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A nontrivial tight-binding model for electron dynamics on the fractal Koch curve is investigated
within the framework of the Green’s-function formalism. The key result is the construction of a multi-
ple exact renormalization group that allows one to derive all the rather unusual properties of the model.
This group is generated by four nonequivalent decimation operations, which define distinct transforma-
tion rules for the 48 relevant parameters to be renormalized. The calculation of the density of states
confirms the crucial results that were obtained recently using transfer-matrix methods: local self-affinity,
dense gap structure, and singular electronic levels with infinite degeneracy. This demonstrates that the
Green’s-function approach is not inferior to other techniques even in topologically one-dimensional situ-

ations.

I. INTRODUCTION

Green’s-function methods have widespread applica-
tions in physics. In particular, they represent powerful
tools for the evaluation of various properties of large
quantum systems. The formalism is seldom capable of
deriving exact results, but it generally offers a systematic
way to obtain reasonable—or even excellent—
approximations on the basis of perturbative series.

A very important system, which has been investigated
extensively by this approach, is the problem of one parti-
cle in a nonperiodic potential that is bounded everywhere
in space. Such a system is expected to mimic the electron
dynamics in solids lacking perfect crystalline order. For
many years the “hot or dirty crystal” picture has dom-
inated the field: Aperiodicity was achieved by adding
random functions to a periodic effective potential.! ™’
Ingenious Green’s-function techniques have been devised
to solve the resulting problems, but the analytical and nu-
merical difficulties that must be surmounted to obtain
conclusive results are formidable.?

In the past decade, however, a new philosophy has
emerged: The aperiodic solid is modeled as a
deterministically disordered substrate for quasiparticle
motion. This means that hierarchical’ or quasiperiod-
ic'®"! potentials are studied, which are supposed to in-
terpolate between simple crystalline order and complete
stochasticity. Such models have the virtue of being exact-
ly or approximately invariant with respect to the opera-
tions of some renormalization group (RG).

By exploring this property it has been demonstrated
that deterministically disordered systems do not only
simulate important familiar aspects of randomly disor-
dered ones: they also possess a number of very intricate
and novel features (critical states, singular-continuous
spectral components, etc.) that may or may not be
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present in the latter type of models. These features were
mainly detected by transfer-matrix methods (TMM),
which are well-suited for the implementation of the RG.

At first glance, Green’s-function techniques do not ap-
pear to be good candidates for the same job, although
they are more easily extended to higher dimensions than
the TMM. The reason is that any perturbative treatment,
like the Green’s-function decimation scheme introduced
by Gongalves da Silva and Koiller,” must fail to distin-
guish between, say, absolutely continuous and singular-
continuous spectral measures. The Green’s-function for-
malism becomes, however, a competitive (and in some
respects even superior) approach to deterministically
disordered systems, if it can be made exact whenever oth-
er methods do achieve this.

The intention of our paper is to support this conjecture
by showing how a limit-periodic model with rather spec-
tacular properties can be solved without approximations
by appropriate Green’s-function methods. This model
describes electron hopping on the Koch fractal and was
recently analyzed by the authors by means of TMM.!
Very few examples of exact Green’s-function renormal-
ization schemes for tight-binding Hamiltonians can be
found in the literature. Interesting cases have been stud-
ied by Langlois, Trembley, and Southern® and by Ashraff
and Stinchcombe'® (see also Ref. 14). Our work differs
from theirs in two main respects.

(1) Electron dynamics on the fractal substrate con-
sidered here is much richer than those encountered in
hierarchical or quasiperiodic structures like the Fibonac-
ci chain:'>!* It was demonstrated in Ref. 15 that all pos-
sible types of spectral components and localization be-
havior are present, that a host of mobility edges exist,
and that an infinity of quantum levels condense for cer-
tain choices of the system parameters to form a superlo-
calized phase. The correct Green’s-function approach
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has to account for all these phenomena.

(2) The exact Green’s-function renormalization
schemes of Refs. 9 and 16 are, like ours, devised in the
spirit of the Gongalves da Silva—Koiller decimation ap-
proach. But they either restrict themselves to pivotal
sites to obtain information on the density of states and
other quantities of interest, or they make use of composi-
tional averages. Our approach takes explicitly into ac-
count all sites on the fractal, which actually contribute
differently to the electronic properties of the model. This
can only be achieved by extending the standard renor-
malization machinery: Our system turns out to be exact-
ly invariant with respect to a family of nonequivalent
dilation-symmetry operations, which define separate 48-
parameter renormalization subgroups for the Green’s
coefficients.

The material in our paper is organized in the following
way: In Sec. II we present the model, briefly review its
pertinent properties as demonstrated in Ref. 15, and in-
troduce the formalism. In Sec. III the explicit Green’s-
function RG for the system is constructed taking great
pains with the treatment of all nonequivalent classes of
sites. Section IV summarizes crucial numerical results
produced by the exact renormalization scheme, and Sec.
V concludes the paper with a short discussion.

II. MODEL AND GREEN’S-FUNCTION FORMALISM

We consider the tight-binding Hamiltonian describing
nearest-neighbor hopping on the fractal Koch curve,
which has been introduced in Ref. 15. Probably the best
way to evaluate the physical properties of this system is
J
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to use periodic approximations of order N for the ‘“‘terra-
gon,” as illustrated in Fig. 1.

The crucial feature of our model, which gives rise to
quite unusual properties, is the possibility of electron
hopping across the folded chain to nearest neighbors in
the Euclidean sense. The strength of this interaction is
measured by the parameter A, while nearest-neighbor
hopping along the chain is fixed to unit rate.

The Nth periodic approximation is governed by the
Hamiltonian Hy. For N 21 it is given by

Hy=T3 [In){n+1|+[n){n—1]

nez
+Aty(n) |n—1){n +1|
+ln+1){(n—1D], (1)

where the effective next-nearest-neighbor interaction is
specified as follows:

N-—1
ty(n)=8(0,n)+ 3 8(14°,n(mod4’)) ,
s=1
—14N<n <14V
(2)
ty(n +4M)=ty(n) forall nE€Z .

Note that the fractal structure of our model enforces an
exponentially growing sequence of approximation
periods, namely {4"|N €N}.

