior of the self­

energy, we find that in the limit of zero bandwidth 

[~(k) =0], the exact self-energy is given by 

L(E) =CACBA2/[E-CA~A-CB~B+ (CB-CA)AJ. (46) 

To compare Eq. (45) with Eq. (46), we have to assume 
that the self-energy is k independent. Then, when 

~(k) =0, (G(E) )-l=E-CA~A -CB~B- L(E). It follows 

immediately that ~= L(E). An approximate self-energy 
is then obtained: 

L(E) =CACBA2/[(G(E) )-1+ (CB-CA)A+ L(E)]. 

(47a) 

With this approximate self-energy, Eq. (44) now be­
comes 

(47b) 

Equation (47) has been derived by Taylor39 for lattice 

39 D. W. Taylor, Phys. Rev. 156, 1017 (1967). 
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FIG. 14. Calculated F function (the real part of the Green's function) for mixed crystals of naphthalene-hs and pdl using the experi­
mental density-of-states function of Colson et al.27 

vibrations of mixed crystals with mass defects. It 
was also obtained by Onodera and Toyozawa4o for 
the corresponding electron problem. YM29c also showed 
that when the first-order self-energy was expressed 
as a continued fraction, the lowest approximation 

agreed with Eq. (47a). 
Some features of Eq. (47) can be noted: 

(i) It satisfies the dual symmetry, i.e., the equation 

40 Y. Onodera and Y. Toyozawa, J. Phys. Soc. Japan 24, 341 
(1968). 

IS unchanged under the transformation: CA+--+CB , 

A+--+- A, €A+--+EB. 

(ii) The mixed-crystal problem can be solved if the 
density-of-states function is known. The dispersion 
relation is not needed in this approximation. 

(iii) It is exact when €(k) =0 and also when A=O. 
(iv) It is exact when CB-tO. In this limit 

There is a pole that corresponds to isolated impurities 
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given by the following relation: 

N-l E [E-EA -E(k')]-L (EB-EA)-I=O. 
k' 

Our problem now is to solve simultaneously Eqs. 

(47a) and (47b). Putting (G(E»= a+bi and E(E) = 
c+di, we obtain four equations: 

lJO(E') (E-CAEA-CBEB-E'-c) (48a) 

a= E. C E' )2+ £2 ' E' (E-CAEA- BEB- -C ( 

lJO(E')d 

b = E C E') 2+ /2 ' E' (E-CAEA- BEB- -C ( 

a= (-cx-dy)/(x2+y2), 

b= (-dx+cy)/(x2+y2) , 

(48b) 

(48c) 

(48d) 

where JYl(E') is the density-of-states function for a pure 

crystal and 

X= c[( CB-CA) il+cJ- dL CACBil2, 

y= d[(CB-CA) il+2c]. 

Two sets of GO(E') are used, one obtained by Craig 

and Walmsley26 and the other by Colson et al.27 They 

are shown in Figs. 6 and 7. Notice that the Davydov 

components are located -77 and 81 cm-1 from the 

mean of the exciton band according to Colson et at. 
and -103 and 53 cm-1 according to Craig and Walms­

ley. To solve Eqs. (48), a trial-and-error .method .was 

used. A set of trial values for c and d was mserted mto 

Eqs. (48) and using Newton's method, a new set of 

values for c and d were obtained. The iterations were 

carried on until these values converged. Using the 

results obtained in Sec. II.B, the density-of-states 

function and the optical spectrum were calculated from 

the following expressions: 

D(E) =11'-1 Im(G(E) )=b/1I', 

I(E) =11'-1 1m (Goo (E) ) 

ImE(E) 

X [E-CAEA -CBEB-Eo-ReE(E) J2+ [ImE(E) J2 

d 
=11'-1 2 2' 

