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ABSTRACT

We investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T ≙ Sc and Ti; Z ≙ P, As, Sn, and Sb) having an
18 valence electron count. Calculations were performed by means of density functional theory and the Boltzmann transport equation with
constant relaxation time approximation, validated by NiTiSn. The chosen half-Heuslers were found to be indirect bandgap semiconductors,
and the lattice thermal conductivity was comparable with the state-of-the-art thermoelectric materials. The estimated power factor for NiScP,
NiScAs, and NiScSb revealed that their thermoelectric performance can be enhanced by an appropriate doping rate. The value of ZT found
for NiScP, NiScAs, and NiScSb is 0.46, 0.35, and 0.29, respectively, at 1200K.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0031512

I. INTRODUCTION

In the past few decades, researchers have been focused on the
investigation of multi-functional materials, which can be used in
various applications such as in spintronics, optoelectronics, ther-
moelectrics, and so on. With the surge in demand for green
energy sources, TE materials are extensively taken into consider-
ations for their ability to convert relatively small and waste heat
into useful energy at the time of energy consumption. A wide
range of materials have been explored for potential half-metals
and thermoelectric (TE) devices such as organic thermoelectric
materials,1 chalcogenides,2,3 skutterudites,4–6 oxides,7–12 hybrid per-
ovskites,13–15 triple-point metals,16 ternary compounds,17 and half-
Heusler (hH) alloys.18–29 Among them, Heusler compounds have
gained much more attention since their discovery in 1903 due to
their simple crystalline structure with fascinating properties such
as magnetism, half-metallicity, superconductivity, optoelectronics,
piezoelectric semiconductors, thermoelectricity, topological insula-
tors, and semimetals.30–38

Thermoelectric materials are found to be applicable in day-to-
day lives to fulfill the increasing demand of energy of the globalized
society. The highly efficient TE devices (cooler, power generator,

temperature sensors, and so on) can utilize a large amount of wasted
thermal energy to generate electricity and vice versa.39,40 For this,
the device needs a larger figure of merit (ZT), which depends on the
transport properties41,42 defined by

ZT ≙
α2σT

κ
, (1)

where α (V K−1) is the Seebeck coefficient, σ (S m−1) is the electrical
conductivity, κ ≙ κe + κl (W m−1 K−1) is the thermal conductivity,
and T(K) is the absolute temperature. α2σ is defined as the power
factor (PF). The symbols κe and κl represent the electronic and lattice
thermal conductivity, respectively. Thematerials having a high value
of PF along with the low value of κ are suitable for the efficient TE
devices.43

Among others, most of the cubic hH alloys with an 18 valence
electron count (VEC) exhibits high Seebeck coefficients and are
reported as promising materials for TE applications due to high
electrical conductivity and narrow bandgap semiconductors with
novel electrical and mechanical properties even at high temper-
atures.19–22,44 In addition to it, hH alloys contain non-toxic and
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readily available elements, making them environmental-friendly and
more cost effective.

Recent experimental and theoretical investigations on hH
alloys are mainly focused on improving their thermoelectric effi-
ciency ZT by tuning the power factor and thermal conductiv-
ity. Bandgap engineering and fluctuation of carrier concentration
around the Fermi level (EF) in the Z position are the widely used
methods to enhance the power factor, whereas the thermal con-
ductivity can be decreased by alloying or by doping on the X or Y
site to fluctuate the mass of the carriers introducing impurities and
nanostructuring.45–48

From the literature, we noticed that Ni-based hH alloys with 18
VEC are less investigated. Following Slater–Pauling’s rule, the total
magnetic moment for these types of hH alloys should be zero. Thus,
the zero moment on Ti or Sc at the Y site and P or As or Sb at the
Z site will give rise to zero moment for the Ni atom at the X site
resulting in a non-magnetic system.49,50 This motivates us to explore
the electronic, TE, and other related properties to confirm if these
groups of materials could be suitable for TE devices.