The Nth-order Green’s-function Gy associated with
Hy is formally defined by (E —Hy)Gy(E)=1. It is ex-
plicitly determined by the following set of equations:

(n[(E—Hy)Gylm)=3 (n|[(E—H)|k){k|Gylm)= 3 [E8&n,k)—H\1G{Y)

kEZ

kEZ

= _}\'ZN(n +1 )Gr(ljx-)l,m _Gr(tzyk)l,m +EGr(u11\:)—Gt(11Y—)l,m —;"ZN(n —1 )Gr(tlz)2,m

=&6(n,m), nm€E€Z.

N=0:
-3 -2 -1 0
N=1
-16
N=2:

20 21 23 24

FIG. 1. The first three stages in the construction of the Koch tight-binding Hamiltonian by periodic approximation.
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Gy contains all information about the Nth approxima-
tion of the quantum fractal. In particular, the density of
states (DS) py(E) can be obtained as

1 .. 1 8
E)=—— 2 (N)+ 4
pn(E) #Slgr:olm Ss§1G” (E) |, 4)
where
GS(SN)+(E)=1in:) GN(E +ie) . (5)
€—>

The corresponding integrated density of states (IDS)
Ky (E) is defined by

kn(E)= [ py(EVE . (6)

The full sequence of Green’s functions {Gy(E)|N €N}
will reveal all the particular spectral features which were
discovered in Ref. 15. A typical property of our limit-
periodic model system!” is the local self-affinity'® of the
DS and the IDS, which is directly linked to the presence
of “exotic states”!>1? displaying dilational symmetry and
power-law (de)localization. Another generic aspect is the
fact that the spectrum is nowhere dense due to the per-
petual subband splitting that takes place in the sequence
of approximations {py(E)|N €N} to the limit DS.

A most striking and unusual feature of our fractal-
hopping dynamics, however, is the appearance of levels
possessing infinite degeneracy and finite spectral weights
when the cross-hopping rate A is chosen as 37172 27172
or 1. These levels are populated by superlocalized or
“molecular” states.!”

In Sec. IV we will show in an exemplary way how the
Green’s-function approach reproduces such subtle effects
obtained by TMM. To that end the full scheme has to be
employed: The familiar restriction to the evaluation of
just one (conveniently chosen) diagonal coefficient
GM*(E) in Eq. (4) is not correct here, because different
sites on the fractal will contribute differently to the DS.
In view of the lack of any type of translational symmetry
in the system, the Green’s function cannot be averaged.

Let us get a feeling for the consequences of this compli-
cation. We first consider the odd-numbered sites on the
Koch curve, which cannot be bypassed via direct interac-
tion between their left and right neighbors on the fractal
(see Fig. 1). These sites therefore represent nodes and can
be used to replace the system by an effective one-
dimensional model with nearest-neighbor interactions of
two different types. This is achieved by a decimation
scheme that retains only one out of four sites and intro-
duces new “lumped” interactions according to the follow-
ing rule:

)
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This recipe preserves just one-half of the odd sites,
namely those with labels 4t —1, t EZ. Another possible
decimation procedure would eliminate all sites except
those with labels 4¢ + 1, t EZ. As the structure is invari-
ant with respect to the index reflection » — —n, we can
restrict ourselves to one particular choice.

Our first decimation step is equivalent to the descrip-
tion of the system in terms of the matrix products HG
and FF introduced in Ref. 15. Note that the Nth approx-
imation to the fractal limit structure is converted in this
step into a 4¥ ~l-periodic arrangement of single and dou-
ble interactions.

Considering now the even-numbered sites, we observe
that a subset of them appears in a local topology, which
allows the right and left (odd-numbered) neighbors on the
curve to interact directly with hopping rate A. This fact
prevents us from performing the same decimation scheme
that has been employed to the odd sites. If we tried to
carry out this procedure by keeping one-half of the even
sites, then next-nearest-neighbor interactions would
emerge and destroy any hope of coming up with a com-
pact RG. The difficulty can be circumvented, however,
by referring the contributions of the even sites to the DS
to their odd neighbors, which can be treated in the way
described above. All this will be discussed in the follow-
ing section.

III. EXACT RENORMALIZATION GROUP

The most powerful RG techniques for the evaluation
of the Green’s functions of tight-binding models are
based on the idea of repeatedly eliminating the sites
neighboring a pivotal site 77 and summing up their contri-
butions in renormalized interaction coefficients for the
remaining sites.*”%!! Any such decimation procedure is
conceptually straightforward for each element G . It is
particularly easy to perform in the diagonal case, i.e.,
m =T, in which we are mainly interested.

Note, however, that a RG scheme is only useful when
the decimated system has the same structure as the origi-
nal one; then the procedure can be repeated over and
over again until the site #7 becomes virtually decoupled
from its neighbors. For systems with random disorder,
this condition is certainly not fulfilled. The strategy was,
nevertheless, successfully applied to such models by
resorting to configurational averages (see, e.g., Ref. 7);
then Gy, is used as a representative for all G... The
price to be paid is reduced accuracy and the risk of miss-
ing subtle but characteristic features like critical wave
functions.

By way of contrast, an exact RG scheme can be dev-
ised for our fractal tight-binding system. As already
mentioned above, there is also a price to be paid for this
rigor: As fractals do not possess translational symmetry
(be it exact or statistical), all G.. may contribute
differently to the DS. One immediately realizes that the
decimation procedure with pivotal site 7 defines an indi-
vidual sequence of renormalization operations which are
not necessarily identical to the sequences associated with
other sites. In our case reflection symmetry only guaran-
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tees that —7 generates the same scheme as 7. We have to
distinguish, in particular, odd and even sites.

A. Odd sites

In the preceding section we indicated diagrammatically
how our fractal system can be reduced to a linear one
with two kinds of next-neighbor interactions. This
scheme, as defined by rule (7), results in the decimation of
all even sites and half of the odd sites. It is of practical
use only if we are able to derive explicit relations between
the new single and double interactions and the model pa-
rameters. We observe, however, that the expressions for
these interactions are not unique.

Indeed, let us consider the complex energy z =FE +ie€
and define alternative coefficients of the system by

1

x——-i, x;=Ax, g=—. (8)
z z

With these definitions Eq. (3) becomes

GN=g8(n,m)+xty(n +1GN, , +XGY,
©

+xGV, , +xty(n —1)GY

n—2,m °*

We can now eliminate all sites except those labeled as
4t —1, t EZ, from this set of equations and determine the
new interaction coefficients connecting the remaining
sites. It turns out, in particular, that the value for
single-bond interactions between a pivotal site 47 —1 and
its left neighbor 47 —5 depends on the type of bonding to
the right neighbor 47+ 3.