(E-CAEA-CBfB-Eo-c) +d 

where the Eo's correspond to the energies of theDavydov 

components. 
We have assumed that the two Davydov components 

are infinitely sharp. In reality, it is observed that the 

b component is somewhat broad. This has not been 

taken into account in our calculation. 
The exact I(E), D(E) must satisfy some important 

sum rules. They are 

L: J(E)dE= 1, (49a) 

(49b) 

and 

L: D(E)dE= 1, (49c) 

L: ED(E)dE=CAEA+CBEB. (49d) 

It is easy to show that our approximate I(E), D(E) 

also sa tisfy these sum rules. Equations (49a) and (49b) 

state that the approximate I(E) and D(E) are cor­

rectly normalized and Eqs. (49b) and (49d) state that 

they satisfy the "rule of the lever." 

III. RESULTS AND DISCUSSION 

A. Calculations Based on Experimental 

Density-of-States Functions 

As we have discussed in Sec. II.D, the mixed-crystal 

density-of-states function and optical spectrum are 

completely determined in the first approximation by 

the over-all density-of-states function (including both 

exciton branches) and energy gap. The assumption 

that self-energy does not depend on k has the effect of 

smearing out the density-of-states function that would 

otherwise be very irregular due to the existence of 

cluster states.40 This approximation would suffer 

severely if the energy gaps were large. For isotopic 

substitution, the largest possible energy gap is 115 
em-I, corresponding to the case of naphthalene-hs 

and ds. Since the bandwidth is known to be of the same 

order of magnitude, all the isotopic mixed crystals 

fall within the limit of shallow traps. The approxima­

tion is, therefore, expected to be good. 

In Figs. 8-11, we show the results of our calculations 

for different energy gaps, using the experimental 

density-of-states function by Colson et al.27 Here the 

density-of-states function is taken as a 186-point 

histogram. Each energy interval corresponds to 1 em-I. 

At fixed energy gap and concentration a particular 

energy, usually chosen close to fA or fB, is used as a 

starting point. After the values of c and d were cal­

culated from Eqs. (48) by iterations for that energy, 

they are corrected for energy change and used as the 
trial values for the next energy interval both higher and 

lower by 1 em-I. Using this procedure, we can scan the 

whole region where the density-of-states is nonvanish­

ing. In situtations such as naphthalene-hg in ds, two 

bands exist and two starting points are needed to cover 

both domains; otherwise one would be sufficient. 

The convergence is excellent except at band edges. 

This was also noted by Taylor.a9 However, we did not 

use his procedure and stopped wherever the density 
of states was sufficiently small. 

In Fig. 8, where the energy gap corresponds to that 

for CSHl0-CsDI0 mixed crystals, we notice that for all 

concentrations the eigenstates of the mixed crystal are 

grouped into two bands. This is due to the moderately 
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FIG. 15. Calculated F function (the real part of the Green's function) for mixed crystals of naphthalene-hs and ds using the experi­
mental density-of-states function of Colson et al.27 

large energy gap involved. Each component forms 
its own exciton band with little disturbance from the 

other. Davydov splittings similar to those of the pure 
crystal arise naturally as a result of interactions be­

tween like molecules. The density of states attributable 
to each component is such that the integrated area is 

equal to the concentration of the component.39 This is 

consistent with the fact that the total number of states 
is not altered by a unitary transformation. Since the 

shapes of the density-of-states functions in Fig. 8 are 
all quite similar, the bandwidth increases with con­
centration, bearing roughly a C1I2 dependence similar to 
the findings of Onodera and Toyozawa40 and Taylor.39 

It can also be noted that the mean of the individual 
exciton bands is shifted relative to the mean energies 
fA and fB of the pure-crystal exciton bands, indicating 
the existence of a "repulsive interaction" between the 

bands. Eventually as C~, these interactions will 

move the ideal mixed-crystal level to the isolated im­
purity level causing the quasiresonance shift.8 

Lifshitz18 has recently given an extensive discussion 
of the systematics of the energy levels and behavior of 

band edges in disordered systems. In particular, he 

predicted that when the perturbation is strong enough 
to split a state from the main band to form a localized 

impurity state, the edge of the main band will move to 
higher energies as more impurities are introduced. This 
prediction is in agreement with our results. 