II. COMPUTATIONAL DETAILS

The cubic hH alloys NiTZ (T ≙ Sc and Ti; Z ≙ P, As, Sn, and
Sb) belong to the Clb structure with space group F4̄3m. It contains
three in-equivalent atoms forming inter-penetrating fcc sublattices
with the Wyckoff positions Ni (1/4, 1/4, 1/4), T (1/2, 1/2, 1/2), and
Z (0, 0, 0), respectively, as shown in Fig. 1. The iso-structural NiTiSn
is used here to validate our calculations based on the earlier reported
results (both theoretical and experimental).

The density functional (DF) calculations have been per-
formed using the full-potential linear augmented plane wave (FP-
LAPW) method as implemented in the WIEN2k code.51 We double
checked some parts of our calculations using the plane-wave based
pseudopotential Quantum Espresso (QE) package.52 The standard
generalized-gradient approximation (GGA) in the parameterization
of Perdew, Burke, and Ernzerhof (PBE)53 was used in the scalar-
relativistic mode. The modified Becke–Johnson (mBJ) potential54

was further included to check the accuracy of the bandgaps. The self-
consistency convergence criteria for charge and energy were set to
10−4e and 10−5 Ry, respectively.

FIG. 1. The crystal structure of cubic hH NiTZ (T = Sc and Ti; Z = P, As, Sn,
and Sb). The balls in blue, black, and red color represent Ni, T, and Z atoms,
respectively.

In the plane-wave pseudopotential approach, we used the
norm-conserving pseudopotentials with plane wave cut-off energy
for wave function set to 90 Ry. The full Brillouin Zone (BZ) was
sampled with an optimized 10 ×10× 10mesh ofMonkhorst–Pack k−
points. To check the dynamical stability, phonon spectrum calcula-
tions have been performed with a 4 ×4× 4 q− mesh in phonon BZ,
which is based on the DF perturbation theory (DFPT) implemented
in the QE package.52

The TE properties were calculated using the Boltzmann semi-
classical transport equation and constant relaxation time approx-
imation based on a smoothed Fourier interpolation of the bands
implemented in the BoltzTraP code.55 The full BZ was sampled with
a 50 × 50 × 50k−mesh for the calculation of the transport properties.
The electrical conductivity and PF were calculated under constant
relaxation time approximation (τ) using the BoltzTraP code based
on Boltzmann theory. τ is approximated by fitting the experimen-
tal data from the work of Kim et al.18 The lattice thermal conduc-
tivity was obtained by solving the linearized Boltzmann transport
equation (BTE) within the single-mode relaxation time approxi-
mation (SMA) using the thermal2 code implemented in the QE
package.52

III. RESULTS AND DISCUSSION

A. Structure optimization and phonon stability

We started our calculations by optimizing the cubic hH alloys
with F4̄3m symmetry. Our calculated values of lattice parameters
and the bandgap within GGA and GGA +mBJ are listed in Table I.
These values are found to be in fair agreement with the earlier
reports of Ma et al.49 for the GGA case.

The calculated phonon dispersion curves along the high-
symmetry points shown in Fig. 2 depict that the proposed hH alloys
are thermally stable. This is evidenced by the absence of imagi-
nary phonon frequencies throughout the whole BZ, as expected
for dynamic stability.56 We observed three acoustic (low-frequency
region) and six optical phonon (high-frequency region) branches
due to three atoms per unit cell. The majority of the lattice contri-
bution to the thermal conductivity arises from the acoustic part as
it has high group velocity compared to the optical part. We found
that the acoustical phonon branches of NiScP and NiScAs extend
nearly to 200 cm−1, while NiScSb and NiTiSn lie within 150 cm−1

in frequency. The observation of dynamical stability and preferable
energy gap in our proposed hH alloys motivates us to explore the
electronic and transport properties for their potential application as
TE materials.