Therefore, we must refine our definitions of interac-
tions and our site classification by considering context-
sensitive expressions, which take into account at least the
left and right links of a given site. A first natural
identification leads to the following site classification:

Typea: ——O——, Typeb: —O—=, Typec: =—O——.

(10)
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Yet this identification does the job only for the first de-
cimation step. In the following stages of the RG scheme
the classification (10) leads to contradictions: We may
end up with two different renormalized expressions for
the same entity. This would spoil our objective of obtain-
ing for the decimated system the same structure as for
the original one.

There exists, however, a sufficiently rich classification
scheme for the site types, which also takes into account
the bonds of the left and right next neighbors of the site
in question. This scheme defines six classes according to
the following rule:

=0—0—"0— , O0—"0—0C= , O0—C=0—,
1 2 3
(11)
=0—"0- , =0—C=0— , —0—70C=.
4 5 6

For i€{1,2,3,4,5,6} let us denote by d; and e; the in-
teraction coefficients of a given site with its left and right
neighbor, respectively. The renormalized value of the in-
homogeneity g also turns out to depend explicitly on the
type of the site considered; therefore, it will be called g;.
Some straightforward algebra yields the expressions for
these new entities in terms of the old parameters x, Xy,
and g as a function of site type. The derivation is
sketched in Appendix A, while the results are summa-
rized in Table 1.

This first, rather laborious, decimation step prepares
the ground for a straightforward and unique renormaliza-
tion scheme embracing all subsequent steps. When deriv-
ing the pertinent renormalization rules we have to be
aware of three crucial points.

(i) In spite of the necessity of introducing site-type
dependent bonds, the pictorial decimation scheme,
operating with single and double bonds only, is very con-
venient in the further process. Thus we will continue to
identify single and double bonds and will work out how
new bonds are related to old ones.

(i) Depending on the position of the pivotal site in the
system, one has to choose between four different con-
sistent ways of defining new single and double bonds by
pictorial decimation. They are described by the following
majority rules:

TABLE 1. Interaction coefficients e;, d;, and g; after the first decimation as a function of sites types

i=1,...,6. The quantities D, and D, defined as D,=1—4x24+2x*—x,(x,+2x?),
D, =1—4x2+2x*—2x;(x;+2x?).
Coefficients

Site type d; e; g
1 xXx?*+x,)/D, xXx*+x,)/D, g(1—2x%)/D,
2 x¥x*+x,)/D, xXx2+x,)/D, g(1—2x%) /D,
3 xAx*+x;)/D, (x%+x,)*/D, g(1—2x%)/D,
4 (x*+x,)?/D, xXx2+x,)/D, g(1—2x%)/D,
5 xXx%+x,)/D, (x2+x,)*/D, g(1—2x%/D,
6 (x%+x,)?/D, x¥x2+x;)/D, g(1—2x%) /D,




I®

Rl: 0—O—0=—0—0 — 0—0 ,
R2: 0—0=—0—0——0 — 0—0 ,
R3: o—=0—0—0—0 — 0—0 ,
R4: 0—O—0O—0=—0 — 0—0O ,

(12)

(iii) The type of preserved site is, in general, changed
during a decimation step. The new type of a given site is
determined by the specification of the majority rule (12),
and by the old type of the site itself and its four neighbors
to the right and the left prior to decimation.

In summary, we find that we have to distinguish a total
of 24 different situations, which are characterized by a
particular string of nine successive old site type numbers
and the new type of the central site as a function of the
decimation rule employed. All the information needed
for the RG is gathered in Table II. Its use is explained in
Appendix B.

Table II has to be consulted over and over again in the
course of repeated renormalization. In principle, the
complete series of decimation rules and site types associ-
ated with a particular initial site of the model can only be
constructed by tracking down the evolution of each single
site on the curve. Fortunately the hierarchical structure
of the problem makes it possible to derive certain general
prescriptions from the exemplary inspection of the renor-
malization series generated by the specific sites (see also
Sec. II C). The following construction rules can be estab-
lished.

(a) If the system is a periodic approximation of order
N, then we are left with a total of 4¥ ! different sites
after the first decimation step as described above. N(N)
members of these surviving sites are of types 1, 2, 3, and
4, and 2N(N) are in classes 5 and 6, respectively. The
numbers N(N) and M(N) are given by

NMN)=12X4V72+1),
— (13)
NN)=1(4¥"2—1) .

Formula (13) also accounts for the abundance of indivi-
dual site types after all the following decimations, provid-
ed that the argument of A and N is reduced by 1 in each
renormalization step.

(b) The sites of types 1, 2, 3, and 4 will be preserved ex-
clusively by decimations of types R1, R2, R3, and R4, re-
spectively. The sites of type 5 are preserved by either
rule R1 or R3, while the sites of type 6 will be preserved
by rule R2 or R4 (see Table II). Moreover, the same
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amount of sites of types 5 and 6 will be preserved by the
two different decimation schemes. For certain purposes
it is useful to refine the classification of the sites of types 5
and 6 as 5.R1 or 5.R3, and 6.R2 or 6.R4, respectively, to
indicate clearly which type of decimation it will undergo.

(c) There is a universal law for the new type distribu-
tion of the surviving sites as a function of old site types.
This law is illustrated in Table III.

The successive application of these rules is sufficient to
generate all sequences starting from any periodic approx-
imation N. The knowledge of these sequences and of
Table II allows us to exactly renormalize the interaction
coeflicients for all 4" ~! sites.