The Davydov components are seen to be broadened 
by disordering. For the inner bands, the broadening is 
much larger due to the proximity of the top of the 
lower band and the bottom of the upper band. Since the 
ac component is assumed to be at the bottom of the 
band, it is broadened to only one side, whereas the b 
component, which is inside the band, is seen to be 

broadened on both sides with more broadening on the 
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side that has larger density of states. Recently, Sommer 
and J ortner16 have suggested looking for the background 
absorption in the main band induced by isolated 
impurities as a means of monitoring the band structure. 
It would appear from Fig. 8 (and the later figures as 
well) that little can be learned about the over-all 
band structure by looking at disorder-induced spectra 
even at high impurity concentrations. 

If we turn our attention now to the intensity distri­

bution of the Davydov components, we observe that 
the outer bands are enhanced and the inner bands 
weakened. This agrees qualitatively with Sheka's25 

experiment and Broude and Rashba's23 approximate 
formula. The integrated absorption intensity attribut­
able to each component divided by its concentration is 

plotted in Fig. 12. It can be seen that these values 
converge nicely to the corresponding values for dilute 
mixed crystals (as C---70) as given by Rashba's9 equa­
tion: 

( 
1 )2( 1 )-1 

1= E-E(O) N-1 ~ [E-e(k) J2 

( 
1 )2( IJO(E') )_1 

= E-E(O) ~ CE-E')2 . 

The fact that the outer bands are stronger and 
sharper indicates that they are relatively undisturbed 
by the presence of the impurities. This, of course, is 
due to the large energy difference between the per­

turbing and the perturbed states. As the bandwidth 



ELECTRONIC STATES OF NAPHTHALENE. I 845 

increases so does the Davydov splitting until it reaches 
the limit of full Davydov splitting manifested by the 
pure crystal. According to the density-of-states func­
tion of Colson et al.,27 the Davydov components are 
located near the bottom and the top of the band. This 
results in a near-Cl/2 dependence for the Davydov 
splittings. Broude and Rashba's allegation that the 
sum of the Davydov splittings must be equal to the 
Davydov splitting of the pure crystal is certainly not 
consistent with the present calculations. In fact, we 
will show in Part II of this series that our experi­
mental results agree with our calculation rather than 
with Broude and Rashba's. 

Notice that at low concentrations both the theoretical 
optical spectrum and the density-of-states function are 
rather structureless. This is probably the most vul­
nerable region as far as the applicability of the theory 

is concerned. Experimental data also indicate that 
although the theory predicts a reasonably good band 

edge it does not, as expected, show the fine structure 
observed in the optical spectrum. 

Finally, our numerical results indicate that the cal­
culated I(E) and D(E) remain correctly renormalized 

and their first moments equal to CAEA+CBEB+Eo and 
CAEA+CBEB, respectively, within a few wavenumbers. 
Thus the sum rules in Eqs. (49) are satisfied. This 

provides a good check on the iteration. 
Proceeding now to shallower trap depths, we show in 

Fig. 9 our calculated results for naphthalene-hs and 
fjd4• The energy gap in this case is 74 cm-I

. It can be 
seen that two bands attributable to naphthalene-hs and 

fjd4 merge together when the hs concentration is 
larger than 30%, and are barely separated at lower 
concentrations. The b-polarized absorption has a peak 
in the region 300,.....,350 cm-I, which is reminiscent of the 
b-polarized absorption of (:ld4; but it also extends 
throughout the entire band and shows a small hump 
in the hs region, roughly corresponding to the b­
polarized absorption of hs. The ac-polarized absorption 
behaves quite similarly. Compared with the results 
of hs in hs, the inner components are here weaker and 
broader while the outer components are stronger. 