TABLE I. The optimized lattice constant a and the bandgap Eg within GGA and GGA
+ mBJ for the cubic hH alloys NiTZ.

GGA GGA+mBJ

System a (Å) Eg(eV) Eg(eV)

NiScP 5.69 0.54 0.62
NiScAs 5.84 0.48 0.52
NiScSb 6.12 0.28 0.32
NiTiSn 5.95 0.46 0.45
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FIG. 2. Phonon band structures for find-
ing the dynamic stability of (a) NiScP, (b)
NiScAs, (c) NiScSb, and (d) NiTiSn.

FIG. 3. Total and partial density of states
of (a) NiScP, (b) NiScAs, (c) NiScSb,
and (d) NiTiSn within GGA + mBJ. The
vertical dotted line represents EF.
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B. Electronic properties

To understand the ground state electronic properties of the
material, the total and partial density of states (DOS) are shown in
Fig. 3. The proposed systems are found to be semiconducting with
an energy gap lying within ∼ 0.32 eV to 0.62 eV, in fair agreement
with the earlier report.49 As seen in the PDOS, the main contribu-
tion to the total DOS at and around EF is from the 3d-orbitals of Ni
and Sc atoms, while the contributions from the atom in the Z site are
negligible (see Fig. 3). This is an indication that doping onto the Z
site may improve the carrier concentration.

It is interesting to note that with an increase in the atomic
radius of atoms at the Z site, say, from P to Sb, the bandgap reduces
gradually, which further leads to the decrease in the hybridization
of Ni-3d and Sc-3d states. An indirect bandgap is observed in the
band structures for hH alloys (see Fig. 4) with their valence band
maximum (VBM) lying at Γ and conduction band minimum (CBM)
at X in the BZ. The VBM for the hH alloys is threefold degen-
erate comprising heavy and light bands. From the observed band
structure in Fig. 4, the scenario of heavy bands can enhance the See-
beck coefficient, whereas the light band can facilitate the mobility
of charge carriers.57–59 Thus, the combination of heavy and light
bands is preferable for increasing the TE performance. The band
structure shown in Figs. 4(a)–4(c) dictates the effective mass to be
more at X − Γ in CBM than that of VBM at Γ (i.e., the effective
mass of electron at CBM is greater than that of the hole at VBM),

which plays a significant role in TE properties. As seen in NiTiSn
[Fig. 4(d)], the VBM (at Γ) is flatter than the CBM (at X) indicating
that the effective mass of holes at VBM is more than that of electrons
on CBM.

C. Transport properties

For an efficient TE material, a high value of α and σ with a
low κ is expected, as depicted in Eq. (1). The dimensionless figure
of merit ZT can be optimized when these parameters are optimum.
However, these parameters are inter-related with themselves. Thus,
obtaining a high value of ZT is in-sufficient just by tuning one
or two parameters. To get insight into the TE properties of hH
alloys, we calculate the Seebeck coefficient α, electrical conductiv-
ity σ/τ, thermal conductivity (κ ≙ κe + κl), power factor (PF), and
ZT by using constant relaxation time approximation and rigid band
approximation.

We first initiate our calculations for NiTiSn by validating the
theoretical results, such as PF and thermal conductivity with the
reported experimental measurements.18 From the comparison of
the calculated and experimental electrical conductivity, we approx-
imated the relaxation time τ ≙ ∼ 2 × 10−15 s. In the whole process,
we use the constant relaxation time, even though it depends on the
doping level and temperature, obtained for NiTiSn to implement for
all the iso-electronic systems.

FIG. 4. Electronic band structure of (a)
NiScP, (b) NiScAs, (c) NiScSb, and (d)
NiTiSn within GGA + mBJ.
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FIG. 5. (a) Power factor as a function
of doping level (e/μc) for NiTiSn. The
negative (positive) value represents the
electron (hole) doping. (b) Total thermal
conductivity as a function of temperature.

