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We present a review of the basic ideas and techniques of the spectral density functional theory
which are currently used in electronic structure calculations of strongly–correlated materials where
the one–electron description breaks down. We illustrate the method with several examples where
interactions play a dominant role: systems near metal–insulator transition, systems near volume
collapse transition, and systems with local moments.
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I. INTRODUCTION

Theoretical understanding of the behavior of materi-
als is a great intellectual challenge and may be the key to
new technologies. We now have a firm understanding of
simple materials such as noble metals and semiconduc-
tors. The conceptual basis characterizing the spectrum of
low–lying excitations in these systems is well established
by the Landau Fermi liquid theory (Pines and Nozieres,
1966). We also have quantitative techniques for comput-
ing ground states properties, such as the density func-
tional theory (DFT) in the local density and generalized
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gradient approximation (LDA and GGA) (Lundqvist and
March, 1983). These techniques also can be successfully
used as starting points for perturbative computation of
one–electron spectra, such as the GW method (Aryase-
tiawan and Gunnarsson, 1998).

The scientific frontier that one would like to explore
is a category of materials which falls under the rubric of
strongly–correlated electron systems. These are complex
materials, with electrons occupying active 3d-, 4f - or 5f–
orbitals, (and sometimes p- orbitals as in many organic
compounds and in Bucky–balls–based materials (Gun-
narsson, 1997)). The excitation spectra in these systems
cannot be described in terms of well–defined quasipar-
ticles over a wide range of temperatures and frequen-
cies. In this situation band theory concepts are not suffi-
cient and new ideas such as those of Hubbard bands and
narrow coherent quasiparticle bands are needed for the
description of the electronic structure. (Georges et al.,
1996; Kotliar and Vollhardt, 2004).

Strongly correlated electron systems have frustrated
interactions, reflecting the competition between differ-
ent forms of order. The tendency towards delocalization
leading to band formation and the tendency to localiza-
tion leading to atomic like behavior is better described
in real space. The competition between different forms
of long–range order (superconducting, stripe–like density
waves, complex forms of frustrated non–collinear mag-
netism etc.) leads to complex phase diagrams and exotic
physical properties.

Strongly correlated electron systems have many un-
usual properties. They are extremely sensitive to small
changes in their control parameters resulting in large re-
sponses, tendencies to phase separation, and formation
of complex patterns in chemically inhomogeneous situa-
tions (Mathur and Littlewood, 2003; Millis, 2003). This
makes their study challenging, and the prospects for ap-
plications particularly exciting.

The promise of strongly–correlated materials contin-
ues to be realized experimentally. High superconducting
transition temperatures (above liquid Nitrogen temper-
atures) were totally unexpected. They were realized in
materials containing Copper and Oxygen. A surprisingly
large dielectric constant, in a wide range of tempera-
ture was recently found in Mott insulator CaCu3Ti4O12

(Lixin et al., 2002). Enormous mass renormalizations are
realized in systems containing rare earth and actinide el-
ements, the so–called heavy fermion systems (Stewart,
2001). Their large orbital degeneracy and large effec-
tive masses give exceptionally large Seebeck coefficients,
and have the potential for being useful thermoelectrics in
the low–temperature region (Sales et al., 1996). Colossal
magnetoresistance, a dramatic sensitivity of the resistiv-
ity to applied magnetic fields, was discovered recently
(Tokura, 1990) in many materials including the proto-
typical LaxSr1−xMnO3. A gigantic non–linear optical
susceptibility with an ultrafast recovery time was discov-
ered in Mott insulating chains (Ogasawara et al., 2000).

These non–comprehensive lists of remarkable materials

and their unusual physical properties are meant to illus-
trate that discoveries in the areas of correlated materials
occur serendipitously. Unfortunately, lacking the proper
theoretical tools and daunted by the complexity of the
materials, there have not been success stories in predict-
ing new directions for even incremental improvement of
material performance using strongly–correlated systems.

In our view, this situation is likely to change in the
very near future as a result of the introduction of a prac-
tical but powerful new many body method, the Dynam-
ical Mean Field Theory (DMFT). This method is based
on a mapping of the full many body problem of solid
state physics onto a quantum impurity model, which is
essentially a small number of quantum degrees of freedom
embedded in a bath that obeys a self consistency condi-
tion (Georges and Kotliar, 1992). This approach, offers
a minimal description of the electronic structure of cor-
related materials, treating both the Hubbard bands and
the quasiparticle bands on the same footing. It becomes
exact in the limit of infinite lattice coordination intro-
duced in the pioneering work of Metzner and Vollhardt
(Metzner and Vollhardt, 1989).

Recent advances (Anisimov et al., 1997a; Lichtenstein
and Katsnelson, 1997, 1998) have combined dynamical
mean–field theory (DMFT) (Georges et al., 1996; Kotliar
and Vollhardt, 2004) with electronic structure techniques
(for other DMFT reviews, see (Freericks and Zlatic, 2003;
Georges, 2004a,b; Held et al., 2001c, 2003; Lichtenstein
et al., 2002a; Maier et al., 2004a)) These developments,
combined with increasing computational power and novel
algorithms, offer the possibility of turning DMFT into a
useful method for computer aided material design involv-
ing strongly correlated materials.

This review is an introduction to the rapidly develop-
ing field of electronic structure calculations of strongly–
correlated materials. Our primary goal is to present some
concepts and computational tools that are allowing a
first–principles description of these systems. We review
the work of both the many–body physics and the elec-
tronic structure communities who are currently making
important contributions in this area. For the electronic
structure community, the DMFT approach gives access
to new regimes for which traditional methods based on
extensions of DFT do not work. For the many–body
community, electronic structure calculations bring sys-
tem specific information needed to formulate interesting
many–body problems related to a given material.

The introductory section I discusses the importance of
ab initio description in strongly–correlated solids. We
review briefly the main concepts behind the approaches
based on model Hamiltonians and density functional the-
ory to put in perspective the current techniques combin-
ing DMFT with electronic structure methods. In the last
few years, the DMFT method has reached a great degree
of generality which gives the flexibility to tackle realis-
tic electronic structure problems, and we review these
developments in Section II. This section describes how
the DMFT and electronic structure LDA theory can be
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combined together. We stress the existence of new func-
tionals for electronic structure calculations and review
applications of these developments for calculating various
properties such as lattice dynamics, optics and transport.
The heart of the dynamical mean–field description of a
system with local interactions is the quantum impurity
model. Its solution is the bottleneck of all DMFT algo-
rithms. In Section III we review various impurity solvers
which are currently in use, ranging from the formally ex-
act but computationally expensive quantum Monte Carlo
(QMC) method to various approximate schemes. One of
the most important developments of the past was a fully
self–consistent implementation of the LDA+DMFT ap-
proach, which sheds new light on the mysterious prop-
erties of Plutonium (Savrasov et al., 2001). Section IV
is devoted to three typical applications of the formal-
ism: the problem of the electronic structure near a Mott
transition, the problem of volume collapse transitions,
and the problem of the description of systems with local
moments. We conclude our review in Section V. Some
technical aspects of the implementations as well as the
description of DMFT codes are provided in the online
notes to this review (see Appendix B).

A. Electronic structure of correlated systems

What do we mean by a strongly–correlated phe-
nomenon? We can answer this question from the per-
spective of electronic structure theory, where the one–
electron excitations are well–defined and represented as
delta–function–like peaks showing the locations of quasi-
particles at the energy scale of the electronic spectral
functions (Fig. 1(a)). Strong correlations would mean the
breakdown of the effective one–particle description: the
wave function of the system becomes essentially many–
body–like, being represented by combinations of Slater
determinants, and the one–particle Green’s functions no
longer exhibit single peaked features (Fig. 1 (b)).
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FIG. 1 Evolution of the non-interacting spectrum (a) into
the interacting spectrum (b) as the Coulomb interaction in-
creases. Panels (a) and (b) correspond to LDA-like and
DMFT-like solutions, respectively.

The development of methods for studying strongly–
correlated materials has a long history in condensed mat-
ter physics. These efforts have traditionally focused on
model Hamiltonians using techniques such as diagram-
matic methods (Bickers and Scalapino, 1989), quantum
Monte Carlo simulations (Jarrell and Gubernatis, 1996),
exact diagonalization for finite–size clusters (Dagotto,
1994), density matrix renormalization group methods (U.
Schollwöck, 2005; White, 1992) and so on. Model Hamil-
tonians are usually written for a given solid–state sys-
tem based on physical grounds. Development of LDA+U
(Anisimov et al., 1997b) and self–interaction corrected
(SIC) (Svane and Gunnarsson, 1990; Szotek et al., 1993)
methods, many–body perturbative approaches based on
GW and its extensions (Aryasetiawan and Gunnarsson,
1998), as well as the time–dependent version of the den-
sity functional theory (Gross et al., 1996) have been car-
ried out by the electronic structure community. Some of
these techniques are already much more complicated and
time–consuming compared to the standard LDA based
algorithms, and therefore the real exploration of materi-
als is frequently performed by simplified versions utilizing
approximations such as the plasmon–pole form for the
dielectric function (Hybertsen and Louie, 1986), omit-
ting the self–consistency within GW (Aryasetiawan and
Gunnarsson, 1998) or assuming locality of the GW self–
energy (Zein and Antropov, 2002).

The one–electron densities of states of strongly corre-
lated systems may display both renormalized quasiparti-
cles and atomic–like states simultaneously (Georges and
Kotliar, 1992; Zhang et al., 1993). To treat them one
needs a technique which is able to treat quasi-particle
bands and Hubbard bands on the same footing, and
which is able to interpolate between atomic and band lim-
its. Dynamical mean–field theory (Georges et al., 1996)
is the simplest approach which captures these features;
it has been extensively developed to study model Hamil-
tonians. Fig. 2 shows the development of the spectrum
while increasing the strength of Coulomb interaction U
as obtained by DMFT solution of the Hubbard model.
It illustrates the necessity to go beyond static mean–field
treatments in the situations when the on–site Hubbard
U becomes comparable with the bandwidth W .

Model Hamiltonian based DMFT methods have suc-
cessfully described regimes U/W >∼ 1. However
to describe strongly correlated materials we need to
incorporate realistic electronic structure because the
low–temperature physics of systems near localization–
delocalization crossover is non–universal, system specific,
and very sensitive to the lattice structure and orbital de-
generacy which is unique to each compound. We believe
that incorporating this information into the many–body
treatment of this system is a necessary first step before
more general lessons about strong–correlation phenom-
ena can be drawn. In this respect, we recall that DFT
in its common approximations, such as LDA or GGA,
brings a system specific description into calculations. De-
spite the great success of DFT for studying weakly cor-
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FIG. 2 Local spectral density at T = 0, for several values of
U , obtained by the iterated perturbation theory approxima-
tion (from (Zhang et al., 1993)).

related solids, it has not been able thus far to address
strongly–correlated phenomena. So, we see that both
density functional based and many–body model Hamil-
tonian approaches are to a large extent complementary to
each other. One–electron Hamiltonians, which are nec-
essarily generated within density functional approaches
(i.e. the hopping terms), can be used as input for more
challenging many–body calculations. This path has been
undertaken in a first paper of Anisimov et al. (Anisi-
mov et al., 1997a) which introduced the LDA+DMFT
method of electronic structure for strongly–correlated
systems and applied it to the photoemission spectrum
of La1−xSrxTiO3. Near the Mott transition, this sys-
tem shows a number of features incompatible with the
one–electron description (Fujimori et al., 1992a). The
electronic structure of Fe has been shown to be in better
agreement with experiment within DMFT in compari-
son with LDA (Lichtenstein and Katsnelson, 1997, 1998).
The photoemission spectrum near the Mott transition in
V2O3 has been studied (Held et al., 2001a), as well as
issues connected to the finite temperature magnetism of
Fe and Ni were explored (Lichtenstein et al., 2001).

Despite these successful developments, we also would
like to emphasize a more ambitious goal: to build a
general method which treats all bands and all electrons
on the same footing, determines both hoppings and in-
teractions internally using a fully self–consistent proce-
dure, and accesses both energetics and spectra of cor-
related materials. These efforts have been undertaken
in a series of papers (Chitra and Kotliar, 2000a, 2001)
which gave us a functional description of the problem in
complete analogy to the density functional theory, and
its self–consistent implementation is illustrated on Plu-
tonium (Savrasov and Kotliar, 2004a; Savrasov et al.,
2001).

To summarize, we see the existence of two roads in
approaching the problem of simulating correlated ma-
terials properties, which we illustrate in Fig. 52. To

describe these efforts in a language understandable by
both electronic structure and many–body communities,
and to stress qualitative differences and great similari-
ties between DMFT and LDA, we start our review with
discussing a general many–body framework based on the
effective action approach to strongly–correlated systems
(Chitra and Kotliar, 2001).

Model Hamiltonian

Correlation Functions, Total

Energies, etc.

Crystal structure +

Atomic positions

Model Hamiltonian

Correlation Functions, Total

Energies, etc.

Crystal structure +

Atomic positions

FIG. 3 Two roads in approaching the problem of simulating
correlated materials properties.

B. The effective action formalism and the constraining field

The effective action formalism, which utilizes func-
tional Legendre transformations and the inversion
method (for a comprehensive review see (Fukuda et al.,
1995), also see online notes), allows us to present a uni-
fied description of many seemingly different approaches
to electronic structure. The idea is very simple, and has
been used in other areas such as quantum field theory and
statistical mechanics of spin systems. We begin with the
free energy of the system written as a functional integral

exp(−F ) =

∫
D[ψ†ψ]e−S . (1)

where F is the free energy, S is the action for a given
Hamiltonian, and ψ is a Grassmann variable (Negele and
Orland, 1998). One then selects an observable quantity
of interest A, and couples a source J to the observable
A. This results in a modified action S + JA, and the
free energy F [J ] is now a functional of the source J . A
Legendre transformation is then used to eliminate the
source in favor of the observable yielding a new functional

Γ[A] = F [J [A]] −AJ [A] (2)

Γ[A] is useful in that the variational derivative with re-
spect to A yields J . We are free to set the source to zero,
and thus the the extremum of Γ[A] gives the free energy
of the system.

The value of the approach is that useful approxima-
tions to the functional Γ[A] can be constructed in prac-
tice using the inversion method, a powerful technique
introduced to derive the TAP (Thouless, Anderson and
Palmer) equations in spin glasses by (Plefka, 1982) and
by (Fukuda, 1988) to investigate chiral symmetry break-
ing in QCD (see also Refs. (Fukuda et al., 1994; Georges
and Yedidia, 1991b; Opper and Winther, 2001; Yedidia,
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2001)). The approach consists in carrying out a system-
atic expansion of the functional Γ[A] to some order in a
parameter or coupling constant λ. The action is written
as S = S0 + λS1 and a systematic expansion is carried
out

Γ[A] = Γ0[A] + λΓ1[A] + ... , (3)

J [A] = J0[A] + λJ1[A] + ... . (4)

A central point is that the system described by S0 +
AJ0 serves as a reference system for the fully interacting
problem. It is a simpler system which by construction,

reproduces the correct value of the observable Â, and
when this observable is properly chosen, other observ-
ables of the system can be obtained perturbatively from
their values in the reference system. Hence S0 + AJ0 is
a simpler system which allows us to think perturbatively
about the physics of a more complex problem. J0[A] is
a central quantity in this formalism and we refer to it as
the “constraining field”. It is the source that needs to
be added to a reference action S0 in order to produce a
given value of the observable A.

It is useful to split the functional in this way

Γ[A] = Γ0[A] + ∆Γ[A] (5)

since Γ0[A] = F0[J0] −AJ0 we could regard

Γ[A, J0] = F0[J0] −AJ0 + ∆Γ[A] (6)

as a functional which is stationary in two variables, the
constraining field J0 and A. The equation δ∆Γ

δA = J0[A],
together with the definition of J0[A] determines the exact
constraining field for the problem.

One can also use the stationarity condition of the
functional (6) to express A as a functional of J0 and
obtain a functional of the constraining field alone (ie.
Γ[J0] = Γ[A[J0], J0]). In the context of the Mott transi-
tion problem, this approach allowed a clear understand-
ing of the analytical properties of the free energy under-
lying the dynamical mean field theory (Kotliar, 1999a).

∆Γ can be a given a coupling constant integration rep-
resentation which is very useful, and will appear in many
guises through this review.

∆Γ[A] =

∫ 1

0

dλ
∂Γ

∂λ
=

∫ 1

0

dλ〈S1〉J(λ),λ (7)

Finally it is useful in many cases to decompose ∆Γ =
EH + Φxc, by isolating the Hartree contribution which
can usually be evaluated explicitly. The success of the
method relies on obtaining good approximations to the
“generalized exchange correlation” functional Φxc.

In the context of spin glasses, the parameter λ is the in-
verse temperature and this approach leads very naturally
to the TAP free energy. In the context of density func-
tional theory, λ is the strength of the electron–electron in-
teractions as parameterized by the charge of the electron,

and it can be used to present a very transparent deriva-
tion of the density functional approach (Argaman and
Makov, 2000; Chitra and Kotliar, 2000a; Fukuda et al.,
1994; Georges, 2002; Savrasov and Kotliar, 2004b; Va-
liev and Fernando, 1997). The central point is that the
choice of observable, and the choice of reference system
(i.e. the choice of S0 which determines J0) determine the
structure of the (static or dynamic ) mean field theory to
be used.

Notice that above we coupled a source linearly to the
system of interest for the purpose of carrying out a Leg-
endre transformation. It should be noted that one is free
to add terms which contain powers higher than one in the
source in order to modify the stability conditions of the
functional without changing the properties of the saddle
points. This freedom has been used to obtain function-
als with better stability properties (Chitra and Kotliar,
2001).

We now illustrate these abstract considerations on a
very concrete example. To this end we consider the
full many–body Hamiltonian describing electrons mov-
ing in the periodic ionic potential Vext(r) and interact-
ing among themselves according to the Coulomb law:
vC(r− r′) = e2/|r− r′|. This is the formal starting point
of our all–electron first–principles calculation. So, the
“theory of everything” is summarized in the Hamiltonian

H =
∑

σ

∫
drψ+

σ (r)[−▽2 + Vext(r) − µ]ψσ(r) (8)

+
1

2

∑

σσ′

∫
drdr′ψ+

σ (r)ψ+
σ′ (r

′)vC(r − r′)ψσ′ (r′)ψσ(r).

Atomic Rydberg units, h̄ = 1,me = 1/2, are used
throughout. Using the functional integral formulation
in the imaginary time–frequency domain it is translated
into the Euclidean action S

S =

∫
dxψ+(x)∂τψ(x) +

∫
dτH(τ), (9)

where x = (rτσ). We will ignore relativistic effects in
this action for simplicity. In addition the position of the
atoms is taken to be fixed and we ignore the electron–
phonon interaction. We refer the reader to several papers
addressing that issue (Freericks et al., 1993; Millis et al.,
1996a).

The effective action functional approach (Chitra and
Kotliar, 2001) allows one to obtain the free energy F
of a solid from a functional Γ evaluated at its station-
ary point. The main question is the choice of the func-
tional variable which is to be extremized. This question
is highly non–trivial because the exact form of the func-
tional is unknown and the usefulness of the approach de-
pends on our ability to construct good approximations to
it, which in turn depends on the choice of variables. At
least two choices are very well–known in the literature:
the exact Green’s function as a variable which gives rise
to the Baym–Kadanoff (BK) theory (Baym, 1962; Baym
and Kadanoff, 1961) and the density as a variable which
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gives rise to the density functional theory. We review
both approaches using an effective action point of view
in order to highlight similarities and differences with the
spectral density functional methods which will be pre-
sented on the same footing in Section II.

1. Density functional theory

Density functional theory in the Kohn–Sham formu-
lation is one of the basic tools for studying weakly–
interacting electronic systems and is widely used by the
electronic structure community. We will review it us-
ing the effective action approach, which was introduced
in this context by Fukuda (Argaman and Makov, 2000;
Fukuda et al., 1994; Valiev and Fernando, 1997).
• Choice of variables. The density of electrons ρ(r) is

the central quantity of DFT and it is used as a physical
variable in derivation of DFT functional.
• Construction of exact functional. To construct

the DFT functional we probe the system with a time–
dependent source field J(x). This modifies the action of
the system (9) as follows

S′[J ] = S +

∫
dxJ(x)ψ+(x)ψ(x). (10)

The partition function Z becomes a functional of the
auxiliary source field J

Z[J ] = exp(−F [J ]) =

∫
D[ψ†ψ]e−S′[J]. (11)

The effective action for the density, i.e., the density func-
tional, is obtained as the Legendre transform of F with
respect to ρ(x)

ΓDFT [ρ] = F [J ] − Tr (Jρ) , (12)

where trace Tr stands for

Tr(Jρ) =

∫
dxJ(x)ρ(x) = T

∑

iω

∫
drJ(r, iω)ρ(r, iω).

(13)
From this point forward, we shall restrict the source to
be time independent because we will only be construct-
ing the standard DFT. If the time dependence where
retained, one could formulate time–dependent density
functional theory (TDFT). The density appears as the
variational derivative of the free energy with respect to
the source

ρ(x) =
δF

δJ(x)
. (14)

• The constraining field in DFT. We shall demonstrate
below that, in the context of DFT, the constraining field
is the sum of the well known exchange–correlation poten-
tial and the Hartree potential Vxc + VH , and we refer to
this quantity as Vint. This is the potential which must

be added to the non–interacting Hamiltonian in order to
yield the exact density of the full Hamiltonian. Mathe-
matically, Vint is a functional of the density which solves
the equation

ρ(r) = T
∑

iω

〈r
∣∣[iω + µ+ ∇2 − Vext(r) − Vint(r)]

−1
∣∣ r〉eiω0+

.

(15)
The Kohn–Sham equation gives rise to a reference sys-

tem of non–interacting particles, the so called Kohn–
Sham orbitals ψkj which produce the interacting density

[−∇2 + VKS(r)]ψkj(r) = ǫkjψkj(r), (16)

ρ(r) =
∑

kj

fkjψ
∗
kj(r)ψkj(r). (17)

Here the Kohn–Sham potential is VKS = Vext + Vint,
ǫkj, ψkj(r) are the Kohn–Sham energy bands and wave
functions, k is a wave vector which runs over the first
Brillouin zone, j is band index, and fkj = 1/[exp(ǫkj −
µ)/T + 1] is the Fermi function.
• Kohn–Sham Green’s function. Alternatively, the

electron density can be obtained with the help of the
Kohn–Sham Green’s function, given by

G−1
KS(r, r′, iω) = G−1

0 (r, r′, iω) − Vint(r)δ(r − r′), (18)

where G0 is the non–interacting Green’s function

G−1
0 (r, r′, iω) = δ(r − r′)[iω + µ+ ∇2 − Vext(r)], (19)

and the density can then be computed from

ρ(r) = T
∑

iω

GKS(r, r, iω)eiω0+. (20)

The Kohn–Sham Green’s function is defined in the en-
tire space, where Vint(r) is adjusted in such a way
that the density of the system ρ(r) can be found from
GKS(r, r′, iω). It can also be expressed in terms of the
Kohn–Sham particles in the following way

GKS(r, r′, iω) =
∑

kj

ψkj(r)ψ
∗
kj(r

′)

iω + µ− ǫkj
. (21)

• Kohn–Sham decomposition. Now we come to the
problem of writing exact and approximate expressions for
the functional. The strategy consists in performing an
expansion of the functional in powers of electron charge
(Chitra and Kotliar, 2001; Fukuda et al., 1994; Georges,
2002; Georges and Yedidia, 1991a; Plefka, 1982; Valiev
and Fernando, 1997). The Kohn–Sham decomposition
consists of splitting the functional into the zeroth order
term and the remainder.

ΓDFT (ρ) = ΓDFT (ρ, e2 = 0) + ∆ΓDFT (ρ). (22)

This is equivalent to what Kohn and Sham did in their
original work. In the first term, e2 = 0 only for the
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electron–electron interactions, and not for the interaction
of the electron and the external potential. The first term
consists of the kinetic energy of the Kohn–Sham particles
and the external potential. The constraining field J0 (see
Eq. (4)) is Vint since it generates the term that needs to
be added to the non–interacting action in order to get
the exact density. Furthermore, functional integration of
the Eq. (11) gives F [Vint] = −Tr ln[G−1

0 − Vint] (Negele
and Orland, 1998) and from Eq. (12) it follows that

ΓDFT (ρ, e2 = 0) ≡ KDFT [GKS ] = (23)

−Tr ln(G−1
0 − Vint[GKS ]) − Tr (Vint[GKS ]GKS) .

The remaining part ∆ΓDFT (ρ) is the interaction energy
functional which is decomposed into the Hartree and
exchange–correlation energies in a standard way

∆ΓDFT (ρ) = EH [ρ] + Φxc
DFT [ρ]. (24)

Φxc
DFT [ρ] at zero temperature becomes the standard ex-

change correlation energy in DFT, Exc[ρ].
• Kohn–Sham equations as saddle–point equations.

The density functional ΓDFT (ρ) can be regarded as a
functional which is stationary in two variables Vint and
ρ. Extremization with respect to Vint leads to Eq. (18),
while stationarity with respect to ρ gives Vint = δ∆Γ/δρ,
or equivalently,

VKS [ρ](r) = Vext(r) + Vint[ρ](r)

= Vext(r) + VH [ρ](r) + Vxc[ρ](r), (25)

where Vxc(r) is the exchange–correlation potential given
by

Vxc(r) ≡
δΦxc

DFT

δρ(r)
. (26)

Equations (25) and (26) along with Eqs. (20) and (18)
or, equivalently, (16) and (17) form the system of equa-
tions of the density functional theory. It should be noted
that the Kohn-Sham equations give the true minimum of
ΓDFT (ρ), and not only the saddle point.
• Exact representation for Φxc

DFT . The explicit form
of the interaction functional Φxc

DFT [ρ] is not available.
However, it may be defined by a power series expansion
which can be constructed order by order using the in-
version method. The latter can be given, albeit compli-
cated, a diagrammatic interpretation. Alternatively, an
expression for it involving integration by a coupling con-
stant λe2 can be obtained using the Harris–Jones formula
(Georges, 2002; Gunnarsson and Lundqvist, 1976; Har-
ris and Jones, 1974; Langreth and Perdew, 1977). One
considers ΓDFT [ρ, λ] at an arbitrary interaction λ and
expresses it as

ΓDFT [ρ, e2] = ΓDFT [ρ, 0] +

∫ 1

0

dλ
∂ΓDFT [ρ, λ]

∂λ
. (27)

Here the first term is simply KDFT [GKS ] as given by
(23) which does not depend on λ. The second part is

thus the unknown functional Φxc
DFT [ρ]. The derivative

with respect to the coupling constant in (27) is given by
the average 〈ψ+(x)ψ+(x′)ψ(x′)ψ(x)〉 = Πλ(x, x′, iω)+
〈ψ+(x)ψ(x)〉〈ψ+(x′)ψ(x′)〉 where Πλ(x, x′) is the
density–density correlation function at a given interac-
tion strength λ computed in the presence of a source
which is λ dependent and chosen so that the density of
the system was ρ. Since 〈ψ+(x)ψ(x)〉 = ρ(x), one can
obtain

ΦDFT [ρ] = EH [ρ] +
∑

iω

∫
d3rd3r′

∫ 1

0

dλ
Πλ(r, r′, iω)

|r − r′| .

(28)
This expression has been used to construct more ac-

curate exchange correlation functionals (Dobson et al.,
1997).
• Approximations. Since Φxc

DFT [ρ] is not known ex-
plicitly some approximations are needed. The LDA as-
sumes

Φxc
DFT [ρ] =

∫
ρ(r)ǫxc[ρ(r)]dr, (29)

where ǫxc[ρ(r)] is the exchange–correlation energy of
the uniform electron gas, which is easily parameterized.
Veff is given as an explicit function of the local den-
sity. In practice one frequently uses the analytical for-
mulae (von Barth and Hedin, 1972; Gunnarsson et al.,
1976; Moruzzi et al., 1978; Perdew and Yue, 1992; Vosko
et al., 1980). The idea here is to fit a functional form
to quantum Monte Carlo (QMC) calculations (Ceperley
and Alder, 1980). Gradient corrections to the LDA have
been worked out by Perdew and coworkers (Perdew et al.,
1996). They are also frequently used in LDA calculations.
• Evaluation of the total energy. At the saddle point,

the density functional ΓDFT delivers the total free energy
of the system

F = Tr lnGKS − Tr (Vintρ) +EH [ρ] + Φxc
DFT [ρ], (30)

where the trace in the second term runs only over spatial
coordinates and not over imaginary time. If temperature
goes to zero, the entropy contribution vanishes and the
total energy formulae is recovered

E = −Tr(∇2GKS)+Tr (Vextρ)+EH [ρ]+Exc
DFT [ρ]. (31)

• Assessment of the approach. From a conceptual
point of view, the density functional approach is radi-
cally different from the Green’s function theory (See be-
low). The Kohn–Sham equations (16), (17) describe the
Kohn–Sham quasiparticles which are poles of GKS and
are not rigorously identifiable with one–electron excita-
tions. This is very different from the Dyson equation
(see below Eq. (41)) which determines the Green’s func-
tion G, which has poles at the observable one–electron
excitations. In principle the Kohn–Sham orbitals are a
technical tool for generating the total energy as they al-
leviate the kinetic energy problem. They are however
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not a necessary element of the approach as DFT can
be formulated without introducing the Kohn-Sham or-
bitals. In practice, they are also used as a first step
in perturbative calculations of the one–electron Green’s
function in powers of screened Coulomb interaction, as
e.g. the GW method. Both the LDA and GW meth-
ods are very successful in many materials for which the
standard model of solids works. However, in correlated
electron system this is not always the case. Our view
is that this situation cannot be remedied by either us-
ing more complicated exchange– correlation functionals
in density functional theory or adding a finite number
of diagrams in perturbation theory. As discussed above,
the spectra of strongly–correlated electron systems have
both correlated quasiparticle bands and Hubbard bands
which have no analog in one–electron theory.

The density functional theory can also be formulated
for the model Hamiltonians, the concept of density being
replaced by the diagonal part of the density matrix in a
site representation. It was tested in the context of the
Hubbard model by (Hess and Serene, 1999; Lima et al.,
2002; Schonhammer et al., 1995).

2. Baym–Kadanoff functional

The Baym–Kadanoff functional (Baym, 1962; Baym
and Kadanoff, 1961) gives the one–particle Green’s func-
tion and the total free energy at its stationary point.
It has been derived in many papers starting from (de-
Dominicis and Martin, 1964a,b) and (Cornwall et al.,
1974) (see also (Chitra and Kotliar, 2000a, 2001; Georges,
2004a,b)) using the effective action formalism.
• Choice of variable. The one–electron Green’s func-

tion G(x, x′) = −〈Tτψ(x)ψ+(x′)〉, whose poles determine
the exact spectrum of one–electron excitations, is at the
center of interest in this method and it is chosen to be
the functional variable.
• Construction of exact functional. As it has been em-

phasized (Chitra and Kotliar, 2001), the Baym–Kadanoff
functional can be obtained by the Legendre transform
of the action. The electronic Green’s function of a sys-
tem can be obtained by probing the system by a source
field and monitoring the response. To obtain ΓBK [G] we
probe the system with a time–dependent two–variable
source field J(x, x′). Introduction of the source J(x, x′)
modifies the action of the system (9) in the following way

S′[J ] = S +

∫
dxdx′J(x, x′)ψ+(x)ψ(x′). (32)

The average of the operator ψ+(x)ψ(x′) probes the
Green’s function. The partition function Z, or equiva-
lently the free energy of the system F, becomes a func-
tional of the auxiliary source field

Z[J ] = exp(−F [J ]) =

∫
D[ψ+ψ]e−S′[J]. (33)

The effective action for the Green’s function, i.e., the
Baym–Kadanoff functional, is obtained as the Legendre
transform of F with respect to G(x, x′)

ΓBK [G] = F [J ] − Tr(JG), (34)

where we use the compact notation Tr(JG) for the inte-
grals

Tr(JG) =

∫
dxdx′J(x, x′)G(x′, x). (35)

Using the condition

G(x, x′) =
δF

δJ(x′ , x)
, (36)

to eliminate J in (34) in favor of the Green’s function,
we finally obtain the functional of the Green’s function
alone.
• Constraining field in the Baym–Kadanoff theory.

