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We investigate the electronic structure of the monolayer black phosphorus (BP) using density
functional methods both with and without an applied electric field. We find that a simple one-band
tight-binding Hamiltonian based on the pz orbitals and nearest-neighbor hopping is sufficient to
describe the band structure in the gap region rather well and justification for this is given from
symmetry arguments. The anisotropic nature of the band structure leads in turn to an anisotropic
Rashba effect, where the magnitude of the spin splitting caused by an applied electric field is not

only momentum dependent, but also depends on the direction of ~k. The Rashba Hamiltonian is

generalized for the anisotropic case, which reads: HR = αR(~σ×
~k′) · ẑ, where the scaled momentum

~k′ contains the anisotropy effect. The Rashba effect is studied quantitatively for BP from ab initio

density-functional calculations in the presence of an applied electric field. A by-product of this work
is the demonstration that the strength of the spin-orbit coupling for the outermost electrons in the
atoms, which are relevant for the solids, increases only as the Landau-Lifshitz Z2 scaling with the
atomic number Z, rather than the higher power Z4 scaling, as sometimes thought.

PACS numbers: 73.22.-f; 71.70.Ej

I. INTRODUCTION

Currently there is a considerable interest on two-
dimensional (2D) materials due to their extraordinary
high electronic and thermal conductivities1,2 and a num-
ber of other unique properties, which offer the possibil-
ities for improvement and miniaturization of electronic
devices. The paradigm 2D material graphene,3 however,
lacks an electronic band gap, which poses a serious draw-
back for electronic applications. As a consequence, there
is an emerging interest on 2D materials, that are derived
from the parent 3D bulk materials which do possess a
band gap. This includes the recently isolated silicene4,5

and germanane,6 which are layered forms of silicone and
germanane, the transition metal dichalcogenides such as
MoS2, and the single layer black phosphorus, sometimes
referred to as phosphorene, which is the subject of this
work.
3D black phosphorus is a material with a long his-

tory, being known for more than a century. There are
many excellent reviews 7,8 devoted to it. It is a semicon-
ducting layered material, consisting of planes of zigzag
chains stacked on top of one another to form a 3D struc-
ture, with a narrow-gap of Eg ≈ 0.30-0.35 eV.9–11 Today,
there is a renewed interest for BP because it has a high
and anisotropic mobility of charge carriers, and it has a
band gap, in contrast to graphene, and the band gap is
also tunable at the same time. The energy gap can be
continuously tuned with applied pressure, and it reduces
linearly, becoming zero around 1.7 GPa.12 Beyond this
pressure, the resistivity shows metallic behavior indicat-
ing a pressure-induced metal-insulator transition. Appli-
cation of further pressure generates two reversible struc-
tural transitions: the first one, from an orthorhombic to
a rhombohedral phase occurring at 5.5 GPa13, while the
second is from a rhombohedral to a simple cubic phase at

about 11 GPa.14 It is striking to note that the compress-
ibility along the zigzag chains, both from experiment15

and density-functional calculations, is small as compared
to the other two directions, including the c direction,
along which the phosphorous planes are thought to be
held together by the weak, van der Waals forces.
Recently it became possible to isolate a single layer

of black phosphorus using mechanical exfoliation16 or
plasma etching.17 This opens up the possibility for con-
trolling the gap value by changing the number of lay-
ers. Single layered phosphorene has a much larger band
gap compared to the bulk material with its magnitude
reported in the literature varying from 0.75 eV16 to 2
eV.18 With increasing number of layers the energy gap
will gradually decrease to its bulk value.
In this paper, we study the electronic structure in the

monolayer BP from density functional calculations, giv-
ing special attention to the Rashba effect, which origi-
nates if both the spin-orbit coupling as well as an applied
electric field are present. We predict a highly anisotropic
Rashba splitting, which is caused by the anisotropic band
structure. Based on the symmetry analysis, which shows
that the electron states in the gap region are made up of
mostly phosphorous pz orbitals, we develop a one-band
nearest-neighbor tight-binding model in this basis, which
is found to describe the electron bands in the gap region
remarkably well.

II. DENSITY-FUNCTIONAL ELECTRONIC

STRUCTURE

A. Crystal Structure and Methods

As mentioned already, BP is a layered material, with
the individual layers weakly connected by van der Waals
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TABLE I: Structural parameters for the monolayer BP, b1, b2,
θ, and ϕ, as defined in Fig. 1. The planar lattice constants
are given by a = 2b1 sin θ and b = 2b1 cos θ + 2b2 sinϕ.