If we use Izyumov'sl9 method to calculate the 

isolated impurity states, we find that Er= 180 cm-l 

for hs in (:ld4 and E r =291 cm-l for fjd4 in hs. (The 
energy reference is the same as in Fig. 9.) The former 
corresponds to a bound state and the latter to a virtual 
state. It is interesting to note that, as the concentra­
tion of hs is lowered to less than 10%, the ks band tends 
to separate from the (:ld4 band and to form a bound 
state. On the contrary, when the concentration of 
fjd4 is lower than 10%, the entire {3d4 band will be 
embedded into the hs band and produce a virtual state. 
The last graph in Fig. 9 is quite similar to Fig. 6 of 
Sommer and Jortner's paper,16 except that here we are 
talking about virtual states involving large impurity 
concentrations. The behavior of the spectrum at lower 
concentrations of {3d4 is such that the peak at 305 

cm-I will move to lower energy and converge to 291 
cm-I (a virtual state), and the peak at 265 cm-I will 

move to 277 cm-I (the b component of hs). Virtual 

states are frequently difficult to locate. Our calculation 
suggests that by following the b component of the 
{3d4, which is relatively strong, and extrapolating to 

C-tO, we can locate the virtual state. Of course, this 
depends on the accurate determination of the band 
position, which may not be so easy for the naphthalene 
b component due to its inherent broadness. 

As we proceed to a smaller energy gap, we find that 
the inner Davydov components almost disappear. 
For naphthalene-hs and ad4 with ~=51 cm-I, only two 
absorption peaks are apparent in Fig. 10. The assign­
ment of each peak to each component has to be made 

very carefully. We first examine the isolated impurity 
states. They are found to be 169 cm-l for ks in ad4 and 
267 cm-I for ad4 in hs. The former is a bound state 
being only 1 cm-I from the main band edge; the latter 
is a virtual state lower in energy than the b component 
of hs (277 cm-I

). With this in mind, we can start 
interpreting the first and the last graphs in Fig. 10. 
In the first graph, the sharp b-polarized absorption is 
almost pure ad4, the broad ac-polarized absorption 
indicates complete mixing of the ah4 k= 0 state with 
the hs impurity states. The mixing is so complete that 
it is no longer legitimate to speak of the excitation of 
ah4 or hs alone. The same interpretation can be made 
for the last graph. The sharp ac component is almost 
pure hg and the b component now becomes a mixture 
of the hs k=O state and the ad4 states. In between 
these extremes, both the ac and b components show the 
effect of mixing and broadening. A gradual transition 
from the excitation of one molecule to the other occurs 
over the whole concentration range. The widths of the 
individual components clearly bear out this fact. 

Further reduction in the strength of the perturbation 
results in a situation not very different from that of 
the pure crystal. In Fig. 11, we see that for naphtha­
lene-hg and {3dI (~= 21 cm-I

) , both the density-of­
states function and the optical spectrum approach 
those of the pure crystal. Two sharp lines are predicted. 
These lines shift gradually from the Davydov com­
ponents of the pure hs to those of pure (:ldl . In the limit 
of the dilute crystal, no bound state or virtual state will 
be observed. 

The various types of behavior of the self-energy 
L(E) are illustrated in Figs. 13(a)-13(d). It can be 
seen that the imaginary part of L(E) is larger in the 
impurity region and smaller in the main band [Figs. 
13(a) and 13(c)]. Since we are effectively calculating 
the response of the crystal to wave-type excitation, it is 
not surprising that the damping of the excitation is 
larger in the impurity band, which is formed by localized 
excitations, as compared with the damping in the main 
band. In Fig. 13(d), we notice that when ReL(E) =0, 
ImL(E) has its maximum. This behavior is somewhat 
common. The same type of resonance peaking was also 
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FIG. 17. The calculated absorption maxima of the Davydov 
components for mixed crystals of naphthalene-hs and ds. Dotted 
line corresponds to results obtained by using the octopole model, 
and solid line corresponds to results obtained by using the experi­
mental density-of-states functions. We assumed that the octopole 
model predicted the correct energies of the Davydov components 
in the pure crystal; see text. 

observed in the similar studies involving lattice vibra­

tions. In fact, Taylor39 observed the same behavior 
(see Fig. 3 of his paper) in his calculation of the lattice 

dynamics of mixed crystals of gold and copper. 