In the context of the Baym–Kadanoff approach, the
constraining field is the familiar electron self–energy
Σint(r, r

′, iω). This is the function which needs to be
added to the inverse of the non–interacting Green’s func-
tion to produce the inverse of the exact Green’s function,
i.e.,

G−1(r, r′, iω) = G−1
0 (r, r′, iω) − Σint(r, r

′, iω). (37)

Here G0 is the non–interacting Green’s function given
by Eq. (19). Also, if the Hartree potential is writ-
ten explicitly, the self–energy can be split into the
Hartree, VH(r) =

∫
vC(r− r′)ρ(r′)dr′ and the exchange–

correlation part, Σxc(r, r
′, iω).

Ultimately, having fixed G0 the self–energy becomes a
functional of G, i.e. Σint[G].
• Kohn–Sham decomposition. We now come to the

problem of writing various contributions to the Baym–
Kadanoff functional. This development parallels exactly
what was done in the DFT case. The strategy consists
of performing an expansion of the functional ΓBK [G] in
powers of the charge of electron entering the Coulomb
interaction term at fixed G (Chitra and Kotliar, 2001;
Fukuda et al., 1994; Georges, 2002, 2004a,b; Georges and
Yedidia, 1991a; Plefka, 1982; Valiev and Fernando, 1997).
The zeroth order term is denoted K, and the sum of the
remaining terms Φ, i.e.

ΓBK [G] = KBK [G] + ΦBK [G]. (38)

K is the kinetic part of the action plus the energy as-
sociated with the external potential Vext. In the Baym–
Kadanoff theory this term has the form

KBK [G] = ΓBK [G, e2 = 0] = (39)

− Tr ln(G−1
0 − Σint[G]) − Tr (Σint[G]G) .

• Saddle–point equations. The functional (38) can
again be regarded as a functional stationary in two vari-
ables, G and constraining field J0, which is Σint in this
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case. Extremizing with respect to Σint leads to the
Eq. (37), while extremizing with respect to G gives the
definition of the interaction part of the electron self–
energy

Σint(r, r
′, iω) =

δΦBK [G]

δG(r′, r, iω)
. (40)

Using the definition forG0 in Eq. (19), the Dyson equa-
tion (37) can be written in the following way

[∇2 − Vext(r) + iω + µ]G(r, r′, iω) − (41)∫
dr′′Σint( r, r′′, iω)G(r′′, r′, iω) = δ(r − r′).

The Eqs. (40) and (41) constitute a system of equations
for G in the Baym–Kadanoff theory.
• Exact representation for Φ. Unfortunately, the in-

teraction energy functional ΦBK [G] is unknown. One
can prove that it can be represented as a sum of all
two–particle irreducible diagrams constructed from the
Green’s function G and the bare Coulomb interaction.
In practice, we almost always can separate the Hartree
diagram from the remaining part the so called exchange–
correlation contribution

ΦBK [G] = EH [ρ] + Φxc
BK [G]. (42)

• Evaluation of the total energy. At the stationarity
point, ΓBK [G] delivers the free energy F of the system

F = Tr lnG− Tr (ΣintG) +EH [ρ] + Φxc
BK [G], (43)

where the first two terms are interpreted as the kinetic
energy and the energy related to the external potential,
while the last two terms correspond to the interaction
part of the free energy. If temperature goes to zero, the
entropy part vanishes and the total energy formula is
recovered

Etot = −Tr(∇2G) + Tr(VextG) +EH [ρ] +Exc
BK [G], (44)

where Exc
BK = 1/2Tr (ΣxcG) (Fetter and Walecka, 1971)

(See also online notes).
• Functional of the constraining field, self-energy func-

tional approach. Expressing the functional in Eq. (38)
in terms of the constraining field, (in this case Σ rather
than the observableG) recovers the self-energy functional
approach proposed by Potthoff (Potthoff, 2003a,b, 2005).

Γ[Σ] = −Tr ln[G0
−1 − Σ] + Y [Σ] (45)

Y [Σ] is the Legendre transform with respect to G of the
Baym Kadanoff functional ΦBK [G]. While explicit repre-
sentations of the Baym Kadanoff functional Φ are avail-
able for example as a sum of skeleton graphs, no equiva-
lent expressions have yet been obtained for Y [Σ].
• Assessment of approach. The main advantage

of the Baym–Kadanoff approach is that it delivers the
full spectrum of one–electron excitations in addition to

the ground state properties. Unfortunately, the sum-
mation of all diagrams cannot be performed explic-
itly and one has to resort to partial sets of diagrams,
such as the famous GW approximation (Hedin, 1965)
which has only been useful in the weak–coupling situ-
ations.Resummation of diagrams to infinite order guided
by the concept of locality, which is the basis of the Dy-
namical Mean Field Approximation, can be formulated
neatly as truncations of the Baym Kadanoff functional
as will be shown in the following sections.

3. Formulation in terms of the screened interaction

It is sometimes useful to think of Coulomb interaction
as a screened interaction mediated by a Bose field. This
allows one to define different types of approximations.
In this context, using the locality approximation for irre-
ducible quantities gives rise to the so–called Extended–
DMFT, as opposed to the usual DMFT. Alternatively,
the lowest order Hartree–Fock approximation in this for-
mulation leads to the famous GW approximation.

An independent variable of the functional is the
dynamically screened Coulomb interaction W (r, r′, iω)
(Almbladh et al., 1999) see also (Chitra and Kotliar,
2001). In the Baym–Kadanoff theory, this is done by
introducing an auxiliary Bose variable coupled to the
density, which transforms the original problem into a
problem of electrons interacting with the Bose field. The
screened interaction W is the connected correlation func-
tion of the Bose field.

By applying the Hubbard–Stratonovich transforma-
tion to the action in Eq. (9) to decouple the quartic
Coulomb interaction, one arrives at the following action

S =

∫
dxψ+(x)

(
∂τ − µ−▽2 + Vext(x) + VH(x)

)
ψ(x)

+
1

2

∫
dxdx′φ(x)v−1

C (x− x′)φ(x′)

−ig
∫
dxφ(x)

(
ψ+(x)ψ(x) − 〈ψ+(x)ψ(x)〉S

)
(46)

where φ(x) is a Hubbard–Stratonovich field, VH(x) is the
Hartree potential, g is a coupling constant to be set equal
to one at the end of the calculation and the brackets
denote the average with the action S. In Eq. (46), we
omitted the Hartree Coulomb energy which appears as
an additive constant, but it will be restored in the full
free energy functional. The Bose field, in this formulation
has no expectation value (since it couples to the “normal
order” term).
• Baym–Kadanoff functional of G and W . Now we

have a system of interacting fermionic and bosonic fields.
By introducing two source fields J and K we probe the
electron Green’s function G defined earlier and the boson
Green’s functionW = 〈Tτφ(x)φ(x′)〉 to be identified with
the screened Coulomb interaction. The functional is thus
constructed by supplementing the action Eq. (46) by the
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following term

S′[J,K] = S +

∫
dxdx′J(x, x′)ψ†(x)ψ(x′)

+

∫
dxdx′K(x, x′)φ(x)φ(x′). (47)

The normal ordering of the interaction ensures that
〈φ(x)〉 = 0. The constraining fields, which appear as the
zeroth order terms in expanding J and K (see Eq. (4)),
are denoted by Σint and Π, respectively. The zeroth or-
der free energy is then

F0[Σint,Π] = −Tr
(
G−1

0 − Σint

)
+

1

2
Tr
(
v−1

C − Π
)
, (48)

therefore the Baym–Kadanoff functional becomes

ΓBK [G,W ] = −Tr ln
(
G−1

0 − Σint

)
− Tr (ΣintG) (49)

+
1

2
Tr ln

(
v−1

C − Π
)

+
1

2
Tr (ΠW ) + ΦBK [G,W ].

Again, ΦBK [G,W ] can be split into Hartree contribution
and the rest

ΦBK [G,W ] = EH [ρ] + ΨBK [G,W ]. (50)

The entire theory is viewed as the functional of both
G and W. One of the strengths of such formulation is
that there is a very simple diagrammatic interpretation
for ΨBK [G,W ]. It is given as the sum of all two–particle
irreducible diagrams constructed from G and W (Corn-
wall et al., 1974) with the exclusion of the Hartree term.
The latter EH [ρ], is evaluated with the bare Coulomb
interaction.
• Saddle point equations. Stationarity with respect to

G and Σint gives rise to Eqs. (40) and (37), respectively.
An additional stationarity condition δΓBK/δW = 0 leads
to equation for the screened Coulomb interaction W

W−1(r, r′, iω) = v−1
C (r − r′) − Π(r, r′, iω), (51)

where function Π(r, r′, iω) = −2δΨBK/δW (r′, r, iω) is
the susceptibility of the interacting system.

4. Approximations

The functional formulation in terms of a “screened”
interaction W allows one to formulate numerous ap-
proximations to the many–body problem. The sim-
plest approximation consists in keeping the lowest or-
der Hartree–Fock graph in the functional ΨBK [G,W ].
This is the celebrated GW approximation (Hedin, 1965;
Hedin and Lundquist, 1969) (see Fig. 4). To treat strong
correlations one has to introduce dynamical mean field
ideas, which amount to a restriction of the functionals
ΦBK ,ΨBK to the local part of the Greens function (see
section II). It is also natural to restrict the correlation
function of the Bose field W , which corresponds to in-
cluding information about the four point function of the

Fermion field in the self-consistency condition, and goes
under the name of the Extended Dynamical Mean–Field
Theory (EDMFT) (Bray and Moore, 1980; Chitra and
Kotliar, 2001; Kajueter, 1996a; Kajueter and Kotliar,
1996a; Sachdev and Ye, 1993; Sengupta and Georges,
1995; Si and Smith, 1996; Smith and Si, 2000).

This methodology has been useful in incorporating ef-
fects of the long range Coulomb interactions (Chitra and
Kotliar, 2000b) as well as in the study of heavy fermion
quantum critical points, (Si et. al. et al., 1999; Si et al.,
2001) and quantum spin glasses (Bray and Moore, 1980;
Sachdev and Ye, 1993; Sengupta and Georges, 1995)

More explicitly, in order to zero the off–diagonal
Green’s functions (see Eq. (54)) we introduce a set of
localized orbitals ΦRα(r) and express G and W through
an expansion in those orbitals.

G(r, r′, iω) =
∑

RR′αβ

GRα,R′β(iω)Φ∗
Rα(r)ΦR′β(r′), (52)

W (r, r′, iω) =
∑

R1α,R2β,R3γ,R4δ

WR1α,R2β,R3γ,R4δ(iω)×

Φ∗
R1α(r)Φ∗

R2β(r′)ΦR3γ(r′)ΦR4δ(r). (53)

The approximate EDMFT functional is obtained by
restriction of the correlation part of the Baym–Kadanoff
functional ΨBK to the diagonal parts of the G and W
matrices:

ΨEDMFT = ΨBK [GRR,WRRRR] (54)

The EDMFT graphs are shown in Fig. 4.
It is straightforward to combine the GW and EDMFT

approximations by keeping the nonlocal part of the ex-
change graphs as well as the local parts of the correlation
graphs (see Fig. 4).

The GW approximation derived from the Baym–
Kadanoff functional is a fully self–consistent approxi-
mation which involves all electrons. In practice some-
times two approximations are used: a) in pseudopotential
treatments only the self–energy of the valence and con-
duction electrons are considered and b) instead of eval-
uating Π and Σ self–consistently with G and W , one
does a “one–shot” or one iteration approximation where
Σ and Π are evaluated with G0, the bare Green’s func-
tion which is sometimes taken as the LDA Kohn–Sham
Green’s function, i.e., Σ ≈ Σ[G0,W0] and Π = Π[G0].
The validity of these approximations and importance of
the self–consistency for the spectra evaluation was ex-
plored in (Arnaud and Alouani, 2000; Holm, 1999; Holm
and von Barth, 1998; Hybertsen and Louie, 1985; Tiago
et al., 2003; Wei Ku, 2002). The same issues arise in the
context of GW+EDMFT (Sun and Kotliar, 2004).

At this point, the GW+EDMFT has been fully imple-
mented on the one–band model Hamiltonian level (Sun
and Kotliar, 2002, 2004). A combination of GW and
LDA+DMFT was applied to Nickel, where W in the
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ΦGW :
wiji j

ΦEDMFT :
wiii i + + ...
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wiji j + + ...

i i
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FIG. 4 The Baym–Kadanoff functional Φ for various approx-
imations for electron–boson action Eq. (46). In all cases, the
bare Hartree diagrams have been omitted. The first line shows
the famous GW approximation where only the lowest order
Hartree and Fock skeleton diagrams are kept. The second
line corresponds to Extended–Dynamical Mean–Field Theory
that sums up all the local graphs. Three dots represent all
the remaining skeleton graphs which include local G and local
W only. The combination of GW and EDMFT is straightfor-
ward. All lowest order Fock graphs are included (local and
nonlocal). The higher order graphs are restricted to one site
only (adapted from (Sun and Kotliar, 2002, 2004)).

EDMFT graphs is approximated by the Hubbard U , in
Refs. (Biermann et al., 2003) and (Aryasetiawan et al.,
2004a; Biermann et al., 2004).

5. Model Hamiltonians and first principles approaches

In this section we connect the previous sections which
were based on real r-space with the notation to be used
later in the review which use local basis sets. We perform
a transformation to a more general basis set of possibly
non–orthogonal orbitals χξ(r) which can be used to rep-
resent all the relevant quantities in our calculation. As
we wish to utilize sophisticated basis sets of modern elec-
tronic structure calculations, we will sometimes waive the
orthogonality condition and introduce the overlap matrix

Oξξ′ = 〈χξ|χξ′〉. (55)

The field operator ψ(x) becomes

ψ(x) =
∑

ξ

cξ(τ)χξ(r), (56)

where the coefficients cξ are new operators acting in the
orbital space {χξ}. The Green’s function is represented
as

G(r, r′, τ) =
∑

ξξ′

χξ(r)Gξξ′ (τ)χ∗
ξ′ (r′), (57)

and the free energy functional ΓBK as well as the in-
teraction energy Φ are now considered as functionals of
the coefficients Gξξ′ either on the imaginary time axis,

Gξξ′(τ) or imaginary frequency axis Gξξ′(iω), which can
be analytically continued to real times and energies.

In most cases we would like to interpret the orbital
space {χξ} as a general tight–binding basis set where
the index ξ combines the angular momentum index lm,
and the unit cell index R, i.e., χξ(r) = χlm(r − R) =
χα(r − R). Note that we can add additional degrees of
freedom to the index α such as multiple kappa basis sets
of the linear muffin–tin orbital based methods (Andersen,
1975; Andersen and Jepsen, 1984; Blöechl, 1989; Methfes-
sel, 1988; Savrasov, 1992, 1996; Weyrich, 1988). If more
than one atom per unit cell is considered, index α should
be supplemented by the atomic basis position within the
unit cell, which is currently omitted for simplicity. For
spin unrestricted calculations α accumulates the spin in-
dex σ and the orbital space is extended to account for
the eigenvectors of the Pauli matrix.

It is useful to write down the Hamiltonian containing
the infinite space of the orbitals

Ĥ =
∑

ξξ′

h
(0)
ξξ′ [c

+
ξ cξ′+h.c.]+

1

2

∑

ξξ′ξ′′ξ′′′

Vξξ′ξ′′ξ′′′c+ξ c
+
ξ′cξ′′cξ′′′ ,

(58)

where h
(0)
ξξ′ = 〈χξ|−∇2 +Vext|χξ′〉 is the non–interacting

Hamiltonian and the interaction matrix element is
Vξξ′ξ′′ξ′′′ = 〈χξ(r)χξ′ (r′)|vC |χξ′′(r′)χξ′′′(r)〉. Using the
tight–binding interpretation this Hamiltonian becomes

Ĥ =
∑

αβ

∑

RR′

h
(0)
αRβR′

(
c+αRcβR′ + h.c.

)

+
1

2

∑

αβγδ

∑

RR′R′′R′′′

V RR′R′′R′′′

αβγδ c+αRc
+
βR′cδR′′′cγR′′ , (59)

where the diagonal elements h
(0)
αRβR ≡ h

(0)
αβ can be inter-

preted as the generalized atomic levels matrix ǫ
(0)
αβ (which

does not depend on R due to periodicity) and the off–

diagonal elements h
(0)
αRβR′(1 − δRR′) as the generalized

hopping integrals matrix t
(0)
αRβR′ .

6. Model Hamiltonians

Strongly correlated electron systems have been tradi-
tionally described using model Hamiltonians. These are
simplified Hamiltonians which have the form of Eq. (59)
but with a reduced number of band indices and some-
times assuming a restricted form of the Coulomb inter-
action which is taken to be very short ranged. The spirit
of the approach is to describe a reduced number of de-
grees of freedom which are active in a restricted energy
range to reduce the complexity of a problem and increase
the accuracy of the treatment. Famous examples are the
Hubbard model (one band and multiband) and the An-
derson lattice model.

The form of the model Hamiltonian is often guessed on
physical grounds and its parameters chosen to fit a set
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of experiments. In principle a more explicit construction
can be carried out using tools such as screening canon-
ical transformations first used by Bohm and Pines to
eliminate the long range part of the Coulomb interaction
(Bohm and Pines, 1951, 1952, 1953), or a Wilsonian par-
tial elimination (or integrating out) of the high–energy
degrees of freedom (Wilson, 1975). However, these pro-
cedures are rarely used in practice.

One starts from an action describing a large number
of degrees of freedom (site and orbital omitted)

S[c+c] =

∫
dx
(
c+O∂τ c+H [c+c]

)
, (60)

where the orbital overlapOαRβR′ appears and the Hamil-
tonian could have the form (59). Second, one divides the
set of operators in the path integral in cH describing the
“high–energy” orbitals which one would like to eliminate,
and cL describing the low–energy orbitals that one would
like to consider explicitly. The high–energy degrees of
freedom are now integrated out. This operation defines
the effective action for the low–energy variables (Wilson,
1983):

1

Zeff
exp(−Seff [c+LcL]) =

1

Z

∫
dc+HdcH exp(−S[c+Hc

+
LcLcH ]).

(61)
The transformation (61) generates retarded interactions
of arbitrarily high order. If we focus on sufficiently low
energies, frequency dependence of the coupling constants
beyond linear order and non–linearities beyond quartic
order can be neglected since they are irrelevant around
a Fermi liquid fixed point (Shankar, 1994). The result-
ing physical problem can then be cast in the form of an
effective model Hamiltonian. Notice however that when
we wish to consider a broad energy range the full fre-
quency dependence of the couplings has to be kept as
demonstrated in an explicit approximate calculation us-
ing the GW method (Aryasetiawan et al., 2004b). The
same ideas can be implemented using canonical transfor-
mations and examples of approximate implementation of
this program are provided by the method of cell perturba-
tion theory (Raimondi et al., 1996) and the generalized
tight-binding method (Ovchinnikov and Sandalov, 1989).

The concepts and the rational underlying the model
Hamiltonian approach are rigorous. There are very few
studies of the form of the Hamiltonians obtained by
screening and elimination of high–energy degrees of free-
dom, and the values of the parameters present in those
Hamiltonians. Notice however that if a form for the
model Hamiltonian is postulated, any technique which
can be used to treat Hamiltonians approximately, can be
also used to perform the elimination (61). A consider-
able amount of effort has been devoted to the evalua-
tions of the screened Coulomb parameter U for a given
material. Note that this value is necessarily connected
to the basis set representation which is used in deriving
the model Hamiltonian. It should be thought as an effec-
tively downfolded Hamiltonian to take into account the

fact that only the interactions at a given energy inter-
val are included in the description of the system. More
generally, one needs to talk about frequency–dependent
interaction W which appears for example in the GW
method. The outlined questions have been addressed in
many previous works (Dederichs et al., 1984; Hybertsen
et al., 1989; Kotani, 2000; McMahan et al., 1988; Springer
and Aryasetiawan, 1998). Probably, one of the most pop-
ular methods here is a constrained density functional
approach formulated with general projection operators
(Dederichs et al., 1984; Meider and Springborg, 1998).
First, one defines the orbitals set which will be used to
define correlated electrons. Second, the on–site density
matrix defined for these orbitals is constrained by intro-
ducing additional constraining fields in the density func-
tional. Evaluating second order derivative of the total
energy with respect to the density matrix should in prin-
ciple give us the access to Us. The problem is how one
subtracts the kinetic energy part which appears in this
formulation of the problem. Gunnarsson (Gunnarsson,
1990) and others (Freeman et al., 1987; McMahan and
Martin, 1988; Norman and Freeman, 1986) have intro-
duced a method which effectively cuts the hybridization
of matrix elements between correlated and uncorrelated
orbitals eliminating the kinetic contribution. This ap-
proach was used by McMahan et al. (McMahan et al.,
1988) in evaluating the Coulomb interaction parameters
in the high–temperature superconductors. An alterna-
tive method has been used by Hybertsen et al. (Hybert-
sen et al., 1989) who performed simultaneous simulations
using the LDA and solution of the model Hamiltonian at
the mean–field level. The total energy under the con-
straint of fixed occupancies was evaluated within both
approaches. The value of U is adjusted to make the two
calculations coincide.

Much work has been done by the group of Anisimov
who have performed evaluations of the Coulomb and
exchange interactions for various systems such as NiO,
MnO, CaCuO2 and so on (Anisimov et al., 1991). In-
terestingly, the values of U deduced for such itinerant
system as Fe can be as large as 6 eV (Anisimov and Gun-
narsson, 1991). This highlights an important problem on
deciding which electrons participate in the screening pro-
cess. As a rule of thumb, one can argue that if we con-
sider the entire d-shell as a correlated set, and allow its
screening by s- and p-electrons, the values of U appear to
be between 5 and 10 eV on average. On the other hand,
in many situations crystal field splitting between t2g and
eg levels allows us to talk about a subset of a given crys-
tal field symmetry (say, t2g), and allowing screening by
another subset (say by eg). This usually leads to much
smaller values of U within range of 1-4 eV.

It is possible to extract the value of U from GW cal-
culations. The simplest way to define the parameter
U = W (ω = 0). There are also attempts to avoid
the double counting inherent in that procedure (Aryase-
tiawan et al., 2004b; Kotani, 2000; Springer and Aryase-
tiawan, 1998; Zein, 2005; Zein and Antropov, 2002). The
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values of U for Ni deduced in this way appeared to be
2.2-3.3 eV which are quite reasonable. At the same time
a strong energy dependence of the interaction has been
pointed out which also addresses an important problem
of treating the full frequency–dependent interaction when
information in a broad energy range is required.

The process of eliminating degrees of freedom with the
approximations described above gives us a physically rig-
orous way of thinking about effective Hamiltonians with
effective parameters which are screened by the degrees of
freedom to be eliminated. Since we neglect retardation
and terms above fourth order, the effective Hamiltonian
would have the same form as (59) where we only change
the meaning of the parameters. It should be regarded as
the effective Hamiltonian that one can use to treat the
relevant degrees of freedom. If the dependence on the
ionic coordinates are kept, it can be used to obtain the
total energy. If the interaction matrix turns out to be
short ranged or has a simple form, this effective Hamil-
tonian could be identified with the Hubbard (Hubbard,
1963) or with the Anderson (Anderson, 1961) Hamilto-
nians.

Finally we comment on the meaning of an ab initio
or a first–principles electronic structure calculation. The
term implies that no empirically adjustable parameters
are needed in order to predict physical properties of com-
pounds, only the structure and the charges of atoms are
used as an input. First–principles does not mean exact or
accurate or computationally inexpensive. If the effective
Hamiltonian is derived (i.e. if the functional integral or
canonical transformation needed to reduce the number
of degrees of freedom is performed by a well–defined pro-
cedure which keeps track of the energy of the integrated
out degrees of freedom as a function of the ionic coor-
dinates) and the consequent Hamiltonian (59) is solved
systematically, then we have a first–principles method.
In practice, the derivation of the effective Hamiltonian
or its solution may be inaccurate or impractical, and in
this case the ab initio method is not very useful. No-
tice that Heff has the form of a “model Hamiltonian”
and very often a dichotomy between model Hamiltonians
and first–principles calculations is made. What makes a
model calculation semi–empirical is the lack of a coherent
derivation of the form of the “model Hamiltonian” and
the corresponding parameters.

II. SPECTRAL DENSITY FUNCTIONAL APPROACH

We see that a great variety of many–body techniques
developed to attack real materials can be viewed from a
unified perspective. The energetics and excitation spec-
trum of the solid is deduced within different degrees of
approximation from the stationary condition of a func-
tional of an observable. The different approaches differ
in the choice of variable for the functional which is to
be extremized. Therefore, the choice of the variable is a
central issue since the exact form of the functional is un-

known and existing approximations entirely rely on the
given variable.

In this review we present arguments that a “good
variable” in the functional description of a strongly–
correlated material is a “local” Green’s function
Gloc(r, r

′, z). This is only a part of the exact electronic
Green’s function, but it can be presently computed with
some degree of accuracy. Thus we would like to formu-
late a functional theory where the local spectral density
is the central quantity to be computed, i.e. to develop
a spectral density functional theory (SDFT). Note that
the notion of locality by itself is arbitrary since we can
probe the Green’s function in a portion of a certain space
such as reciprocal space or real space. These are the
most transparent forms where the local Green’s function
can be defined. We can also probe the Green’s func-
tion in a portion of the Hilbert space like Eq. (57) when
the Green’s function is expanded in some basis set {χξ}.
Here our interest can be associated, e.g, with diagonal
elements of the matrix Gξξ′ .

As we see, locality is a basis set dependent property.
Nevertheless, it is a very useful property because it may
lead to a very economical description of the function.
The choice of the appropriate Hilbert space is therefore
crucial if we would like to find an optimal description of
the system with the accuracy proportional to the com-
putational cost. Therefore we always rely on physical in-
tuition when choosing a particular representation which
should be tailored to a specific physical problem.

A. Functional of local Green’s function

We start from the Hamiltonian of the form (59). One
can view it as the full Hamiltonian written in some com-
plete tight–binding basis set. Alternatively one can re-
gard the starting point (59) as a model Hamiltonian, as
argued in the previous section, if an additional constant
term (which depends on the position of the atoms) is kept
and (59) is carefully derived. This can represent the full
Hamiltonian in the relevant energy range provided that
one neglects higher order interaction terms.

• Choice of variable and construction of the exact func-
tional. The effective action construction of SDFT paral-
lels that given in Introduction. The quantity of interest is
the local (on–site) part of the one–particle Green’s func-
tion. It is generated by adding a local source Jloc,αβ(τ, τ ′)
to the action

S′ = S+
∑

Rαβ

∫
Jloc,Rαβ(τ, τ ′)c+Rα(τ)cRβ(τ ′)dτdτ ′. (62)

The partition function Z, or equivalently the free energy
of the system F , according to (33) becomes a functional
of the auxiliary source field and the local Green’s function
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is given by the variational derivative

δF

δJloc,Rβα(τ ′, τ)
= −

〈
TτcRα(τ)c+Rβ(τ ′)

〉
= Gloc,αβ(τ, τ ′).

(63)
From Eq. (63) one expresses Jloc as a functional of Gloc

to obtain the effective action by the standard procedure

ΓSDFT [Gloc] = F [Jloc] − Tr (JlocGloc) . (64)

The extremum of this functional gives rise to the exact
local spectral function Gloc and the total free energy F .

Below, we will introduce the Kohn–Sham representa-
tion of the spectral density functional ΓSDFT similar to
what was done in the Baym–Kadanoff and density func-
tional theories. A dynamical mean–field approximation
to the functional will be introduced in order to deal with
its interaction counterpart. The theory can be devel-
oped along two alternative paths depending on whether
we stress that it is a truncation of the exact functional
when expanding ΓSDFT in powers of the hopping (atomic
expansion) or in powers of the interaction (expansion
around the band limit). The latter case is the usual
situation encountered in DFT and the Baym–Kadanoff
theory, while the former has only been applied to SDFT
thus far.

1. A non–interacting reference system: bands in a
frequency–dependent potential

• The constraining field in the context of SDFT. In
the context of SDFT, the constraining field is defined
as Mint,αβ(iω). This is the function that one needs to
add to the free Hamiltonian in order to obtain a desired
spectral function:

Gloc,αβ(iω) =
∑

k

(
(iω+µ)Î−ĥ(0)(k)−Mint[Gloc](iω)

)−1

αβ

,

(65)

where Î is a unit matrix, ĥ(0)(k) is the Fourier trans-
form (with respect to R − R′) of the bare one–electron

Hamiltonian h
(0)
αRβR′ entering (59). The assumption that

the equation (65) can be solved to define Mint,αβ(iω)
as a function of Gloc,αβ(iω), is the SDFT version of the
Kohn–Sham representability condition of DFT. For DFT
this has been proved to exist under certain conditions,
(for discussion of this problem see (Gross et al., 1996)).
The SDFT condition has not been yet investigated in
detail, but it seems to be a plausible assumption.
• Significance of the constraining field in SDFT. If

the exact self–energy of the problem is momentum inde-
pendent, then Mint,αβ(iω) coincides with the interaction
part of the self–energy. This statement resembles the ob-
servation in DFT: if the self–energy of a system is mo-
mentum and frequency independent then the self–energy
coincides with the Kohn–Sham potential.

•Analog of the Kohn–Sham Green’s function. Hav-
ing defined Mint,αβ(iω), we can introduce an auxiliary
Green’s function GαRβR′(iω) connected to our new “in-
teracting Kohn–Sham” particles. It is defined in the en-
tire space by the relationship:

G−1
αRβR′ (iω) ≡ G−1

0,αRβR′ (iω) − δRR′Mint,αβ(iω), (66)

where G−1
0 = (iω + µ)Î − ĥ(0)(k) (in Fourier space).

Mint,αβ(iω) was defined so that GαRβR′(iω) coincides
with the on–site Green’s function on a single site and
the Kohn–Sham Green’s function has the property

Gloc,αβ(iω) = δRR′GαRβR′(iω). (67)

Notice that Mint is a functional of Gloc and therefore
G is also a function of Gloc. If this relation can be in-
verted, the functionals that where previously regarded as
functionals of Gloc can be also regarded as functionals of
the Kohn–Sham Green’s function G.
• Exact Kohn–Sham decomposition. We separate the

functional ΓSDFT [Gloc] into the non–interacting con-
tribution (this is the zeroth order term in an expan-
sion in the Coulomb interactions), KSDFT [Gloc], and
the remaining interaction contribution, ΦSDFT [Gloc]:
ΓSDFT [G] = KSDFT [Gloc]+ΦSDFT [Gloc]. With the help
of Mint or equivalently the Kohn–Sham Green’s function
G the non–interacting term in the spectral density func-
tional theory can be represented (compare with (23) and
(39)) as follows

KSDFT [Gloc] = −Tr ln(G−1
0 − δRR′Mint[Gloc])−

Tr (δRR′Mint[Gloc]Gloc) . (68)

Since G is a functional of Gloc, one can also view the
entire spectral density functional ΓSDFT as a functional
of G:

ΓSDFT [G] = −Tr ln(G−1
0 − δRR′Mint[G])−

Tr (Mint[G]G) + ΦSDFT [Gloc[G]], (69)

where the unknown interaction part of the free energy
ΦSDFT [Gloc] is a functional of Gloc and

δGloc,αβ

δGαRβR′

= δRR′ , (70)

according to Eq. (67).
• Exact representation of ΦSDFT . Spectral den-

sity functional theory requires the interaction functional
ΦSDFT [Gloc]. Its explicit form is unavailable. How-
ever we can express it via an introduction of an integral
over the coupling constant λe2 multiplying the two–body
interaction term similar to the density functional the-
ory (Gunnarsson and Lundqvist, 1976; Harris and Jones,
1974) result. Considering ΓSDFT [Gloc, λ] at any interac-
tion λ (which enters vC(r − r′)) we write

ΓSDFT [Gloc, e
2] = ΓSDFT [Gloc, 0]+

∫ 1

0

dλ
∂ΓSDFT [Gloc, λ]

∂λ
.