The recursion relations for these coefficients and for
the inhomogeneities can be derived in a perfectly general
way by considering an arbitrary site p and the associated
local string of equations

G,_,=d

) 3G, —atei;-3G,—2 s

i(p
G, »=d;(p,-2Gp-3F€;-2G,—1>

G, 1=d;

A G, >te,-1)G

p—1Yp P’

G,=d; Gy -1 €;(nGp+1F8&ip > (14)

Gy 1=dip+1)0, teip+1)Gp+2 5
Gp+2=di(p+2)Gp+1+ei(p+2)Gp+3 >
G, +3=di(p+3Gprateip+3Gp+4 -

For the sake of simplicity we have omitted in these
equations both the approximation index N and the
second label p of the Green’s-function coefficients. Elim-
ination of the sites p —3, p —2, p—1, p+1, p +2, and
p +3 from (14) yields one single equation, which connects
G, to G,_, and G, ;4 and defines the parameter renor-
malization group:

=D ﬂdi(p)di(p—1)di(p—2)di(p—3>( 1=d;p+3)€ip+2)
—dip+2ip+1)
€' (p)= Dilei(p +3)€i(p+20€i(p + 1€ 1 —dip—1)€i(p~2)
_di<p~2>ei<p—3>) >
(15)
gi,’(p)zD_lgi(p)( 1—di(p—l)ei(p—2)"di(p—2)ei<p—3))
X(1=d;p+30€ip+2) " Dip+2€ip+1) -

Here D is given by

TABLE II. New site types as a function of the old types of the preserved site and its eight next
neighbors (characterized by nine-digit strings), and of the bond-renormalization rule employed.

Decimation type

New site type 1 2 3 4
1 123412341 654123412 541234123 412341234
2 123412365 234123412 341234123 412341236
3 123656541 234123656 341236565 412365654
4 565412341 236565412 365654123 656541234
5 123656541 654123656 541236565 412365654
6 565412365 236565412 365654123 656541236
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TABLE III. Type distribution of sites retained after decimation as a function of old site types. The
argument of & and N is N —1 in order to give a total of 4" ! sites.
old
New 1 2 3 4 5.R1 5.R3 6.R2 6.R4 Total
1 N N N N 0 0 0 0 4N
2 N N N N 0 0 0 0 4N
3 0 N N 0 N 0 0 N 4N
4 N 0 0 N o N N 0 4N
5.R1 0 N N 0 N 0 0 N 4N
5.R3 0 N N 0 N 0 0 N 4N
6.R2 N 0 0 N 0 N N 0 4N
6.R4 N 0 0 N 0 N N 0 aN
D= (1=d;, —1)€i(p-2dip—28i(p -1~ iy +3€ip +2~ dip +2)€1(p +1))
—(1=d;,—eip—2"Gip—2€ip -1 —di(p 43185 +2))dip +1)8i(p)
—(1=d;p +3)€i +2)—di(p +20€i(p+1)(1 —dip-2ip —n)ipeip—1) > (16)

and the new type i'(p) of the preserved site is determined
by the criteria introduced above.

The recursion relations (15) can be applied only N —1
times. After this number of renormalizations the Nth
periodic approximation system becomes a linear chain
where all coefficients to the right and left, respectively,
are equal. Thus, from that point on renormalization is
much easier and boils down to the following simple rules
for the three remaining parameters e, d, and g:’

2 d2

e = —
1—2ed’

_ g
1—2ed’

T 1—2ed

’

e

’ ’

g (17)

B. Even sites

As we have indicated in the Introduction, some extra
difficulties arise when we try to evaluate the contributions
of the even-numbered sites to the physical properties of
the system: Certain even sites do not constitute nodes
and allow left and right (odd) neighbors to interact
without their interference. This turns out to complicate
considerably the derivation of recursion relations analo-
gous to those in Eq. (15), which are valid for all (odd)
sites.

Therefore, a new strategy has to be chosen. Without
loss of generality we may focus on the sites with labels 47,
t €7, which are the right neighbors of the odd sites 4z —1
discussed in Sec. III A. The basic idea is to calculate any
desired diagonal Green’s coefficient G}, via the above
renormalization scheme for the odd sites by keeping an
accompanying extra equation, which links the even
“ghost” site to the adjacent pivotal odd site 47—1. This
equation has to be renormalized as well in each decima-
tion step. After many iterations of the renormalization
procedure, the site 47—1 will eventually be decoupled
from all its odd neighbors, but not from its “true” neigh-
bor 47. At this point G}, can easily be derived from the

limit form of the extra equation.

Let us restart from Eq. (3) with m =4%. In order to
simplify the notation, we will again suppress this second
index as well as the approximation order symbol N. If we
keep in the first step decimation the sites numbered as
4t — 1, t €Z, then the diluted system looks much like the
one we would obtain for the choice m =47 —1. The only
differences concern the shape of the equations for
n =47 —1 and n =47+ 3, which become

G,

PN
s-1=8p_ 1ty Gy _stey Gyyss

(18)

G4?+3 8443 +d4?+3G4?‘1 +e4?+3G4?+7 :

In addition, we have to take along the equation connect-
ing G;, since this is the quantity which we are interested
in. Its general form is

+6,, G

47 (19)

s-11Te4Gpys -

In Egs. (18) and (19) we have introduced new inhomo-
geneities g,Z,§ and new interaction coefficients §,¢,
which also depend on the type of the pivotal site 47 —1.
Therefore, we have to handle the additional parameter
set {£:,8:,8:,8;,€;1i =1,2,3,4,5,6} that will be renormal-
ized in each decimation step. A careful analysis yields
the explicit expressions for these parameters as functions
of the site types, as summarized in Table IV. We em-
phasize that the old coefficients involved, namely d; and
e;, do not have to be modified.

Regarding the general renormalization operation, we
can proceed along the same lines as described in Sec.
IIT A. However, the string of Egs. (14) must be replaced
by the following enlarged system:
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TABLE IV. Renormalized interaction coefficients required for evaluating the contributions of the even sites to the DS. The
classification is induced by the odd-site type scheme. The quantity D is given by D;=1—2x2

Site Coeflicients
type & 8 & 8; E;