3D bulk Monolayer BP
structure (optimized)

b1[Å] 2.170 2.243
b2[Å] 2.204 2.261
θ 49.74◦ 48.41◦

ϕ 20.96◦ 21.41◦

a[Å] 4.38 4.626
b[Å] 3.31 3.356

forces. The three-dimensional BP has an orthorhombic
unit cell with space group D18

2h and lattice parameters a

= 4.38 Å, b = 3.31 Å, and c = 10.50 Å.19 Each individual
BP layer consists of two parallel planes, each containing
zigzag chains of phosphorous atoms with the chains ex-
tending along the y direction as shown in Fig. 1. Every
phosphorus atom has three nearest neighbors, two on the
same zigzag chain at a distance b1 and the third one is
at a slightly different distance b2 on a different zigzag
chain located on the other plane. These two distances
and the two angles θ and ϕ shown in Fig. 1 completely
describe the structure of the monolayer BP. These struc-
tural parameters corresponding to the monolayer BP in
the 3D bulk material as well as those obtained for a single
monolayer BP from structural optimization are presented
in Table I.
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FIG. 1: (Color online) Structure of the monolayer black phos-
phorus. The four parameters, b1, b2, θ, and ϕ, fully describe
the geometry of the structure. The four labeled atoms form
the basis of the unit cell, t1 and t2 are the two TB hopping

integrals, the vector distances ~di are used in the TB Hamil-
tonian, and, finally, the red dot indicates the center of sym-
metry.

For the density functional theory (DFT) calculations,
we have used the full-potential linearized augmented
plane wave (LAPW) method as implemented in the
Wien2K program.20 In this method, the trial wave func-

TABLE II: Irreducible representations of the D2h point group
spanned by the atom-centered as well as bond-centered phos-
phorous orbitals at the Γ point. Here, N = Number of orbitals
in the unit cell, and the bond/anti-bond (B/AB) orbitals are
defined in the text.

Orbitals N Γ+
1 Γ+

2 Γ+
3 Γ+

4 Γ−

1 Γ−

2 Γ−

3 Γ−

4

s or px or pz 4 1 1 1 1
py 4 1 1 1 1
d 20 3 3 2 2 2 2 3 3

Bz 2 1 1
ABz 2 1 1

Bx+y, Bx−y 4 1 1 1 1
ABx+y, ABx−y 4 1 1 1 1

tion is expanded in terms of the spherical harmonics in-
side the muffin-tin spheres, centered around the atoms
with radius RMT, and for the rest of the unit cell, plane
waves are used for the expansion. Throughout the cal-
culations, the phosphorus muffin-tin radius was set to
RMT=2.04 a.u. The maximum length for the reciprocal
vector Kmax was chosen such that RMTKmax = 8. This
parameter determines the number of plane waves used,
and the size of the Hamiltonian matrix, which is in our

case 2265 for the Γ point and similarly for the other ~k-
points. For the integration over the Brillouin zone (BZ)

we used the tetrahedron method with a mesh of 40 ~k-
points in the irreducible BZ. We used the generalized
gradient approximation (GGA) with the Perdew-Burke-
Ernzerhof functional21 for the exchange-correlation en-
ergy.

Our calculations for the monolayer BP were made in
the supercell configuration with a large c axis normal to
the layers (typically >

∼ 20 Å), so that there is negligi-
ble interaction between the BP layers. Starting from the
atomic positions of the monolayer BP taken from the bulk
3D structure, we optimized the atomic positions until the
forces became <∼ 10 mRy/Å. The results are presented in
Table I. As seen from the Table, the new values of the
planar lattice constants show a large expansion normal
to the zigzag chains, a = 4.626 Å, and a moderate ex-
pansion along the zigzag chain, b = 3.356 Å, consistent
with earlier results in the literature22. For ready ref-
erence, we quote the coordinates of the four atoms in
the unit cell, which are ~τ1,2 = ±(− sinϕ, 0, cosϕ) b2/2
~τ3,4 = (± cos θ, sin θ, 0) b1 ± (sinϕ, 0,− cosϕ) b2/2, mea-
sured from the center of symmetry, marked by a red dot
in Fig. 1.