(71)
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Here the first term is simply the non–interacting part
KSDFT [Gloc] as given by (68) which does not depend on
λ. The second part is thus the unknown functional (see
Eq. (7))

ΦSDFT [Gloc] =

∫ 1

0

dλ
∂ΓSDFT [Gloc, λ]

∂λ
(72)

=
1

2

∫ 1

0

dλ
∑

RR′R′′R′′′

∑

αβγδ

V RR′R′′R′′′

αβγδ 〈c+αRc
+
βR′cγR′′cδR′′′ 〉λ.

One can also further separate ΦSDFT [Gloc] into
EH [Gloc] + Φxc

SDFT [Gloc], where the Hartree term is a
functional of the density only.
• Exact functional as a function of two variables.

The SDFT can also be viewed as a functional of two
independent variables (Kotliar and Savrasov, 2001).
This is equivalent to what is known as Harris–Foulkes–
Methfessel functional within DFT (Foulkes, 1989; Harris,
1985; Methfessel, 1995)

ΓSDFT [Gloc,Mint] = −
∑

k

Tr ln[(iω + µ)Î − ĥ(0)(k) −Mint(iω)] − Tr (MintGloc) + ΦSDFT [Gloc]. (73)

Eq. (65) is a saddle point of the functional (73) defining
Mint = Mint[Gloc] and should be back–substituted to
obtain ΓSDFT [Gloc].
• Saddle point equations and their significance. Dif-

ferentiating the functional (73), one obtains a functional
equation for Gloc

Mint[Gloc] =
δΦSDFT [Gloc]

δGloc
. (74)

Combined with the definition of the constraining field
(65) it gives the standard form of the DMFT equations.
Note that thus far these are exact equations and the con-
straining field Mint(iω) is by definition “local”, i.e. mo-
mentum independent.

2. An interacting reference system: a dressed atom

We can obtain the spectral density functional by
adopting a different reference system, namely the atom.
The starting point of this approach is the Hamilto-
nian (59) split into two parts (Chitra and Kotliar,
2000a; Georges, 2004a,b): H = H0 + H1, where H0 =∑

RHat[R] with Hat defined as

Hat[R] =
∑

αβ

h
(0)
αRβR[c+αRcβR + h.c.] (75)

+
1

2

∑

αβγδ

V RRRR
αβγδ c+αRc

+
βRcδRcγR.

H1 is the interaction term used in the inversion method
done in powers of λH1 (λ is a new coupling constant to
be set to unity at the end of the calculation).
•The constraining field in SDFT. After an unper-

turbed Hamiltonian is chosen the constraining field is de-
fined as the zeroth order term of the source in an expan-
sion in the coupling constant. When the reference frame
is the dressed atom, the constraining field turns out to
be the hybridization function of an Anderson impurity
model (AIM) ∆[Gloc]αβ(τ, τ ′) (Anderson, 1961), which

plays a central role in the dynamical mean–field theory.
It is defined as the (time dependent) field which must
be added to Hat in order to generate the local Green’s
function Gloc,αβ(τ, τ ′)

δFat

δ∆βα(τ ′, τ)
= −

〈
Tτcα(τ)c+β (τ ′)

〉

∆
= Gloc,αβ(τ, τ ′),

(76)
where

Fat[∆] = (77)

− ln

∫
dc+dce−Sat[c

+c]−
P

αβ

R

∆αβ(τ,τ ′)c+
α (τ)cβ(τ ′)dτdτ ′

,

and the atomic action is given by

Sat[∆] =

∫
dτ
∑

αβ

c+α (τ)

(
∂

∂τ
− µ

)
cβ(τ) +

∫
dτHat(τ).

(78)
Eq. (77) actually corresponds to an impurity problem

and Fat[∆] can be obtained by solving an Anderson im-
purity model.
•Kohn–Sham decomposition and its significance. The

Kohn–Sham decomposition separates the effective action
into two parts: the zeroth order part of the effective ac-
tion in the coupling constant Γ0[Gloc] ≡ ΓSDFT [Gloc, λ =
0] and the rest (“exchange correlation part”). The func-
tional corresponding to (73) is given by

ΓSDFT [Gloc, λ = 0] = Fat[∆[Gloc]] − Tr (∆[Gloc]Gloc) =

Tr lnGloc − Tr
(
G−1

at Gloc

)
+ Φat[Gloc], (79)

with the G−1
at,αβ(iω) = (iω + µ)δαβ − h

(0)
αβ . Fat is the

free energy when λ = 0 and Φat is the sum of all two–
particle irreducible diagrams constructed with the local
vertex V RRRR

αβγδ and Gloc.
• Saddle point equations and their significance. The

saddle point equations determine the exact spectral func-
tion (and the exact Weiss field). They have the form

−
〈
Tτcα(τ)c+β (τ ′)

〉

∆
= Gloc,αβ(τ, τ ′), (80)
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∆αβ(τ, τ ′) =
δ∆Γ

δGloc,βα(τ ′, τ)
, (81)

where ∆Γ can be expressed using coupling constant in-
tegration as is in Eq. (5) (Georges, 2004a,b). This set of
equations describes an atom or a set of atoms in the unit
cell embedded in the medium. ∆ is the exact Weiss field
(with respect to the expansion around the atomic limit)
which is defined from the equation for the local Green’s
function Gloc (see Eq. (76)). The general Weiss source
∆ in this case should be identified with the hybridization
of the Anderson impurity model.

When the system is adequately represented as a col-
lection of paramagnetic atoms, the Weiss field is a weak
perturbation representing the environment to which it is
weakly coupled. Since this is an exact construction, it
can also describe the band limit when the hybridization
becomes large.

3. Construction of approximations: dynamical mean–field
theory as an approximation.

The SDFT should be viewed as a separate exact the-
ory whose manifestly local constraining field is an aux-
iliary mass operator introduced to reproduce the local
part of the Green’s function of the system, exactly like
the Kohn–Sham potential is an auxiliary operator intro-
duced to reproduce the density of the electrons in DFT.
However, to obtain practical results, we need practical
approximations. The dynamical mean–field theory can
be thought of as an approximation to the exact SDFT
functional in the same spirit as LDA appears as an ap-
proximation to the exact DFT functional.

The diagrammatic rules for the exact SDFT functional
can be developed but they are more complicated than in
the Baym–Kadanoff theory as discussed in (Chitra and
Kotliar, 2000a). The single–site DMFT approximation
to this functional consists of taking ΦSDFT [Gloc] to be a
sum of all graphs (on a single site R), constructed with
V RRRR

αβγδ as a vertex and Gloc as a propagator, which

are two–particle irreducible, namely ΦDMFT [Gloc] =
Φat[Gloc]. This together with Eq. (73) defines the DMFT
approximation to the exact spectral density functional.

It is possible to arrive at this functional by summing
up diagrams (Chitra and Kotliar, 2000a) or using the
coupling constant integration trick (Georges, 2004a,b)
(see Eq. (7)) with a coupling dependent Greens function
having the DMFT form, namely with a local self-energy.
This results in

ΓDMFT (Gloc ii) =
∑

i

Fat[∆(Gloc ii)] (82)

−
∑

k

Tr ln
(
(iω + µ)Î − ĥ(0)(k) −Mint(Gloc ii)

)

+Tr ln
(
−Mint(Gloc ii) + iω + µ− h(0) − ∆(iω)

)
.

with Mint(Gloc ii) in Eq. (82) the self-energy of the An-
derson impurity model. It is useful to have a formu-

lation of this DMFT functional as a function of three
variables, (Kotliar and Savrasov, 2001) namely combin-
ing the hybridization with that atomic Greens function
to form the Weiss function G−1

0 = G−1
at − ∆, one can ob-

tain the DMFT equations from the stationary point of a
functional of Gloc, Mint and the Weiss field G0:

Γ[Gloc,Mint,G0] = Fimp[G−1
0 ] − Tr ln[Gloc] − (83)

Tr ln(iω + µ− h0[k] −Mint) +

Tr[(G0
−1 −Mint −G−1

loc)Gloc].

One can eliminate Gloc and Mint from (83) using
the stationary conditions and recover a functional of the
Weiss field function only. This form of the functional,
applied to the Hubbard model, allowed the analytical
determination of the nature of the transition and the
characterization of the zero temperature critical points
(Kotliar, 1999a). Alternatively eliminating G0 and Gloc

in favor of Mint one obtains the DMFT approximation
to the self-energy functional discussed in section I.B.2.

4. Cavity construction

An alternative view to derive the DMFT approxima-
tion is by means of the cavity construction. This ap-
proach gives complementary insights to the nature of the
DMFT and its extensions. It is remarkable that the sum-
mation over all local diagrams can be performed exactly
via introduction of an auxiliary quantum impurity model
subjected to a self–consistency condition (Georges and
Kotliar, 1992; Georges et al., 1996). If this impurity is
considered as a cluster C, either a dynamical cluster ap-
proximation or cellular DMFT technique can be used.
In single–site DMFT, considering the effective action S
in Eq. (60), the integration volume is separated into the
impurity Vimp and the remaining volume is referred to
as the bath: V − Vimp = Vbath. The action is now rep-
resented as the action of the cluster cell, Vimp plus the
action of the bath, Vbath, plus the interaction between
those two. We are interested in the local effective action
Simp of the cluster degrees of freedom only, which is ob-
tained conceptually by integrating out the bath in the
functional integral

1

Zimp
exp[−Simp] =

1

Z

∫

Vbath

D[c†c] exp[−S], (84)

where Zimp and Z are the corresponding partition func-
tions. Carrying out this integration and neglecting all
quartic and higher order terms (which is correct in the
infinite dimension limit) we arrive to the result (Georges
and Kotliar, 1992)

Simp = −
∑

αβ

∫
dτdτ ′c+α (τ)G−1

0,αβ(τ, τ ′)cβ(τ ′) (85)

+
1

2

∑

αβγδ

∫
dτdτ ′c+α (τ)c+β (τ ′)Vαβγδ(τ, τ

′)cγ(τ ′)cδ(τ).
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Here G0,αβ(τ, τ ′) or its Fourier transform G0,αβ(iω) is
identified as the bath Green’s function which appeared
in the Dyson equation for Mint,αβ(iω) and for the local
Green’s function Gloc,αβ(iω) of the impurity, i.e.

G−1
0,αβ(iω) = G−1

loc,αβ(iω) + Mint,αβ(iω). (86)

Note that G0 cannot be associated with non–interacting
G0.

The impurity action (85), the Dyson equation (86),
connecting local and bath quantities as well as the orig-
inal Dyson equation (66), constitute the self–consistent
set of equations of the spectral density functional the-
ory. They are obtained as the saddle–point conditions
extremizing the spectral density functional ΓSDFT (G).
Since Mint is not known at the beginning, the solution
of these equations requires an iterative procedure. First,
assuming some initial Mint, the original Dyson equa-
tion (66) is used to find Green’s function G. Second, the
Dyson equation for the local quantity (86) is used to find
G0. Third, quantum impurity model with the impurity
action Simp after (85) is solved by available many–body
techniques to give a new local Mint. The process is re-
peated until self–consistency is reached. We illustrate
this loop in Fig. 5.
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FIG. 5 Illustration of the self–consistent cycle in DMFT.

5. Practical implementation of the self–consistency condition in
DMFT.

In many practical calculations, the local Green’s func-
tion can be evaluated via Fourier transform. First, given

the non–interacting Hamiltonian h
(0)
αβ(k), we define the

Green’s function in the k–space

Gαβ(k, iω) =
{
[(iω + µ)Ô(k) − ĥ(0)(k) −Mint(iω)]−1

}

αβ
,

(87)
where the overlap matrix Oαβ(k) replaces the unitary

matrix Î introduced earlier in (65) if one takes into ac-
count possible non–orthogonality between the basis func-
tions (Wegner et al., 2000). Second, the local Green’s

function is evaluated as the average in the momentum
space

Gloc,αβ(iω) =
∑

k

Gαβ(k, iω), (88)

which can then be used in Eq. (86) to determine the bath
Green’s function G0,αβ(iω).

The self–consistency condition in the dynamical mean–
field theory requires the inversion of the matrix, Eq. (87)
and the summation over k of an integrand, (88), which
in some cases has a pole singularity. This problem is
handled by introducing left and right eigenvectors of the
inverse of the Kohn–Sham Green’s function

∑

β

[
h

(0)
αβ(k) + Mint,αβ(iω) − ǫkjωOαβ(k)

]
ψR

kjω,β = 0,(89)

∑

α

ψL
kjω,α

[
h

(0)
αβ(k) + Mint,αβ(iω) − ǫkjωOαβ(k)

]
= 0.(90)

This is a non–hermitian eigenvalue problem solved by
standard numerical methods. The orthogonality condi-
tion involving the overlap matrix is

∑

αβ

ψL
kjω,αOαβ(k)ψR

kj′ω,β = δjj′ . (91)

Note that the present algorithm just inverts the matrix
(87) with help of the “right” and “left” eigenvectors. The
Green’s function (87) in the basis of its eigenvectors be-
comes

Gαβ(k, iω) =
∑

j

ψR
kjω,αψ

L
kjω,β

iω + µ− ǫkjω
. (92)

This representation generalizes the orthogonal case in the
original LDA+DMFT paper (Anisimov et al., 1997a).
The formula (92) can be safely used to compute the
Green’s function as the integral over the Brillouin zone,
because the energy denominator can be integrated ana-
lytically using the tetrahedron method (Lambin and Vi-
gneron, 1984).

The self-consistency condition becomes computation-
ally very expensive when many atoms need to be consid-
ered in a unit cell, as for example in compounds or com-
plicated crystal structures. A computationally efficient
approach was proposed in Ref. Savrasov et al., 2005. If
the self-energy is expressed by the rational interpolation
in the form

Mαβ(iω) = Mα(∞)δαβ +
∑

i

wi
αβ

iω − Pi
, (93)

where wi are weights and Pi are poles of the self-energy
matrix. The non-linear Dyson equation (89), (90) can
be replaced by a linear Schroedinger-like equation in an
extended subset of auxiliary states. This is clear due to
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mathematical identity

∑

k

[
(iω + µ)Ôk − ĥ0(k) −M(∞),

√
W√

W
†
, iω − P

]−1

= (94)

[ ∑
k

[
(iω + µ)Ôk − ĥ0(k) −M(iω)

]−1

, · · ·
· · · , · · ·

]
.

where M(iω) is given by Eq. (93). Since the matrix P
can always be chosen to be a diagonal matrix, we have

wi
αβ =

√
Wαi

√
W

∗

βi.
The most important advantage of this method is that

the eigenvalue problem Eq. (89), (90) does not need to
be solved for each frequency separately but only one in-
version is required in the extended space including “pole
states”. In many applications, only a small number of
poles is necessary to reproduce the overall structure of
the self-energy matrix (see section III.F.1). In this case,
the DMFT self-consistency condition can be computed
as fast as solving the usual Kohn-Sham equations.

The situation is even simpler in some symme-
try cases. For example, if Hamiltonian is diagonal

h
(0)
αβ(k) = δαβh

(0)
α (k) and the self–energy Mint,αβ(iω) =

δαβMint,α(iω), the inversion in the above equations is
trivial and the summation over k is performed by intro-
ducing the non–interacting density of states Nα(ǫ)

Nα(ǫ) =
∑

k

δ[ǫ− h(0)
α (k)]. (95)

The resulting equation for the bath Green’s function be-
comes

G−1
0,α(iω) =

(∫
dǫ

Nα(ǫ)

iω + µ− ǫ−Mint,α(iω)

)−1

+Mint,α(iω).

(96)
• Assessing the DMFT approximation. Both the

dressed atom and the dressed band viewpoint indi-
cate that ΓDMFT is going to be a poor approximation
to ΓSDFT (Gloc) when interactions are highly nonlocal.
However, extensions of the DMFT formalism allow us to
tackle this problem. The EDMFT (Kajueter, 1996b; Ka-
jueter and Kotliar, 1996a; Si and Smith, 1996) allows us
the introduction of long–range Coulomb interactions in
the formalism. The short–range Coulomb interaction is
more local in the non–orthogonal basis set and can be
incorporated using the CDMFT (Kotliar et al., 2001).

B. Extension to clusters

The notion of locality is not restricted to a single site
or a single unit cell, and it is easily extended to a clus-
ter of sites or supercells. We explain the ideas in the
context of model Hamiltonians written in an orthogonal
basis set to keep the presentation and the notation sim-
ple. The extension to general basis sets (Kotliar et al.,
2001; Savrasov and Kotliar, 2004b) is straightforward.

The motivations for cluster extension of DMFT are
multiple: i) Clusters are necessary to study some or-
dered states like d-wave superconductivity which can not
be described by a single–site method ((Katsnelson and
Lichtenstein, 2000; Macridin et al., 2004, 2005; Maier
et al., 2000a,a,c, 2005; Maier, 2003; Maier et al., 2004b,
2002b)) ii) In cluster methods the lattice self–energies
have some k dependence (contrary to single–site DMFT)
which is clearly an important ingredient of any theory
of the high–Tc cuprates for example. Cluster methods
may then explain variations of the quasiparticle residue
or lifetime along the Fermi surface (Civelli et al., 2005;
Parcollet et al., 2004) iii) Having a cluster of sites allows
the description of non–magnetic insulators (eg. valence
bond solids) instead of the trivial non–magnetic insula-
tor of the single–site approach. Similarly, a cluster is
needed when Mott and Peierls correlations are simulta-
neously present leading to dimerization (Biermann et al.,
2005b; Poteryaev et al., 2004) in which case a correlated
link is the appropriate reference frame. iv) The effect
of nonlocal interactions within the cluster (e.g. next
neighbor Coulomb repulsion) can be investigated (Bolech
et al., 2003). v) Since cluster methods interpolate be-
tween the single–site DMFT and the full problem on the
lattice when the size of the cluster increases from one to
infinity, they resum 1/d corrections to DMFT in a non-
perturbative way. Therefore they constitute a systematic
way to assert the validity of and improve the DMFT cal-
culations.

Many cluster methods have been studied in the litera-
ture. They differ both in the self–consistency condition
(how to compute the Weiss bath from the cluster quan-
tities) and on the parameterization of the momentum
dependence of the self–energy on the lattice. Different
perspectives on single-site DMFT lead to different clus-
ter generalizations : analogy with classical spin systems
lead to the Bethe-Peierls approximation (Georges et al.,
1996), short range approximations of the Baym-Kadanoff
functional lead to the “pair scheme”(Georges et al., 1996)
and its nested cluster generalizations (which reduces to
the Cluster Variation Method in the classical limit)(Biroli
et al., 2004), approximating the self-energy by a piecewise
constant function of momentum lead to the dynamical
cluster approximation (DCA) (Hettler et al., 2000, 1998;
Maier et al., 2000c), approximating the self-energy by
the lower harmonics lead to the work of Katsnelson and
Lichtenstein (Lichtenstein and Katsnelson, 2000), and a
real space perspective lead to Cellular DMFT (CDMFT).
(Kotliar et al., 2001). In this review, we focus mainly on
the CDMFT method, since it has been used more in the
context of realistic computations. For a detailed review
of DCA, CDMFT and other schemes and their applica-
tions to model Hamiltonians see (Maier et al., 2004a).

• Cellular dynamical mean–field theory : definition

The construction of an exact functional of a “local”
Green’s function in Eqs. (62), (63),(64) is unchanged, ex-
cept that the labels α, β denotes orbitals and sites within
the chosen cluster. The cluster DMFT equations have
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the form (65), (86), where ĥ0[k] is now replaced by t̂(K)
the matrix of hoppings in supercell notation and we use
the notation ΣC(iωn) for the cluster self–energy (note
that the notation Mint was used for this quantity in the
preceding sections).

G−1
0 (iωn) =

(
∑

K∈RBZ

(
iωn + µ− t̂(K) − ΣC(iωn)

)−1
)−1

+ ΣC(iωn), (97)

where the sum overK is taken over the Reduced Brillouin
Zone (RBZ) of the superlattice and normalized.

Just like single–site DMFT, one can either view
CDMFT as an approximation to an exact functional to
compute the cluster Green’s function, or as an approxi-
mation to the exact Baym–Kadanoff functional obtained
by restricting it to the Green’s functions on the sites re-
stricted to a cluster and its translation by a supercell
lattice vector (see Eq. (102) below) (Georges, 2002;
Maier and Jarrell, 2002). From a spectral density func-
tional point of view, Eqs. (66), (67), and the equation
Mint[G] = δΦSDFT /δGloc can be viewed as the exact
equations provided that the exact functional ΦSDFT is
known.

A good approximation to the “exact functional”,
whose knowledge would deliver us the exact cluster
Green’s function, is obtained by restricting the exact
Baym–Kadanoff functional. In this case, it is restricted
to a cluster and all its translations by a supercell vec-
tor. Denoting by C the set of couples (i, j) where i and
j belong to the same cluster (see Fig. 6 for an example),

ΦSDFT
CDMFT = ΦBK |Gij=0 if (i,j)/∈C (98)

Alternatively the CDMFT equations can be derived
from the point of view of a functional of the Weiss field
generalizing Eq. (82) from single sites to supercells as
shown in Fig. 6. A fundamental concept in DMFT is
that of a Weiss field. This is the function describing the
environment that one needs to add to an interacting but
local problem to obtain the correct local Greens function
of an extended system. Now expressed in terms of the
Weiss field of the cluster G−1

0 = G−1
at − ∆. This concept

can be used to highlight the connection of the mean field
theory of lattice systems with impurity models and the
relation of their free energies (Georges et al., 1996). For
this purpose it is useful to define the DMFT functional
of three variables, (Kotliar and Savrasov, 2001) Gloc, Σ
and the Weiss field G0:

ΓCDMFT [G,Σ,G0] = ΣcellsFcell[G−1
0 ] − Tr ln[G] (99)

−Tr ln[G]
(
iω + µ− t̂[k] − Σ

)
+ Tr[(G0

−1 − Σ −G−1)G]

Extremizing this functional gives again the standard
CDMFT equations.
• CDMFT : approximation of lattice quantities

FIG. 6 Example of a 2× 2 superlattice construction to define
CDMFT on a plaquette. Notice that the definition is depen-
dent on the tiling of space by supercells and is therefore not
unique

The impurity model delivers cluster quantities. In
order to make a connection with the original lattice
problem, we need to formulate estimates for the lattice
Green’s function. A natural way to produce these esti-
mates is by considering the superlattice (SL) (see Fig. 6)
and constructing lattice objects from superlattice objects
by averaging the relevant quantities to restore periodic-
ity, namely

Wlatt(i− j) ≈ 1

Ns

∑

k

WSL
k,k+i−j , (100)

where Ns represents the total number of sites, and i, j, k
are site indices. Notice that Eq. (100) represents a super-
lattice average, not a cluster average. In particular, if
W is the cluster irreducible cumulant, Mc ≡ G−1

c + ∆
(where ∆ is the hybridization) or the cluster self-energy
Σ all the contributions with k and k + i − j belong-
ing to different cells are zero by construction. The lat-
tice Greens function can then be reconstructed from the
lattice cumulant (Stanescu, 2005) or the lattice self-
energy (Biroli and Kotliar, 2002; Kotliar et al., 2001).
Namely Glatt(k, ω) ≈ (ω − t(k) + µ − Σlatt(k, ω))−1 or

Glatt(k, ω) ≈ (−t(k) + Mlatt(k, ω)
−1

)−1 . Criteria for
more general periodizations respecting causality were de-
rived in ref (Biroli and Kotliar, 2002). Another alter-
native suggested originally by Sénéchal and Tremblay
is to directly periodize the Green’s function, i.e. apply
Eq. (100) with W = G to obtain (Senechal et al., 2000)

G(k, ω) =
1

Nc

∑

a,b∈C

[M̂−1
c − t̂k]−1

ab eik(ra−rb), (101)

where t̂k is the Fourier transform of the “hopping” on the
super-lattice, and Nc the number of sites in the cluster.

For example, consider the two-dimensional Hubbard
model on a square lattice within a four-site approxima-
tion (plaquette) in which square symmetry is preserved.
After performing the average (100) and then taking the
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Fourier transform, we obtain the following expressions
for the self-energy and the irreducible cumulant of the
lattice problem.

Σ(k, ω) = Σ0(ω) + Σ1(ω) α(k) + Σ2(ω) β(k),

M(k, ω) = M0(ω) +M1(ω) α(k) +M2(ω) β(k),

where for the cluster quantities W
(c)
ab we used the no-

tations W0 for the on-site values (a = b), W1 if a
and b are nearest neighbors (on a link) and W2 if a
and b are next-nearest neighbors (on the diagonal), and
α(k) = cos(kx) + cos(ky) and β(k) = cos(kx) cos(ky).

It is important to notice that it is better to recon-
struct on site quantities from the cluster Greens func-
tion (Capone et al., 2004) and non local quantities from
the lattice quantities (Stanescu, 2005). Using cumulants
there is not much difference between estimates from the
lattice or the local green function for either one of these
quantities, and the same is true about the lattice peri-
odization. Alternatively, periodizing the self-energy has
the drawback that the local quantities inferred fromGlatt

differ from Gc near the Mott transition.
• Other cluster schemes
We briefly comment on various other cluster schemes

mentioned in the introduction (see also (Maier et al.,
2004a)). Nested cluster schemes are defined by another
truncation of the Baym-Kadanoff functional :

ΦSDFT
Nested = ΦBK |Gij=0 if (i,j)/∈C (102)

where C is the set of couples (i, j) with |i−j| ≤ L with L
is the size of the cluster and we use the Manhattan dis-
tance on the lattice. Those schemes combine information
from various cluster sizes, and can give very accurate de-
termination of critical temperatures using small cluster
sizes, but they are not causal when the range of the self-
energy exceeds the size of the truncation (Biroli et al.,
2004) (See also (Okamoto and Millis, 2004b)).

There is a class of cluster schemes which are guaran-
teed to be causal and which requires the solution of one
impurity problem : DCA, CDMFT, and PCDMFT (pe-
riodized cluster cellular dynamical mean–field theory).
The self–consistency condition of all three schemes can
be summarized into the same matrix equation

G−1
0 (iωn) = ΣC(iωn)+
(

∑

K∈RBZ

(
iωn + µ− t̂S(K) − ΣS(K, iωn)

)−1
)−1

,

(103)

where the difference between the three schemes is en-
closed in the value of tS and of ΣS that enter in
the self–consistency condition. Namely, if t̂S(K) =
t̂(K) and ΣS(K, iωn) = ΣC(iωn) we have the CDMFT
case, t̂S(K) = t̂(K) and ΣS = Σlatt corresponds to
PCDMFT case, and DCA is realized when tS(K) =
tDCA ≡ tµν(K) exp[−iK(µ − ν)] and ΣS(K, iωn) =

ΣC(iωn) (Biroli et al., 2004). PCDMFT uses the lattice
self–energy in the sum over the reduced Brillouin zone in
the self–consistency Eq. (97). It is similar to the scheme
proposed by Katsnelson and Lichtenstein (Lichtenstein
and Katsnelson, 2000), but can be proven to be explicitly
causal. The dynamical cluster approximation or DCA
(Hettler et al., 2000, 1998; Maier et al., 2000c) derives
cluster equations starting from momentum space. Its real
space formulation of Eq.103 was introduced in (Biroli and
Kotliar, 2002). While in CDMFT (or PCDMFT) the lat-
tice self–energy is expanded on the lowest harmonics in
k, in DCA the self–energy is taken piecewise constant in
the Brillouin Zone.

Simpler approximations, such as cluster perturbation
theory (CPT) and variational cluster perturbation the-
ory (VCPT), can also be fruitfully viewed as limiting
cases of cluster DMFT. Indeed CPT is obtained by set-
ting the DMFT hybridization equal to zero. The self–
energy then becomes the atomic self–energy of the clus-
ter. The lattice self–energy is then obtained by restoring
the periodicity in the Green’s function (Dahnken et al.,
2002; Gros and Valenti, 1993; Senechal et al., 2000, 2002;
Zacher et al., 2000, 2002). The restriction of the func-
tional (99) to a non zero but static Weiss field, gives rise
to the variational cluster perturbation theory (VCPT) in-
troduced in Refs. (Dahnken et al., 2004; Potthoff et al.,
2003; Senechal and Tremblay, 2004). An extensions of
these ideas in the context of EDMFT has been recently
been carried out by Tong (Tong, 2005).

• Hartree–Fock terms

In realistic computations, it is natural to separate the
Hartree–Fock term, which can be treated easily from the
more complex “exchange” contributions to the Baym–
Kadanoff functional Φ. This idea can also be extended
to CDMFT, in the case of nonlocal interactions connect-
ing different clusters (e.g. spin–spin interactions). The
Hartree–Fock contribution to the Baym–Kadanoff func-
tional induces a self–energy which is frequency indepen-
dent and therefore does not cause problems with causal-
ity and can be evaluated with little computational cost.
So it is convenient to separate Φ = ΦHF + Φint, and ap-
ply the cluster DMFT truncation only to Φint, and to the
self–energy it generates while treating the Hartree con-
tributions exactly (Biroli et al., 2004). More precisely,
one can treat with Hartree–Fock terms that connect the
cluster to the exterior only, to avoid a double counting
problem. This observation is particularly relevant in the
treatment of broken symmetries induced by nonlocal in-
teractions as exemplified in the study of the transition to
a charge density wave in the extended Hubbard model in
one dimension which was studied in (Bolech et al., 2003).

• Cluster size dependence

The cluster DMFT methods are in an early stage of
development but a few investigations of the performance
of the methods for different sizes have already appeared
(See (Maier et al., 2004a) and references below). There
are two distinct issues to consider. The first issue is what
can be achieved with very small clusters (e.g. 2 sites
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in one dimension or 2x2 plaquette in two dimensions).
Cluster studies have demonstrated that in a broad re-
gion of parameter space, single-site DMFT is quantita-
tively quite accurate. Similarly, one would like to know
what are the minimal clusters needed to capture e.g. the
physics of the cuprates. The one–dimensional Hubbard
model is a very challenging case to study this question.
Application of DMFT and cluster methods to this prob-
lem was carried out in (Capone et al., 2004) and is re-
produced in Figures 7 and 8. Let us note that i) far
from the transition, single-site DMFT is quite accurate,
ii) a cluster of 2 sites is already very close to the exact
solution (obtained by Bethe Ansatz for thermodynam-
ics quantities or DMRG for the dynamical ones). Even
though no mean–field approach can produce a Luttinger
liquid (a very large cluster would be necessary) CDMFT
is shown to perform remarkably well when considering
quantities related to intermediate or high energies or as-
sociated with the total energy, even near the Mott tran-
sition.
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FIG. 7 Density n as a function of µ for the one–dimensional
Hubbard model with on–site repulsion strength U/t = 4,
number of cluster sites Nc = 2 within single–site DMFT, two–
site CDMFT, two–site PCDMFT and two–site DCA com-
pared with the exact solution by Bethe Ansatz (BA). The
lower–right inset shows a region near the Mott transition
(adapted from (Capone et al., 2004))

.

The second issue is the asymptotic convergence of the
methods to the exact solution of the problem (in the in-
finite cluster limit). At present, this is still a somewhat
academic issue because large cluster can not be studied
for large U or at low temperature, but algorithmic ad-
vances and increase of computer power may change the
situation in a near future. The convergence properties of
the CDMFT method for large cluster size can be easily
improved. Away from critical points, local quantities in
CDMFT converge exponentially to their bulk value when
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FIG. 8 ℑG11 and ℜG12 for the one–dimensional Hubbard
model with on–site repulsion strength U/t = 1 and U/t = 7,
number of cluster sites Nc = 2 within single–site DMFT, two–
site CDMFT, two–site PCDMFT compared with the numeri-
cally exact DMRG calculation. (from (Capone et al., 2004)).

measured at the core of the cluster. However, averages
over the cluster converge like 1/L where L is the linear
size of the cluster (Biroli and Kotliar, 2004) (see also
(Aryanpour et al., 2005; Biroli and Kotliar, 2005)), be-
cause in CDMFT the cluster is defined in real space, and
the error is maximal and of order 1 in L at the boundary.
Therefore, to estimate the value of a local quantity, one
should preferentially use the core of the cluster (i.e. giv-
ing a lower weight to the boundary) assuming of course
that the cluster is large enough to distinguish between a
core and a boundary. Failure to do so in CDMFT can
lead to non–physical results, as illustrated in the one–
dimensional Hubbard model. In this case, the critical
temperature for the Néel order does not go to zero when
the size of the cluster increases (Maier et al., 2002a).
In fact, the boundary of a large (chain) cluster sees an
effective field given by the other boundary, not by the
sites at the center of the cluster, which leads to spurious
ordering. It is however possible to greatly improve the
convergence properties of CDMFT in ordered phases by
weighting the self–energy more at the core of the cluster,
a cluster scheme called weighted-CDMFT (Parcollet and
Kotliar, 2005): in the self–consistency condition (97), we
replace the self–energy ΣC by Σw

Σw
αβ =

∑

α′β′

wα′β′

αβ ΣC
α′β′ (104)

wαβ
γδ = δα−β,γ−δfc(α)fc(β) (105)

where fc is a normalized function that decays exponen-
tially from the center of the cluster towards the bound-
aries and satisfy

∑
α fc(α)2 = 1. This scheme is causal, it

does not present the spurious ordering in one dimension,
and it can be shown to have faster convergence of the
critical temperature in the classical limit of the Falikov–
Kimball model (Parcollet and Kotliar, 2005). Therefore,
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for applications to (quasi)-1d systems (chains or lad-
ders) where relatively large cluster size can be reached,
weighted-CDMFT should be preferred to CDMFT.