1 gx(1—x2)/D, gx(x*+x,)/D, g(1—x?%)/D; x(1—x2)/D, x(x24+x;)/D;
2 gx(1—x?)/D, gx(x?+x;)/D, g(1—x?2)/D; x(1—x2)/D; x(x*+x,)/D;
3 gx(1—x2+x,;)/D, gx (x%+x;)/D, g(1—x2%) /D, x(1—x24+x,)/D, x(x2+x,)/D;
4 gx(1—x?)/D, gx(x2+x,)/D, g(1—x2)/D, x(1—x2)/D; x(x*+x,)/D;
5 gx(1—x2+x,)/D, gx (x2+x,)/D, g(1—x%)/D, x(1—x2+x,)/D, x(x2+x,)/D;
6 gx(1—x2%)/D, gx (x?+x;)/D, g(1—x%) /D, x(1—x2)/D; x(x2+x,)/D,
G, 3=d;i(p-3Gp-ste€ip-3Gp—2 As in Eq. (14), we have us;d here the site label.p instead
of the index 4t —1 to indicate that we deal with renor-
Gp—2=dip-2Gp—3tei(p-2Gp-1» malized numbering according to the stage of the decima-
G, 1=d;(p—1\Gp—2Fei(p—1Gp » tion. The additional equatlon§ for- G, .4 to Gp.+7 are
po1 Ritp=DFp =2 T Rlp =D Tp needed since, after the next decimation, the equation for
G,=d;(,)Gp—1t (NG, +1F8i(p) > Fhe surviving ent'lty G, +4 will contain the renormahzed
inhomogeneity g}, 4+, that depends also on the interac-

Gp+1:di(p +1)Gp +ei(p+1)Gp +2+§i(p +1) > tion coefficients associated with sites p +4 to p +7.
G ..=d G . +e. G (20) The ghost site 47 will never be decimated and may keep
p+2 Tilp+2)Fp 1 T Rilp+2)Tp 3 its label. The form of the equation linking it to the odd-

GPJF3:d,.(p+3)GP+2+ei(p+3)Gp+4 , site sublattice is preserved at all stages:

Gp+4=dip+aGp+3teip+aGp+s > G =8iun T8 Gp FeianGp+1 - 2D

Gp+5=di(p+5G,+ateip+5G,+6»

Now the decimation can be carried out by eliminating the
sites p—3 to p—1, p+1to p+3, and p+5 to p +7.
This operation provides us with the renormalized inho-

— tel A ~
Gy +7=dip+1Gp+6T€i(p+71Gp+3 - mogeneities &+, and i, +1):

Go+6=dip+60p+5T€i(p+6Cp+7

J

1
A —_ A _— — = —_ — —
8ip = E[gi(p)(l ei(p+1)di(p+2) ei(p+2)di(p+3))+gi(p+l)(1 ei(p+2)di(p+3))ei(p)](1 ei(p—s)di(p—z) ei(p—Z)di(p—l))’
(22)
1

~ —— —~
gip+1— };gi(p +1)di(p +2)di(p +3)di(p +al TCip +5)di(p +6) " €i(p +6)di(p +7) - 23)

Note that the interaction coefficients d;,e; are renormalized in the way already described above [see Eq. (15)] and that
the quantity D is given by Eq. (16). F, on the other hand, is defined by

=0=e,1dip+n"Cip+28ip+3) 1€ +5dip+6) " €ip+6)dip+7))

—(1 “ef(p+1)di<p +2) " €i(p +2)di(p +3))(1 TEéip +6)di(p +7))ei(p +4)di(p +5)

_(1_91'(1; +54ip +6) " €ip +6)di(p ) =€ e 1dip+2))8i(p +3)8i(p +4) - (24)
[
Finally, from Eq. (21) we get If we deal with a system representing the Nth-order
1 periodic approximation to the fractal limit, then the re-
Ziany =8t H EiaBio +ll—e;p+2dip+3) »  (25)  cursion relations have to be used a finite number of times

until a renormalized linear chain has emerged. After that
the further decimation is again realized by simpler recur-

, _ 1
Sian = Biun T Freiandip+n(1— eip+2dip+3) »  (26) sion relations:

1
€] ian H € an)Cilp+1)€i(p+2)€i(p +3) - @7 g+eg ~/=_dL -
o &=1 24" ¥ 12
The quantity H is given by (29)

H:l_ei(p+l)di(p+2)_ei(p+2)di(p+3) . (28) 8 =8+ed, &' =¢ce.
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C. Exact renormalization in the fractal limit

In Secs. III A and III B we have worked out in a con-
structive way the Green’s-function renormalization
scheme for Nth-order periodic approximations to the
Koch terragon. We chose this specific way of presenta-
tion in order to make clear the basic ideas and various
subtle difficulties that might be glossed over by a more
deductive treatment. The price to be paid is a certain
lack of transparency. We are now, however, in a position
to look back on what we have accomplished and to sum-
marize concisely the renormalization principles involved.
This is particularly satisfying if we focus, from the outset,
on the fractal limit (N — o), which we are mainly in-
terested in anyway.

The results of the next section will confirm that, in
fact, the contributions of all sites n €EZ have to be taken
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into account for deriving the relevant physical properties
of the system. Yet we may restrict our summation to the
sites labeled as 4 — 1, t €EZ: The original sites numbered
as 4t,4t + 1,4t +2 quite generally can be covered by at-
taching them to the 4r —1 sites via finite sets of ghost
equations, as discussed in Sec. III B. Moreover, the sites
with labels 4¢ +1 are directly related to those numbered
as 4t —1 through the symmetry operation n+>—n. The
pertinent calculations are straightforward in each case
and need not be discussed here in detail.

After the initial decimation step discussed above [Eq.
(7)], only the original 4¢ —1 sites are retained and the
fractal is represented by an infinite sequence, which is
composed of the site type figures {1,2,3,4,5,6} linked by
the bond parameters d;,e; and decorated with the on-site
parameters g;. The following short segment centered
around the original site with label —1 may serve to illus-
trate this:

|
gs 94 S 92 g3 s 9s 9e 9s 9a [ 92 g3
€5 €4 €1 €2 €3 €¢ €5 €g €5 €4 €1 €2 €3
:Z:(:L:’:’:ZZ:::ZZ:. 30
ds@d4@d1 dz®da®de©d5<?ds©ds©d4@d1®dz®da (30)
site —1

The complete sequence can be generated in an ex-
ponentially fast way from the “seed symbol” 1 through
the inflation rules

12341,
4—6541,

2—2341, 32365,

6—6541 .

(31)
5—2365,

Our main task is to calculate the diagonal Green’s
coefficient associated with any given site 4¢ —1. This is
most efficiently achieved by repeated site decimation and
renormalization of the on-site parameter g, which ulti-
mately becomes equal to the coefficient desired. But note
that decimation here does not simply mean the inversion
of the inflation rules: Depending on the site in question
that obviously has to be preserved in each step, a choice
between four sublattices has to be made. As a conse-
quence, other four-strings than those covered n (31) must
also be dealt with.