B. Density-functional electronic structure

The calculated band structure is shown in Fig. (2).
The symmetry labels at the Γ point were obtained by ex-
amining the symmetry of the individual wave functions
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FIG. 2: (Color online) The DFT band structure for the
monolayer BP, along with projected contributions from the
s (green), pz (red), and px/py (blue) orbitals. The symmetry
points are: S = π(1/a, 1/b), X = π(1/a, 0), Y = π(0, 1/b).
These bands are without SOC and the symmetry labels at
the Γ point are single representations as listed in Table II.
Bands with SOC don’t look any different on this scale, since
SOC is small for phosphorus.

with respect to the various symmetry operations of the
D2h point group, which is the symmetry at the Γ point
of the Brillouin zone in the monolayer BP. These symme-
tries provide valuable information regarding the bonding
and the nature of the electron states as discussed below.
The symmetry notations are the same as used by previ-
ous authors and are listed in the Appendix.23,24

The basic electronic structure that emerges from the
DFT results is shown schematically in Fig. 3. The overall
band structure can be described in terms of the occupa-
tion of the covalent p − p bonds along the three bonds
joining a phosphorus atom to its neighbors, while the
anti-bond states are empty. The strong p − p covalent
character of the P-P bonds is clearly seen from the va-
lence charge density plot, Fig. 4. The three covalent p−p
bonds accommodate six electrons or three per phospho-
rous atom, while the s orbitals are fully occupied, lead-
ing to the nominal chemical valence of P(s2 p3). As seen
from the band structure, Fig. 2, and also from the partial
density of states (DOS), Fig. 5, the electron states near
the the valence band maximum and the conduction band
minimum are made primarily of pz orbitals.

A symmetry analysis provides considerable insight into
the nature of the electron states. Table II shows the irre-
ducible representations of the D2h point group, spanned
by the phosphorus based orbitals of angular momen-
tum l = s, p, and d as well as those spanned by objects
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Bx+y Bx−y Bz/ / Bx+y Bx−y/
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FIG. 3: Schematic electronic structure as extracted from the
DFT calculations. Energies are not to scale.

that have the symmetries of the P-P bonds. For con-
creteness, Bx+y, Bx−y, ABx+y, and ABx−y are bond-
ing or anti-bonding states made out of px̂±ŷ orbitals
pointed along x̂± ŷ directions, i.e., along the zigzag line,
while Bz and ABz are the same along the interplanar
bonds connecting the two planes. Bz/ABz can have ad-
mixtures from the px orbitals in order for them to be
aligned along the interplanar bonds, which are tilted from
the ẑ direction. In the present case, symmetry proper-
ties are the same whether we make Bz/ABz combina-
tions out of pure pz orbitals or from p orbitals that are
pointed along the P-P interplanar bonds. Tilting the
pz orbitals would require a small admixture of px, viz,
“pz” = cosϕ pz + sinϕ px ≈ 0.93pz + 0.36 px, ϕ be-
ing ∼ 21◦ in the present case, i. e., px contribution is
only about 10 % to the charge density |Ψ|2, in order for
the tilted orbital “pz” to point along the interplanar P-P
bond. The DFT results confirm this picture. We find
that the valence top wave function has the charge com-
ponents |Ψ(Γ+

2 )|
2 = 0.06 s+ 0.04 px + 0.00 py + 0.90 pz,

while for the conduction bottom, it is |Ψ(Γ−
4 )|

2 = 0.14 s+
0.21 px + 0.00 py + 0.65 pz. Note that the s contribu-
tion to these wave functions is relatively small, as these
states have energies far below the gap region, while the
py contribution is exactly zero, as dictated by symmetry
presented in Table II.

The irreducible representations spanned by the various
orbitals shown in Table II are consistent with the symme-
try of the wave functions indicated in the band structure
plot, Fig. 2. The four P−s orbitals in the unit cell span
the representations Γ(s) = Γ+

1 + Γ+
2 + Γ−

3 + Γ−
4 , which

are clearly identifiable occurring towards the lower part
of the valence bands, indicating that the s orbitals are
more or less fully occupied. The bond orbitals on the
zigzag chains Bx+y, Bx−y transform among one another
under the symmetry operations of the group, spanning a
4-dimensional representation, which may be reduced as
Γ = Γ+

1 + Γ+
4 + Γ−

1 + Γ−
4 , and these are again exactly

the same symmetries spanned by the valence bands de-
rived from the px/py orbitals as seen from Fig. 2. The
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FIG. 4: (Color online) Charge density contours of the occu-
pied valence band states (within the energy window of EF

and EF− 1 eV) on the top plane containing half of the zigzag
chains obtained from the DFT calculations. The zigzag chains
on the bottom plane are indicated by the light, dashed lines.
The maximum charges occur on the bond centers, indicating
their strong covalent character. The center of symmetry is at
the midpoint of the line joining a blue atom with the adjacent
dashed-line atom, which occurs on the plane below. The var-
ious symmetry elements indicated in the Appendix are best
visualized using this figure, and the vector ~τ = (a/2, b/2),
which lies on the xy-plane, indicates the fractional transla-
tion.
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FIG. 5: (Color online) Partial densities of states (DOS) for the
monolayer BP, indicating that the low-energy electron states
in the gap region consist predominantly of pz orbitals.

anti-bonding combination ABx+y, ABx−y span totally
different irreducible representations and don’t mix with
the Bx+y, Bx−y orbitals at the Γ point.