• Numerical solutions

Since the impurity model to be solved for a cluster
method is formally a multi-orbital problem, most the
solvers used for single-site DMFT can be extended cluster
methods, at the expense of an increase of computational
cost (See section III). The computational cost of solv-
ing the impurity model entering the CDMFT equations
using QMC is the same as that of an isolated system
of the same cluster, or sometimes even less since it has
been found that the presence of the bath reduces the sign
problem. To solve the CDMFT equations with exact di-
agonalization, the bath needs to be discretized and rep-
resented by free fermions. This results in an increase in
the size of the Hilbert space. ∆(ω) has to be represented
by a discrete set of poles and, as in single–site DMFT,
there are various approaches for choosing a parameteriza-
tion (Georges et al., 1996). A modification of the original
procedure of Caffarel and Krauth (Caffarel and Krauth,
1994) which gives stronger weight to the low–frequency
part of the Weiss field has been suggested (Capone et al.,
2004).

Another possibility for parameterizing the bath is to
simply insert a discretized form of the Weiss field into
the CDMFT functional, which is viewed as a function
of three variables (the obvious generalization of Eq. (83)
to clusters), and varying the functional with respect to
the free parameters parameterizing the Weiss field. An
alternative choice of the bath parameters can be obtained
by inserting approximate expressions of the self-energy
parameterized by a few set of parameters into the self-
energy functional (Potthoff, 2003b).

• Application to realistic calculations

In the context of realistic studies of materials, the ap-
plications of cluster methods are only beginning. An in-
teresting class of problems are posed by materials with
dimerization or charge–charge correlations in the param-
agnetic phasei, such as NaV2O5. This compound, where
the Vanadium atoms are arranged to form two leg lad-
ders which are quarter filled, served as a first application
of LDA+DMFT cluster methods. At low temperatures
the system is a charge ordered insulator, a situation that
is well described by the LDA+U method (Yaresko et al.,
2000). Above the charge ordering temperature the in-
sulating gap persist, and cluster DMFT is required to
describe this unusual insulating state (Mazurenko et al.,
2002). The second application of this approach focused
on the interplay of Pauling- Peierls distortions and Mott
correlations (Poteryaev et al., 2004) that occur in T i2O3.
Titanium sesquioxide, T i2O3, is isostructural to Vana-
dium Sesquioxide, V2O3, the prototypical Mott-Hubbard
system. In the corundum structure the pair of Titanium
atoms form a structural motif. Titanium sesquioxide
displays a rapid crossover from a bad metal regime at
high temperatures, to an insulating regime at low tem-
peratures. Standard first principles electronic structure

methods have failed to account for this crossover. While
single site DMFT was quite succesful describing the high
temperature physics of V2O3 it cannot account for the
observed temperature driven crossover in T i2O3 with a
reasonable set of parameters. A two site CDMFT cal-
culation with a very reasonable set of onsite interactions
and an intersite Coulomb repulsion successfully describes
the observed crossover. A surprising result of the clus-
ter calculations(Poteryaev et al., 2004), was the strong
frequency dependence of the inter-site Titanium self en-
ergy which can be interpret as a scale dependent modi-
fication of the bare bonding antibonding splitting. The
link reference frame provides an intuitive picture of the
synergistic interplay of the lattice distortion (ie. the
Pauling -Goodenough-Peierls mechanism (Goodenough,
1963) which decreases the distance between the Ti atoms)
and the Hubbard-Mott mechanism in correlated materi-
als having dimers in the unit cell. The bare (high fre-
quency) parameters of the problem are such that a static
mean field calculation yields a metal. However as tem-
perature and frequency are lowered, important correla-
tion effects develop. The bandwidth of the a1g and eg
bands is reduced by the correlations while the crystal
field splitting between the bonding and the antibonding
orbital increases in such a way that the low energy renor-
malized parameters result in a band insulator. We have a
case where the Coulomb interactions enhance the crystal
field splitting and reduce the bandwidth, in a synergis-
tic cooperation with the lattice distortions to drive the
system thru a metal to insulator crossover.

Another example of the interplay of the Peierls and the
Mott mechanism is provided by Vanadium dioxide V O2

. This material undergoes a first-order transition from
a high-temperature metallic phase to a low-temperature
insulating phase near room- temperature. The resistiv-
ity jumps by several orders of magnitude through this
transition, and the crystal structure changes from rutile
at high-temperature to monoclinic at low-temperature.
The latter is characterized by a dimerization of the vana-
dium atoms into pairs, as well as a tilting of these pairs
with respect to the c-axis. CDMFT studies of this mate-
rial (Biermann et al., 2005b) can account for the metallic
and the insulating phase with reasonable interaction pa-
rameters.

C. LDA+U method.

We now start the discussion on how the ideas of spec-
tral density functional theory and conventional electronic
structure calculations can be bridged together. In many
materials, the comparison of LDA calculations with ex-
periment demonstrates that delocalized s- and p–states
are satisfactorily described by local and frequency inde-
pendent potentials. This leads to the introduction of
hybrid methods which separate the electrons into light
and heavy. Treating the light electrons using LDA and
the heavy electrons using many–body techniques, such as
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DMFT (see II.D), has already proven to be effective.
As a first illustration, we consider the LDA+U method

of Anisimov and co–workers (Anisimov et al., 1991). His-
torically, this was introduced as an extension of the lo-
cal spin density approximation (LSDA) to treat the or-
dered phases of the Mott insulating solids. In this re-
spect, the method can be seen as a natural extension
of LSDA. However, this method was the first to recog-
nize that a better energy functional can be constructed
if not only the density, but also the density matrix of
correlated orbitals is brought into the density functional.
In this sense, the LDA+U approach is the Hartree–Fock
approximation for the spectral density functional within
LDA+DMFT, which is discussed in the following section.
• Motivation and choice of variables. From the ef-

fective action point of view, the LDA+U constructs a
functional of the density ρ(r), magnetization m(r), and
the occupancy matrix of the correlated orbitals. The
latter is defined by projecting the electron creation and
destruction operators on a set of local orbitals, caR =∫
χ∗

a(r − R)ψ(r)dr, i.e. by constructing the occupancy
matrix from the local Green’s function

nab = T
∑

iω

eiω0+

Gloc,ab(iω). (106)

In principle, an exact functional of the spin density and
the occupancy matrix can be constructed, so as to give
the total free energy at the stationary point using the
techniques described in previous sections. The LDA+U
approximation is an approximate functional of these vari-
ables which can be written down explicitly. In the con-
text of LDA+U, the constraining field is designated as
λab.
• Form of the functional. The total free energy now is

represented as a functional of ρ(r), m(r), nab, λab, the
Kohn–Sham potential VKS(r) and Kohn–Sham magnetic
field, BKS(r). This representation parallels the Harris–
Methfessel form (see Eq. 73). The LDA+U functional is
a sum of the kinetic energy, energy related to the external
potential and possible external magnetic field, KLDA+U ,
as well as the interaction energy ΦLDA+U [ρ,m, nab] (see
(Kotliar and Savrasov, 2001) for more details), i.e.

ΓLDA+U [ρ,m, nab, λab] = (107)

KLDA+U [ρ,m, nab] − λabnab + ΦLDA+U [ρ,m, nab].

The form of the functional KLDA+U is analogous
to the discussed equations (23), (39), (68) for the
DFT, BK and SDFT theories. The interaction energy
ΦLDA+U [ρ,m, nab] is represented as follows

ΦLDA+U [ρ,m, nab] = (108)

EH [ρ] +ELDA
xc [ρ,m] + ΦModel

U [nab] − ΦModel
DC [nab],

This is the LDA interaction energy to which we have
added a contribution from the on-site Coulomb energy in
the shell of correlated electrons evaluated in the Hartree–

Fock approximation

ΦModel
U [nab] =

1

2

∑

abcd∈lc

(Uacdb − Uacbd)nabncd. (109)

Here, indexes a, b, c, d involve fixed angular momentum lc
of the correlated orbitals and run over magnetic m and
spin σ quantum numbers. The on–site Coulomb inter-
action matrix Uabcd is the on–site Coulomb interaction
matrix element V RRRR

α=aβ=bγ=cδ=d from (59) taken for the
sub–block of the correlated orbitals. Since the on-site
Coulomb interaction is already approximately accounted
for within LDA, the LDA contribution to the on-site
interaction needs to be removed. This quantity is re-
ferred to as the “double counting” term, and is denoted
by ΦModel

DC [nab]. Various forms of the double–counting
functional have been proposed in the past. In particular,
one of the popular choices is given by (Anisimov et al.,
1997b)

ΦModel
DC [nab] =

1

2
Ū n̄c(n̄c−1)− 1

2
J̄ [n̄↑

c(n̄
↑
c−1)+n̄↓

c(n̄
↓
c−1)],

(110)
where n̄σ

c =
∑

a∈lc
naaδσaσ, n̄c = n̄↑

c + n̄↓
c and where Ū =

1
(2lc+1)2

∑
ab∈lc

Uabba , J̄ = Ū − 1
2lc(2lc+1)

∑
ab∈lc

(Uabba −
Uabab).
• Saddle point equations. The Kohn–Sham equations

are now obtained by the standard procedure which gives
the definitions for the Kohn–Sham potential VKS(r), the
effective magnetic field BKS(r), and the constraining
field matrix λab. The latter is the difference between the
orbital–dependent potential Mab and the contribution
due to double counting, V DC

ab , i.e.

λab =
δΦModel

U

δnab
− δΦModel

DC

δnab
= Mab − V DC

ab , (111)

Mab =
∑

cd

(Uacdb − Uacbd)ncd, (112)

V DC
ab = δab[Ū(n̄c −

1

2
) − J̄(n̄σ

c − 1

2
)]. (113)

• Comments on the parameterization of the functional.
(i) The LDA+U functional and the LDA+U equations
are defined once a set of projectors and a matrix of in-
teractions Uabcd are prescribed. In practice, one can ex-
press these matrices via a set of Slater integrals which,
for example, for d–electrons are given by three constants
F (0), F (2), and F (4). These can be computed from con-
strained LDA calculations as discussed in Section I.B.5 or
taken to be adjustable parameters. An important ques-
tion is the form of the double counting term ΦModel

DC in
Eq. (110). The question arises whether double–counting
term should include self–interaction effects or not. In
principle, if the total–energy functional contains this spu-
rious term, the same should be taken into account in
the double–counting expression. Judged by the experi-
ence that the LDA total energy is essentially free of self–
interaction (total energy of the hydrogen atom is, for ex-
ample, very close to –1 Ry, while the Kohn–Sham eigen-
value is only about –0.5 Ry), the construction ΦModel

DC is
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made such that it is free of the self–interaction. How-
ever given the unclear nature of the procedure, alterna-
tive forms of the double counting may include the effects
of self–interaction. This issue has been reconsidered re-
cently by Petukhov et al. (Petukhov et al., 2003) who
proposed more general expressions of double counting
corrections.

• Assessment of the method. Introducing additional
variables into the energy functional allowed for better
approximations to the ground–state energy in strongly–
correlated situations. This turned out to be a major
advance over LDA in situations where orbital order is
present. The density matrix for the correlated orbitals
is the order parameter for orbital ordering, and its intro-
duction into the functional resembles the introduction of
the spin density when going from the LDA to the LSDA.

Unfortunately it suffers from some obvious drawbacks.
The most noticeable one is that it only describes spectra
which has Hubbard bands when the system is orbitally
ordered. We have argued in the previous sections that a
correct treatment of the electronic structure of strongly–
correlated electron systems has to treat both Hubbard
bands and quasiparticle bands on the same footing. An-
other problem occurs in the paramagnetic phase of Mott
insulators: in the absence of broken orbital symmetry,
the LDA+U results are very close to the LDA-like solu-
tion, and the gap collapses. In systems like NiO where
the gap is of the order of several eV, but the Néel temper-
ature is a few hundred Kelvin, it is unphysical to assume
that the gap and the magnetic ordering are related.

The drawbacks of the LDA+U method are the same as
those of the static Hartree Fock approximation on which
it is based. It improves substantially the energetics in
situations where a symmetry is broken, but it cannot
predict reliably the breaking of a symmetry in some sit-
uations. This is clearly illustrated in the context of the
Hubbard model where correlation effects reduce the dou-
ble occupancy, and Hartree Fock can only achieve this
effect by breaking the spin system which results in mag-
netic ordering. For this reason, the LDA+U predicts
magnetic order in cases where it is not observed, as, e.g.,
in the case of Pu (Bouchet et al., 2000; Savrasov and
Kotliar, 2000).

Finally, notice that LDA+U can be viewed as an
approximation to the more sophisticated LDA+DMFT
treatment consisting of taking the Hartree–Fock approx-
imation for the exchange–correlation functional ΦDMFT

(see (119)), which results in a static self–energy. Even
in the limit of large interaction U , LDA+DMFT does
not reduce to LDA+U. For example, LDA+U will incor-
rectly predict spin ordering temperatures to be on the
scale of U , while LDA+DMFT correctly predicts them
to be on the order of J , the exchange interaction. Hence
LDA+DMFT captures the local moment regime of vari-
ous materials (see IV.C), while LDA+U does not.

Method Physical Quantity Constraining Field

Baym–Kadanoff Gαβ(k, iω) Σint,αβ(k, iω)

DMFT (BL) Gloc,αβ(iω) Mint,αβ(iω)

DMFT (AL) Gloc,αβ(iω) ∆αβ(iω)

LDA+DMFT (BL) ρ(r),Gloc,ab(iω) Vint(r),Mint,ab(iω)

LDA+DMFT (AL) ρ(r),Gloc,ab(iω) Vint(r), ∆ab(iω)

LDA+U ρ(r), nab Vint(r), λab

LDA ρ(r) Vint(r)

TABLE I Parallel between the different approaches, indicat-
ing the physical quantity which has to be extremized, and the
field which is introduced to impose a constraint (constraining
field). (BL) means band limit and (AL) corresponds to atomic
limit.

D. LDA+DMFT theory

• Motivation and choice of variables. We now turn to
the LDA+DMFT method (Anisimov et al., 1997a; Licht-
enstein and Katsnelson, 1998). This approach can be
motivated from different perspectives. It can be viewed
as a natural evolution of the LDA+U method to elimi-
nate some of its difficulties. It can also be viewed as a
way to upgrade the DMFT approach, which so far has
been applied to model Hamiltonians, in order to bring in
realistic microscopic details.

To compute the energy in a combination of LDA and
DMFT one can use an approximate formula to avoid the
overcounting of the free energy Ftot = FLDA +FDMFT −
FmLDA where FmLDA is a mean–field treatment of the
LDA Hamiltonian. This procedure was used by Held et
al. in their work on Cerium (Held et al., 2001b). Al-
ternatively, the approach proposed in this section uses
an effective action construction and obtains an approxi-
mate functional merging LDA and DMFT. This has the
advantage of offering in principle stationarity in the com-
putation of the energy.

In this review we have built a hierarchy of theories,
which focus on more refined observables (see Table I).
At the bottom of the hierarchy we have the density func-
tional theory which focuses on the density, and at the
top of the hierarchy we have a Baym–Kadanoff approach
which focuses on the full electronic Green’s function. The
LDA+DMFT is seen as an intermediate theory, which fo-
cuses on two variables, the density and the local Green’s
function of the heavy electrons. It can be justified by re-
ducing theories containing additional variables, a point of
view put forward recently in Ref. Savrasov and Kotliar,
2004b.

• Construction of the exact functional. We derive
the equations following the effective action point of view
(Chitra and Kotliar, 2001). To facilitate the comparison
between the approaches discussed in the earlier sections
we have tabulated (see Table I) the central quantities
which have to be minimized, and the fields which are
introduced to impose a constraint in the effective action
method (Fukuda et al., 1994). As in the LDA+U method
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one introduces a set of correlated orbitals χa(r−R). One
defines an exact functional of the total density ρ(x) and
of the local spectral function of the correlated orbitals
discussed before:

Gloc,ab(τ, τ
′) = −

∫ ∑

R

χRa(r)
〈
ψ(x)ψ+(x′)

〉
χ∗

Rb(r
′)drdr′

(114)
where indexes a, b refer exclusively to the correlated or-
bitals, and c+Rb creates χb(r − R)..

We now introduce the sources for the density, L(x),
and for the local spectral function of the correlated or-
bitals, Jloc,Rab(τ, τ

′). These two sources modify the ac-
tion as follows

S′ = S +

∫
L(x)ψ+(x)ψ(x)dx + (115)

1

N

∑

Rab

∫
Jloc,Rab(τ,τ

′)c+Ra(τ)cRb(τ
′)dτdτ ′.

This defines the free energy of the system as a functional
of the source fields after (33). Both density and local
Green’s function can be calculated as follows

δF

δL(x)
= ρ(x), (116)

δF

δJloc,Rba(τ ′,τ)
= Gloc,ab(τ,τ

′). (117)

Then, the functional of both density and the spectral
function is constructed by the Legendre transform. This
is an exact functional of the density and the local Green’s
function, Γ(ρ,Gloc), which gives the exact total free en-
ergy, the exact density, and the exact local Green’s func-
tion of the heavy electrons at the stationary point.

• Exact representations of the constraining field. A
perturbative construction can be carried out either
around the atomic limit or around the band limit fol-
lowing the inversion method. Unfortunately the latter is
very involved and has not been yet evaluated, except for
the lowest order (so–called “tree”) level neglecting non-
local interactions. One can also perform a decomposition
into the lowest order term (consisting of “kinetic energy”)
and the rest (with an exchange and correlation energy).

• Constructing approximations. Given that DMFT has
proven to accurately describe many systems at the level
of model Hamiltonians, and that LDA has a long his-
tory of success in treating weakly correlated materials,
LDA+DMFT is obviously a reasonable choice for an ap-
proximation to the exact functional.

The functional implementation corresponding to this
approximation is given by ΓLDA+DMFT and has the form

ΓLDA+DMFT [ρ,Gloc, Vint,Mint] =

−Tr ln[iω + µ+ ∇2 − Vext − Vint −
∑

abR

[Mint,ab(iω) −MDC,ab]χa(r − R)χ∗
b (r

′ − R)] (118)

−
∫
Vint(r)ρ(r)dr − T

∑

iω

∑

ab

[Mint,ab(iω) −MDC,ab]Gloc,ba(iω) +EH [ρ] +ELDA
xc [ρ] + ΦDMFT [Gloc,ab] − ΦDC [nab].

ΦDMFT [Gloc,ab] is the sum of all two–particle irreducible
graphs constructed with the local part of the interaction
and the local Green’s function, and ΦDC [nab] is taken
to have the same form as in the LDA+U method, Eq.
(110). In a fixed tight–binding basis, −∇2 +Vext reduces

to h
(0)
ab (k) and the functional ΓLDA+DMFT Eq. (119), for

a fixed density truncated to a finite basis set, takes a form
identical to the DMFT functional which was discussed in
Section II.A.

• Saddle point equations. Minimization of the func-
tional leads to the set of equations with the Kohn–Sham

potential and

Mint,ab(iω) =
δΦDMFT

δGloc,ba(iω)
, (119)

MDC,ab =
δΦDC

δnba
, (120)

which identifies matrix Mint,ab(iω) as the self–energy of
the generalized Anderson impurity model in a bath char-
acterized by a hybridization function ∆ab(iω) obeying
the self–consistency condition

(iω + µ)Ōab − ǭab − ∆ab(iω) −Mint,ab(iω) = (121)
[
∑

k

[(iω + µ)Ô(k) − ĥ(LDA)(k) −Mint(iω) + MDC ]−1

]−1

ab

.
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By examining the limiting behavior iω → ∞, we get
the definition of the average overlap matrix Ōab for the
impurity levels as inverse of the average inverse overlap,
i.e.

Ōab =

[
∑

k

Ô−1(k)

]−1

ab

. (122)

Similarly, the matrix of the impurity levels has the fol-
lowing form

ǭab =
∑

cd

Ōac

[
∑

k

Ô−1(k)[h(LDA)(k) + Mint(i∞) −MDC ]Ô−1(k)

]

cd

Ōdb −Mint,ab(i∞). (123)

Finally, minimization of Eq. (119) with respect to Veff indicates that ρ(r) should be computed as follows

ρ(r) = T
∑

iω

〈
r

∣∣∣∣∣[iω + µ+ ∇2 − Veff −
∑

abR

[Mint,ab(iω) −MDC,ab]χa(r − R)χ∗
b (r

′ − R)]−1

∣∣∣∣∣ r
〉
eiω0+

. (124)

The self–consistency in the LDA+DMFT theory is per-
formed as a double iteration loop, the inside loop is over
the DMFT cycle and the outside loop is over the electron
density, which modifies the one–electron LDA Hamilto-
nian. The self–consistent cycle is illustrated in Fig. 9.
•Evaluation of the total energy. In general, the free

energy is Ftot = Etot − TS, where Etot is the total en-

ergy and S is the entropy. Both energy and entropy
terms exist in the kinetic and interaction functionals.
The kinetic energy part of the functional is given by
KSDFT [G] = Tr(−∇2+Vext)G while the potential energy
part is 1

2TrMintGloc therefore the total energy within
LDA+DMFT becomes

Etot = T
∑

kj

∑

iω

gkjωǫkjω −
∫
Vint(r)ρ(r)dr − T

∑

iω

∑

ab

[Mint,ab(iω) −MDC,ab]Gloc,ba(iω) +

+EH [ρ] +ELDA
xc [ρ] +

1

2
T
∑

iω

∑

ab

Mint,ab(iω)Gloc,ba(iω) − ΦDC [nab], (125)

where the frequency–dependent eigenvalues ǫkjω come
as a result of diagonalizing the following non–hermitian
eigenvalue problem similar to (89):

∑

β

[
h

(LDA)
αβ (k) + δαaδβb(Mint,ab(iω) −MDC,ab)−

ǫkjωOαβ(k)]ψR
kjω,β = 0. (126)

Also,

gkjω =
1

iω + µ− ǫkjω
, (127)

is the Green’s function in the orthogonal left/right repre-
sentation which plays a role of a “frequency–dependent
occupation number”.

Evaluation of the entropy contribution to the free en-
ergy can be performed by finding the total energy at sev-
eral temperatures and then taking the integral (Georges

et al., 1996)

S(T ) = S(∞) −
∫ ∞

T

dT ′ 1

T ′

dELDA+DMFT

dT ′
. (128)

The infinite temperature limit S(∞) for a well defined
model Hamiltonian can be worked out. This program was
implemented for the Hubbard model (Rozenberg et al.,
1994) and for Ce (Held et al., 2001b). If we are not deal-
ing with a model Hamiltonian construction one has to
take instead of infinity a sufficiently high temperature so
that the entropy S(∞) can be evaluated by semiclassical
considerations.
• Choice of basis and double counting. The basis can be

gradually refined so as to obtain more accurate solutions
in certain energy range. In principle this improvement is
done by changing the linearization energies, and the ex-
perience from density functional implementations could
be carried over to the DMFT case.
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Ok,αβ = 〈χkα|χkβ〉

h
(LDA)
k,αβ = 〈χkα| − ∇2 + Veff [ρ]|χkβ〉

LDA

IMPURITY SOLVER

Mint[G0, U ]

Gloc(iω) =
P

k

1

(iω+µ)O
k
−h

(LDA)
k

−Mint(iω)+MDC

ρ(r) = T
P

iω,kαβ χ∗
kα(r)Gαβ(k, iω)χkβ (r)eiω0+

G−1
0 = G−1

loc + Mint
Mint

LDA+DMFT

FIG. 9 Illustration of self–consistent cycle in spectral density
functional theory with LDA+DMFT approximation: double
iteration cycle consists of the inner DMFT loop and outer
(density plus total energy) loop.

Notice that the rational for the double counting term
described in Eq. (110) was chosen empirically to fit the
one–particle spectra of Mott insulator (for further discus-
sion see (Petukhov et al., 2003)) and deserves further in-
vestigations. All the discussion of double counting terms
in LDA+U literature can be extended to LDA+DMFT.
Notice that as long as the equations are derivable from
a functional, the Luttinger theorem is satisfied (in the
single–site DMFT case).

In addition to the forms of double counting terms dis-
cussed in Section II.C, it has been proposed to use the
DMFT self–energy at zero or at infinity for the double
counting. One possibility

MDC,ab =
1

Ndeg

δab

∑

a′

Mint,a′a′(0), (129)

was suggested and implemented by Lichtenstein et al.
in their work on Fe and Ni (Lichtenstein et al., 2001).
The spin polarized version of this term, has been recently
applied to Iron with encouraging results (Katsnelson and
Lichtenstein, 2000).
• Assessment of the LDA+DMFT method. The addi-

tion of a realistic band theory to the DMFT treatment of
models of correlated electron systems has opened a new
area of investigations. To the many–body theorist, the
infusion of a realistic band theory allows one to make
system–specific studies. Some of them are listed in Sec-
tion IV on materials. For the electronic structure com-
munity, the LDA+DMFT method allows the treatment
of a variety of materials which are not well treated by
the LDA or the LDA+U method, such as correlated met-
als and systems with paramagnetic local moments. The
main shortcoming is in the arbitrariness in the choice of
the correlated orbitals, in the estimation of the U , and

the ambiguity in the choice of double counting correc-
tion. This may turn out to be hard to resolve within this
formalism. The ideas described in the following section
formulate the many–body problem in terms of fluctuat-
ing electric fields and electrons, treat all the electrons on
the same footing, provide an internally consistent evalu-
ation of the interaction, and eliminate the need for the
double counting correction.

E. Equations in real space

• Functional of the local Green’s function in real space.
The success of the dynamical mean–field approximations
is related to the notion that the local approximation is
good in many situations. Thus far, the notion of local-
ity has only been explored after choosing a set of tight–
binding orbitals, but it can also be formulated directly
in real space, as stressed recently in Ref. (Chitra and
Kotliar, 2000a; Savrasov and Kotliar, 2004b). This is
necessary in order to make direct contact with theories
such as density functional theory, which is formulated di-
rectly in the continuum without resorting to a choice of
orbitals or preferred basis set. The theory is formulated
by defining the local Green’s function to be the exact
Green’s function G(r, r′, z) within a given volume Ωloc

and zero outside. In other words,

Gloc(r, r
′, z) = G(r, r′, z)θloc(r, r

′), (130)

where r is within a primitive unit cell Ωc positioned at
R = 0 while r′ travels within some volume Ωloc centered
at R = 0. Theta function is unity when r ∈ Ωc, r

′ ∈ Ωloc

and zero otherwise. This construction can be translation-
ally continued onto entire lattice by enforcing the prop-
erty θloc(r + R, r′ + R) = θloc(r, r

′).
The procedures outlined in the previous sections can

be applied to the continuum in order to construct an ex-
act functional which gives the exact free energy, the local
Green’s function (in real space), its Kohn–Sham for-
mulation, and its dynamical mean–field approximation
(by restricting the interaction in the full Baym–Kadanoff
functional to the local Green’s function).

This approach has the advantage that the density is
naturally contained in this definition of a local Green’s
function, and therefore the density functional theory is
naturally embedded in this formalism. Another advan-
tage is that the approach contains the bare Coulomb in-
teraction, and therefore is free from phenomenological
parameters such as the Hubbard U . However, this may
create problems since it is well–known that significant
screening of the interactions occurs within real materi-
als. Therefore, it is useful to incorporate the effects of
screening at a level of functional description of the sys-
tem.
• Motivation and choice of variables: spectral density

functional of the local Green’s functions and of the local
interaction. We introduce two local source fields Jloc and
Kloc which probe the local electron Green’s function Gloc
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defined earlier and the local part of the boson Green’s
function Wloc(x, x

′) = 〈Tτφ(x)φ(x′)〉θloc(r, r
′) being the

screened interaction (see Section I.B.3). This general-
ization represents the ideas of the extended dynamical
mean–field theory (Si and Smith, 1996), now viewed as
an exact theory. Note that formally the cluster for the
interaction can be different from the one considered to
define the local Green’s function (130) but we will not
distinguish between them for simplicity. The auxiliary

Green’s function G(r, r′, iω) as well as the auxiliary inter-
action W(r, r′, iω) are introduced which are the same as
the local functions within non–zero volume of θloc(r, r

′)

Gloc(r, r
′, iω) = G(r, r′, iω)θloc(r, r

′), (131)

Wloc(r, r
′, iω) = W(r, r′, iω)θloc(r, r

′). (132)

The spectral density functional is represented in the form

ΓSDFT [Gloc,Wloc] = Tr lnG −Tr[G−1
0 −G−1]G+EH [ρ]− 1

2
Tr lnW +

1

2
Tr[v−1

C −W−1]W +ΨSDFT [Gloc,Wloc]. (133)

It can be viewed as a functional ΓSDFT [Gloc,Wloc]
or alternatively as a functional ΓSDFT [G,W].
ΨSDFT [Gloc,Wloc] is formally not a sum of two–
particle diagrams constructed with Gloc and Wloc, but in
principle a more complicated diagrammatic expression
can be derived following Refs. (Chitra and Kotliar,
2001; Fukuda et al., 1994; Valiev and Fernando, 1997).
A more explicit expression involving a coupling constant
integration can be given. Examining stationarity of
ΓSDFT yields saddle–point equations for G(r, r′, iω) and
for W(r, r′, iω)

G−1(r, r′, iω) = G−1
0 (r, r′, iω) −Mint(r, r

′, iω), (134)

W−1(r, r′, iω) = v−1
C (r − r′) −P(r, r′, iω), (135)

where Mint(r, r
′, iω) is the auxiliary local mass operator

defined as the variational derivative of the interaction
functional:

Mint(r, r
′, iω) =

δΦSDFT [Gloc]

δG(r′, r, iω)
=
δΦSDFT [Gloc]

δGloc(r′, r, iω)
θloc(r, r

′),

(136)
P(r, r′, iω) is the effective susceptibility of the system
defined as the variational derivative

P(r, r′, iω) =
−2δΨSDFT

δW(r′, r, iω)
=

−2δΨSDFT

δWloc(r′, r, iω)
θloc(r, r

′).

(137)

Notice again a set of parallel observations for P as for
Mint. Both P and Mint are local by construction, i.e.
these are non–zero only within the cluster restricted by
θloc(r, r

′). Formally, they are auxiliary objects and can-
not be identified with the exact self–energy and suscep-
tibility of the electronic system. However, if the ex-
act self–energy and susceptibility are sufficiently local-
ized, this identification becomes possible. If the cluster
Ωloc includes the physical area of localization, we can
immediately identify Mint(r, r

′, iω) with Σint(r, r
′, iω),

P(r, r′, iω) with Π(r, r′, iω) in all space. However, both
G(r, r′, iω) and G(r, r′, iω) as well as W and W are al-
ways the same within Ωloc regardless its size, as it is seen
from (131) and (132).
• Practical implementation and Kohn–Sham represen-

tation. The Kohn–Sham Green’s function can be calcu-
lated using the following representation

G(r, r′, iω) =
∑

kj

ψR
kjω(r)ψL

kjω(r′)

iω + µ− ǫkjω
, (138)

where the left ψL
kjω(r) and right ψR

kjω(r) states satisfy
the following Dyson equations

[−∇2 + Vext(r) + VH(r)]ψR
kjω(r) +

∫
Mxc(r, r

′, iω)ψR
kjω(r′)dr′ = ǫkjωψ

R
kjω(r), (139)

[−∇2 + Vext(r
′) + VH(r′)]ψL

kjω(r′) +

∫
ψL

kjω(r)Mxc(r, r
′, iω)dr = ǫkjωψ

L
kjω(r′). (140)

These equations should be considered as eigenvalue prob-
lems with a complex, non–hermitian self–energy. As a

result, the eigenvalues ǫkjω are complex in general, and
the same for both equations. The explicit dependence on
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the frequency iω of both the eigenvectors and eigenval-
ues comes from the self–energy. Note that left and right
eigenfunctions are orthonormal

∫
drψL

kjω(r)ψR
kj′ω(r)=δjj′ , (141)

and can be used to evaluate the charge density of a given
system using the Matsubara sum and the integral over
the momentum space

ρ(r) = T
∑

iω

∑

kj

ψR
kjω(r)ψL

kjω(r)

iω + µ− ǫkjω
eiω0+

. (142)

It can be shown (Savrasov and Kotliar, 2004b) that this
system of equations reduces to the Kohn–Sham eigensys-
tem when the self–energy is frequency independent.