FIG. 6. The Seebeck coefficient [(a), (c),
and (e)] and the power factor [(b), (d),
and (f)] vs the doping level (in e/μc) at
various temperatures for NiScP, NiScAs,
and NiScSb, respectively. The values in
negative (positive) values on the hori-
zontal axes represent the electron (hole)
doping, respectively.
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TABLE II. Calculated optimal doping levels and the corresponding Seebeck coefficient, electrical conductivity, power factor,
and ZT of NiTZ (T = Sc and Ti; Z = P, As, Sn, and Sb) in cubic symmetry F4̄3m at 1200 K. The negative (−) sign indicates
the n− type characteristics.

System n (e/μc) α μVK−1 σ (×103 S cm−1) α2σ μWcm−1 K−2 ZT

NiTiSn 0.20 154 1.15 27.61 0.30
NiScP −0.08 −177 1.05 33.16 0.46
NiScAs −0.08 −168 1.12 31.50 0.35
NiScSb −0.07 −163 0.90 24.20 0.29

The PF of NiTiSn was reported to be ∼ 16 μWcm−1 K−2

at 700K, which upon electron doping (by 1% of the Sb atom
to the Sn site) rises to ∼ 30 μW cm−1 K−2. When the tempera-
ture rises above 700K, PF is found to decrease in both cases.
Comparing these values, we estimate that PF may range between
10 μWcm−1 K2and15 μWcm−1 K2 at the 0.04–0.06 doping level of
electron per unit cell in the same temperature range. In the case of
hole doping, PF lies within 17 μW cm−1 K−2–23 μW cm−1 K−2 at the
same temperature range when the dopant is 0.1–0.2 hole per unit
cell. This indicates that hole doping is more appropriate than the
electrons for PF. The calculated total thermal conductivity 21Wm−1

K−1–10 Wm−1 K−1 [see Fig. 5(b)] was slightly higher than the ear-
lier report (i.e., 7 Wm−1 K−1–10 Wm−1 K−1), which is mainly due
to the electronic contribution found prominent at higher tempera-
tures. Our calculated results are comparable with the experimental
measurements.18

The Seebeck coefficient [(a), (c), and (e)] and the PF [(b), (d),
and (f)] for different levels of doping are shown in Fig. 6 for NiScP,
NiScAs, and NiScSb, respectively. Around EF (i.e., at μ ≙ 0), the See-
beck coefficient is large (> ±150μV/K), which on doping to either
side falls off significantly. This is evident from its inverse relation
with the carrier concentration.

The optimum values of the doping levels and the corresponding
TE parameters for 1200K are listed in Table II.

PF is another parameter to check the reliability of TE materials.
As observed in Fig. 6, the PF value for the p or n− type is significant
within the doping range of ±0.3. To be specific, at 1000K, the calcu-
lated values are approximately 15 μW cm−1 K−2, 12 μW cm−1 K−2,
and 13 μWcm−1 K−2 for NiScP, NiScAs, and NiScSb within
0.02–0.04 hole per unit cell reaching its maximum value at 1200K.
Similarly, for doping range 0.06–0.07 electron per unit cell, PF rises
to ∼27 μW cm−1 K−2, 25 μW cm−1 K−2„ and 20 μWcm−1 K−2 at
1000K, respectively. The sizable value of PF within the doping range
0.07–0.08 electron per unit cell suggests that these materials could be
good TE materials.

We further show the variation of PF with the chemical poten-
tial, μ, in Fig. 7. The peak values of PF noted in the chemical potential
range between 0.4 eV and 0.7 eV for NiScP, NiScAs, and NiScSb. In
contrast, the peak value of PF is around −0.2 eV for NiTiSn. From
the above scenario, electron doping is found to be more suitable
for NiScP, NiScAs, and NiScSb due to the larger effective mass of
electrons to get a better TE performance. This indicates the pres-
ence of larger electron pockets resulting in the dense carriers, which
are confined to the CBM along Γ − X [Figs. 4(a)–4(c)]. On the
other hand, in NiTiSn, hole doping is much more favorable due to
the higher effective mass of holes resulting from the nearly flatter

band in the VBM and CBM along Γ − X [see the band structure in
Fig. 4(d)].