The valence top and conduction bottom wave func-
tions at Γ are made up of, respectively, bonding and anti-
boding combinations of pz orbitals, i. e., Bz and ABz. As
seen from Table II, the Bz orbitals, two per cell, span the
irreducible representations Γ = Γ+

1 + Γ+
2 , while the ABz

orbitals span the Γ = Γ−
3 +Γ−

4 combinations, all of which
are clearly seen in the band structure, Fig. 2. Note that
from symmetry point of view, the Bz and ABz could be
made out of not just pz, but also could be combined with
s or px orbitals, but mixture with py is forbidden from
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FIG. 6: (Color online) Contour plot of the wave function
of the valence band top (left) and conduction band bottom
(right). Both wave functions are shown on the upper zigzag
plane (top) and on the plane containing the interplanar P-
P bonds (bottom). The wave functions on the lower zigzag
plane, not shown here, are readily obtained using inversion
symmetry (the Γ+

2 state is inversion symmetric, while Γ−

4 is
inversion antisymmetric, as clear from the bottom figures,
where the pairs of atoms forming the bonds are related by
inversion symmetry). The uppermost two atoms in the top
and bottom figures are the same atoms.
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FIG. 7: (Color online) Comparison of electron bands for the
unoptimized (blue) vs. optimized (red) structure (structural
parameters presented in Table I). An important difference is
the band dispersion near the valence band top, that can lead
to direct or indirect gap depending on atom positions.

symmetry, as already mentioned. The s orbitals are too
far away in energy, so they don’t contribute much, but
from geometry, one expects a significant mixture from the
px orbitals, in order that the combined “pz” orbitals can
tilt along the P-P interplanar bond. This is clear from
the wave functions Ψ(r) plotted in Fig. 6, where a strong
interplanar P-P bond is seen for the valence top state and
a P-P antibond for the conduction bottom state.

There is a difference in the results presented in the lit-
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erature regarding whether the band gap in the monolayer
BP is direct or indirect. We find that the band gap is di-
rect for the optimized structure, although the calculated
magnitude Eg = 1.0 eV is smaller than the measured
value of 1.55 eV obtained from optical measurements,22

which is the usual underestimate of the band gaps in
the DFT calculations. In contrast, the gap is indirect
for the unoptimized structure (structural parameters the
same as in 3D BP), with the valence top slightly off-
set from the Γ point along the Γ-Y line (Fig. 7), as has
been reported in some works,25 presumably using the un-
optimized structure. Results presented throughout this
paper is for the optimized structure, which results in a
direct gap.

C. Tight-binding model

It is clear from the above analysis of symmetry and or-
bital characters of the wave functions that a tight-binding
(TB) model involving just the “tilted” “pz” orbitals (p
orbital lobes oriented along the interplanar P-P bond)

should be able to describe the band structure in the gap
region, both the valence band top as well as the con-
duction band bottom. We find that this is the case and
moreover that the low-energy states in the gap region
are described remarkably well by keeping just the nearest
neighbor interactions, with only two hopping parameters
t1 and t2 as shown in Fig. 1. We did not find significant
improvement of the bands if we retained higher neighbor
TB hoppings. If a description of the band structure be-
yond the low-energy states in the gap region is desired,
then one must retain the px and the py orbitals as well
as the higher neighbor interactions.

In the basis set of the four sublattice Bloch functions
made out of the four phosphorus “pz” orbitals in the

unit cell, c†~kα
= N−1/2

∑

i e
i~k.~riαc†iα, where c†iα creates

a “pz” orbital at the α-th site in the i-th unit cell, ~k

is the Bloch momentum, and ~riα = ~Ri + ~τα is the or-

bital position, the TB Hamiltonian is given by Hαβ(~k) =
∑

i e
i~k·~diαβ〈0, α|H|i, β〉, where distance ~diαβ ≡ ~riβ − ~r0α

and 〈0, α|H|i, β〉 are the hopping integrals. The Hamil-
tonian is readily found to be

H(~k) =











0 t2e
i~k·~d4 0 t1(e

−i~k·~d1 + e−i~k·~d2)

t2e
−i~k·~d4 0 t1(e

i~k·~d1 + ei
~k·~d2) 0

0 t1(e
−i~k·~d1 + e−i~k·~d2) 0 t2e

−i~k·~d3

t1(e
i~k·~d1 + ei

~k·~d2) 0 t2e
i~k·~d3 0











, (1)

where t1 and t2, again, are the nearest-neighbor hop-

ping integrals and ~d1,2 = (cos θ,± sin θ, 0) b1, ~d3,4 =
(∓ sinϕ, 0,− cosϕ) b2 are distances, all shown in Fig. 1.
The Hamiltonian is easily diagonalized to yield the result

ε(~k) = ±

√

t22 + 4t21 cos
2
kyb

2
± 4t1t2 cos

kxa

2
cos

kyb

2
.