Note that the frequency–dependent energy bands ǫkjω

represent an auxiliary set of complex eigenvalues. These

are not the true poles of the exact one–electron Green’s
function G(r, r′, z). However, they are designed to repro-
duce the local spectral density of the system. Note also
that these bands ǫkjz are not the true poles of the aux-
iliary Green’s function G(r, r′, z). Only in the situation
when G is a good approximation to G, the solution of the
equation z+µ− ǫkjz = 0 gives a good approximation for
the quasiparticle energies

• Evaluation of the total energy. The energy–
dependent representation allows one to obtain a very
compact expression for the total energy. As we have ar-
gued, the entropy terms are more difficult to evaluate.
However, as long as we stay at low temperatures, these
contributions are small and the total energy approach is
valid. In this respect, the SDFT total energy formula
is obtained by utilizing the relationship ǫkjω = 〈ψL

kjω | −
∇2+Meff |ψR

kjω〉 = 〈ψL
kjω |−∇2+Vext +VH +Mxc|ψR

kjω〉

ESDFT = T
∑

iω

eiω0+ ∑

kj

gkjωǫkjω − T
∑

iω

∫
drdr′Meff (r, r′, iω)G(r′, r, iω) +

+

∫
drVext(r)ρ(r) +EH [ρ] +

1

2
T
∑

iω

∫
drdr′Mxc(r, r

′, iω)Gloc(r
′, r, iω), (143)

where Meff = Mint + Vext and gkjω = 1/(iω + µ −
ǫkjω). For the same reason as in DFT, this expression
should be evaluated with the value of the the self-energy
Meff which is used as input to the routine performing
the inversion of the Dyson equation, and with the value
of the Green’s function G which is the output of that
inversion.
• Constructions of approximations. The dynamical

mean–field approximation to the exact spectral den-
sity functional is defined by restricting the interaction
part of Baym–Kadanoff functional ΨSDFT [Gloc,Wloc] to
Gloc(r, r

′, z) and Wloc(r, r
′, iω). The sum over all the di-

agrams, constrained to a given site, together with the
Dyson equations can be formulated in terms of the so-
lution of an auxiliary Anderson impurity model, after
the introduction of a basis set. We introduce a bath
Green’s function G0(r, r

′, iω) and a “bath interaction”
V0(r, r

′, iω) defined by the following Dyson equations

G−1
0 (r, r′, iω) = G−1

loc(r, r
′, iω) + Mint(r, r

′, iω), (144)

V−1
0 (r, r′, iω) = W−1

loc (r, r′, iω) + P(r, r′, iω). (145)

Note that formally neither G0 nor V0 can be associated
with non–interacting G0 and the bare interaction vC , re-
spectively. These two functions are to be considered as
an input to the auxiliary impurity model which delivers
new Mint(r, r

′, iω) and P(r, r′, iω).
To summarize, the effective impurity action, the Dyson

equations (144), (145) connecting local and bath quanti-
ties as well as the original Dyson equations (134), (135)
constitute a self–consistent set of equations as the saddle–
point conditions extremizing the spectral density func-
tional ΓSDFT (G,W). They combine cellular and ex-
tended versions of DMFT and represent our philosophy in
the ab initio simulation of a strongly–correlated system.
Since Mint and P are unknown at the beginning, the so-
lution of these equations assumes self–consistency. First,
assuming some initial Mint and P , the original Dyson
equations (134), (135) are used to find Green’s function
G and screened interaction W. Second, the Dyson equa-
tions for the local quantities (144), (145) are used to find
G0, V0. Third, quantum impurity model with input G0, V0

is solved by available many–body technique to give new
local Mint and P : this is a much more challenging task
than purely fermionic calculations (e.g. cluster DMFT in
Hubbard model), which can only be addressed at present
with Quantum Monte Carlo methods using continuous
Hubbard-Stratonovich fields (Sun and Kotliar, 2002) or
possibly with continuous Quantum Monte Carlo studied
in (Rubtsov et al., 2004). The process is repeated until
self–consistency is reached. This is schematically illus-
trated in Fig. 10. Note here that while single–site im-
purity problem has a well–defined algorithm to extract
the lattice self–energy, this is not generally true for the
cluster impurity models (Biroli et al., 2004). The latter



30

provides the self–energy of the cluster, and an additional
prescription such as implemented within cellular DMFT
or DCA should be given to construct the self–energy of
the lattice. An interesting observation can be made on
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FIG. 10 Illustration of the self–consistent cycle in spectral
density functional theory within the local dynamical mean–
field approximation: both local Green’s function Gloc and
local Coulomb interaction Wloc are iterated. Here we illus-
trate one possible explicit realization of the abstract general
SDFT construction. This requires an explicit definition of
Gloc, which for the purpose of this figure is done by means of
the use of a tight binding basis set.

the role of the impurity model which in the present con-
text appeared as an approximate way to extract the self–
energy of the lattice using input bath Green’s function
and bath interaction. Alternatively, the impurity prob-
lem can be thought of itself as the model which delivers
the exact mass operator of the spectral density functional
(Chitra and Kotliar, 2001). If the latter is known, there
should exist a bath Green’s function and a bath interac-
tion which can be used to reproduce it. In this respect,
the local interaction Wloc appearing in our formulation
can be thought of as an exact way to define the local
Coulomb repulsion “U”, i.e. the interaction which deliv-
ers exact local self–energy.
• Local GW. A simplified version of the described

construction (Kotliar and Savrasov, 2001; Zein and
Antropov, 2002) is known as a local version of the GW
method (LGW). Within the spectral density functional
theory, this approximation appears as an approximation
to the functional ΨSDFT [Gloc,Wloc] taken in the form

ΨLGW [Gloc,Wloc] = −1

2
TrGlocWlocGloc. (146)

As a result, the susceptibility P(r, r′, iω) is approxi-
mated by the product of two local Green’s functions, i.e.
P = −2δΨLGW/δWloc = GlocGloc, and the exchange–
correlation part of our mass operator is approximated
by the local GW diagram, i.e. Mxc = δΨLGW/δGloc =
−GlocWloc. Note that since the local GW approximation
(146) is relatively cheap from a computational point of

view, its implementation for all orbitals within a cluster
is feasible. The results of the single–site approximation
for the local quantities were already reported in the lit-
erature (Zein and Antropov, 2002).

Note finally that the local GW approximation is just
one of the possible impurity solvers to be used in this
context. For example, another popular approxima-
tion known as the fluctuation exchange approximation
(FLEX) (Bickers and Scalapino, 1989) can be worked out
along the same lines.
• Assessment of the method. The described algo-

rithm is quite general, totally ab initio, and allows the
determination of various quantities, such as the local
one–electron Green’s functions Gloc and the dynamically
screened local interactionsWloc. This challenging project
so far has only been carried out on the level of a model
Hamiltonian (Sun and Kotliar, 2002). On the other hand,
one can view the LDA+DMFT method as an approx-
imate implementation of this program, as discussed in
Ref. (Savrasov and Kotliar, 2004b). Note also that
the combination of the DMFT and full GW algorithm
has been recently proposed and applied to Ni (Biermann
et al., 2003). This in principle shows the way to incor-
porate full k–dependence of the self–energy known dia-
grammatically within GW. The first implementation of
a fully self-consistent spectral density functional calcu-
lation within the LDA+DMFT approximation was car-
ried out in (Savrasov et al., 2001) using the full potential
LMTO basis set (for details see (Savrasov and Kotliar,
2004a)). Since then the method has been implemented
in the exact muffin tin orbital basis set (Chioncel et al.,
2003b) as well as in a fully KKR implementation (Minar
et al., 2005).

The spectral density functional theory contains the lo-
cal or cluster GW diagrams together with all higher or-
der local corrections to construct an approximation to
the exact Mxc. Just like the Kohn–Sham spectra were
a good starting point for constructing the quasiparticle
spectra for weakly correlated electron systems, we expect
that Mxc will be a good approximation for strongly–
correlated electron systems. This is a hypothesis that
can be checked by carrying out the perturbation expan-
sion in nonlocal corrections.

F. Application to lattice dynamics

Computational studies of lattice dynamics and struc-
tural stability in strongly–correlated situations is an-
other challenging theoretical problem which has been re-
cently addressed in Refs. (Dai et al., 2003; Savrasov and
Kotliar, 2003). LDA has delivered the full lattice dynam-
ical information and electron–phonon related properties
of a variety of simple metals, transition metals, as well as
semiconductors with exceptional accuracy (Baroni et al.,
2001). This is mainly due to an introduction of a linear
response approach (Baroni et al., 1987; Zein, 1984). This
method overcame the problems of traditional techniques
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based on static susceptibility calculations which gener-
ally fail to reproduce lattice dynamical properties of real
materials due to difficulties connected with the summa-
tions in high–energy states and the inversion of very large
dielectric matrix (J. T. Devreese and Camp, 1983).

Despite these impressive successes, there is by now
clear evidence that the present methodology fails when
applied to strongly–correlated materials. For example,
the local density predictions for such properties as bulk
modulus and elastic constants in metallic Plutonium are
approximately one order of magnitude off from exper-
iment (Bouchet et al., 2000); the phonon spectrum of
Mott insulators such as MnO is not predicted correctly
by LDA (Massidda et al., 1999).

Recently, a linear response method to study the lat-
tice dynamics of correlated materials has been developed
(Dai et al., 2003; Savrasov and Kotliar, 2003). The dy-
namical matrix being the second order derivative of the
energy can be computed using spectral density functional
theory. As with the ordinary density functional formu-
lation of the problem (Savrasov, 1996), we deal with the
first order corrections to the charge density, δρ, as well as
the first order correction to the Green’s function δG(iω)
which should be considered as two independent variables
in the functional of the dynamical matrix. To find the
extremum, a set of the linearized Dyson equations has to
be solved self–consistently

[−∇2+M̂eff (iω)−ǫkjω]δψR
kjω+[δM̂eff (iω)−δǫkjω]ψR

kjω = 0,
(147)

which leads us to consider the first order changes in the
local mass operator M̂eff (iω). Here and in the follow-
ing we will assume that the phonon wave vector of the
perturbation q is different from zero, and, therefore, the
first order changes in the eigenvalues δǫkjω drop out. The

quantity δM̂eff (iω) is a functional of δG(iω) and should
be found self–consistently. In particular, the change in
the self–energy δM̂eff (iω) needs a solution of an AIM
linearized with respect to the atomic displacement, which
in practice requires the computation of a two-particle ver-
tex function Γ = δ2ΦSDFT (Gloc)/(δGlocδGloc).

In practice, change in the eigenvector δψkjω has to
be expanded in some basis set. Previous linear response
schemes were based on tight–binding methods (Varma
and Weber, 1977), plane wave pseudopotentials (Ba-
roni et al., 1987; Gonze et al., 1992; Quong and Klein,
1992; Zein, 1984), linear augmented plane waves(Yu and
Krakauer, 1994), mixed orbitals (Heid and Bohnen, 1999)
and linear muffin–tin orbitals (Savrasov, 1992). Due to
explicit dependence on the atomic positions of local or-
bital basis sets both Hellmann–Feynman contributions
and incomplete basis set corrections appear in the ex-
pression for the dynamical matrix (Savrasov, 1996). The
functions δψkjω are represented as follows

δψkjω =
∑

α

{δAkjω
α χk+q

α +Akjω
α δχk

α}, (148)

where we introduced both changes in the frequency–
dependent variational coefficients δAkjω

α as well as

changes in the basis functions δχk
α. The latter helps us to

reach fast convergence in the entire expression (148) with
respect to the number of the basis functions {α} since the
contribution with δχk

α takes into account all rigid move-
ments of the localized orbitals (Savrasov, 1992).

FIG. 11 Illustration of the self–consistent cycle to calculate
lattice dynamics within the spectral density functional theory.

The first–order changes in the Green’s function can be
found as follows

δGloc(iω) =
∑

kj

δψL
kjωψ

R
kjω + ψL

kjωδψ
R
kjω

iω + µ− ǫkjω
, (149)

which should be used to evaluate the first order change in
the charge density and the dynamical matrix itself (see
Fig. 11).

A simplified version of the approach, neglecting the
impurity vertex function, was successfully applied to the
paramagnetic phases of Mott insulators (Savrasov and
Kotliar, 2003) as well as to high–temperature phases of
Plutonium (Dai et al., 2003). We will describe these ap-
plications in Section IV.

G. Application to optics and transport

Optical spectral functions such as conductivity or re-
flectivity are very important characteristics of solids and
give us a direct probe of the electronic structure.

Here we outline an approach which allows to calcu-
late the optical properties of a strongly–correlated ma-
terial within the spectral density functional framework
(Oudovenko et al., 2004b; Perlov et al., 2004). This work
extends the methodology in use for weak correlated sys-
tems (see (Maksimov et al., 1988)) to correlated materi-
als. The optical conductivity can be expressed via equi-
librium state current–current correlation function (Ma-
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han, 1993) and is given by

σµν(ω) = (150)

πe2
+∞∫

−∞

dεφµν(ε+ ω/2, ε− ω/2)
f(ε− ω/2)−f(ε+ ω/2)

ω
,

where f(ε) is the Fermi function, and the transport func-
tion φµν(ε, ε′) is

φµν(ε, ε′) =
1

Ωc

∑

kjj′

Tr
{
∇µρkj(ε)∇νρkj′(ε

′
)
}
, (151)

where Ωc is the unit cell volume and

ρ̂kj(ε) = − 1

2πi

(
Gkj(ε) − G†

kj(ε)
)
, (152)

is expressed via retarded one–particle Green’s function,
Gkj(ε), of the system. Taking limit of zero temperature

and using the solutions ǫkjω and ψR,L
kjω of the Dyson equa-

tion (139), (140) on the real frequency axis we express the
optical conductivity in the form

σµν(ω) =
πe2

ω

∑

ss′=±

ss′
∑

kjj′

+ω/2∫

−ω/2

dε
M ss′,µν

kjj′ (ε−, ε+)

ω + ǫs
kjε− − ǫs

′

kj′ε+

[
1

ε− + µ− ǫs
kjε−

− 1

ε+ + µ− ǫs
′

kj′ε+

]
, (153)

where we have denoted ε± = ε ± ω/2, and used the ab-
breviated notations ǫ+kjε ≡ ǫkjε, ǫ

−
kjε = ǫ∗kjε.

The matrix elements Mkjj′ are generalizations of the
standard dipole allowed transition probabilities which are
now defined with the right and left solutions ψRand ψL

of the Dyson equation

M ss′,µν
kjj′ (ε, ε′) = (154)

∫
(ψs

kjε)
s∇µ(ψ−s′

kjε′ )
s′

dr

∫
(ψs′

kj′ε′)s′∇ν(ψ−s
kjε)

sdr,

where we have denoted ψ+
kjε = ψL

kjε , ψ−
kjε = ψR

kjε and

assumed that (ψs
kjε)

+ ≡ ψs
kjε while (ψs

kjε)
− = ψs∗

kjε.

The expressions (153), (155) represent generalizations
of the formulae for optical conductivity for a strongly–
correlated system, and involve the extra internal fre-
quency integral in Eq. (153).

Let us consider the non–interacting limit when
M̂xc(ω) → iγ → 0. In this case, the eigenvalues ǫkjε =
ǫkj + iγ, ψR

kjε ≡ |kj〉, ψL
kjε ≡ |kj〉∗ ≡ 〈kj| and the matrix

elements M ss′,µν
kjj′ (ε, ε′) are all expressed via the standard

dipole transitions |〈kj|∇|kj′〉|2. Working out the energy
denominators in the expression (153) in the limit iγ → 0
and for ω 6= 0 leads us to the usual form for the conduc-
tivity which for its interband contribution has the form

σµν(ω) =
πe2

ω

∑

k,j′ 6=j

〈kj|∇µ|kj′〉〈kj′|∇ν |kj〉 ×

[f(ǫkj) − f(ǫkj′)]δ(ǫkj − ǫkj′ + ω). (155)

To evaluate the expression σµν (ω) numerically, one
needs to pay special attention to the energy denomina-
tor 1/(ω + ǫs

kjε− − ǫs
′

kj′ε+) in (153). Due to its strong

k-dependence the tetrahedron method of Lambin and
Vigneron (Lambin and Vigneron, 1984) should be used.

On the other hand, the difference in the square brack-
ets of Eq. (153) is a smooth function of k and one can
evaluate it using linear interpolation. This allows one
to calculate the integral over ε by dividing the inter-
val −ω/2 < ε < +ω/2 into discrete set of points εi

and assuming that the eigenvalues ǫkjε and eigenvec-
tors ψkjε can to zeroth order be approximated by their
values at the middle between each pair of points i.e.
ε̄±i = εi ±ω/2+ (εi+1− εi)/2. In this way, the integral is
replaced by the discrete sum over internal grid εi defined
for each frequency ω, and the Dyson equation needs to
be solved twice for the energy ε̄+i and for the energy ε̄−i
The described procedure produces fast and accurate al-
gorithm for evaluating the optical response functions of
a strongly–correlated material.

Similar developments can be applied to calculate the
transport properties such as dc-resistivity. The trans-
port parameters of the system are expressed in terms of
so called kinetic coefficient, denoted here by Am. The
equation for the electrical resistivity is given by

ρ =
kBT

e2
1

A0
, (156)

and the thermopower and the thermal conductivity are
given by

S =
−kB

|e|
A1

A0
, κ = kB

(
A2 −

A2
1

A0

)
. (157)

Within the Kubo formalism (Mahan, 1993) the ki-
netic coefficients are given in terms of equilibrium state
current–current correlation functions of the particle and
the heat current in the system. To evaluate these correla-
tion functions an expression for electric and heat currents
are needed. Once those currents are evaluated, transport
with DMFT reduces to the evaluation of the transport
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function

φxx(ǫ) =
1

Ωc

∑

k

Tr {v̂x
k (ǫ)ρ̂k(ǫ)v̂x

k (ǫ)ρ̂k(ǫ)} , (158)

and the transport coefficients

Am = π

∫ ∞

−∞

dǫφxx(ǫ)f(ǫ)f(−ǫ)(βǫ)m, (159)

The described methodology has been applied to cal-
culate the optical conductivity (Oudovenko et al.,
2004b), the thermopower (Pálsson and Kotliar, 1998),
the DC–resistivity, and the thermal conductivity for
LaTiO3 (Oudovenko et al., 2004c).

III. TECHNIQUES FOR SOLVING THE IMPURITY

MODEL

In practice the solution of the dynamical mean–field
(DMFT) equations is more involved than the solution of
the Kohn–Sham equations, which now appear as static
analogs. There are two central elements in DMFT: the
self–consistency condition and the impurity problem (see
Fig. 5). The first step is trivial for model calculations but
becomes time consuming when realistic band structures
are considered. Usually it is done using the tetrahedron
method (see, e.g., (Anisimov et al., 1997a), programs and
algorithms for caring out this step are described at http :
//dmftreview.rutgers.edu).

The second step in the DMFT algorithm, i.e. the solu-
tion of the impurity problem, is normally the most diffi-
cult task. Fortunately, we can now rely on many years of
experience to devise reasonable approximations for car-
rying out this step. At the present time, there is no uni-
versal impurity solver that works efficiently and produces
accurate solutions for the Green’s function in all regimes
of parameters. Instead what we have is a large number
of techniques, which are good in some regions of param-
eters. In many cases when there are various methods
that can be applied, there is a conflict between accuracy
and computational cost, and in many instances one has
to make a compromise between efficiency and accuracy
to carry out the exploration of new complex materials.
It should be noted that the impurity solver is one com-
ponent of the various algorithms discussed, and that for
a given material or series of materials, one should strive
to use comparable realism and accuracy in the various
stages of the solution of a specific problem.

For space limitations, we have not covered all the meth-
ods that are available for studying impurity models, but
we simply chose a few illustrative methods which have
been useful in the study of correlated materials using
DMFT. In this introductory section, we give an overview
of some of the methods, pointing out the strengths and
limitations of them and we expand on the technical de-
tails in the following subsections.

There are two exactly soluble limits of the multiorbital
Anderson impurity model, for a general bath. The atomic

limit when the hybridization vanishes and the band limit
when the interaction matrix U is zero. There are meth-
ods which are tied to expansions around each of these
limits. The perturbative expansion in the interactions is
described in section III.A. It is straightforward to con-
struct the perturbative expansion of the self–energy in
powers of U up to second order, and resum certain classes
of diagrams such as ring diagrams and ladder diagrams.
This is an approach known as the fluctuation exchange
approximation (FLEX), and it is certainly reliable when
U is less than the half–bandwidth, D. These impurity
solvers are very fast since they only involve matrix mul-
tiplications and inversions. They also have good scaling,
going as N3 where N is the number of orbitals or the
cluster size.

The expansion around the atomic limit is more com-
plicated. A hybridization function with spectral weight
at low frequencies is a singular perturbation at zero tem-
perature. Nevertheless approaches based on expansion
around the atomic limit are suitable for describing ma-
terials where there is a gap in the one–particle spectra,
or when the temperature is sufficiently high that one can
neglect the Kondo effect. This includes Mott insulating
states at finite temperatures, and the incoherent regime
of many transition metal oxides and heavy fermion sys-
tems. Many approaches that go beyond the atomic limit
exist: direct perturbation theory in the hybridization, re-
summations based on equation of motion methods, such
as the Hubbard approximations, resolvent methods, and
slave particle techniques such as the non–crossing approx-
imation (NCA) and their extensions. We describe them
in sections III.B and III.C.

There are methods, such as the quantum Monte Carlo
method (QMC), or functional integral methods which
are not perturbative in either U or in the bandwidth,
W . In the QMC method one introduces a Hubbard–
Stratonovich field and averages over this field using
Monte Carlo sampling. This is a controlled approxi-
mation using a different expansion parameter, the size
of the mesh for the imaginary time discretization. Un-
fortunately, it is computationally very expensive as the
number of time slices and the number of Hubbard–
Stratonovich fields increases. The QMC method is de-
scribed in section III.D. It also has a poor scaling with
the orbital degeneracy, since the number of Hubbard–
Stratonovich fields increases as the square of the orbital
degeneracy. Mean–field methods are based on a func-
tional integral representation of the partition function,
and the introduction of auxiliary slave bosons (Barnes,
1976, 1977; Coleman, 1984). The saddle point approx-
imation (Kotliar and Ruckenstein, 1986; Rasul and Li,
1988) gives results which are very similar to those of the
Gutzwiller method, and corrections to the saddle point
can be carried out by a loop expansion (Li et al., 1989).
Unfortunately the perturbative corrections to the saddle
point are complicated and have not been evaluated in
many cases. We review the mean–field theory in section
III.E.
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Interpolative methods bear some resemblance to the
analytic parameterizations of Vxc in LDA. One uses dif-
ferent approximations to the self–energy of the impurity
model, viewed as a functional of ∆(iω), in different re-
gions of frequency. The idea is to construct interpolative
formulae that become exact in various limits, such as zero
frequency where the value of the Green’s function is dic-
tated by Luttinger theorem, high frequencies where the
limiting behavior is controlled by some low–order mo-
ments, and in weak and strong coupling limits where one
can apply some form of perturbation theory. This ap-
proach has been very successful in unraveling the Mott
transition problem in the context of model Hamiltonians,
and it is beginning to be used for more realistic studies.
We review some of these ideas in section III.F.

In this review, we have not covered techniques based
on exact diagonalization methods, and their improve-
ments such as Wilson renormalization group (RG) tech-
niques and density matrix renormalization group meth-
ods. These are very powerful techniques, but due to the
exponential growth of the Hilbert space, they need to be
tailored to the application at hand. In the context of
model Hamiltonians, it is worth mentioning that the ex-
act solution for the critical properties of the Mott tran-
sition was obtained with the projective self–consistent
method (Moeller et al., 1995), which is an adaptation of
Wilson RG ideas to the specifics of the DMFT study of
the Mott transition. This method sets up a Landau the-
ory and justifies the use of exact diagonalization for small
systems to determine the critical properties near the tran-
sition. Further simplifications of these ideas, which in
practice amounts to the exact diagonalization methods
with one site, have been used by Potthoff and cowork-
ers (Potthoff, 2001). The flow equation method of Wil-
son and Glazek and Wegner (Glazek and Wilson, 1993,
1994; Wegner, 1994) is another adaptive technique for
diagonalizing large systems, and it has been applied to

the impurity model. Clearly, the renormalization group
approach in the cluster DMFT context is necessary to
attack complex problems. Some ideas for combining cel-
lular DMFT with RG formalism were put forward in the
context of model Hamiltonians (Bolech et al., 2003).

Finally, we point out that a much insight is gained
when numerical methods are combined with analytic
studies. As in the previous applications of DMFT to
model Hamiltonians, fast approximate techniques and al-
gorithms are needed to make progress in the exploration
of complex problems, but they should be used with care
and tested with more exact methods.

A. Perturbation expansion in Coulomb interaction

The application of perturbation theory in the inter-
action U has a long history in many–body theory. For
DMFT applications, we consider here a general multior-
bital Anderson impurity model (AIM) given by

H =
∑

αβ

ǫαβd
†
αdβ +

1

2

∑

αβγδ

Uαβγδd
†
αd

†
βdγdδ (160)

+
∑

kαβ

(V ∗
kαβd

†
αckβ +H.c.) +

∑

kα

ǫkαc
†
kαckα,

where Uαβγδ is the most general interaction matrix and α
combines spin and orbital index (or position of an atom
in the unit cell or cluster, in cellular DMFT applications).

The lowest order term is the Hartree–Fock formulae

Σ
(HF )
12 =

∑

34

(U1342 − U1324)n43. (161)

The second order term is given by

Σ
(2)
12 (iω) =

∑

{3−8}

U1456U7832

∫ ∫ ∫
dǫdǫ′dǫ′′ρ67(ǫ)ρ58(ǫ

′)ρ34(ǫ
′′)
f(ǫ)f(ǫ′)f(−ǫ′′) + f(−ǫ)f(−ǫ′)f(ǫ′′)

iω − ǫ+ ǫ′′ − ǫ′
, (162)

where f is the Fermi function, ρ12 is the spectral function
of the impurity Green’s function.

Higher order terms in perturbation theory that can be
easily summed up are those in the form of a ladder or,
equivalently, T –matrix. There are two distinct types of
ladder graphs, the particle–particle type (Galitskii, 1958)
shown in the top row of Fig. 12 and particle–hole T –
matrix depicted in the bottom row of Fig. 12. The one–
particle self–energy can then be constructed using those
two building blocks in the way shown in Fig. 13. Al-
though we did not plot the generating functional, which
in the general case is somewhat more involved, it can be

constructed order by order from the above definition of
the self–energy. Hence, the approximation is conserving
if the propagators are fully dressed, and therefore auto-
matically obeys certain microscopic conservation laws as
well as the Friedel sum rule. The method was first pro-
posed by Bickers and Scalapino in the context of lattice
models (Bickers and Scalapino, 1989) under the name
fluctuation exchange approximation (FLEX). It is the
minimal set of graphs describing the interaction of quasi-
particles with collective modes (pairs, spin and charge
fluctuations).

Particle–particle and particle–hole T –matrices corre-
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FIG. 12 Particle–particle (top row) and particle–hole (bot-
tom row) T–matrices which appear in the FLEX approxima-
tion. Full lines correspond to electron propagators and wiggly
lines stand for the bare interaction U .

Σ = - -

+ - -

FIG. 13 Definition of the FLEX self–energy constructed with
the help of particle–particle and particle–hole T–matrices.
Note that some lower order terms appear many times and
need to be subtracted to avoid double counting.

spond algebraically to

T̂ pp(iΩ) = (1 − Û χ̂pp
iΩ)−1Û χ̂pp

iΩÛ χ̂
pp
iΩÛ , (163)

T̂ ph(iΩ) = (1 − (V̂ + Ŵ )χ̂ph
iΩ)−1(V̂ + Ŵ )

− (V̂ + Ŵ )χ̂ph
iΩ V̂ , (164)

where V1234 = U1324, W1234 = −U1342 and

χpp
1234(iΩ) = −T

∑

iω′

G23(iω
′)G14(iΩ − iω′), (165)

χph
1234(iΩ) = −T

∑

iω′

G23(iω
′)G41(iΩ + iω′). (166)

We assumed here a product of the form (ÂB̂)1234 =∑
56A1256B5634. With these building blocks one can con-

struct the self–energy of the form

Σ
(FLEX)
12 (iω) = T

∑

iΩ34

(T pp
1432(iΩ)G34(iΩ − iω)

+ T ph
1432(iΩ)G43(iΩ + iω)

)
. (167)

The Feynman graphs in perturbation theory can be
evaluated self–consistently (namely in terms of fully
dressed Green’s function, G, including only skeleton
graphs) or non–self–consistently (namely using G0). In
practice the results start being different once U is compa-
rable to the half bandwidth. The skeleton perturbation
theory inG sums more graphs than the bare perturbation

FIG. 14 Particle hole Tph ladder contribution with screened
effective interaction Ueff mediated by Tpp.

theory, but in many–body theory more does not neces-
sarily imply better. In the context of the single–band
AIM model, the perturbative approach in powers of the
Hartree–Fock Green’s function G0 was pioneered by Ya-
mada and Yoshida (Yamada, 1975; Yosida and Yamada,
1970, 1975a,b). These ideas were crucial for the first im-
plementation of DMFT (Georges, 1992) for the one–band
Hubbard model, where the expansion in G0 proved to be
qualitatively and quantitatively superior to the expan-
sion in G. In the multiorbital case, the situation is far
less clear as discussed recently in Ref. Drchal et al., 2005.

Bulut and Scalapino (Bulut et al., 1993), tested
Kanamori’s (Kanamori, 1963) observation that the
particle–hole bubbles should interact not with the bare
interaction matrix, U in Eq. 164, but with an effective
interaction screened by the particle–particle ladder (see
Fig 14). This can be approximated by replacing U by
Ueff = Tpp(ω = 0) in Eq. 164. Notice that those dia-
grams are a subset of the parquet graphs, recently im-
plemented by Bickers (Bickers and White, 1991). It is
also worth noticing that the FLEX approach is exact to
order U3.

Within the realistic DMFT, the FLEX method was im-
plemented for Iron and Nickel (in its non–self–consistent
form) by Drchal et al. (Drchal et al., 1999) and Katsnel-
son et al. (Chioncel et al., 2003c) (these authors used
the expansion in G0 where an additional shift of the im-
purity level is implemented to satisfy Luttinger’s theo-
rem following Ref. Kajueter and Kotliar, 1996b, and the
screened interaction in the particle–hole channel was as-
sumed).

When the interaction is much less than the half–
bandwidth the perturbative corrections are small and
all the approaches (self–consistent, non–self–consistent,
screened or unscreened) are equivalent to the second or-
der graph. However, when U becomes comparable to the
half bandwidth differences appear, and we highlight some
qualitative insights gained from a comparison of the vari-
ous methods (Drchal et al., 2005; Putz et al., 1996). The
perturbation theory in G0 tends to overestimate Z−1 and
overemphasize the weight of the satellites. On the other
hand the skeleton perturbation theory tends to under-
estimate the effects of the correlations and suppress the
satellites. This is clearly seen in Fig. 15 where pertur-
bative results are compared to QMC data, analytically
continued to real axis with the maximum entropy method
(MEM) (Jarrell and Gubernatis, 1996).