The behavior of the real part of the Green's function, 
which is by definition the principal value of the integral 

F(E) = PJ[D(E')dE'/(E-E')], (50) 

is illustrated in Figs. 14 and 15. A useful analogy19 

can be used in the discussion of the general behavior of 

this function. If D(E') is understood as the charge 

distribution function and E- E' the distance between 

the point of observation and the charge, the function 

F(E) then, by analogy, is the potential function. For 
a density-of-states function that consists of only one 

band (Fig. 14), there is only one source. At distances 

much larger than the dimension of the source, the 
source can be regarded as a point charge and the 
potential is inversely proportional to the distance. 

As the distance is reduced, the potential increases and 

reaches its maximum near the band edge. On approach­
ing the center of gravity of the distributed charges, the 

potential decreases due to the mutual compensation of 
the charges in the outer region and finally equals zero 
at the center of gravity. Thus the shape of the F func­
tion can be understood in the region E> the center of 
gravity. By changing the repulsive potential to the 
attractive potential we can use the same argument to 
explain the behavior of the F function in the region 
E<the center of gravity, where the F function is 
inverted. 

When two bands exist, the behavior of the F function 

resembles that of the potential due to two sources. 
By superimposing two F functions similar to Fig. 14, 
we have the situation shown in Fig. 15. The F function 
is seen to possess two maxima and two minima due to 
the presence of two bands. 

Notice that the F functions were not calculated from 

Eq. (40), but rather obtained directly as solutions of 

Eqs. (48). The agreement between the results obtained 
from Eqs. (50) and (48) is evidence of the self-con­

sistency of Eqs. (48). 

B. Calculations Based on the Octopole Model 

Calculations were also performed using the density­

of-states function derived from the octopole model of 
Craig and Walmsley.26 This was done (1) to study the 

effect of the density-of-states function of the pure 

crystal on the density-of-states function and optical 

spectrum of mixed crystals, and (2) to compare the 
results obtained by solving Eqs. (48) with those of the 

incomplete machine calculations by Craig and Phil­

pott.I4 The octopole model of exciton interactions in 

napthalene predicts a density-of-states function that is 

rather asymmetric. As shown in Fig. 16, this asymmetry 

is carried over to the mixed-crystal density-of-states 
function. It can be seen that in Fig. 16 the density-of­

states functions for 10% hs/90% ds and 10% ds/90% 
hs are quite different. In the former case, the density­

of-states function attributable to the guest (hs) is 

much broader and extends closer to the main band edge, 
whilein the latter case the density-of-states attributable 

to ds is farther from the main band. This is believed to 

be due to the larger density of states on the higher 

energy side of the band center and, consequently, 
larger repulsive interaction felt by the guests when 

they are above the band. The same effect was also 

predicted in the theory of impurity levels in dilute 

crystals. Generalization of this effect to the heavily 
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FIG. 18. Comparison between this work (the smooth curves) 
and the machine calculations by Craig and Philpott'4 (the 
vertical bars) on the spectra of C'OHS-ClODs mixed crystals. The 
curves (or bars) above the horizontal line represent the b-polarized 
spectra and those below represent the ac-polarized spectra. The 
ratios given correspond to naphthalene-hs: naphthalene-ds. 
Intensities are given in arbitrary units. 
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doped mixed crystals will predict a narrower impurity 

band for guests above the main band. 