Our job consists of two parts: (i) determination of the
new types of the preserved sites, (ii) renormalization of
the parameters d;,e; and g;. The first part could be car-
ried out using Table II. This tableau, however, is some-
what unwieldy, contains additional information not need-
ed here, and does not provide immediate unique type as-
signment. Yet we can extract from it an unambiguous set
of rules with the aid of consistency considerations. These
simple rules involve only neighboring sites on the
preserved sublattice and are displayed in Table V.

The table actually accounts for the quite unusual and
sophisticated renormalization scheme that has to be ap-
plied to our infinite sequence of figures: At each stage of
the decimation there are four distinct sublattices com-

posed of the site types {1,5}, {2,6}, {3,5}, and {4,6]}, re-
spectively. The preserved site, whose contribution we are
interested in, has to reside in one of these sublattices, but
its membership perpetually changes in the course of the
decimation. The current status determines the specific
set of decimation rules that has to be chosen. Each set
contains six individual rules, as six different site types
have to be generated to build up the new sequence. The
four decimation types directly correspond to the majority
rules R1-R4, defined in (12).

We emphasize here that the infinite-site-type sequence
associated with our fractal is simultaneously exactly in-
variant with respect to all four decimation schemes. This
situation is quite different from the one discussed in fa-
miliar examples of exactly renormalizable aperiodic lat-
tices: In those investigations individual sites, except
(perhaps) a central one, do not matter, and a unique de-
cimation procedure eliminates all but the sites on a
hierarchical skeleton. By way of contrast, we are dealing
with a rich, multiply renormalizable self-similar struc-
ture, which allows us to cover each individual site.

The ultimate realization of the RG consists in the re-
normalization of the group parameters d;, e;, and g;. Or-
dinary singular renormalizability would guarantee that
the same transformation rules apply at each stage of the
process. The multiple renormalizability of our system,
however, induces a more intricate scheme reminiscent of
the iterated-function-systems approach to fractal image
compression by Barnsley:?** Associated with each fixed
preserved site 4t — 1 is a well-defined sequence {r,|s EN}
composed of the numbers {1,2,3,4}, which prescribes the
correct succession of the four possible different blocks of
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renormalization equations to be employed. Each distinct =~ 47 —1=—121 is the one to be retained. It belongs to
parameter renormalization scheme consists of 48 equa- case (a), so

tions anq can be distilled frpm the .genefal transformation T=30—2X4%+3x4!+1x42 , 36)
(15) by picking the appropriate decimation type as a func-

tion of the current sublattice accommodating the site in and
question. The sequence {r,} is clearly related to the 4-

adic representation of ¢. a;=2, a,=3, a;=1, 37
Case (a) t =0: Let 7= —¢ and decompose this number . =0 for all s >4
as $ -
F= 451 (32) This implies the following sequence of site-type and pa-
sgN s ’ rameter renormalization schemes: step 1, type 3; step 2,

type 2; step 3, type 4; all further steps, type 1.

We are faced here with a quite unfamiliar RG, which
may deserve the name ‘“‘group” more than many well-
known examples: It is generated by four nonequivalent
operations that have to be composed according to the

0—1, 1—4, 23, 32, (33) rules just described. Each preserved site has its individu-
al and unique compositional sequence. But note that for

Case (b) £ >0: Let 7=t —1 and represent this number finite ¢ all these sequences end in uniform tails, consisting
as of 1’s when ¢ <0 and of 2’s when ¢ =2 0. This corresponds

= B4 ‘ (34) to the fact that all sites v‘_/ithiq a finite distance from the
=t ’ center are finally drawn into it in the course of the de-

cimation and assume site types 5 and 6, respectively.
with B, €{0,1,2,3}. Here we get r,=g(B,), where the
mapping g is defined as

0—2, 1—3, 24, 3—1. (35)

where a, € {0,1,2,3}. By inspection we can find immedi-
ately the mapping r, = f (a, ), which is specified by

IV. NUMERICAL RESULTS

We now present several results which were obtained
In order to give an example, let us assume that site using the RG method realized by the recursion relations

TABLE V. New type of any preserved site after decimation as a unique function of old type of the site itself and the preserved
nearest and next-nearest neighbors.

Next-nearest Nearest Nearest Next-nearest

Deci- preserved preserved Preserved preserved preserved New
mation neighbor neighbor site in neighbor neighbor site
type to the left to the left question to the right to the right type

1 1 1 1 1

1 1 5 2

1 1 5 1 3

5 1 1 4

5 1 5 1 5

5 1 5 6

2 6 2 2 1

2 2 2 2

2 2 6 3

2 6 2 2 4

6 2 6 5

2 6 2 6 6

3 5 3 3 1

3 3 3 2

3 3 5 3

3 5 3 3 4

5 3 5 5

3 5 3 5 6

4 4 4 4 1

4 4 6 2

4 4 6 4 3

6 4 4 4

6 4 6 4 5

[ 4 6 6




13222

derived above. The major goal is to present the DS as a
function of the energy and the model parameters. The
presentation of the results is best achieved by a series of
illustrations wherein we seek to lay stress upon some im-
portant features of both the method and the model.

For a first check of our results we compare them with
the exact analytical expression for the DS when N =1.
The latter is most easily obtained from the Schrodinger
equation defined by the Hamiltonian (1) by exerting the
first decimation step as discussed in Sec. II: This results
in the Schrodinger equation for a “pure” linear chain
with unit period and interaction, but renormalized energy
given by
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E*—4E?+2—2)AE —\2E?
E'= .
1+AE (38)

Now the integrated density of states « of an unperturbed
linear chain is a well-known quantity. Observing that the
scale transformation associated with the decimation im-
plies k—4« we immediately obtain

4_qp2a9_ _a2p2
;(I(E)=Lcos_1 E"—4E"+2-2)\E —M'E (39)

4 1+AE

By simply differentiating this expression we get the DS as

(E2—2)[4E (1+AE)—ME?—2)]—A2E (2+AE)

PI(E):

This analytical result is plotted in Fig. 2(a) for A=0.1.
For comparison we have calculated p,(E) also by the
Green’s-function technique described above. If the con-
tributions of all sites are taken into account and € in
G'V(E +ie) is chosen sufficiently small (e <10~ *), then
we end up with practically the same graph. Its prom-
inent feature is the splitting of the true chain spectrum in
four clustered subbands.