To gauge the region in which the approach is appli-
cable, we compare the quasiparticle weight from various
perturbative approaches to QMC data in Fig. 16. All
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FIG. 15 Comparison of FLEX density of states (using Tpp

graphs only) with QMC results (full line). Dashed line corre-
sponds to FLEX approximation with fully dressed propaga-
tors and dashed–dotted line stands for the same approxima-
tion with undressed propagators. Calculation was performed
for a two–band Hubbard model for semicircular density of
states with U = 2D and T = 1/16D (Drchal et al., 2005).

self–consistent approaches miss the existence of the Mott
transition, while its presence or at least a clear hint of its
existence appears in the second order non–self–consistent
approach.

While FLEX performs reasonably well in the case of
two- and three–band models, it is important to stress
that this can not persist to very large degeneracy. With
increasing number of bands, the quasiparticle residue
must increase due to enhancement of screening effect and
therefore Z must grow and eventually approach unity.
This remarkable screening effect is not captured by FLEX
which displays the opposite trend as shown in Fig. 17.

It is worth noticing that for Ni the full d–bandwidth is
approximately 4.5 eV and U is estimated to be around
3 eV so the approach is near the boundary of its appli-
cability.

B. Perturbation expansion in the hybridization strength

The perturbation expansion with respect to the hy-
bridization strength can be derived with the help of re-
solvent techniques or by decoupling of Hubbard operators
in terms of slave particles. In the latter case, an auxiliary
operator an is assigned to each state of the local Hilbert
space, such that a slave particle creates an atomic state
out of the new vacuum

|n〉 = a†n |vac〉 , (168)

where |vac〉 is a new vacuum state. The Hubbard opera-
tors are easily expressed in terms of this auxiliary parti-
cles, Xn,m = a†nam. The creation operator of an electron

0 2 4

U

0

0.5

1

Z

QMC

2nd order (G)

2nd order (G
0
)

e−e T−matrix (G)

e−e T−matrix (G
0
)

FIG. 16 Variation of quasiparticle residue with interaction
strength of the interaction for two–band half–filled Hubbard
model with a semicircular density of states of bandwidth
D. Schemes presented are: second order perturbation with
fully dressed propagators(dashed curve), second order with
Hartree–Fock dressing of propagators (dot–dashed), FLEX
with electron–electron T–matrix only but fully self–consistent
(solid line), FLEX with electron–electron T–matrix only and
Hartree–Fock dressing of propagators (line with stars) (Drchal
et al., 2005).
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FIG. 17 Variation of FLEX spectra with increasing number
of bands for U = D and T = 0.001 on the Bethe lattice.
The self–consistency is obtained by fully dressed propagators
including all three FLEX channels (Drchal et al., 2005).

is expressed by

d†α =
∑

nm

(Fα†)nma
†
nam, (169)

where Fα
nm = 〈n|dα|m〉 are matrix elements of a destruc-

tion operator. In terms of pseudo particles, the general
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Anderson impurity model reads

H =
∑

mn

Emna
†
nam +

∑

kγ

εkγc
†
kγckγ +

∑

k,mn,αβ

(
V ∗

kαβ(Fα†)nma
†
namckβ +H.c.

)
, (170)

where c†kγ creates an electron in the bath and γ stands
for the spin and band index.

In order that electrons are faithfully represented by the

auxiliary particles, i.e. {dα, d
†
β} = δαβ, the auxiliary par-

ticle an must be boson (fermion), if the state |n〉 contains
even (odd) number of electrons, and the constraint:

Q ≡
∑

n

a†nan = 1, (171)

must be imposed at all times. This condition merely
expresses the completeness relation for the local states∑

n |n〉 〈n| = 1. The constraint is imposed by adding a
Lagrange multiplier λQ to the Hamiltonian and the limit
λ→ ∞ is carried out.

The physical local Green’s function (electron Green’s
function in Q = 1 subspace) and other observables
are calculated with the help of the Abrikosov trick
(Abrikosov, 1965) which states that the average of any
local operator that vanishes in the Q = 0 subspace is pro-
portional to the grand–canonical (all Q values allowed)
average of the same operator

〈A〉Q=1 = lim
λ→∞

〈A〉G
〈Q〉G

. (172)

The advantage of pseudo–particle approach is that
standard diagrammatic perturbation theory techniques
such as Wicks theorem can be applied. The limit λ→ ∞
is to be taken after the analytic continuation to the real
frequency axes is performed. Taking this limit, actually
leads to a substantial simplification of the analytic con-
tinuation (Haule et al., 2001).

A different approach, is to “soften” the constraint Q =
1, and replace it by

∑

n

a†nan = q0N. (173)

The original problem corresponds to taking q0 = 1/N
but one can obtain a saddle point by keeping q0 of or-
der of one while allowing Q to be large. This approach,
was studied in Ref. (Parcollet and Georges, 1997; Par-
collet et al., 1998). While the standard NCA approach
suffers from exceeding the unitary limit leading to causal-
ity problems, the soft NCA’s do not suffer from that
problem. Other sub–unitary impurity solvers were de-
veloped recently based on slave rotor methods (Florens

and Georges, 2002, 2004) and on a decoupling schemes
(Costi, 1986; Jeschke and Kotliar, 2005).

The perturbation expansion in the hybridization
strength can be easily carried out in the pseudo–particle

ΦNCA = Vkαγ F
α
n’n V*

kβγ F
β +
mm’

kγ

n m

n’ m’

ΦOCA = ΦNCA + 

FIG. 18 Diagrammatic representation of the non–crossing ap-
proximation (NCA) and one–crossing approximation (OCA)
functional for the Anderson impurity model.

representation. The desired quantity of the expansion
is the local Green’s function which is proportional bath
electron T –matrix, therefore we have

Gloc = lim
λ→∞

1

V 2〈Q〉G
Σc, (174)

where Σc is the bath electron self–energy calculated in
the grand–canonical ensemble. The latter quantity has a
simple diagrammatic interpretation.

The selection of diagrams, is best illustrated using
the Baym–Kadanoff functional Φ. The building blocks
of Φ are dressed Green’s functions of pseudo–particles
Gmn (depicted as dashed lines), and bath electrons Gαβ

(solid lines). Due to the exact projection, only pseudo–
particles are fully dressed while bath electron Green’s
functions are non–dressed because the bath self–energy
vanishes as exp(−βλ) with λ → ∞. The bare vertex
Vkαβ , when combined with the conduction electron prop-
agator, can be expressed in terms of the bath spectral
function Aαβ(ω) = − 1

2πi [∆αβ(ω+ i0+)−∆αβ(ω− i0+)].
Because propagators are fully dressed, only skeleton dia-
grams need to be considered in the expansion.

The lowest order contribution, depicted in the first line
of Fig. 18 is known in literature as non–crossing approx-
imation (NCA). Pseudo–particle self–energies Σmn, de-
fined through (G−1)mn = (ω − λ)δmn − Emn − Σmn,
are obtained by taking the functional derivative of Φ
with respect to the corresponding Green’s function, i.e.
Σmn = δΦ/δGnm. After analytic continuation and exact
projection, the self–energies obey the following coupled
equations
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Σmn(ω + i0+) =
∑

αβ,m′n′

[
F β

mm′(F
α†)n′n

∫
dξf(ξ)Aαβ(ξ)Gm′n′(ω + ξ + i0+)

+(F β†)mm′Fα
n′n

∫
dξf(−ξ)Aβα(ξ)Gm′n′(ω − ξ + i0+)

]
. (175)

The local electron Green’s function, obtained by functional derivative of Φ with respect to the bath Green’s function,
becomes

Gαβ(ω + i0+) =
∑

mnm′n′

Fα
n′n(F β†)mm′

1

Q

∫
dξ exp(−βξ)

[
ρm′n′(ξ)Gnm(ξ + ω + i0+) −Gm′n′(ξ − ω − i0+)ρnm(ξ)

]
, (176)

where Aαβ is the bath spectral function defined above,
Q =

∫
dξ exp(−βξ)∑m ρmm(ξ) is the grand canonical

expectation value of charge Q and ρmn = − 1
2πi [Gmn(ω+

i0+) − Gmn(ω − i0+)] is the pseudo–particle density of
states. Note that equations are invariant with respect
to shift of frequency in the pseudo particle quantities
due to local gauge symmetry, therefore λ that appears
in the definition of the pseudo Green’s functions can be
an arbitrary number. In numerical evaluation, one can
use this to our advantage and choose zero frequency at
the point where the pseudo particle spectral functions
diverge.

The NCA has many virtues, it is very simple, it cap-
tures the atomic limit, it contains the Kondo energy
as a non–perturbative scale and describes the incipient
formation of the Kondo resonance. However, it has
several pathologies that can be examined analytically
by considering the pseudo–particle threshold exponents
at zero temperature (Müller-Hartmann, 1984). Within
NCA, the infrared exponents are independent of dop-
ing and follow the exact non–Fermi liquid exponents in
the multichannel Kondo problem (Cox and Ruckenstein,
1993). From the Friedel sum rule, however, it follows that
fully screened local moment leads to a doping–dependent
Fermi liquid exponents that differ substantially from the
NCA exponents (Costi et al., 1996). When calculating
the local spectral function within NCA, this leads to a
spurious peak at zero frequency with the Abrikosov–Suhl
resonance exceeding the unitary limit. At the temper-
ature at which the Kondo resonance exceeds the uni-
tary limit, the approximation breaks down when com-
bined with DMFT self–consistency conditions, because
it causes the spectral function to become negative hence
violating causality.

At finite U , the NCA has a new problem, namely,
it severely underestimates the width of the Kondo res-
onance and hence the Kondo temperature. This problem
is partly corrected by the vertex corrections shown in
the second row of Fig. 18, which was introduced by Pr-
uschke and Grewe and is called one–crossing approxima-
tion (OCA). This diagram is a natural generalization of
NCA, namely, including all diagrams with a single line
crossing. It is also the lowest order self–consistent ap-

ΦSUNCA  = . . . + + . . .

ΦCTMA  = . . . + + . . .

FIG. 19 Diagrammatic representation of the two–crossing ap-
proximation (TCA) generating functional. It consists of all
skeleton diagrams (infinite number) where conduction lines
cross at most twice. Conserving T–matrix approximation
(CTMA) is a subset of diagrams where all conduction lines
cross exactly twice and have either clockwise or counter–
clockwise direction. Symmetrized U–NCA (SUNCA) is a sub-
set of TCA where a conduction line exists that crosses only
once. Conduction lines can have either clockwise or counter–
clockwise direction.

proximation exact up to V 2. Although the pseudo par-
ticle self–energies within NCA are calculated up to V 2,
the local Green’s function is not. Only the conduction
electron self–energy is exact up to V 2 and from Eq. (174)
it follows that the physical spectral function is not cal-
culated to this order within NCA.

Several attempts were made to circumvent the short-
comings of NCA by summing up certain types of dia-
grams with ultimate goal to recover the correct infrared
exponents and satisfy the unitarity limit given by the
Friedel sum rule. It can also be analytically shown, that
an infinite resummation of skeleton diagrams is necessary
to change the infrared exponents from their NCA values.
The natural choice is to consider the ladder type of scat-
terings between the pseudo–particle and the bath elec-
trons which leads to crossings of conduction lines in the
Luttinger–Ward functional. In the infinite U limit, only
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diagrams where all conduction electrons cross at least
twice, are possible. Note that due to the projection, any
contribution to the Luttinger–Ward functional consists
of a single ring of pseudo–particles since at any moment
in time there must be exactly one pseudo–particle in the
system. The diagrams where all conduction electrons
cross exactly twice is called CTMA (Kroha et al., 1997)
and has not yet been implemented in the context of the
DMFT. A typical contribution to the CTMA Luttinger
Ward functional is shown in the second line of Fig. 19.
In the impurity context, this approximation recovers cor-
rect Fermi liquid infrared exponents in the whole doping
range and it is believed to restore Fermi liquid behavior
at low temperature and low frequency.

At finite U , however, skeleton diagrams with less cross-
ings exist. Namely, a ladder ring where conduction lines
cross exactly twice can be closed such that two conduc-
tion lines cross only ones. This approximation, depicted
in the first row of Fig. 19, is called SUNCA. It has been
shown in the context of single impurity calculation (Haule
et al., 2001), that this approximation further improves
the Kondo scale bringing it to the Bethe ansatz value
and also restores Fermi liquid exponents in the strict
Kondo regime. Unfortunately, this is not enough to re-
store Friedel sum rule in the local spectral function at low
temperatures and to apply the approach to this regime, it
has to be combined with other approaches such as renor-
malized perturbation theory or ideas in the spirit of the
interpolative methods discussed in III.F.

The results of the computationally less expensive
SUNCA calculation agree very well with the consider-
ably more time consuming QMC calculation. The agree-
ment is especially accurate around the most interesting
region of the Mott transition while the half–integer filling
shows some discrepancy due to the restriction to a small
number of valences in the SUNCA calculation.
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FIG. 20 Comparison between SUNCA (full line) and QMC
(dashed line) density of states for the three–band Hubbard
model on the Bethe lattice for nd = 0.8 at U = 5D and
T = D/16.

We illustrate the agreement between these methods by
means of the real axis data of QMC+MEM and SUNCA

where the latter results are obtained on the real axis.
As shown in Fig. 20, both calculations produce almost
identical quasiparticle peak, while some discrepancy can
be observed in the shape of Hubbard bands. We believe
that this is mostly due to analytic continuation of QMC
data which do not contain much high–frequency informa-
tion. Notice that the width of the upper Hubbard band
is correctly obtained within SUNCA while QMC results
show redistribution of the weight in much broader re-
gion. Namely, in the large U limit, i.e. when a band
is separated from the quasiparticle peak, its width has
to approach the width of the non–interacting density of
states, in this case 2D.
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FIG. 21 Imaginary axis QMC data (dots) and SUNCA results
(full–lines) are compared for three–band Hubbard model on
Bethe lattice for β = 16 and U = 5D. Left panel shows results
for doping levels nd = 0.8 right panel corresponds to doping
nd = 0.9.

Finally, we compare the imaginary axis data in Fig. 21
for two doping levels of nd = 0.8 and nd = 0.9. Notice
that the results are practically identical with discrepancy
smaller that the error of the QMC data.

The NCA was used in the DMFT context to study
Cerium (Zölfl et al., 2001), La1−xSrxTiO3 (Zölfl et al.,
2000) and Ca2−xSrxRuO4 (Anisimov et al., 2002). In
the case of Cerium, it does capture the most essential
differences of the alpha and gamma phases, and com-
pares very favorably to the quantum Monte Carlo results
(Held et al., 2001b) and to experiments. Using NCA in
the context of the SrRuO3, Anisimov et al., 2002 was the
first to predict the so-called orbitally selective Mott tran-
sition, the phase where one–band is in a Mott insulting
state while the rest are metallic. These results are dis-
cussed further within (see section IV.A). The SUNCA
approach was first tested in the LaSrTiO3 where it is in
a good agreement with QMC results (Oudovenko et al.,
2004c).
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C. Approaching the atomic limit: decoupling scheme,

Hubbard I and lowest order perturbation theory

The AIM Hamiltonian can also be expressed in
terms of Hubbard operators Xnm by replacing a†nam in
Eq. (170) with Xnm:

H =
∑

m

EmXmm +
∑

kγ

εkγc
†
kγckγ +

∑

k,mn,αβ

(
V ∗

kαβ(Fα†)nmXnmckβ +H.c.
)
. (177)

For convenience, we choose here the local base to be the
atomic eigenbase, i.e., the atomic Hamiltonian is diago-
nal.

The atomic Green’s function can be most simply de-
duced from the Lehmann representation of the Green’s
function

G
(at)
αβ (iω) =

1

Z

∑

nm

Fα
nm(F β†)mn

(
e−βEn + e−βEm

)

iω −Em +En
,

(178)
where F ’s are given by Fα

nm = 〈n|dα|m〉 as in sec-
tion III.B and Z =

∑
n e

−βEn is the partition function.
The atomic Green’s function has a discrete number of
poles, at energies corresponding to the atomic excita-
tions, weighted with the appropriate factors e−βEn/Z
that can be interpreted as probabilities to find an atom
in the atomic configuration |n〉.

One can compute corrections to the Green’s function
Eq. (178) by expanding around the atomic limit, using
the technique of cumulants (Metzner, 1991). However
there are many resummations of these expansions, and
no extensive test of this problem has been carried out.
Various methods start from the equations of motion for
the Green’s functions of the Hubbard operators, for the
Green’s functions of the conduction electrons, and for the
mixed Green’s functions of the conduction electrons and
the Hubbard operators.

Once the Green’s functions for the Hubbard operators

Gn1n2n3n4(τ) = −〈TτXn1n2(τ)Xn3n4(0)〉, (179)

are determined, the local Green’s function Gαβ can be
deduced by the following linear combination of G’s:

Gαβ(iω) =
∑

n1n2n3n4

Fα
n1n2

Gn1n2n3n4(iω)(F β†)n3n4 .

(180)

In the decoupling method of L. Roth (Roth, 1969), one
replaces commutator [Hhyb, X ] by a linear combination
of the operators c and X , namely

[Hhyb, Xn1n2 ] =
∑

n3n4

An1n2n3n4Xn3n4 (181)

+
∑

kα

Bkα
n1n2

ckα +
∑

kα

Ckα
n1n2

c†kα,

and the coefficients A B and C are determined by pro-
jecting onto the basis set of X and c, by means of a scalar
product defined by the anticommutator. This leads to a
set of closed equations for the coefficients A B and C.
The Green’s function for the Hubbard operators can then
be deduced from the following matrix equation

G−1 = G(at)−1 − ∆̃ − Y. (182)

where the effective hybridization function ∆̃ and atomic
Green’s function for the Hubbard operators G(at) are

∆̃n1n2n3n4 =
∑

αβ

(Fα†)n1n2∆αβF
β
n3n4

, (183)

G(at)
n1n2n3n4

(iω) =
δn1n4ρn3n2 + δn2n3ρn1n4

(iω +En1 −En2)
, (184)

and ρ is the “density matrix”. The equations close
once the density matrix ρ is computed from an equa-

tion such as ρn1n2 = − 1
β

∑
iω e

−iω0+Gn1n′n′n2(iω) or

ρn1n2 = 1
β

∑
iω e

iω0+Gn′n1n2n′(iω) or any combination.

The result is not unique.

Finally, the matrix Y , which is proportional to the
coefficient A introduced in Eq. (182), becomes

Yn1n2n3n4 =
1

(ρn1n1 + ρn2n2)(ρn3n3 + ρn4n4)

∑

m

(Zmn2mn3δn1n4 − Zn1mn4mδn2n3), (185)

with

Zn1n2n3n4 = −T
∑

n5n6

∑

iω

(
∆̃n1n2n5n6(iω)Gn5n5n3n4(iω) + Gn3n4n5n6(iω)∆̃n5n6n1n2(iω)

)
. (186)

The equation for the Green’s function (182) is non–
linear because of the coefficients X and Y , and has to

be solved iteratively. Neglecting Y results in the famous



41

Hubbard I approximation

G−1 = G(at)−1 − ∆. (187)

Perhaps, the best approximate method for the system
in the Mott–insulating state is the straightforward per-
turbation expansion in hybridization strength to the low-
est order. By expanding the S matrix

exp


−

∑

αβ

∫ β

0

∫ β

0

dτ1dτ2 dα(τ1)∆αβ(τ1, τ2)dβ(τ2)


,

(188)

to the lowest order, one immediately obtains the follow-
ing correction to the Green’s function

Gαβ(iω) −G
(at)
αβ (iω) = G

(at)
αβ (iω)

∑

γ,δ

∑

iω′

G
(at)
δγ (iω′)∆γδ(iω

′)

+

∫ β

0

dτ

∫ β

0

dτ1

∫ β

0

dτ2e
iωτ
∑

γ,δ

〈Tτdα(τ)d†β(0)d†γ(τ1)dδ(τ2)〉0∆γδ(τ1 − τ2). (189)

It is straightforward to evaluate the two–particle
Green’s function for the atom in Eq. (189). One can in-
sert the identity |m〉〈m| between any pair of creation and
destruction operators and then integrate over time the re-
sulting exponential factors. The resulting six terms, due
to six different time orderings of the product, can also
be drawn by Feynman diagrams and evaluated by the
straightforward non–self–consistent expansion along the
lines of section III.B. To make the method exact also
in the band U = 0 limit, we calculate the lowest order
correction to the self–energy rather than to the Green’s
function. The correction is

Σ = G(at)−1
(G−G(at))G(at)−1 − ∆. (190)

This self–energy is exact up to second order in hybridiza-
tion V and also in the non–interacting U = 0 case. It
also gives correct width of the Hubbard bands which is
underestimated by a factor of 2 by the Hubbard I approx-
imation in the large U limit. This method has recently
been tested for the Hubbard model where it performed
very satisfactorily whenever the system has a finite gap
in the one electron spectrum (Dai et al., 2005).

Many other approaches were recently used to develop
impurity solvers. The local moment method (Logan and
Vidhyadhiraja, 2005; Vidhyadhiraja and Logan, 2004,
2005) has been successfully applied to the periodic An-
derson model. It would be interesting to extend it to
a full multiorbital case. Also decoupling technique, or
mode coupling technique, the factorization technique,
the alloy analogy, the modified alloy analogy, and the
methods of moments were used. These approaches can
be applied directly to the lattice and simplified using
the DMFT locality ansatz, or applied directly to the

AIM. For a recent review with a DMFT perspective see
(Shvaika, 2000).

D. Quantum Monte Carlo: Hirsch–Fye method

The general idea underlying the Hirsch–Fye deter-
minantal QMC method is to discretize the path inte-
grals representing the partition function and the Green’s
function of an interacting problem. These discretized
path integrals are then converted, using a Hubbard–
Stratonovich transformation, into a statistical average
over a set of non–interacting Green’s functions in a time–
dependent field, which can be either continuous or dis-
crete. The sum over the auxiliary fields is done using
Monte Carlo sampling methods. The QMC algorithm for
the solution of the Anderson impurity model was intro-
duced in (Fye and Hirsch, 1989; Hirsch and Fye, 1986),
and generalized to the multiorbital case in (Takegahara,
1993) and (Bonca and Gubernatis, 1993). Applications
to the solution of the lattice models via DMFT was intro-
duced in (Jarrell, 1992), see also (Georges and Krauth,
1992; Jarrell and Akhlaghpour, 1993; Rozenberg et al.,
1992) in the single–orbital case. In the multiorbital con-
text it was implemented in (Rozenberg, 1997), see also
(Held and Vollhardt, 1998). Some DMFT applications,
such as the study of the electron–phonon interactions
within single–site DMFT, require a QMC implementa-
tion using continuous Hubbard–Stratonovich fields (Jar-
rell and Akhlaghpour, 1993). This is also essential
for the implementation of Extended Dynamical Mean–
Field Theory (EDMFT) (see for example (Motome and
Kotliar, 2000), (Pankov et al., 2002) and for the combi-
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nation of EDMFT and GW method (Sun and Kotliar,
2002)). An alternative algorithm for EDMFT using dis-
crete spins was introduced in (Grempel and Rozenberg,
1998). Zero temperature QMC algorithms, which are
closely related to determinantal algorithms, have been
extensively developed for lattice models. DMFT applica-
tions have been recently introduced in (Feldbacher et al.,
2004). There are alternative methods of evaluating the
partition function and the correlation functions, which
are amenable to Monte Carlo methods (Rombouts et al.,
1999). These are free of discretization errors and have
been introduced in (Rubtsov, 2003; Rubtsov et al., 2004;
Savkin et al., 2005) in the DMFT context.

QMC has been used extensively in DMFT calcula-
tions. Due to space limitations, only a few illustra-
tive examples shall be described. The QMC method
has been applied to the study of Cerium by McMahan
and collaborators (Held et al., 2001b; McMahan et al.,
2003) and to Iron and Nickel by Lichtenstein and col-
laborators (Katsnelson and Lichtenstein, 2000; Lichten-
stein et al., 2001). DMFT with QMC as an impurity
solver, has been applied to many other d–electron sys-
tems. These include perovskites with a d1 configura-
tion such as LaTiO3 (Nekrasov et al., 2000) SrVO3 and
CaVO3 (Pavarini et al., 2004; Sekiyama et al., 2004),
ruthenates such as RuSrO4 (Liebsch, 2003a; Liebsch and
Lichtenstein, 2000b) and vanadates such as V2O3 (Held
et al., 2001a) and VO2 (Biermann et al., 2005b).

Since a detailed review (Georges et al., 1996) for the
single–orbital case is already available, we focus here
on the generalization of the QMC method for multior-
bital or cluster problems (for the impurity solver, “clus-
ter DMFT” is a particular case of multiorbital DMFT
where the cluster index plays the role of an orbital). The
emphasis of this section is on generality; for a more ped-
agogical introduction to the method in a simple case, see
(Georges et al., 1996). This section is organized as fol-
lows. First in III.D.1, we present the general impurity
problem to be solved by QMC. In III.D.2 we present
the Hirsch–Fye algorithm, where we discuss the time
discretization, derive the discrete Dyson equation, and
present the algorithm. In III.D.2.e, we present in more
detail the case of density–density interactions, which has
been the most widely used. Details of the derivations are
provided in Appendix A for completeness.

1. A generic quantum impurity problem

a. Definitions We will focus on the solution of a generic
quantum impurity problem like (85) defined by the fol-

lowing action

Seff = −
∫∫ β

0

dτdτ ′
∑

1≤µ,ν≤N
1≤σ≤Nσ

d†µσ(τ)G−1
0σµν (τ, τ ′)dνσ(τ ′)

+

∫ β

0

dτHint(τ) (191a)

Hint ≡Uσ1σ2σ3σ4
µ1µ2µ3µ4

d†µ1σ1
dµ2σ2d

†
µ3σ3

dµ4σ4 (191b)

where G−1
0σµν is the Weiss function, 1 ≤ σ ≤ Nσ are in-

dices in which the Green’s functions are diagonal (con-
served quantum numbers), 1 ≤ µ, ν ≤ N are indices in
which the Green’s functions are not diagonal, and re-
peated indices are summed over. The value of N and Nσ

depends on the problem (see III.D.1.c). Hint is the inter-
action part of the action. It should be noted that we have
defined a completely general Hint, which is necessary to
capture multiplets which occur in real materials. The
purpose of the impurity solver is to compute the Green’s
function

Gσµν (τ) =
〈
Tdµσ(τ)d†νσ(0)

〉
Seff

(192)

and higher order correlation functions. In this section, we

will use a different convention for the sign of the Green’s

function than in the rest of this review: in accordance
with (Georges et al., 1996) and the QMC literature, we
define the Green’s functions without the minus sign.

b. Generalized Hubbard–Stratonovich decoupling Hirsch–
Fye QMC can only solve impurity problems where the
interaction have a decoupling formula of the following
form

Hint = H1 + · · · +Hn (193a)

e−∆τHi =
∑

Si∈Si

wi(Si) exp

(∑

σµν

d†µσV
iσ
µν (Si)dνσ

)

(193b)

where Si is a index (referred to in the following as
a “QMC–spin”) in a set Si (discrete or continuous),

wi(Si) > 0 is a positive weight, V = V †, and Hi = H†
i .

Approximate decouplings, where (193) holds only up to
O(∆τm),m ≥ 3, are discussed below (see also (Gunnars-
son and Koch, 1997)). Equation (193a) is a generalized
form of the familiar Hubbard–Stratonovich transforma-
tion. Multiple Hubbard–Stratonovich fields per time slice
allow the decoupling of more general interactions, as ex-
emplified below.

c. Examples Let us consider first a multiorbital or clus-
ter DMFT solution of the Hubbard model in the nor-
mal phase (non–superconducting). In this case, N is the
number of impurity sites or orbitals, and Nσ = 2: σ is
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the spin index which is conserved. The interaction term
Hint is given by

Hint =
∑

(µ,σ)<(ν,σ′)

Uσσ′

µν nσ
µn

σ′

ν (194)

where we use the lexicographic order: (µ, σ) < (ν, σ′) if
µ < ν or µ = ν and σ < σ′. In this case, the decoupling
formula uses the discrete Hubbard–Stratonovich trans-
formation using Ising spins introduced by Hirsch (Hirsch,
1983) (see also (Takegahara, 1993) and (Bonca and Gu-
bernatis, 1993))

e−∆τHint =
1

2

∑

{Sσσ′
µν =±1}

exp

[ ∑

(µ,σ)<(ν,σ′)

(
λσσ′

µν S
σσ′

µν (nσ
µ − nσ′

ν ) − ∆τ
Uσσ′

µν

2
(nσ

µ + nσ′

ν )

)]

(195)

λσσ′

µν ≡ arccosh

(
exp

(
∆τ

2
Uσσ′

µν

))
(196)

The weight w(S) = 1
2 is independent of the auxiliary

Ising fields Sσσ′

µν defined for each U term. The matrix V
of Eq. (193) is diagonal and reads

V σ
µν({S}) =δµν

∑

ρ,σ′

(µ,σ)<(ρ,σ′)

(λσσ′

µρ S
σσ′

µρ − ∆τ

2
Uσσ′

µρ )−

δµν

∑

ρ,σ′

(µ,σ)>(ρ,σ′)

(λσ′σ
ρµ Sσ′σ

ρµ +
∆τ

2
Uσ′σ

ρµ ) (197)

A general goal of the Hirsch–Fye algorithm is to minimize
the number of decoupling fields, to reduce the size of the
configuration space where the Monte Carlo is done (see
below). In this respect, decoupling each U term in the
interaction with a different field is not optimal, especially
when there is a symmetry between orbitals. However,
there is currently no efficient solution to this problem.

A second example is the study of a superconducting
phase. We restrict our discussion to the Hubbard model
for simplicity, but the generalization to more realistic
models is straightforward. For the study of supercon-
ductivity in a two–band model see (Georges et al., 1993).
For the QMC calculation of d–wave superconductivity in
a cluster see (Lichtenstein and Katsnelson, 2000; Maier
et al., 2000b). We restrict ourselves to a case where a
possible antiferromagnetic order and the superconduct-
ing order are collinear. In this case, we introduce the

Nambu spinor notation at each site i: ψ† ≡ (d†↑, d↓) so
that the Green’s function is

G(τ) ≡
〈
Tτψ(τ)ψ†(0)

〉
=

(
G↑(τ) F (τ)

F ∗(τ) G↓(β − τ)

)
(198)

where F is the anomalous Green’s function F (τ) =
〈Tτd↑(τ)d↓(0)〉. We denote by + and − the Nambu in-
dices, and n+ = n↑ and n− = 1−n↓. In this case, we take

Nσ = 1 (spin is not conserved) and N = 2Nnormal case,
twice the number of sites. The index µ is a double index
(i,±), where i is a site index. For simplicity, we take a
local U interaction, which is then decoupled as (for each
cluster site)

exp

(
−∆τUni↑ni↓

)
∝

∑

Si=±λ

e−Si

2
eSi(ni++ni−)−∆τU

2 (ni+−ni−)

with λ = arccosh
(
exp(∆τU/2

)
(we drop a constant since

it cancels in the algorithm).
A third example is a further generalization of the

Hirsch–Fye formula to decouple the square of some op-
erator. For example, if M has a spectrum contained in
{0,±1,±2}, one can use

eαM2

=
∑

σ=0,±S

wσe
σM (199a)

S = cosh−1

(
e3α + e2α + eα − 1

2

)
(199b)

wS = w−S =
eα − 1

e3α + e2α + eα − 3
(199c)

w0 = 1 − 2wS (199d)

This can be used to decouple a nearest neighbor density–
density interaction in a Hubbard model (as an alterna-
tive to the more commonly used method that splits this
interaction into four terms using n = n↑ + n↓ and the
Hirsch–Fye formula).

In the case of a quantum impurity problem formu-
lated in a general non–orthogonal basis, we can orthog-
onalize within the impurity degree of freedom (how-
ever, there may still be an overlap between different unit
cells), in order to reduce the problem to the case where
the c basis is orthogonal. The V matrix transforms as
V ′ = (P †)−1V P−1, where P is the matrix that trans-
form into the orthogonal basis. Note however that in
general a diagonal V will transform into a non–diagonal
V ′, which will make the QMC more costly.