(2)
We have obtained the two parameters t1 and t2 by simply
fitting the two gap values at the Γ and X points, Eg(Γ)

= 2t2 + 4t1, and ∆X = 2
√

t22 + 4t21, with either the DFT
results or the experimental values.22 The agreement of
the TB results with the DFT bands, shown in Fig. 8, is
remarkable considering the simplicity of the model.

Anisotropic conductivity – The isoenergy contours for
both valence and conduction bands are anisotropic, as
seen for the valence bands from Fig. 9. From the band
structure, we extract the following effective masses for
the electrons and holes: m∗

x(h) = 0.16, m∗
y(h) = 5.5,

m∗
x(e) = 0.17, and m∗

y(e) = 1.26, which are in agreement

with earlier calculations.22 The effective mass for the hole
states in the y direction has the largest value, but we find
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FIG. 8: (Color online) Tight-binding bands (blue lines) as
obtained from Eq. 2 compared with the DFT bands (green
dots). TB parameters are: t1 = -0.95 eV and t2 = 2.40 eV.

that it is rather sensitive not only to the functional used
in the DFT calculations, but also on the atomic positions,
i.e., whether optimized or unoptimized (see Fig. 7).
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TABLE III: Hopping integrals t1 and t2 obtained by fitting
the TB bands with the DFT gaps or the experimental gaps,
Eg and ∆X , as indicated in Fig. 8.

t1 t2 Eg ∆X

DFT -0.95 2.40 1.00 6.12
Exp. -0.97 2.71 1.55 6.67
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FIG. 9: (Color online) Energy contours for the topmost va-
lence band, obtained from the DFT calculations, indicating
highly anisotropic Fermi surface for p-doped BP, with hole ef-
fective masses m∗

y/m
∗

x ≈ 34. The energy of the valence band
top at Γ is taken as zero and contour lines have been drawn
up to E = −1 eV.

The large anisotropy in the effective mass shows up in
the measured conductivity. We focus on the p-doped
samples, for which resistivity data exists. The mea-
sured conductivity is larger along the direction normal to
the zigzag chains as compared to parallel to the chains,
σx > σy. However, the monolayer BP is rather sen-
sitive to environmental influence and resistivities have
been measured only for films thicker than ∼ 3 nm.16

Even for these thick films, due to fringing effects, the
measured ratio of σx/σy was only qualitatively found to
be anisotropic by about 50%. The resistivity in the bulk
samples have however been studied quite early on12,26,27

and the measured conductivity ratio in the planar direc-
tion is (σx/σy)exp = 2.46.28

Using the kinetic transport theory, the conductivity
may be connected to the effective masses and the relax-
ation times. According to this theory, the conductivity
is given by σ = 1

3
τe2〈v2f 〉Nf , where τ is the relaxation

time, vf is the Fermi velocity, and Nf is the electron
density at the Fermi energy. It is reasonable to expect
the relaxation time to be anisotropic as well, considering
the anisotropy in the structure and the phonon energies.
However, its value is not known and difficult to estimate
theoretically. We have computed σ/τ using DFT and the
kinetic transport theory and from the experimental value
of σ, estimated the relaxation time. The Fermi velocity
average 〈v2f 〉 can be estimated by assuming the rectan-

gular shape for the isoenergy contours, as seen from Fig.
9. For each side of the rectangular constant-energy con-
tour, one component of the velocity is zero, which yields
the simple result: 〈v2y〉/〈v

2
x〉 = m∗

x/m
∗
y ≈ 34. Putting

together all these, we find the ratio τy ≈ 14τx. This is
qualitatively similar to earlier estimates29, but quanti-
tatively different. As noted earlier, the m∗

y is sensitive
to atom positions and hence differs quite a bit between
different calculations in the literature.