To compare with calculations based on the experi­

mental density-of-states function,27 we have shifted the 

position of the band center from the octopole model 

to higher energy so that the two Davydov components 

coincide with those of Sec. IILA. It should be pointed 

out that theoretical calculations of the band structure 

deal only with the intermolecular interactions that 

lead to the exciton band without any reference to the 

absolute position of the band center. In principle, the 

merits of different models for exciton interactions should 

be weighed by using the band center as the common 

energy reference. From this point of view, if we accept 

the absolute position of the band center obtained from 

hot-band spectroscopy of Colson et al.,27 the octopole 

model is already erroneous (by 26 cm- I
) in predicting 

the absolute positions of the Davydov components, 

although their relative positions given by the Davydov 

splitting are in good agreement with experiments. 

However, since the position of the band center is not 

directly observable physically, another approach would 

be to use the position of the lowest Davydov com­

ponent as common energy reference. In doing this, we 

are effectively comparing the shape of the density-of­

states function in the region spanned by the Davydov 

components. This approach was adopted by Sommer 

and JortnerI6 and by Hanson et al.S and will also be 

used here. 

In Fig. 17, we have plotted the relative positions of 

the Davydov components of hsi ds mixed crystals as a 

function of concentration for the two different models. 

It can be seen that the Davydov components are rather 

symmetric for the experimental density-of-states 

function in the sense that the plot has roughly a center 

of inversion. On the other hand, the octopole model 

gives a highly asymmetric plot. In the idealized situ­

ation where the density of-states function is sym­

metric and the Davydov components are located 

symmetrically with respect to the band center, the 

plot will have an exact center of inversion. Knowing 

the Davydov components, we can use this method to 

gain some information about the shape of the density­

of-states function. In this respect, it is an extension of 

the method of the variation of energy denominators 

used by Sommer and Jortner l6 and by Hanson et al.S 

Both methods were based on the same principle that 

the optical spectrum is completely determined by the 

density-of-states function and the energy gap. 

The intensity distributions can be discussed by 
using the "rule of the lever" contained in Eqs. (49). 

Compared with the calculations based on the experi­
mental density-of-states function, the ac-polarized 

absorption is stronger in the hs region and weaker in 

the ds region. The b-polarized absorption behaves 

oppositely. This provides another criterion for com­

paring the experimental results with different types 

of density-of-states functions. 

Unlike the corresponding lattice problem,41 complete 

machine calculations of the electronic levels of heavily 

doped mixed crystals based on some kind of dispersion 

relations have been lacking. The only data available 

for comparison are those of Craig and PhilpotL14 

Since their calculations were made for super cells with 

relatively small dimensions (2X2X2), their results can 

only be regarded as suggestive. In Fig. 18, we compare 

our calculations with those of Craig and Philpott. 14 

The agreement is actually better than expected con­

sidering the fact that only a few of all the possible guest 

distributions were included in their calculation. Notice 

that we did not compare our results with the "average" 

energies obtained by Craig and Philpott. Such an 

averaging process, although intuitively appealing, is 

not justifiable. What we observe experimentally is not 

a single level corresponding to the average energy but 

rather a broad absorption due to all the levels of all the 

different guest distributions. 

As shown in earlier sections, the cluster states that 

are important when the energy gaps are large and 

the concentration of one of the components is small 

are only treated approximately in Eqs. (48). To study 

the detailed features of the guest band, several ap­

proaches are available: 

(1) The present formulation may be improved by 

including higher-order self-energies. This calculation 

will become much more involved and may not be 

feasible for practical purposes. 

(2) Refined machine calculations must be done 

especially at low guest concentrations. As mentioned 

by Craig and Philpott,14 their calculations were very 

confusing in this region. Some of the features in the 

guest band cannot be followed with certainty. A more 

complete calculation would certainly improve the 

situation. 

(3) Koster and Slater's equations for isolated cluster 

states or its asymptotic form involving larger gaps42 

may be used and extended to higher concentrations by 

assuming that only broadening occurs. As was pointed 

out by YM29 and by Lifschitz,1s these isolated cluster 

states formed the low concentration limits of the true 

cluster states. In the regions where the present calcu­

lations fail to show the detailed structure of the guest 

band, qualitative discussions can be made in terms of 

these isolated cluster states. This will be discussed more 
thoroughly in conjunction with our discussions of the 

experimental results. 