Figure 8 shows the calculated thermal conductivity as a func-
tion of temperature for NiScP, NiScAs, NiScSb, and NiTiSn, respec-
tively. The total thermal conductivity consists of two components,
viz., electronic (κe) and lattice (κl) parts. At low temperature (say,
300K), the lattice part was found to be dominant over the electronic
part, and with the rise in temperature (say, up to ∼ 900 K, except
NiScP), the lattice thermal conductivity and the overall conductivity
decrease uniformly.

Note that with an increase in temperature starting from 300K,
the carrier concentration increases resulting in higher electrical con-
ductivity and, hence, the overall thermal conductivity. Similar fea-
tures were observed in the recent report of CoMnSb.60 The cal-
culated lattice conductivity is 10.6 Wm−1 K−1, 19 Wm−1 K−1, and
18.5 Wm−1 K−1 at 300K, which reduces abruptly to 2.5 Wm−1 K−1,
4.7 Wm−1 K−1, and 4.5 Wm−1 K−1 at 1200K for NiScP, NiScAs, and
NiScSb, respectively.

The figure of merit ZT for hH alloys is as shown in Fig. 9. With
a low value (say, 0.05) of ZT at 300K, it is found to rise linearly
with the increase in temperature. At 1200K, the calculated values are
0.30, 0.45, 0.35, and 0.29, respectively, for NiTiSn, NiScP, NiScAs,

FIG. 7. The power factor vs chemical potential (μ) at 1200 K temperature. The
values of chemical potential in negative (positive) represent the hole (electron)
doping.
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FIG. 8. Total thermal conductivity (κ) as a function of temperature. The inset dic-
tates the lattice contribution to thermal conductivity (κl ) of NiScP, NiScAs, NiScSb,
and NiTiSn.

and NiScSb alloys. On the other hand, the values of total thermal
conductivity are found to be minimum at ∼ 700 K for NiScP and
∼ 900 K for the remaining systems, which start increasing afterward
due to the dominance of electronic part. The variation of ZT with

FIG. 9. ZT as a function of temperature.

temperature shows linear nature. PF is dominant at a higher temper-
ature range due to the increase in carrier concentration along with
the electrical conductivity. The observed ZT is low mainly due to a
higher value of κ. Even if our ZT values are lower than the commer-
cialized TEmaterials such as Bi2Te3 and PbTe, they can be enhanced
by means of doping to any of the three atomic sites. Though the ZT
value is low (∼ 0.05) for the pristine systems compared to the widely
used doped Bi-based alloys, say, Bi2Se3 (∼ 0.01to0.05),61 Bi2Se3 at
Bi2Te3 (∼ 0.7),62 and Bi–Sb alloys (∼ 0.4),63 it can be enhanced by
electron doping.64

As observed from the calculations above, the ZT value can
increase when PF is enhanced while minimizing the thermal con-
ductivity. The possible route to tune this from DF is by proper
tuning of the bandgap with appropriate electron/hole doping as
discussed.

IV. CONCLUSIONS

On the basis of density functional calculations, we investigate
the half-Heuslers NiTiSn, NiScP, NiScAs, and NiScSb. Electronic
properties reveal that these materials are semiconductors with an
indirect bandgap. The narrow bandgap marks them as suitable can-
didates for TE performance. The calculated power factor shows a
large value in both the electron and hole doping cases. Electron
doping is found to be more preferable than hole doping for NiScP,
NiScAs, and NiScSb, while hole doping is preferable for NiTiSn.
Based on the constant relaxation time approximation and rigid band
approximation with sizable ZT, these compounds are predicted as
possible TE materials.
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