Figures 2(b) and 2(c) distill the contributions of partic-
ular sites to the DS. These pictures clearly demonstrate
that the gap structure is identical for different site classes,
yet these classes contribute very differently to the non-
vanishing part of p;. This is most dramatically felt in the
neighborhood of the band edges. So, in order to get the
full information on the system, all sites have to be con-
sidered.

In Fig. 3 we depict the DS for the approximation levels
N =2 and 3, respectively, but for the same value of A as
chosen for Fig. 2. The perpetual process of subband
splitting as derived in Ref. 15 is clearly recovered. Since
the number of minibands grows exponentially with N, the
shape of the DS already bears very little resemblance to
that of the simple linear chain.

Figure 4 demonstrates that the Green’s-function ap-
proach is also capable of revealing the local scaling be-
haviof of the (integrated) density of states, which has
been proven rigorously in Ref. 15. The graph of k vs E
scales, for instance, in the neighborhood of the point

(E,k)=(1,3) according to the following law:

k(1+AE)— 3= L[k(1++v2,AE)— 3

10 16

(41)

Here v2,,=23.42. . . is a critical exponent which can be
extracted from the exact transfer matrix RG (see Ref. 15
for details). Equation (31) implies the following local
scaling law for the DS p:

2
max

16

p(1+AE)= (1++2,,AE) . 42)

This relation is confirmed by the Green’s-function

1
47 (1+AE){(E*=2)[(4—E*E*+4LE +2)\E?]—MEX2+AE)?}1/2

technique introduced in this paper. In principle, scale in-
variance is only achieved when the precise form of p is
considered, taking into account the contributions of all
sites. However, since the number of sites to be gathered
increases very fast, we have checked whether dilational
symmetry shows up already in the contributions of par-
ticular subsequences of sites. This is indeed the case: For
the simplest sequence (where the sites are of type 1 after
any decimation step) Figs. 4(a)—4(d) clearly reflect the ex-
pected scaling behavior. The depicted component of the
local DS rapidly converges to a universal function when
the rescaling factors defined by Eq. (41) are used.

In Fig. 5 we inspect the superlocalized quantum states
present in our system for special values of the cross-
hopping strength A. The existence of such ‘“molecular
states” in a quasi-one-dimensional lattice was discovered
in Ref. 15. In Fig. 5(a) the complete DS for A=1 and
N =2 is shown. Figure 5(b) depicts precisely the same
quantity, but now the scale of the vertical axis has been
reduced by the factor 1073, This is a good way to get an
idea of the different orders of magnitude needed to de-
scribe the height of p, at the superlocalized energy level
(E =1) and at the ordinary niveaux.

In Figs. 5(c) and 5(d) we depict contributions to p, of
individual classes of sites. We notice that at least one of
these classes does not contribute at all to the superlocal-
ized state peak [Fig. 5(d)].

We emphasize that all the figures presented and dis-
cussed in this section are meant to illustrate the power of
the Green’s-function approach to work out the most
characteristic aspects of electron dynamics on the Koch
curve. These aspects, which have first been detected us-
ing the TMM, are simultaneously the most unusual ones
regarding the plethora of now existing deterministic non-
periodic models.

The more common features of our system can also be
correctly dealt with by the Green’s-function RG. All this
demonstrates that such a technique is a valid and efficient
tool for the investigation of deterministically disordered
solids like fractals.
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FIG. 2. Density of states as obtained in the first periodic ap-
proximation (N =1) for cross-hopping strength A=0.1. (a)
Sum of contributions of all four different site types. (b) Contri-
butions of sites 4n —1, n €Z. (c) Contributions of sites 4n,
n €Z. Note that all DS shown in this figure and the following
ones have been normalized by dividing by the number of sites
involved [see Eq. (4)]. Therefore the contributions of subclasses
of sites may appear larger than expected.
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FIG. 3. Complete DS for A=0.1 as in Fig. 2, but (a) second-
order approximation (N =2); (b) third-order approximation
(N=3).

V. CONCLUSIONS AND OUTLOOK

In this paper we have explored a nontrivial tight-
binding model on a fractal substrate by means of an ex-
actly renormalizable Green’s-function method. In order
to implement the basic decimation idea a number of rath-
er subtle aspects had to be taken into account. It turns
out, in particular, that the following points are crucial for
the evaluation of the DS via the diagonal Green’s-
function coefficients: (i) identification of all different
types of sites, decimation rules, and bond renormalization
schemes, (ii) identification of all possible decimation pro-
cedures as a function of site position on the fractal, (iii)
gathering of the contributions of all sites.

These complications are a direct consequence of the
lack of translational invariance in fractal systems and
have to be mastered if exact results are desired.?! Our re-
sults are, in fact, in complete agreement with those de-
rived using TMM in Ref. 15.

This finding indicates that Green’s-function RG tech-
niques should be useful methods for the treatment of oth-
er precisely or approximately self-similar model sys-
tems.?? Regarding further applications, we have to em-
phasize the necessity of observing points (ii) and (iii)
above: Contributions of individual sites to the DS are
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certainly valuable quantities, as they give the correct gap
positions and illustrate the band-splitting process. The
restriction to one single contribution may feign, however,
unphysical effects at the band edges; Fig. 2 illustrates that
the complete DS exhibits singularities, while components
associated with subsets of sites go smoothly to zero.

In the present paper we have used the renormalization
scheme primarily for rapid numerical investigations. We
have not yet exploited, however, the renormalization
equations in order to derive analytical results concerning
scaling relations and critical exponents. This is an in-
teresting problem in its own right and is planned to be
discussed elsewhere.

Let us also stress that the model structure
investigated—the Koch terragon—is a nonbranching
fractal. This topological property allows the transforma-
tion into a nonperiodic chain. Quite a few such determin-
istically disordered one-dimensional systems have been
discussed in recent literature. But note that very few re-
sults are available for electron dynamics on branching
fractals. We are confident that the methods and results
obtained here pave the way for a systematic treatment of
these more intricate objects. Work in this direction is in
progress.
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APPENDIX A

The initial decimation described by rule (7) transforms
the fractal or its periodic approximations into a linear
chain with hierarchically distributed single and double
bonds. The associated Green’s function is characterized
by site-type dependent left and right interaction
coefficients d; and e;, respectively, and by renormalized
site-type dependent inhomogeneities g;. These expres-
sions serve, in turn, as initial conditions for the subse-
quent general renormalization scheme (13), so we might
call them e!", d{V, and g{'. Their explicit form as
presented in Table I is easily derived by decimating Eq.
9).