2. Hirsch–Fye algorithm

a. Time discretization We start by writing a Hamiltonian
form H = H0 + Hint of the action using an effective
generalized Anderson model with ns bath sites

H0 =

ns∑

p=1

∑

µνσ

ǫ0pσµνa
†
pµσapνσ +

∑

pµνσ

V 0
pµνσ(a†pνσdµσ + h.c.)

+ ǫµνσd
†
µσdνσ

(200)

Kσ
pµ,p′ν is defined as follows

Hσ
0 ≡

∑

pµp′ν

a†pµσKσ
pµ,p′νap′νσ (201)
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where H0 ≡∑σ H
σ
0 , and apµσ is the annihilation opera-

tor of the electron on the bath site for p > 0 and for p = 0
we identify d = ap=0 which corresponds to the impurity
site. In the Hirsch–Fye algorithm, the imaginary time is

discretized with L discrete times τl = (l − 1)β/L, with
1 ≤ l ≤ L. Using the Trotter formula, we approximate
the partition function by Z ≈ Z∆τ with

Z∆τ ≡Tr

L∏

l=1

(
exp−∆τH0

n∏

i=1

exp−∆τHi

)
(202)

Z∆τ =
∑

{Sl
i}

(
L∏

l=1

n∏

i=1

wi(S
l
i)

)
∏

σ

Tr

L∏

l=1

[
e−∆τH0

n∏

i=1

exp

(∑

µν

d†µσV
iσ
µν (Sl

i)dνσ

)]
(203)

where Sl
i are L copies of the decoupling QMC–spins. The

Green’s function defined in (192) at time τl

Gσ;µν(τl1 , τl2) =
1

Z
Tr
(
UL−l1dµσU

l1−l2d†νσU
l2
)

(204a)

U ≡ e−∆τH (204b)

for 1 ≤ µ, ν ≤ N and l1 ≥ l2, is replaced by its discretized
version

G∆τ
σ;(l1,µ),(l2,ν) ≡

1

Z∆τ
Tr
(
Ũ

L−l1+1
dµσŨ

l1−l2
d†νσŨ

l2−1
)

(205a)

Ũ ≡
∏

0≤i≤n

∑

Si∈Si

wi(Si) exp

(
d†ρσV

iσ
ρλ (Si)dλσ

)

Ũ =
∏

0≤i≤n

e−∆τHi +O(∆τm) (205b)

Since the Trotter formula is an approximation con-
trolled by ∆τ , one may use approximate decoupling for-
mulas, up to order O(∆τm) (m ≥ 3), that would not in-
troduce a priori a bigger error than the Trotter formula
itself. For density–density interactions exact formula are
available (as described above) but for a more general

interactions this may not be the case. A priori, Ũ =
U+O(∆τ2) thus G∆τ = G+O(∆τ) (since L×O(∆τ2) =
O(∆τ)). However, given that H is hermitian, we see that

G is hermitian Gσ;µν(τl1 , τl2) =
(
Gσ;νµ(τl1 , τl2)

)∗
. Using

Ũ = U
(
1 − (∆τ)2/2

∑
i<j [Hi, Hj ] + O(∆τ3)

)
, the fact

that the commutator is anti–hermitian when all the Hi

are hermitian, and U † = U , we get Z∆τ = Z + O(∆τ2)
and the stronger result

Gσ;µν(τl1 , τl2) =
G∆τ

σ;(l1,µ),(l2,ν) +
(
G∆τ

σ;(l1,ν),(l2,µ)

)∗

2
+O(∆τ2)

(206)

Eq. (206) shows that i) we gain one order in ∆τ with
symmetrization, ii) various hermitian Hi can be decou-
pled separately to the same order, and iii) we only need
a decoupling formula that is correct up to order (∆τ 2)
included.

b. The Dyson equation Let us introduce a matrix of size
Nns defined by

V iσ(S)|pµ,p′ν ≡ δpp′δp0V
iσ
µν (S) (207)

and the notation {S} ≡ {Sl
i, 1 ≤ i ≤ n; 1 ≤ l ≤ L} for

a configuration of the QMC–spin, we have immediately
from (202)

Z∆τ =
∑

{S}

(
L∏

l=1

n∏

i=1

wi(S
l
i)

)
Z[{S}] (208)

Z[{S}] ≡
∏

σ

[
Tr

1∏

l=L

(
exp

(
−∆τa†pµσKσ

pµ,p′νap′νσ

)
×

n∏

i=1

exp

(
a†pµσV iσ(Sl

i)|pµ,p′νap′νσ

))]
(209)

Introducing, Nns ×Nns matrices Bl(S) defined by

Bl(S) ≡ exp

(
−∆τKσ

) n∏

i=1

exp

(
V iσ(S)

)
(210)

we can rewrite the partition function as (see Ap-
pendix A):

Z[{S}] =
∏

σ

detOσ({S}) (211a)

Oσ({S}) ≡




1
... 0 Bσ

L(SL
i )

−Bσ
1 (S1

i )
... . . . 0

0
... . . . . . .

. . .
... 1 0

. . .
... −Bσ

L−1(S
L−1
i ) 1




(211b)

Note that Oσ has size LNns. Moreover, the Green’s
function for a fixed QMC–spins configuration, defined as
in Eq. (205a) can be shown to be (see A)

gσ
{S} = O−1

σ ({S}) (212)
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The formula for the partition function can be generalized
to the average of any operator M

〈M〉 =

∑
{S} 〈M〉{S}

(∏
i,l wi(S

l
i)
)∏

σ detOσ({S})
∑

{S}

(∏
i,l wi(Sl

i)
)∏

σ detOσ({S})
(213)

where 〈M〉{S} is the average of the operator at fixed con-

figuration {S}. In particular, the Green’s function is
given by averaging gσ

{S}. Moreover, for a fixed QMC–

spins configuration, the action is Gaussian, allowing to
compute any correlation functions with Wick theorem.
As noted in (Hirsch and Fye, 1986) (see also (Georges
et al., 1996), one can derive a simple Dyson relation be-
tween the Green’s functions of two configurations gS and
gS′

gσ
{S′} = gσ

{S} + (gσ
{S} − 1)×

( 1∏

i=n

e−
eViσ({S})

n∏

i=1

e
eViσ({S′}) − 1

)
gσ
{S′} (214)

with the notation

Ṽ iσ
pµl,p′νl′({S}) = δl,l′V iσ

pµ,p′ν(Sl
i) (215)

(see Appendix A). Since Ṽ acts non–trivially only on the
p = 0 subspace, we can project (214) on it and get rid
of the auxiliary variables. We obtain finally the Dyson
equation for the Green’s function G (defined as in (205)
and considered here as a matrix of size LN )

G{S′}
σ = G{S}

σ + (G{S}
σ − 1)×

( 1∏

i=n

e−
eV iσ({S})

n∏

i=1

e
eV iσ({S′}) − 1

)
G{S′}

σ (216)

where

Ṽ iσ
µl,νl′ ({S}) = δl,l′V

iσ
µ,ν(Sl

i) (217)

We used the fact that G and Ṽ are diagonal in the σ
index. Eq. (216) is a equation for matrices of size NL.

We note that (216) also holds for a special case
V ({S}) = 0, with G{S} = G0. This gives a simple way to
compute G{S} from G0, which requires the inversion of a
LN × LN matrix Aσ.

G{S}
σ = A−1

σ G0σ (218a)

Aσ ≡ 1 +
(
1 − G0σ

)( n∏

i=1

e
eV iσ({S}) − 1

)
(218b)

Eq. (218) is often referred to as the “full update for-
mula”.

Moreover, there is an important simplified relation be-
tween two close configurations {S} and {S ′} which differ

only for one QMC–spin Sl
i, which allows a faster update

of the Green’s function in the algorithm

G{S′}
σ = A−1

σ G{S}
σ (219)

Aσ ≡ 1 +
(
1 −G{S}

σ

)( i∏

j=n

e−
eV jσ({S})

n∏

j=i

e
eV jσ({S′}) − 1

)

can be reduced to

p ≡
∏

σ

detOσ(S′)

detOσ(S)
=
∏

σ

detAσ =
∏

σ

detAσ
ll

(220a)

Aσ
ll ≡ 1 +

(
1 −G

{S}
σ;ll

)
Cσ

ll (220b)

Cσ
ll ≡

i∏

j=n

e−V jσ(Sl
j)

n∏

j=i

eV jσ(S
′l
j ) − 1 (220c)

G
{S′}
σ;l1l2

= G
{S}
σ;l1l2

+
(
G

{S}
σ;l1l − δl1l

)
Cσ

ll(A
σ
ll)

−1G
{S}
σ;ll2

(220d)

Eq. (220) is often referred to as the “fast update for-
mula” (Hirsch, 1983). It is a formula for matrices of size
N (compared to LN for the full update). It does not
involve a big matrix inversion, therefore it allows a faster
calculation of G than (218). For density–density inter-
actions, the fast update formula can be further simpli-
fied (with no matrix inversion, see below). These equa-
tions are the generalizations of Eqs. (130)1 and (131) of
(Georges et al., 1996).

c. The Hirsch–Fye algorithm In principle, the sum (213)
could be done by exact enumeration (Georges and
Krauth, 1993), (Georges et al., 1996) but in practice one
can reach much lower temperatures by using statistical
Monte Carlo sampling. It consists of the generation of
a sample of QMC–spins configuration {S} with proba-
bility

∏
i,l wi(S

l
i)
∏

σ detOσ({S}). If the determinant is
not positive, one needs to take the absolute value of the
determinant to define the probabilities and sample the
sign. After computing GS from G0 with the “full up-
date” formula (218), a Markov chain is constructed by
making local moves, one time slice at a time, selecting a
new value for one QMC–spin and using the “fast update”
formula (220) to compute the Green’s function for the
new QMC–spin configuration. It may also be convenient
to perform global moves that involve the simultaneous
flipping of many spins in one move (e.g. simultaneous
flipping of all the spins in all the time slices). This can
be accomplished directly using (218) or by generating
the global move as a sequence of local moves with (220)
(one has then to keep and restore the Green’s function to

1 Eq. (130) in (Georges et al., 1996) has a misprint and should be

read as G′

l1l2
= Gl1l2 + (G− 1)l1l(e

V ′
−V

− 1)ll(All)
−1Gll2 .
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the original configuration in the case that the proposed
global move is rejected). An interesting generalization of
this global move was proposed by Grempel and Rozen-
berg (Grempel and Rozenberg, 1998), in which one up-
dates different Fourier components of the fields. As noted
above, the computation allows, in practice, the compu-
tation of any higher order correlation function since the
theory is Gaussian for a fixed QMC–spin configuration.

It should be noted that for some cases of cluster or mul-
tiorbital problems, this QMC algorithm suffers severely
from the sign problem at low temperature, particularly in
the case of frustrated systems (Parcollet et al., 2004). In
the single–site DMFT case, this problem is absent: this
had been known empirically for a while and rigorously
proved recently (Yoo et al., 2004).

d. Remarks on the time discretization There is three diffi-
culties coming from the discretization of the time in the
Hirsch-Fye algorithm:

i) One has to take a large enough number of time slices
L, or in practice to check that the results are unchanged
when L is increased, which is costly since the computa-
tion time increase approximately like L3.

ii) Since the number of time slices is limited, espe-
cially for multi–orbital or cluster calculation, the eval-
uation of the Fourier transform of the Green’s function
(Matsubara frequencies) is delicate. In practice, the time
Green’s function is constructed from the discrete func-
tion resulting from the QMC calculation using splines,
whose Fourier transform can be computed analytically
(see (Georges et al., 1996)). It turns out however that for
this technique to be precise, one needs to supplement the
discrete Green’s function by the value of its derivatives at
τ = 0, β, which can be reduced to a linear combination of
two–particle correlation functions computed by the QMC
calculation (Oudovenko and Kotliar, 2002). Failure to
deal with this problem accurately can lead in some cal-
culations to huge errors, which can manifest themselves
by spurious causality violations.

iii) When a computation is made far from the particle-
hole symmetric case, the Weiss function G0 can be very
steep close to τ = 0 or τ = β. As a result, it is
not well sampled by the regular mesh time discretiza-
tion, leading to potentially large numerical error. A sim-

ple practical solution is to replace G0 by Ḡ−1
0 (iωn) ≡

G−1
0 (iωn) − α where α is a diagonal matrix chosen as
αµµ = limω→∞(G−1

0 )µµ(ω). From Eqs. (191a), we see
that the new impurity problem which is equivalent if
the α term (which is quadratic in d and diagonal in the
indices) is simultaneously added to the interaction (or
equivalently to the right hand side of the corresponding
decoupling formula). In the new impurity problem how-
ever Ḡ0 is less steep than G0 close to τ = 0 or τ = β, so
the numerical error introduced by discretization is less
important.

e. Density–density interactions The “fast update” for-
mula can be further simplified when the matrix V is
diagonal, particularly in the case of density–density in-
teractions, which is used in most of the calculations with
the Hirsch–Fye algorithm. To be specific, we concentrate
in this paragraph on the first example given above (the
normal state of a Hubbard model). The matrix V of Eq.
(193) is diagonal and given by (197). The “fast update”

formula (220) for the flip of the Ising spin Slσ̃σ̃′

µ̃ν̃ at the
time slice τl simplifies. The non–zero elements of the
matrix C are given by

Cσ̃
ll;µ̃µ̃ = exp

(
2λσ̃σ̃′

µ̃ν̃ S
′σ̃σ̃′

µ̃ν̃

)
− 1 (221a)

Cσ̃′

ll;ν̃ν̃ = exp
(
−2λσ̃σ̃′

µ̃ν̃ S
′σ̃σ̃′

µ̃ν̃

)
− 1 (221b)

Let us first consider the case σ̃ = σ̃′. p reduces to

p = ξµ̃ξν̃ −G
{S}
σ̃;(l,µ̃);(l,ν̃)G

{S}
σ̃;(l,ν̃);(l,µ̃)C

σ̃
ll;µ̃µ̃C

σ̃
ll;ν̃ν̃ (222)

ξρ̃ ≡
(

1 +
(
1 −G

{S}
σ̃;(l,ρ̃);(l,ρ̃)

)
Cσ̃

ll;ρ̃ρ̃

)
; ρ̃ = µ̃, ν̃ (223)

Defining M by

M11 = ξν̃C
σ̃
ll;µ̃µ̃/p (224a)

M22 = ξµ̃C
σ̃
ll;ν̃ν̃/p (224b)

M12 = G
{S}
σ̃;(l,µ̃),(l,ν̃)C

σ̃
ll;µ̃µ̃C

σ̃
ll;ν̃ν̃/p (224c)

M21 = G
{S}
σ̃;(l,ν̃),(l,µ̃)C

σ̃
ll;µ̃µ̃C

σ̃
ll;ν̃ν̃/p (224d)

we have the “fast update” formula

G
{S′}
σ;(l1,µ),(l2,ν) = G

{S}
σ;(l1,µ),(l2,ν) + δσσ̃

[(
G

{S}
σ;(l1,µ),(l,µ̃) − δ(l1,µ),(l,µ̃)

)(
M11G

{S}
σ;(l,µ̃),(l2,ν) +M12G

{S}
σ;(l,ν̃),(l2,ν)

)
+

(
G

{S}
σ;(l1,µ),(l,ν̃) − δ(l1,µ),(l,ν̃)

)(
M21G

{S}
σ;(l,µ̃),(l2,ν) +M22G

{S}
σ;(l,ν̃),(l2,ν)

)]

This equation can also be obtained by using the fast up-
date (Sherman–Morrison) formula twice.

The case where σ̃ 6= σ̃′ is more straightforward

p =ξξ′ (225a)

ξ ≡
(

1 +
(
1 −G

{S}
σ̃;(l,µ̃);(l,µ̃)

)
Cσ̃

ll;µ̃µ̃

)
(225b)

ξ′ ≡
(

1 +
(
1 −G

{S}
σ̃′;(l,ν̃);(l,ν̃)

)
Cσ̃′

ll;ν̃ν̃

)
(225c)
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G
{S′}
σ;(l1,µ),(l2,ν) = G

{S}
σ;(l1,µ),(l2,ν)+

δσσ̃C
σ̃
ll;µ̃µ̃G

{S}
σ;(l,µ̃),(l2,ν)

(
G

{S}
σ;(l1,µ),(l,µ̃) − δ(l1,µ),(l,µ̃)

)
/ξ+

δσσ̃′Cσ̃′

ll;ν̃ν̃G
{S}
σ;(l,ν̃),(l2,ν)

(
G

{S}
σ;(l1,µ),(l,ν̃) − δ(l1,µ),(l,ν̃)

)
/ξ′

(226)

f. Analytic continuation The quantum Monte Carlo sim-
ulation yields the Green’s function in imaginary time
G(τ). For the study of the spectral properties, transport
or optics, Green’s function on real axis are needed and
therefore the analytic continuation is necessary. This in
practice amounts to solving the following integral equa-
tion

G(τ) =

∫
dωf(−ω)e−τωA(ω) (227)

where A(ω) is the unknown spectral function, and f(ω)
is the Fermi function. This is a numerically ill-posed
problem because G(τ) is insensitive to the spectral den-
sity at large frequencies. In other words, the inverse of
the kernel K(τ, ω) = f(−ω)e−τω is singular and some
sort of regularization is necessary to invert the kernel.
Most often, this is done by the maximum entropy method
(MEM) (Jarrell and Gubernatis, 1996).

A new functional Q[A], which is to be minimized, is
constructed as follows

Q[A] = αS[A] − 1

2
χ2[A] (228)

where χ2

χ2[A] =

L∑

ij=1

(Ḡi −G(τi))[C
−1]ij(Ḡj −G(τj)) (229)

measures the distance between the QMC data, averaged
over many QMC runs (Ḡi) and the Green’s function
G(τi) that corresponds to the given spectral function
A(ω) according to equation Eq. (227). Cij is the co-
variant matrix that needs to be extracted from the QMC
data when measurements are not stochastically indepen-
dent. The entropy term, S[A], takes the form

S[A] =

∫
(A(ω) −m(ω) −A(ω) ln [A(ω)/m(ω)]) ,

(230)
where m(ω) is the so-called default model, usually cho-
sen to be a constant, or, alternatively, taken to be the
solution of the same model but calculated by one of the
available approximations.

For each value of the parameter α, numeric minimiza-
tion of Q gives as the corresponding spectral function
Aα(ω). If α is a large number, the solution will not move
far from the default model, while small α leads to unphys-
ical oscillations caused by over-fitting the noisy QMC
data. In the so-called historic MEM, the parameter α is

chosen such that χ2 = N , where N is the total number of
real frequency points at which A(ω) is being determined.
In many cases, this gives already a reasonable spectral
functions, however, in general the historic method tends
to underfit the data and makes the resulting A(ω) too
smooth.

In the classical MEM, the parameter α is determined
from the following algebraic equation

−2αS(α) = Tr
{
Λ(α) [αI + Λ(α)]−1

}
(231)

where S(α) is the value of the entropy in the solution Aα,
which minimizes Q and Λ(α) is

Λ(α)ij =
√
Aα

i

[
KTC−1K

]
ij

√
Aα

j . (232)

Here Kij is the discretized kernel Kij ≡ K(τi, ωj) and
Ai is the discretized spectral function Ai = A(ωi)dωi

and Cij is the above defined covariant matrix.
In applications of DMFT to real materials, the quasi-

particle peak can have a complex structure since at low
temperature it tries to reproduce the LDA bands around
the Fermi-level, i.e., the spectral function approaches the
LDA density of states contracted for the quasiparticle
renormalization amplitude Z, A(ω) = ρ(ω/Z + µ0). The
MEM method has a tendency to smear out this complex
structure because of the entropy term. At low tempera-
ture, this can lead to the causality violation of the impu-
rity self-energy. To avoid this pathology, it is sometimes
useful to directly decompose the singular kernel with the
Singular Value Decomposition (SVD). When construct-
ing the real frequency data, one needs to take into ac-
count only those singular values, which are larger than
precision of the QMC data.

The discretized imaginary time Green’s function G(τi)
can be SVD decomposed in the following way

G(τi) =
∑

j

KijAj =
∑

jm

VimSmUmjAj (233)

where UU † = 1 and V †V = 1 are orthogonal matrices
and S is diagonal matrix of singular values. The inversion
is then

Aj =
∑

m<M,i

Umj
1

Sm
VimGi (234)

where the sum runs only up to M determined by the
precision of the QMC data, for example SM > 〈ViM δGi〉,
where δGi is the error estimate for Gi. The magnitude
of the singular values drop very rapidly and only of order
10 can be kept.

The SVD does not guarantee the spectra to be pos-
itive at higher frequencies nor does it give a renormal-
ized spectral function. This however does not prevent
us from accurately determining those physical quantities
which depend on the low frequency part of spectra as for
example transport or low frequency photoemission.
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E. Mean–field slave boson approach

In this section we describe a different slave boson rep-
resentation, which allows a construction of a mean–field
theory closely related to the Gutzwiller approximation.
In this method we assign a slave boson ψm to each atomic
state |m〉 and slave fermion fα to each bath channel such
that the creation operator of an electron is given by

d†α = z̃†αf
†
α, (235)

with

z̃†α =
∑

m,n

ψ†
n(F̃α†)nmψm ≡ ψ†F̃α†ψ. (236)

The matrix elements F̃α
nm are closely related to those in

Eq. (169) with an important difference: here one repre-
sents electron operator by a product of pseudo–fermion
and two pseudo–bosons. The fermionic presign is com-
pletely taken care of by the pseudo fermion, and there-
fore the matrix elements that appear in the definition of
pseudo–bosons should be free of the fermionic presign.
In other words, when calculating matrix F in the direct
base, where matrix elements are either 0, +1 or −1, one
should take absolute values. In the direct base, the defi-

nition of F̃α is then

F̃α
nm = |〈n|dα|m〉|. (237)

The enlarged Hilbert space contains unphysical states
that must be eliminated by imposing the set of con-
straints

Q ≡ ψ†ψ = 1 (238)

f †
αfα = ψ†F̃α†F̃αψ. (239)

The first constraint merely expresses the completeness
relation of local states, while the second imposes equiv-
alence between the charge of electrons on the local level
and charge of pseudo–fermions.

Introduction of these type of Bose fields allows one to
linearize interaction term of type Uαβnαnβ. For more
general type of interaction, one needs to introduce addi-
tional bosonic degrees of freedom that are tensors in the
local Hilbert space instead of vectors. Additional con-
straints then can diagonalize a more general interaction
term.

Following Ref. (Kotliar and Ruckenstein, 1986) ad-
ditional normalization operators Lα and Rα are intro-
duced whose eigenvalues would be unity if the constraints
Eq. (238) are satisfied exactly but at the same time guar-
antee the conservation of probability in the the mean–
field type theory

Rα = (1 − ψ†F̃αF̃α†ψ)−1/2, (240)

Lα = (1 − ψ†F̃α†F̃αψ)−1/2. (241)

With this modification, the creation operator of an elec-
tron is still expressed by d†α = z†αf

†
α with projectors equal

to

z†α = Rα ψ
†F̃α†ψ Lα. (242)

The action of the AIM may now be written in terms
of pseudo particles as

S =
∑

α

∫ β

0

dτ

[
f †

α(
∂

∂τ
− µ+ iλα)fα + ψ†(−iλαF̃

α†F̃α)ψ

]
+

∫ β

0

dτ ψ†(
∂

∂τ
+ iΛ +E)ψ (243)

+
∑

α,β

∫ β

0

dτ

∫ β

0

dτ ′ z†α(τ)f †
α(τ)∆αβ(τ − τ ′)fβ(τ ′)zβ(τ ′) − iΛ, (244)

where iΛ and iλα are introduced for the constraints
Eq. (238) and (239), respectively.

After integrating out pseudo fermions, the following

saddle–point equations can be derived by minimizing free
energy with respect to classical fields ψ

1

β

∑

iω

∑

α,β

[
1

2
(Ggαβz

†
β∆βαzα + z†α∆αβzβGgβα)(L2

αF̃
α†F̃α +R2

αF̃
αF̃α†)

+LαRα(Ggαβz
†
β∆βαF̃

α + ∆αβzβGgβαF̃
α†)
]
ψ + (iΛ +E −

∑

α

iλαF̃
α†F̃α)ψ = 0. (245)
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where (G−1
g )αβ = ((iω + µ − iλα)δαβ − z†α∆αβzβ). The

local electron Green’s function is finally given by

Gαβ = zαGgαβzβ. (246)

Equations (245) with constrains (238) and (239) consti-
tute a complete set of non–linear equations that can be
solved by iterations.
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FIG. 22 The quasiparticle residue Z from the Gutzwiller
method (open squares) is compared to the QMC Z (full cir-
cles) extracted from imaginary axis data. Calculations were
performed for the two–band Hubbard model on Bethe lattice
with U = 4D for QMC and U = 5.8D for the Gutzwiller.
The later value was chosen to keep ratio U/UMIT the same
in both methods. MIT denotes metal-insulator transition.
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FIG. 23 Doping versus chemical potential extracted from
QMC (circles) and from the Gutzwiller method (squares) for
two–band Hubbard model on Bethe lattice with U = 4D.

In Fig. 22, we show a comparison between QMC
and Gutzwiller quasiparticle renormalization amplitude
Z for the two–band Hubbard model on Bethe lattice.
We notice that the Gutzwiller method captures all the
basic low–frequency features of the model and compares
very favorably with the QMC results. Remarkably, the

chemical potential also shows a very good agreement be-
tween QMC and the Gutzwiller method as can be seen
in Fig. 23.

The slave boson technique constructed in Ref. (Kotliar
and Ruckenstein, 1986) is closely related and inspired
by the famous Gutzwiller approximation, which appears
as the saddle point of the functional integral in terms
of the auxiliary boson fields describing the local collec-
tive excitations of the system. However there is a con-
ceptual difference: rather than attempting to estimate
the total energy, the slave boson approach constructs an
approximation for the Green’s function at low energy
Eq. (246). Fluctuations around the saddle point, then
allow to recover the Hubbard bands as demonstrated in
references (Castellani et al., 1992; Lavagna, 1990; Read,
1985; Read and Newns, 1983). The Gutzwiller approx-
imation to the Gutzwiller wave function becomes exact
in infinite dimensions (Metzner and Vollhardt, 1988) and
has been recently evaluated in the general multiorbital
case (Bünemann and Weber, 1997; Bünemann et al.,
1998). In the limit of density-density interactions, the
form of the renormalization function z is identical to
the one obtained from the slave boson method. The
Gutzwiller approach is an approach that gives the to-
tal energy, and also the Green’s function if one makes
the slave boson identification connecting the Gutzwiller
renormalization factor to the Green’s function. It has
been applied to Iron and Nickel by Bünneman and Weber
(Bünemann et al., 2003; Ohm et al., 2002). Additionally,
the slave boson method gives the exact solution for the
Mott transition in a system with large orbital degeneracy
(Florens et al., 2002).

F. Interpolative schemes

This section covers a different type of approximation
to the functional Σ(Eimp,∆). These are not controlled
approximations, in the sense that they are not based on
a small parameter, but instead are attempts to provide
approximations which are valid simultaneously for weak
and strong coupling, high and low frequency, by com-
bining different techniques as well as additional exact
information. By combining various bits of information
and various approaches one can obtain the self–energy
which is more accurate over a broader range of param-
eters. Their accuracy has to be tested against more ex-
pensive and exact methods of solution.

1. Rational interpolation for the self–energy

The iterative perturbation theory (IPT) method was
very successful in unraveling the physics of the Mott tran-
sition in the one–band Hubbard model. Its success is due
to the fact that it captures not only the band limit but
also the atomic limit of the problem at half filling. As
we will show in section III.F.2, the extensions of the IPT
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method are possible, but less reliable in the multiorbital
case. There have been some attempts to “define” inter-
polative methods that are robust enough and give rea-
sonable results in the whole space of parameters of an
multiorbital impurity model.

In this section, we will review the ideas from (Savrasov
et al., 2004) where a simple rational form for the self–
energy was proposed and unknown coefficient from that
rational expression were determined using the slave bo-
son mean–field (SBMF) method. This scheme tries to
improve upon SBMF, which gives the low–frequency in-
formation of the problem, by adding Hubbard bands to
the solution. For simplicity, only SU(N) symmetry will
be considered.

It is clear that Hubbard bands are damped atomic ex-
citations and to the lowest order approximation, appear
at the position of the poles of the atomic Green’s func-
tion. Therefore, a good starting point to formulate the
functional form for the self–energy might be the atomic
self–energy

Σ(at)(iω) = iω − εf −
[
G(at)(iω)

]−1

, (247)

where

Gat(iω) =
N−1∑

n=0

CN−1
n (P̃n + P̃n+1)

iω + µ−En+1 +En
, (248)

and En = εfn + 1
2Un(n − 1), P̃n is the probability to

find an atom in a configuration with n electrons, and

CN−1
n = (N−1)!

n!(N−n−1)! arises due to the equivalence of all

states with n electrons in SU(N).
The atomic self–energy can also be brought into the

form

Σ(at)(iω) = iω − εf −

N∏
i=1

(iω − Zi)

N−1∏
i=1

(iω − Pi)

, (249)

where Zi are zeros and Pi are the N −1 poles, which can
be calculated from equations (247) and (248). Using the
same functional form (249) for the self–energy at finite ∆
and calculating probabilities Xn self–consistently results
in the famous Hubbard I approximation.

To add the quasiparticle peak in the metallic state of
the system, one needs to add one zero and one pole to
Eq. (249). To see this, let us consider the SU(N) case
for the Hubbard model where the local Green’s func-
tion can be written by the following Hilbert transform
Gloc(ω) = H(ω − εf − Σ(ω)). If self–energy lifetime
effects are ignored, the local spectral function becomes
Aloc = D(ω− εf −Σ(ω)) where D is the non–interacting
density of states. The peaks in spectral function thus
appear at zeros Zi of Eq. (249) and to add a quasipar-
ticle peak, one needs to add one zero Zi. To make the
self–energy finite in infinity, one also needs to add one

pole Pi to Eq. (249). This pole can control the width
of the quasiparticle peak. By adding one zero and one
pole to the expression (249), the infinite frequency value
of the self–energy is altered and needs to be fixed to its
Hartree–Fock value. The pole which is closest to zero is
the obvious candidate to be changed in order to preserve
the right infinite value of the self–energy. The functional
form for the self–energy in the metallic state of the sys-
tem can take the following form

Σ(iω) = iω − εf −
(iω −X1)

N∏
i=1

(iω − Zi)

(iω −X2)(iω −X3)
N−2∏
i=1

(iω − Pi)

.

(250)
To compute the 2N + 1 unknown coefficients in

Eq. (250), the following algorithm was used in (Savrasov
et al., 2004)

a) All N zeros Zi are computed from the atomic form
of the self–energy Eq. (247) and probabilities Xn

are calculated by the SBMF method.

b) Poles of the atomic self–energy are also computed
from Eq. (247) with Xn obtained by SBMF. All
but one are used in constructing self–energy in
Eq.(250). The one closest to Fermi level needs to
be changed.

c) The self–energy at the Fermi level Σ(0) is given by
the Friedel sum–rule

〈n〉 =
1

2
+

1

π
arctg

(
ǫf + ℜΣ(i0+) + ℜ∆(i0+)

Im∆(i0+)

)

+

+i∞∫

−i∞

dz

2πi
Gf (z)

∂∆(z)

∂z
ez0+

. (251)

This relation is used to determine one of three un-
known coefficients Xi.

d) The slope of the self–energy at zero frequency is
used to determine one more unknown coefficient.
The quasiparticle weight z is calculated by the
SBMF method and the following relationship is
used

∂ℜΣ

∂ω
|ω=0= 1 − z−1. (252)

e) Finally, the infinite frequency Hartree–Fock value
of Σ is used to determine the last coefficient in
Eq. (250)

The 2N+1 coefficients can be computed very efficiently
by solving a set of linear equations. The method is thus
very robust and gives a unique solution in the whole space
of parameters. It’s precision can be improved by adding
lifetime effects, replacing ω by second order self–energy
in the way it is done in section III.F.2.
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FIG. 24 The density of states calculated by the rational in-
terpolative method plotted as a function of the chemical po-
tential µ̃ = −ǫf −(N−1)U/2 and frequency for the two–band
Hubbard model with SU(4) symmetry and at U = 4D.

FIG. 25 The density of states calculated by the QMC method
plotted as a function of the chemical potential µ̃ = −ǫf −(N−

1)U/2 and frequency for the two–band Hubbard model within
SU(4) and at U = 4D.