41 A fairly complete machine calculation on the lattice vibrations 
of disordered solids has been done by D. N. Payton and W. M. 
Visscher, Phys. Rev. 154, 802 (1967). Similar calculations on the 
exciton properties of disordered crystals would be very desirable. 

42 At low guest concentrations, these isolated cluster states can 
be observed in a long crystal. See D. M. Hanson, Ph.D. thesis, 
California Institute of Technology, 1969. Hanson treated the 
isolated cluster state as a two-body problem, neglecting the inter­
actions with the host band, which is much higher in energy. 
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C. Some Comments on Broude and Rashba's Model 

and Sheka's Experiments 

According to Broude and Rashba's23 simple model, 

the positions of the optically active levels in a heavily 

doped mixed crystal are given by the following equa-
tion: 

1/ €p = L [C/ (E- €i) ], (51) 
i 

where Ei is the "ideal-mixed-crystal" level (or the 
exciton-band center) of component i with concentra­

tion Ci , and €p is the energy difference between the 

Davydov component p and Ei. Using the present nota­

tion, we have €A.= I"" (0) +I"ff(O) and EB.=I",,(O)­
I"Il(O) for naphthalene crystals. Since two Davydov 
components exist, two equations can be written. 

For a binary system, each equation is a second-order 

equation of E. Two solutions, EA" E B " will give the 
excitation energies of A and B, respectively. Thus the 
theory always predicts four sharp lines in the optical 

spectrum without taking into account any broadening 
due to disordering. 

Furthermore, the theory also fails to account for the 
exciton interactions that cause the quasiresonance 

shift in the limit of dilute mixed crystals. According 

to Eq. (51), when CA approaches unity (Cr~O)EAp= 

EA+E., while EBp=EB. The single-impurity level is pre­
dicted to be the same as the "ideal-mixed-crystal" 

level! 

Conceptually, what Broude and Rashba's model 

really amounts to is a model in which the mixed crystal 
is considered as a virtual crystal consisting of two non­

interacting but interpenetrating crystals of A and B, 
each possessing perfect lattice symmetry (including 

both the translational symmetry and the factor-group 
symmetry). Davydov's formulation for pure crystals 

is then extended to this type of idealized mixed crystal. 

The results, thus obtained, are quite expected: a 
"scaled-down" Davydov splitting due to the increased 

"lattice" parameter and eventually, at zero concentra-

tion, the ideal-mixed-crystal level without quasire­
sonance shift. In this connection, Craig and Philpott'sl4 

method is an improvement over Broude and Rashba's 
in that it takes into account some disordering byallow­

ing random impurity distributions witkin the super­

cell. However, the translational symmetry among the 

supercells is, obviously, an artifact. This "residual" 

symmetry is removed in the present formulation. 
Sheka's experiments24,25 are difficult to assess at this 

moment because of the uncertainty involved in the 

determination of the compositions of his samples. We 
will defer detailed discussion until a later publication 

of additional experimental results from this labor­

atory. It is sufficient to mention two of the problems 

inherent in Sheka's analysis: 

(1) The E/S were determined from Broude's43 

method of vibronic analysis. This method has been 

criticized by Nieman and Robinson.2 In this particular 

case Ei was determined for naphthalene-hs to be 
r-o../3i 530 cm-I, which is even lower than the isolated 
impurity level of naphthalene-ks in tis at 31542 em-I. 

According to Hanson et at.s and also Sommer and 
Jortner,17 it should be around 31556 em-I. 

(2) To circumvent the difficulties in Broude and 

Rashba's formula at both Cka~O and Cd8~0, Sheka 

assumed that Eka and fda had a linear dependence on the 
concentrations. Although this modification allowed 

some superficial consistencies between theory and ex­

periments involving the naphthalene-ks absorption 

bands, it also added to the inconsistencies involving the 

naphthalene-ds bands. 
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