III. ELECTRIC FIELD AND RASHBA EFFECT

Relativistic effects in solids are usually small and of-
ten neglected, but in 2D materials they may play an im-
portant role, especially if the material is placed in an
external electric field or on a polar substrate. For exam-
ple, the spin-orbit coupling in graphene is quite small,
but it induces important changes, e. g., massless Dirac
electrons acquire a finite mass and a small gap opens up
in the energy spectrum.31 Recently it was also observed
that attachment of small amounts of hydrogen adatoms
on graphene can increase the SOC by three orders of
magnitude.32 The other possible way to significantly am-
plify the SOC is to place graphene on a polar-substrate
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FIG. 10: (Color online) The spin-orbit coupling strength λnl

for atoms as a function of the atomic number Z. Within a se-
ries with fixed n, l quantum numbers, λ follows the hydrogenic
Z4 dependence, while if we consider the outermost electrons
in the atom, irrespective of their nl values, (indicated by the
circles and the shaded area), it increases only as the Landau-
Lifshitz Z2 scaling30 [lower dashed line shows λ = Aα2Z2 Ry
with A = 0.10 and α being the fine structure constant (see
text)]. The angular momentum states are color coded, with
the p series in blue, d in red, and f in green.



7

with a large Rashba-type splitting, which has been inves-
tigated both experimentally and theoretically.33

Phosphorus is a heavier element compared to carbon
implying that the effects of the SOC in black phosphorus
is more pronounced than it is in graphene. In this Sec-
tion, we study the effect of the application of an external
electric field on monolayer BP from density-functional
calculations. In the presence of the SOC, the electric-field
induced broken inversion symmetry leads to the Rashba
effect,34,35 which is the linear momentum dependent spin
splitting of the band structure, which we study for mono-
layer BP in the remaining part of the paper.
The strength of the spin-orbit coupling in atoms

increases roughly quadratically (Landau-Lifshitz
scaling)30,36 with the atomic number Z, if we consider
the outermost electrons in the atom, which are the rele-

vant electrons in the solid. Thus, we have, HSO = λ~L · ~S,
with λ = Aα2Z2 Ryd., where α is the fine structure
constant, and A is of the order of one.
This scaling is illustrated in Fig. 10 where we have

plotted λ for various atoms as calculated by Herman and
Skillman37 using the Hartree-Fock method. These data
are very similar to those calculated by other authors,
e.g., by Andersen, et al.,38 in the context of the SOC
in solids. From the figure, one sees the rough Z2 de-
pendence for the outermost electrons (i. e., without any
reference to the n, l quantum numbers), while λ scales as
the hydrogenic result Z4 within a series, i.e., where we
fix the quantum numbers n and l.39 Thus, e.g, within the
5d series, as one goes from Lu to Au, the SOC param-
eter λ increases as Z4, while as one goes from Sc to U,
the outermost electrons have changed their n, l values,
and λ increases roughly as Z2. Unlike a similar figure
we presented elsewhere36, Fig. 10 is more complete, in
the sense that it includes the SOC of the p electrons in
addition to the d and the f electrons. As seen from the
figure, phosphorus with Z = 15, has the SOC strength
λ = 36 meV.40

The Rashba effect, for which both SOC and broken
inversion symmetry (caused by the applied electric field)
is necessary, is described by the Hamiltonian34,35

HR = αR(~σ×~k) · ẑ = αR(kyσx− kxσy), (isotropic case)
(3)

where ~k is the momentum of the electron, ~σ is the Pauli
matrix, ẑ is the unit vector along the electric field, and
αR is the Rashba coefficient. The Hamiltonian Eq. 3
can be readily diagonalized to yield the spin splitting
∆E = 2αRk. Here, the magnitude of the splitting de-

pends on the magnitude of ~k, but not on the direction
(isotropic Rashba splitting), while for the monolayer BP,
as we discuss below, the splitting is direction dependent
(anisotropic Rashba), and, consequently Eq. 3 will need
to be modified.

Free-electron derivation of the Rashba Hamiltonian
(Isotropic case) – We outline the näive derivation of the

Hk

Hk

ky

kx

E

ε(k)

FIG. 11: (Color online) Rashba-split conduction and valence
bands (schematic). In the anisotropic mass case, the constant
energy contours are ellipses, not circles, and the spins turn
along directions tangent to the ellipses. The effective Rashba
magnetic fields, Eq. 8, are also indicated.

Rashba Hamiltonian, Eq. 3, for the free electron gas in
the presence of an electric field and then extend it to the
case where the mass is anisotropic. In many solids, like in
BP, the band mass is anisotropic, and the analysis below
suggests that in that case, the Rashba splitting should
show an anisotropic behavior as well.
The Rashba effect is a relativistic effect, originating

from the SOC. In its rest frame, the electron experiences

the magnetic field ~B = (−~v × ~E)/c2 due to the applied
electric field, which then couples to the spin magnetic

moment of the electron, HR = − ~M · ~B = −(gµB~σ/2) ·

(−~v × ~E/c2) = − ~Hk · ~σ, where

~Hk ≡ −h̄2E|e|(2m2c2)−1(~k × ẑ). (4)