To that end we may from the outset consider the
aperiodic limit, which is governed by the Hamiltonian
H =limy_, , Hy and its corresponding Green’s function

G =(z—H)~!. Equation (9) then obtains the following
form:
o
o n I
x I (b)
oy |
\
\\
o / \
- \
\_J’ h
r‘
Q L
©0.96559 1.0 1.03446
E
o
N
P, \\ (d)
Q
<
©0.99853 1.0 1.00147
E

FIG. 4. Illustration of the local scaling behavior of p(1+AE) for A=3!"2—1. Only the contributions of the simplest site-
renormalization class are taken into account. The self-affinity of the limit DS is simulated by a sequence of properly rescaled approxi-
mative DS. (a), (b), (c), and (d) correspond to approximation orders N =2, 3, 4, and 5, respectively.



I®

G

nm

=gdn,m)+x;t(n +1)G, ., ,, +XG, 41 1

+xG, g +xt(n —1)G, 5, , (A1)
where

t(n)= lim ty(n)=8(o,n)+ 3, 8[14°,n(mod4*)] .
Now SEN

(A2)

The initial decimation eliminates all sites except those la-
beled as 4p —1, p €Z. The decimated model is described
by an infinite system of equations coupling the Green’s
coefficients G4, _ ,,, p EZ. As far as the densities of
states are concerned, we can restrict ourselves to the di-

J
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agonal case, i.e., m =4p —1, where p is some fixed in-
teger. The renormalization procedure is formally con-
cluded by the relabeling

Gup—1,4p-1GCpp -

In order to derive the desired expressions we start from
the seven equations of type (A1), which are associated
with n =4p —4, 4p —3, 4p —2, 4p —1, 4p, 4p +1, and
4p +2.

Eliminating from these equations first the even-site
coefficients G4pf4‘4ﬁ71, G4p—2,4ﬁ—1’ G4p’4ﬁ_1, and
G 4p+2,4p—10 and then the odd-site coefficients G 4p—3,4p—1
and G4p +1,4p—1 WE arrive at the following decimated
equation:

G _ Qp—14p—1 T p+1,4p—104p T4y 34p—104p—2
4p—1,4p—1 l—b%p—bip*“z
by,b by, _4bg, _
pQ4p +2 4p—4aDap—2
— *r = |G + | — |G (A3)
4p +3,4p—1 4p—5,4p—1
[ 1=bi, b | ¥7% 1=bi,—b3,—n | 7%
o o
d o
o~
@l | |] (b) S
P, P,
o S
— o
LU .
—-2.4 -1.2 0.0 1.2 2.4 —-2.4 -1.2 0.0 1.2 2.4
E E
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| | (@) ~
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FIG. 5. Density of states for A=1, where a superlocalized electronic phase exists at the energy level E = —1. The approximation

order has been chosen as N =2. (a) and (b) Complete DS for different p scales. (c) and (d) Partial DS as produced by subsets of sites

of special type.
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where
qrzl—hgz—x?[ﬁ(q,r)—f—x&q+1,r)+x6(q*1”')] (Ad4)
and
bq:%;ﬁ . (AS5)

Equation (A3) defines the renormalized inhomogeneity
and the renormalized left and right interaction
coefficients. These quantities depend on the local envi-
ronment solely through the cross-hopping strengths
t(4p —4),t(4p —2),t(4p), and ¢ (4p +2).

Now (A2) immediately implies

t(4p —2)=t(4p +2)=1 forall pEZ.

We also observe that t(4p —4) differs from zero only
when the sites 4p —5 and 4p —1 are coupled by a double
bond. In a similar way, ¢ (4p) only contributes when the
sites 4p —1 and 4p +3 are connected by a double bond.
Altogether we obtain the following table, which relates
the relevant cross-hopping strengths to the type i of site
4p —1:

t(4p —4) t(4p —2) t(4p) t(4p +2)
1 0 1 0 1
2 0 1 0 1
3 0 1 1 1
4 1 1 0 1
5 0 1 1 1
6 1 1 0 1

(A6)

Using this table the parameters d;, e;, and g; can be read
off from Eq. (A3) immediately. Note that g; only appears
in this equation when p =p.

APPENDIX B

Table II prescribes how the new type of any given site
surviving decimation can be inferred from the particular
decimation rule employed and the local string of prede-
cimation site types. We now illustrate how this prescrip-
tion can be obtained.

As a matter of fact, the bond structure of the system
prior to decimation, together with the majority rule,
completely determines the site type after decimation. The
lowest-order periodic approximation where the full
identification scheme can be demonstrated belongs to
N =4. In this case the unit cell consists of 4*=256 non-
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equivalent sites. The initial decimation as discussed in
Appendix A reduces this unit cell to 64 sites linked by
single and double bonds. The resulting string of bonds
and site types looks like this:

(B1)

Here the first site on the third line, which is of type 5,
corresponds to the site that bears the label n = —1 and is
adjacent to the dilational center of the Koch curve.

We emphasize that the above sequence of single and
double bonds is generated exclusively by rule (7), while
type identification follows in a unique way from the
classification scheme (11). The latter scheme can be used
again to identify the site types in the renormalized bond
structure obtained from (B1). But this new string of
bonds is determined by the specific majority rule (12),
which in turn depends on the pivotal site to be retained.

If we wish to preserve, for instance, the first site in (B1)
and, as a consequence, the fifth, ninth, thirteenth, etc.
site, then we have to resort to rule R1. The decimation
procedure produces the new structure

(B2)

with renormalized single and double bonds and site types
determined by scheme (11). By comparing (B1) to (B2)
we realize, e.g., that the new site type 2 is obtained from
an old site of type 1 constituting the centér of the local
type string 123412365. Accordingly, the latter string
forms the entry on the second line (new type) of the first
column (decimation rule) in Table II. The remaining en-
tries in the same column can be obtained by inspecting
appropriate other new sites.

Columns 2-4 of Table II can be determined in an
analogous way by employing the majority rules R2, R3,
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