In essence, the applied electric field has been converted
into the effective, momentum dependent magnetic field
~Hk, which aligns the spins along it and causes the spin
eigenstates to turn as indicated in Fig. 11. Rearranging
terms, we immediately retrieve the Rashba Hamiltonian
HR for the isotropic case, Eq. (3), where the Rashba
coefficient

αR = h̄2E|e|(2m2c2)−1. (5)

We note that while the Rashba splitting has been ob-
served in solids, its magnitude is typically several orders
of magnitude higher than predicted from the free elec-
tron result, Eq. 5. This is because in the solid the
nuclear fields – which are huge as compared to the ap-
plied electric fields in the laboratory or even the fields
present near the surfaces of a solid – cause a large en-
hancement of αR. However, an external electric field is
still needed to break the inversion symmetry, without
which symmetry demands that there would be no spin
splitting, viz., ε~kσ = ε~k−σ, and, consequently, no Rashba
effect. Furthermore, while in the näive derivation out-
lined above, σ is the real spin of the electron, in the solid
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due to the spin-orbit coupling, σ in Eq. 3 could repre-
sent an entangled spin-orbital state, or a pseudo-spin, e.
g., | ↑〉 ≡ 3−1/2|xy ↓ −yz ↑ +ixz ↑〉. These ideas are
well known in the literature and developed further in our
recent work on Rashba effect in the d electron solids.36,41

Rashba Hamiltonian (Anisotropic case) – Now, con-
sider the case with an anisotropic mass, with the effec-

tive mass tensor [m∗−1(~k)]ij = h̄−2∂2ε(~k)/∂ki∂kj and

the velocity vi = h̄−1∂ε(~k)/∂ki = h̄
∑

j [m
∗−1]ijkj . A

straightforward generalization of the isotropic case yields
the desired anisotropic Rashba Hamiltonian

HR = αR(~σ × ~k′) · ẑ = αR(k
′
yσx − k′xσy), (general case)

(6)
where k′i =

∑

l(
m
m∗

)il kl and m is the bare electron mass.
It is easy to show that if the mass tensor can

be written as a diagonal matrix with momentum-
independent masses, with a principal axis transforma-
tion, if needed, so that the constant energy contours are
ellipses, h̄2k2x/2mx + h̄2k2y/2my = const., then Eq. 6
leads to the spin splitting:

∆E = 2αR(m
−2
y sin2 θ +m−2

x cos2 θ)1/2k, (7)

where the effective masses mx and my here are in units
of the bare mass m, and θ = tan−1(ky/kx) is the polar
angle in the momentum space. Additionally, in this case,
the spins point in a direction tangential to the constant-
energy ellipses in the momentum space. Analogous to the
isotropic case, the Rashba Hamiltonian can be written in

the form HR = − ~Hk ·~σ, with the effective magnetic field

~Hk = −αR (~k′ × ẑ), (8)

which orients the spins along the directions tangential to
the constant energy ellipses.
DFT results for Rashba splitting – We have computed

the electric field effects by applying an electric field nor-
mal to the monolayer BP, with the unit cell configuration
sketched in Fig. 12, and using the density-functional
methods already described.

E

V(z)

E

FIG. 12: (Color online) Electric field configuration used in
the DFT calculations. Length of the supercell used in the
calculation is about twice larger than what is shown here.
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FIG. 13: (Color online) Rashba splitting of the valence top
(bottom row) and the conduction bottom (top row) computed
from DFT. Left figures show the Rashba splitting along kx,
while the Right figures show the same along ky. The electric
field used here is 2.6 V / Å.
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FIG. 14: (Color online) Contour plot of the Rashba splitting
for the conduction bottom in the kx − ky plane, indicating
anisotropic bahavior. Color codes are in eV.

Fig. 13 shows the band structure for the valence
top and conduction bottom in the presence of the elec-
tric field along specific directions in the BZ, and Fig.
14 shows the Rashba splitting for the conduction band
in the kx − ky plane as a contour plot, indicating the
anisotropic behavior of the Rashba splitting. Contours
for the Rashba splitting of the valence top show similar
anisotropic behavior, but are not shown in the figure.
The Rashba splitting shows the anticipated linear-k de-

pendence for both valence and conduction bands as seen
from Fig. 15. The slope yields an effective, direction-
dependent Rashba coefficient, αeff

R = αR(m
−2
y sin2 θ +

m−2
x cos2 θ)1/2. The numerical values of αeff

R are: (i) va-
lence top: αv

R(x) = 10.9, αv
R(y) = 3.6 and (ii) conduc-

tion bottom: αc
R(x) = 14.0, αc

R(y) = 1.7, all in units of
meV·Å. These are consistent with the free-electron result
that the larger the effective mass, the smaller is the αeff

R ;
however, the inverse square dependence on the effective
mass, which comes from αR, is not obeyed. The reason
for this is that the simple free-electron model misses the
intricate band structure and the orbital dependent effects
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FIG. 15: (Color online) Rashba splitting corresponding to
Fig. 13 along kx or ky directions, showing the linear momen-
tum dependence. Lines are fits to the DFT calculated values,
which are shown as points.

in the solid, which are better captured in a tight-binding
model.41,42

k x
 (

10
−

3 Å
−

1 )

ky (10−3Å−1)

−1.4

−0.7

0

0.7

1.4

−1.8 −0.9 0 0.9 1.8

•
Γ

FIG. 16: (Color online) Spin orientations of the Rashba states
at the conduction band bottom as computed from the DFT
spin wave functions. The spins point along the directions
more or less tangential to the ellipses, in agreement with the
anisotropic Rashba Hamiltonian Eq. 6. The two ellipses de-
scribe the iso-energy surface corresponding to a certain en-
ergy, which can be read off using Fig. 13.

As already pointed out, ~σ represents the pseudospin
describing the two partner functions in the two Rashba
bands, which could be spin-orbital entangled states.41 In
the present case of BP, however, since the SOC is small
and the energies of the px and py states that would spin-
orbit couple to the pz orbitals making up the valence
and conduction band extrema are far away in energy, the
pseudospins are nearly spin pure states |pz ↑〉 and |pz ↓〉.
From the DFT calculations, we have computed the spin

wave functions of the Rashba split valence band states
in the presence of the electric field and from there, ob-
tained the spin orientation, by simply looking at the wave
function at the center of the interplanar P-P bond. The
results are shown in Fig. 16. The spin directions are
approximately along the anticipated directions, viz., tan-
gential to the ellipses; the small deviation from this is due

to the fact that the mass tensor is momentum dependent
and could have the principal axes oriented in slightly dif-
ferent directions at different k points, as is evident from
Fig. 9, especially as one goes away from the Γ point.
Thus, the predictions of the anisotropic Rashba Hamil-
tonian, Eq. 6, is more or less obeyed by the DFT results
for BP.

IV. SUMMARY

In summary, we studied the electronic structure of the
monolayer BP, both without and with the presence of
an applied electric field. Symmetry analysis of the cal-
culated band structure using density functional meth-
ods showed the nature of the chemical bonding to be
due to the formation of phosphorus p-p bonds and pro-
vided justification for developing a simple tight-binding
model to describe the band structure in terms of just
one orbital per atom and using nearest-neighbor inter-
action only. We then studied the electronic structure in
the presence of an applied electric field using density-
functional methods, which leads to the Rashba effect. A
by-product of our work was the demonstration that the
strength of the spin-orbit coupling in the atoms increases
as the square of the atomic number Z2, i.e., the Landau-
Lifshitz acaling, if we consider the outermost electrons
in the atom, which are the relevant valence electrons. In
contrast, the hydrogenic Z4 scaling is obeyed, if we keep
the principal and the angular momentum quantum num-
bers n, l fixed. In the monolayer BP, both conduction
and valence bands show the linear momentum dependent
Rashba splitting. However, the strength of the splitting

is anisotropic, depending on the direction of ~k, and the
basic origin of the anisotropy can be explained within the
free-electron model, using an anisotropic effective mass.
The anisotropic Rashba effect, predicted here for the first
time to our knowledge, has never been observed. It would
be gratifying to observe the effect from experiments, an
effect that could have possible novel uses in spintronics
applications.
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Appendix A: Character table for D2h

We have used the same symmetry notations as earlier
authors,23,24 which are given here to make the discussions
self contained.
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E τC2x C2y τC2z I τRx Ry τRz

Γ+
1 1 1 1 1 1 1 1 1

Γ+
2 1 −1 1 −1 1 −1 1 −1

Γ+
3 1 1 −1 −1 1 1 −1 −1

Γ+
4 1 −1 −1 1 1 −1 −1 1

Γ−

1 1 1 1 1 −1 −1 −1 −1
Γ−

2 1 −1 1 −1 −1 1 −1 1
Γ−

3 1 1 −1 −1 −1 −1 1 1
Γ−

4 1 −1 −1 1 −1 1 1 −1

TABLE IV: Character table for the D2h group, the symmetry
group of the Bloch states at the Γ point in the Brillouin zone
of BP. The eight symmetry elements of the group are: iden-
tity operator E , space inversion I , three rotations (proper or
improper), viz., τC2x, C2y, τC2z, with the fractional transla-
tion τ = (a/2, b/2), and the three reflections (again, proper or
improper), viz., τRx, Ry , and τRz. These symmetry elements
are best visualized by using Fig. 4.
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