A typical accuracy of the method is illustrated in
Fig. 24 by plotting the density of states as a function
of the effective chemical potential µ̃ = −ǫf − (N − 1)U/2
and frequency in the regime of strong correlations. The
corresponding QMC results are shown in 25 for compari-
son. Several weak satellites can also be seen on this figure
(many atomic excitations are possible) which decay fast
at high frequency.

The semicircular quasiparticle band, which is strongly
renormalized by interactions, is seen at the central part
of the figure. For the doping levels µ̃ between 0 and -1
and between -3 and -5, the weight of the quasiparticle
band collapses while lower and upper Hubbard bands ac-
quire all the spectral weight. In the remaining region
of parameters, both strongly renormalized quasiparticle
bands and Hubbard satellites remain. When the bands
are fully filled or emptied, the quasiparticle band restores
its original bandwidth and the Hubbard bands disappear.
From Fig. 24 and 25 it is clear that the rational interpo-
lation for the self–energy in combination with the SBMF
offers a satisfactory qualitative and quantitative solution
of the multiorbital AIM which is useful for many appli-
cations of the LDA+DMFT to realistic systems.

2. Iterative perturbation theory

In this subsection we describe a different iterative per-
turbation theory which uses the second order self–energy
Eq. (162) as a main building block and also achieves cor-
rect limits in the large frequency, zero frequency, band
and atomic coupling limit. The idea originates from the
fact that the second order perturbation theory works sur-
prisingly well in the case of half–filled one–band Hubbard
model and captures all the essential physics of the model.
The success of this approach can be understood by notic-
ing that Σ(2) from Eq. (162) gives the correct atomic limit
although it is expected to work only in the weak coupling
limit. The naive extension away from half–filling or for
the multiband model treatment, however, fails because
the latter property holds only in the special case of the
half–filled one–band model. To circumvent this difficulty,
a scheme can be formulated such that the atomic limit
is also captured by the construction. In the following
discussion, only SU(N) symmetry will be considered.

To combine various bits of information in a consistent
scheme, an analytic expression for the self–energy in the
form of continuous fraction expansion

Σα(iω) = Σα(∞) +
Aα

iω −Bα − Cα

iω−Dα−···

, (253)

was set up in Ref. (Oudovenko et al., 2004a). All the
necessary coefficients, Σα(∞), Aα, Bα, Cα, Dα ..., can be
determined by imposing the correct limiting behavior at
high and low frequencies. The basic assumption of this
method is that only a few poles in the continuous fraction
expansion (253) are necessary to reproduce the overall
frequency dependence of the self–energy.



52

Let us continue by examining the atomic limit of the
second order self–energy Eq. (162) when evaluated in
terms of the bare propagator G0

β(iω) = 1/(iω+ µ̃0−∆β)

Σ
(2)
α ∆→0 =

γα

iω + µ̃0
, (254)

where γα =
∑

β(Uαβ)2n0
β(1 − n0

β) and n0
β is a fictitious

particle number

n0
β =

1

π

∫
f(ω)ImG0

β(ω − i0+)dω, (255)

associated with bare propagator. The choice of µ̃0 will
be discussed later.

The continuous fraction expansion in Eq. (253) can be
made exact in the restricted atomic limit, i.e., when the
three significant poles are considered in the Green’s func-
tion, and coefficients are calculated from the moments of

the self–energy. By replacing iω with γα/Σ
(2)
α − µ̃0 in

expansion Eq. (253), it is clear from Eq. (254) that the
resulting self–energy functional has the correct atomic
limit and reads

Σα(iω) = Σα(∞)+

Aα

γα
Σ

(2)
α

1 − eµ0+Bα

γα
Σ

(2)
α − (Cα/γ2

a)
“

Σ
(2)
α

”2

1−(eµ0+Dα)Σ
(2)
α /γα−···

.

(256)
Coefficients A, B, C and D can be determined from the
moment expansion

Aα = Σ(1)
α , (257)

Bα =
Σ

(2)
α

Σ
(1)
α

, (258)

Cα =
Σ

(3)
α Σ

(1)
α − (Σ

(2)
α )2

(Σ
(1)
α )2

, (259)

where the self–energy moments can be expressed in
terms of the density–density correlation functions (see
Ref. (Oudovenko et al., 2004a)).

Finally, the parameter µ̃0 can be determined by impos-
ing the Friedel sum rule, which is a relation between the
total density and the real part of the self–energy at zero
frequency, thereby achieving the correct zero frequency
limit. Since the Friedel sum rule is valid only at zero tem-
perature, the parameter µ̃0 is determined at T = 0, and
after having it fixed, equation (256) is used at arbitrary
temperatures.

An alternative scheme for determining the
temperature–dependent µ̃0 was proposed by Pot-
thoff et al. (Potthoff et al., 1997), and consists of the
requirement that the fictitious occupancy computed
from G0 equals the true occupancy computed from G
(Mart́ın-Rodero et al., 1982). A careful comparison

of these approaches was carried out by Potthoff et al.
(Meyer et al., 1999; Potthoff et al., 1997).

Note that one could continue the expansion in contin-
uous fraction to the order in which the expansion gives
not only restricted but the true atomic limit. However, in
practice this is seldom necessary because only few poles
close to the Fermi energy have a large weight.

It is essential that the self–energy Eq. (256) remains
exact to U2, which can be easily verified by noting that
in the U → 0 the fictitious occupancy n0 approaches n
therefore Aα = γα(1 +O(U)), B → −µ̃0 and C → 0. At
the same time, the self–energy Eq. (256) has correct first
moment because expanding Σ(2) in the high–frequency

limit yields Σ
(2)
α = γα/(iω) + ... and Aα is exact first

moment.
Note that in the case of one–band model, the atomic

limit requires only one pole in self–energy therefore the
coefficient C in Eq. (256) can be set to zero and one has

Σα(iω) = Σα(∞) +

Aα

γα
Σ

(2)
α

1 − eµ0+Bα

γα
Σ

(2)
α

. (260)

Furthermore, double and triple occupancies do not enter
the expression for the moments in the case of one–band
model. If one chooses the functional form for the mo-
ments in the atomic limit, the interpolative self–energy
(256) has still the same limiting behavior as discussed
above. In this case, no additional external information is
necessary and the system of equations (260), (257), (258)
and (162) is closed.

1
n
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0.2

0.4

Z

QMC U=3
QMC U=5
IPT U=5
IPT U=3

FIG. 26 Comparison between QMC and the simplified IPT
Eq. (260) renormalization amplitude Z for the three–band
Hubbard model on Bethe lattice at U = 3D and 5D. QMC
Z was extracted at temperature T = 1/16 and IPT at zero
temperature.

For the multiband model, an approximate method is
needed to calculate moments which in turn ensure a lim-
iting form consistent with the simplified atomic limit.
Many approaches discussed in previous sections can be
used for that purpose, for example the Gutzwiller method
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or SUNCA. In Ref. (Kajueter, 1996b) the coherent poten-
tial approximation (CPA) was used to obtain moments in
the functional form consistent with the atomic limit, i.e.,
neglecting last term in Eq. (258). Another possibility,
also tested by Ref. (Kajueter, 1996b), is to use the ansatz
Eq. (260) in the case of multiband model. In Fig. 26 the
quasiparticle renormalization amplitude Z versus parti-
cle number n is displayed for n less than one where this
scheme compares favorably with the QMC method. CPA
was used to obtain moments.

-4 -2 0 2 4
ω

0

0.2

0.4

0.6

D
O

S -1 0 1

FIG. 27 Density of states for the two–band Hubbard model
on Bethe lattice at U = 2.5D and nd = 1.1. The tick full
line marks QMC curve at temperature T = 1/16D while
the rest of the curves correspond to various IPT schemes at
T = 0. The thin full line shows the IPT from Eq. (256) with
all four coefficients determined by high–frequency moments
in the functional form of atomic limit. The inset zooms the
region around the chemical potential where the above men-
tioned IPT scheme develops a spurious double peak structure.
The dot–dashed line corresponds to simplified IPT Eq. (260)
with both two coefficients determined by moments. Finally,
the dashed curve stands for the IPT schemes described in
section III.F.1.

When the particle number slightly exceeds unity, the
simplified IPT scheme Eq. (260) does not provide an ac-
curate description of the multiorbital AIM. As shown in
Fig. 27, the Hubbard bands are completely misplaced.
Nevertheless, the quasiparticle peak is in good agree-
ment with QMC result. By taking into account more
terms in the continuous fraction expansion Eq. (256),
the high–frequency part of spectra can be considerably
improved since the resulting approximation obeys more
high–frequency moments. Unfortunately, the quasiparti-
cle peak develops a spurious double peak structure which
severely limits the applicability of the method, as shown
in the inset of Fig. 27. Systematically improving only
the high–frequency part of the spectra, by incorporating
more moments into the approximation, can thus spoil
the low–frequency part. This type of unphysical feature
can be avoided using the scheme from subsection III.F.1
where the derivative as well as the value of the spectra at
zero frequency was imposed by the information obtained
by a more accurate technique at low frequency, such as

the Gutzwiller method.
The most general extension of IPT, and its simpli-

fied form Eq. (260) was set up in Ref. (Kajueter, 1996b)
and in Ref. (Mart́ın-Rodero et al., 1982). The authors
in Ref. (Ferrer et al., 1987; Yeyati et al., 1999) tested
it in the context of quantum dots, where it performs
satisfactorily. However, Ref. (Kajueter, 1996b) tested
it in the DMFT context, and the difficulties with the
spurious double peak structure shown in Fig. 27 were
found close to integer filling in the case of occupancies
larger than one. When the occupancies are less than one,
the simpler formula Eq. (260) is accurate and free from
pathologies. It was used to compute the physical prop-
erties of La1−xSrxTiO3 in Refs. (Anisimov et al., 1997a;
Kajueter et al., 1997). Various materials with strongly
correlated d–bands were studied by the group of Craco,
Laad and Müller-Hartmann using the IPT method for
arbitrary filling of the correlated bands. The proper-
ties of CrO2 (Craco et al., 2003b; Laad et al., 2001),
LiV2O4 (Laad et al., 2003a), V2O3 (Laad et al., 2003b)
and Ga1−xMnxAs (Craco et al., 2003a) were explained
by the IPT method.

IV. APPLICATION TO MATERIALS

In this section we illustrate the realistic dynamical
mean–field methodology with examples taken from vari-
ous materials. We chose situations where correlations ef-
fects are primarily responsible for the behavior of a given
physical system. The examples include: (i) phase transi-
tions between a metal and insulator where, in the absence
of any long–range magnetic order, opening an energy
gap in spectrum cannot be understood within simple–
band theory arguments; (ii) large, isostructural volume
collapse transitions where a localization–delocalization
driven change in lattice parameters of the system is nec-
essary to understand the transition; (iii) the behavior
of systems with local moments which are not straightfor-
ward to study within band theory methods. We conclude
this section with a brief, non–comprehensive summary of
a few other illustrations of the power of the dynamical
mean–field method that, for lack of space, cannot be cov-
ered in this review.

A. Metal–insulator transitions

1. Pressure driven metal–insulator transitions

The pressure driven metal–insulator transition (MIT)
is one of the simplest and at the same time most basic
problems in the electronic structure of correlated elec-
trons. It is realized in many materials such as V2O3,
where the metal–insulator transition is induced as func-
tion of chemical pressure via Cr doping, quasi–two–
dimensional organic materials of the κ family such as
(BEDT–TSF)2X (X is an anion) (Ito et al., 1996; Lefeb-
vre et al., 2000), and Nickel Selenide Sulfide mixtures
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(for a review see (Imada et al., 1998) as well as articles of
Rosenbaum and Yao in (Edwards and Rao, 1990)). The
phase diagram of these materials is described in Fig. 28.
It is remarkable that the high–temperature part of the
phase diagram of these materials, featuring a first or-
der line of metal–insulator transitions ending in a crit-
ical point, is qualitatively similar in spite of the signif-
icant differences in the crystal and electronic structure
of these materials (Chitra and Kotliar, 1999; Kotliar,
1999b, 2001). This is illustrated in Fig. 29 where the
schematic phase diagram of the integer filled Hubbard
model is included.

V2O3 has a Corundum structure in which the V ions
are arranged in pairs along the c hexagonal axis, and
form a honeycomb lattice in the basal ab plane. Each

V ion has a 3d2 configuration. The d–electrons occupy
two of the t2g orbitals which split into a non–degenerate
a1g and a doubly degenerate eπ

g orbital. The eσ
g states

lie higher in energy (Castellani et al., 1978a,b). NiSeS
mixtures are charge transfer insulators, in the Zaanen–
Sawatzky–Allen classification (Zaanen et al., 1985), with
a pyrite structure. In this compound the orbital degen-
eracy is lifted, the configuration of the d–electron in Ni is
spin one, d8, and the effective frustration arises from the
ring exchange in this lattice structure. The κ -(BEDT–
TSF)2X (X is an anion) (Ito et al., 1996; Lefebvre et al.,
2000) are formed by stacks of dimers and the system is
described at low energies by a one–band Hubbard model
with a very anisotropic next nearest neighbor hopping
(Kino and Fukuyama, 1996; McKenzie, 1998).

FIG. 28 The phase diagrams of V2O3, NiS2−xSex and organic materials of the κ family (from (McWhan et al., 1971) (left),
(Edwards and Rao, 1990) (middle), and (Kagawa et al., 2004) (right)).

The universality of the Mott phenomena at high
temperatures allowed its description using fairly simple
Hamiltonians. One of the great successes of DMFT ap-
plied to simple model Hamiltonians was the realization
that simple electronic models are capable of producing
such phase diagram and many of the observed physical
properties of the materials in question. The qualitative
features related to the Mott transition at finite temper-
ature carry over to more general models having other
orbital and band degeneracy as well as coupling to the
lattice. The dependence of this phase diagram on orbital
degeneracy has been investigated recently (Florens et al.,
2002; Kajueter and Kotliar, 1997; Ono et al., 2001, 2003).

The determination of the extension of the qualitative
phase diagram away from half filling includes regions of
phase separation near half filling (Kotliar et al., 2002).
Determination of the low–temperature phases, which are

completely different in the materials in Fig. 28, requires a
more careful and detailed modeling of the material, and
the study of the dependence of the magnetic properties
on the properties of the lattice is only in the beginning
stages (Chitra and Kotliar, 1999; Zitzler et al., 2004).

Dynamical mean–field theory (Georges et al., 1996),
provided a fairly detailed picture of the evolution of
the electronic structure with temperature and interac-
tion strength or pressure. Surprising predictions emerged
from these studies: a) the observation that for a corre-
lated metal, in the presence of magnetic frustration, the
electronic structure (i.e. the spectral function) contains
both quasiparticle features, and Hubbard bands (Georges
and Kotliar, 1992). b) The idea that the Mott tran-
sition is driven by the transfer of spectral weight from
the coherent to the incoherent features (Zhang et al.,
1993). This scenario, brought together the Brinkman–
Rice–Gutzwiller ideas and the Hubbard ideas about the
Mott transition in a unified framework. c) The existence
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FIG. 29 Schematic phase diagram of a material undergoing a
Mott metal–insulator transition.

of broad regions of parameters where the incoherent part
of the spectra dominates the transport. The impurity
model subject to the DMFT self–consistency condition
is a minimal model to approach the understanding of the
incoherent or bad metal, the Fermi liquid state, the Mott
insulating state, and a “semiconducting” or “bad insula-
tor” state where thermally induced states populate the
Mott Hubbard gap. d) An understanding of the critical
behavior near the Mott transition as an Ising transition
(Kotliar et al., 2000). This critical behavior had been
surmised long ago by Castellani et al. (Castellani et al.,
1979).

In the last few years experimental developments have
confirmed many of the qualitative predictions of the
DMFT approach. For recent reviews see (Georges,
2004a,b; Kotliar and Vollhardt, 2004).

a) Photoemission spectroscopy has provided firm evi-
dence for a three peak structure of the spectral function
in the strongly correlated metallic regime of various ma-
terials and its evolution near the Mott transition. This
was first observed in the pioneering experiments of A. Fu-
jimori et al. (Fujimori et al., 1992b). The observation of
a quasiparticle peak near the Mott transition took some
additional work. In Ref. (Matsuura et al., 1998), angle
resolved photoemission spectra in NiSeS reveal the pres-
ence of a quasiparticle band and a Hubbard band (see
Figs. 30,31). These results, together with a DMFT
calculation by Watanabe and Doniach, in the framework
of a two–band model are shown in Fig. 32.

Cubic SrVO3 and orthorhombic CaVO3 perovskites
are strongly correlated metals. LDA+DMFT calcula-
tions (Sekiyama et al., 2004) find their spectral functions
to be very similar in agreement with recent bulk–sensitive
photoemission experiments (Sekiyama et al., 2002, 2004).
The comparison of the high–energy LDA+DMFT pho-
toemission results against the experiments is presented
in Fig. 33. LDA qualitatively fails as it cannot produce

FIG. 30 Near–Fermi–level ARPES spectra in NiSeS taken
nearly along the (001) direction for (a) x = 0 (insulating),
(b) x = 0.4 (insulating), (c) x = 0.45 (metallic), (d) x = 0.5
(metallic), and (e) x = 2.0 (metallic) (from Ref. (Matsuura
et al., 1998)).

FIG. 31 Temperature–dependence obtained in NiSeS of the
near- εF peak for x = 0.45 at 22.4 eV incident photon energy.
Inset: Distance of the 50% point of the leading edge from
εF (solid circles); reactivity (open circles, right–hand scale);
area under the near-εF peak (solid diamonds, scaled in arbi-
trary units). Analyzer angle: 0/9 (from Ref. (Matsuura et al.,
1998)).

the Hubbard band while LDA+DMFT successfully cap-
tures this and compares well with experiment.

Using high–energy photoemission spectroscopy, Mo et
al. (Mo et al., 2003) studied the V2O3 system. The spec-
tral function, which exhibits a quasiparticle peak and
a Hubbard band, is displayed in Fig. 34 together with
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FIG. 32 Single–particle Green’s functions at half–filling for a
fixed charge–transfer gap and varying temperature. Horizon-
tal axis is scaled in units of 2t. Vertical axis has arbitrary
units (from Ref. (Matsuura et al., 1998)).

an LDA+DMFT calculation. The calculation was per-
formed using the LDA density of states of the Vanadium
t2g electrons and a Hubbard U of 5 eV.

b) Optical spectroscopy has confirmed the idea of tem-
perature driven transfer of spectral weight in the vicinity
of the Mott transition. The first indications had been
obtained in the V2O3 system (Rozenberg et al., 1995)
where it was found that as temperature is lowered, op-
tical spectral weight is transferred from high energies to
low energies. Similar observations were carried out in
NiSeS (Miyasaka and Takagi, 2004), and in the kappa
organics (Eldridge et al., 1991), confirming the high–
temperature universal behavior of materials near a Mott
transition.

c) The Ising critical behavior predicted by DMFT
is now observed in Cr doped V2O3 (Limelette et al.,
2003a). The large critical region and the experimen-
tal observation of the spinodal lines (Figs. 36 and 37),
was ascribed to the importance of electron–phonon cou-
pling (Kotliar, 2003). The situation in organic materials
at this point is not clear (Kagawa et al., 2003; Kanoda,
2004).

e) Transport studies in V2O3 (Kuwamoto et al., 1980)
and in NiSeS (Imada et al., 1998) have mapped out the
various crossover regimes of the DMFT phase diagram
(see Fig. 29), featuring a bad metal, a bad insulator, a
Fermi liquid and a Mott insulator. More recent studies
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FIG. 33 A comparison of LDA (panel a), LDA+DMFT (panel
d), and the photoemission data for SrV O3 and CaV O3 (after
(Sekiyama et al., 2004)).
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FIG. 34 Comparison of hν = 700 eV PES spectrum with
LDA+DMFT(QMC) spectrum for T = 300 K and U = 5.0 eV
in V2O3. (after (Mo et al., 2003))

in the two–dimensional kappa organics (Limelette et al.,
2003b) are consistent with the DMFT picture, and can
be fit quantitatively within single–site DMFT (see Fig.
38).

The dynamical mean field studies have settled a long
standing question. Is the Mott transition in V2O3, NiSSe
and kappa organics driven by an electronic structure
mechanism or by the lattice (i.e. the position of the ions
) degrees of freedom.

This question can only be answered theoretically since
lattice deformations are almost always generically in-
duced by changes in the electronic structure (see below)
and vice–versa. In a theoretical study one can freeze the
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FIG. 35 Comparison of the LDA and LDA+DMFT(QMC)
spectra at T = 0.1 eV (Gaussian broadened with 0.2 eV)
with the x–ray absorption data of (Müller et al., 1997) in
V2O3. The LDA and QMC curves are normalized differently
since the ǫσ

g states, which are shifted towards higher energies
if the Coulomb interaction is included, are neglected in our
calculation (from Ref. (Held et al., 2001a)).

FIG. 36 Temperature dependence of the conductivity (a),
the order parameter (b) and derivative of the conductivity
(analogous to a susceptibility) (c) in Cr doped V2O3 (from
Ref. (Limelette et al., 2003a)).

lattice while studying a purely electronic model, and it
is now accepted that the simple Hubbard model can ac-
count for the topology of the high temperature phase dia-
gram (Georges et al., 1996). Hence, lattice deformations
are not needed to account for this effect even though they
necessarily occur in nature. A cluster study of the frus-
trated, two-dimensional Hubbard model using CDMFT
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FIG. 37 Temperature–dependence of the resistivity in Cr
doped V2O3 at different pressures. The data (circles) are
compared to a DMFT–NRG calculation (diamonds), with a
pressure dependence of the bandwidth as indicated. The mea-
sured residual resistivity ρ0 has been added to the theoretical
curves (from Ref. (Limelette et al., 2003b)).
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FIG. 38 Pressure–Temperature phase diagram of the κ-Cl
salt (from Ref. (Limelette et al., 2003b)).

(ie. 2x2 plaquette) (Parcollet et al., 2004) demonstrated
that the single site DMFT statement of the existence
of a finite temperature Mott transition survives cluster
corrections, even though qualitative modifications of the
single site DMFT results appear at lower temperatures
or very close to the transition. Finally new numerical
approaches to treat systems directly on the lattice have
further corroborated the qualitative validity of the single
site DMFT results (Onoda and Imada, 2003).

The fact that the coupling of the lattice is important
near the electronically driven Mott transition was first
pointed out in the dynamical mean field context in ref
(Majumdar and Krishnamurthy, 1994). The electronic
degrees of freedom are divided into those described by
the low energy model Hamiltonian (see section I.B.5) and
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metallic

F insulating

V  or U/t
FIG. 39 Schematic volume dependence of free energy for a
model within DMFT.

the rest, and the total free energy of the system is given
by the sum of these two contributions Fother and Fmodel.
These free energies depend on the volume of the mate-
rial. Formally the energy of the model Hamiltonian is
a function of the model Hamiltonian parameters such as
the bandwidth t and Coulomb interaction U , but these
parameters themselves depend on volume.

We have seen that in the absence of elastic interac-
tions the Hubbard model has two solutions, a metallic
and an insulating one, in a range of values of U/t. Hence
Fmodel(t(V )) can have two branches which cross as de-
picted in Fig. 39. The free energy curve obtained by
picking at each volume the lowest of the free energies has
a cusp singularity (an infinitely negative second deriva-
tive at the critical volume)indicating the formation of a
double well structure.

The addition of Fother, which by construction is
smooth, cannot qualitatively modify this behavior. Fur-
thermore, the double well structure, which must exist
below the Mott transition temperature, also must per-
sist slightly above the Mott transition point (given the
infinite second derivative at the critical volume below the
transition point of the model Hamiltonian). The position
where the double well develops signals the position of the
true (i.e. renormalized by the lattice ) metal to insulator
transition. The exact free energy is a concave function of
the volume and this concavity which is missed in mean
field theory, is restored through a Maxwell construction.

This qualitative discussion sketches how the spectral
density functional theory formalism is used to predict the
volume of materials starting from first principles. The
self-consistent application of LDA+DMFT determines
the energy of model Hamiltonian and the one electron
Hamiltonian of both the low energy and the high energy
degrees of freedom in a self-consistent fashion. Results
for Ce and Pu are shown in Figs. 46 and 47, respectively.
In materials where the model exhibits a transition, the
LDA+DMFT studies produce a double well as will be
discussed for Ce and Pu in sections IV.B.1 and IV.B.2,
respectively.

It has been recently emphasized (Amadon et al., 2005)

that in Cerium the double well is of purely entropic na-
ture, while the calculations for Pu only include the en-
ergy, but the qualitative argument for the existence of a
double well applies to the free energy of both materials.
An analysis of the influence of the coupling to the lattice
on the compressibility and the electron-phonon coupling
has been carried out in (Hassan et al., 2004).

2. Doping driven metal–insulator transition

Doping driven metal–insulator transitions in the three–
dimensional perovskites La1−xSrxTiO3−δ has been ex-
tensively explored in the past decade (Crandles et al.,
1992; Hays et al., 1999; IV et al., 1992; Maeno et al.,
1990; Onoda and Kohno, 1998; Onoda and Yasumoto,
1997a,b; Tokura et al., 1993). The electronic properties
of the La1−xSrxTiO3 series is governed by the t2g subset
of the 3d orbitals. When x = 0, there is one electron
per Ti, and the system is a Mott insulator. Doping with
Strontium or Oxygen introduces holes in the Mott insu-
lator.

In the cubic structure the t2g orbital is threefold de-
generate, but this degeneracy is lifted by an orthorhom-
bic distortion of the GdFeO3 structure resulting in the
space group Pbnm. For x > 0.3 the material is found
to transform to another distorted perovskite structure
with space group Ibmm. For larger values of x > 0.8
the orthorhombic distortion vanishes and the material
assumes the cubic perovskite structure of SrTiO3 with
space group Pm3m. LaTiO3 is a Mott insulator which
orders antiferromagnetically at TN ≈ 140 K, with a Ti
magnetic moment of 0.45 µB and small energy gap of
approximately 0.2 eV.

The lifting of the degeneracy plays a very important
role for understanding the insulating properties of this
compound, and they have recently been discussed by
a single–site DMFT study of this compound (Pavarini
et al., 2004). For moderate dopings La1−xSrxTiO3 be-
haves as a canonical doped Mott insulator. The specific
heat and the susceptibility are enhanced, the Hall coeffi-
cient is unrenormalized, and the photoemission spectral
function has a resonance with a weight that decreases as
one approaches half filling. Very near half filling, (for
dopings less than 8 %) the physics is fairly complicated
as there is an antiferromagnetic metallic phase (Kuma-
gai et al., 1993; Okada et al., 1993; Onoda and Kohno,
1998). While it is clear that the parent compound is an
antiferromagnetic Mott insulator, the orbital character
of the insulator is not well understood, as recent Raman
scattering (Reedyk et al., 1997) and neutron scattering
investigations reveal (Furukawa et al., 1999, 1997).

Very near half–filling when the Fermi energy becomes
very small and comparable with the exchange interac-
tions and structural distortion energies, a treatment be-
yond single–site DMFT becomes important in order to
treat spin degrees of freedom. Alternatively, for moder-
ate and large dopings, the Kondo energy is the dom-
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inant energy and DMFT is expected to be accurate.
This was substantiated by a series of papers reporting
DMFT calculations of a single–band or multiband Hub-
bard model with a simplified density of states. Ref.
(Rozenberg et al., 1994) addressed the enhancement of
the magnetic susceptibility and the specific heat as the
half–filling is approached. The optical conductivity and
the suppression of the charge degrees of freedom was de-
scribed in Ref. Rozenberg et al., 1996, while the obser-
vation that the Hall coefficient is not renormalized was
reported in Ref. Kajueter and Kotliar, 1997; Kotliar and
Kajueter, 1996. The thermoelectric power was investi-
gated by Pálsson and Kotliar (Pálsson and Kotliar, 1998)
and the magnetotransport by Lange and Kotliar (Lange
and Kotliar, 1999).

Given the simplicity of the models used and the var-
ious approximations made in the solution of the DMFT
equations, one should regard the qualitative agreement
with experiment as very satisfactory. The photoemission
spectroscopy of this compound as well as of other transi-
tion metal compounds do not completely reflect the bulk
data, and it has been argued that disorder together with
modeling of the specific surface environment is required
to improve the agreement with experiment (Maiti et al.,
2001; Sarma et al., 1996). More realistic studies were
carried out using LDA+DMFT. The results are weakly
sensitive to the basis set used while more sensitive to the
value of the parameter U and impurity solver. This was
discussed in section III, and it becomes very critical for
materials near the Mott transition since different impu-
rity solvers give slightly different values of critical U , and
hence very different physical spectra for a given value of
U (Held et al., 2001c; Nekrasov et al., 2000). However,
if we concentrate on trends, and take as a given that U
should be chosen as to place the material near or above
the Mott transition, nice qualitative agreement with ex-
periment is obtained.

Anisimov (Anisimov et al., 1997a) considered a realis-
tic Hamiltonian containing Oxygen, Titanium, and Lan-
thanum bands and solved the resulting DMFT equations
using IPT. Nekrasov et al. (Nekrasov et al., 2000) solved
the DMFT equations using t2g density of states obtained
from an LMTO calculation. In this procedure, the bare
density of states is rescaled so that it integrates to one.
They solved the DMFT equations using QMC, IPT and
NCA.

Comparison of photoemission experiments with results
obtained using the QMC impurity solver for different val-
ues of U is presented in Fig. 40. One can find favorable
agreement between experimental and LDA+DMFT re-
sults for U = 5 eV. LDA+DMFT reproduce the quasi-
particle and Hubbard bands while LDA captures only the
spectra around the Fermi level.

The linear term of the specific heat coefficient was
computed by fitting the t2g density of states to a tight–
binding parameterization. To capture the asymmetry in
tight–binding DOS the next nearest neighbor term, t′,
on Ti sublattice have to be taken into account. The dis-
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FIG. 40 Comparison of the experimental photoemission spec-
trum (Fujimori et al., 1992a,b; Yoshida et al., 2002), the
LDA result, and the LDA+DMFT(QMC) calculation for
LaTiO3 with 6% hole doping and different Coulomb inter-
action U = 3.2, 4.25, and 5 eV (from Ref. (Nekrasov et al.,
2000)).

persion which has been obtained from the fit is ǫk =
2t(cos kx + cos ky) + 2t′ cos(kx + ky) + 2t⊥ cos kz, where
t = −0.329664, t′ = −0.0816, t⊥ = −0.0205 in eV
units. Using the tight–binding DOS and the QMC im-
purity solver, the Green’s function and the specific heat
were calculated. The specific heat is given in terms
of the density of states N(µ) at the Fermi level by

γ = 2.357
[

mJ
molK2

] N(µ)[states/(eV unit cell)]
Z where Z is

the quasiparticle residue or the inverse of the electronic
mass renormalization. In the LDA, the value of Z is
equal to one and the doping dependence can be com-
puted within the rigid band model. The LDA+DMFT
results are plotted against the experiment in Fig. 41. De-
spite some discrepancies, there is good semiquantitative
agreement.

In general, the LDA data for γ are much lower than
the experimental values, indicating a strong mass renor-
malization. Also we note that as we get closer to the
Mott–Hubbard transition the effective mass grows sig-
nificantly. This is consistent with DMFT description of
the Mott–Hubbard transition, which exhibits divergence
of the effective mass at the transition.

Oudovenko et al. (Oudovenko et al., 2004c) considered
the optical properties of La1−xSrxTiO3. The trends are
in qualitative agreement with those of earlier model stud-
ies (Kajueter and Kotliar, 1997) but now the calculations
incorporate the effects of realistic band structures. In
Fig. 42 we plot the calculated optical conductivity for
LaxSr1−xTiO3 at doping x = 0.1 using the DMFT (solid
line) and compare it with the experimental data (dashed
line with open cycles symbols) measured by Fujishima et
al. (Fujishima et al., 1992) and with the LDA calcula-
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FIG. 41 Filling dependence of the linear coefficient of specific
heat, γ, of doped LaTiO3 obtained from DMFT calculations
using QMC as an impurity solver (solid line with stars) with
U = 5, temperature β = 16 and LDA calculations (solid
line). Experimental points are given by crosses and a dot–
dashed line is used as a guide for eye. Tight–binding density
of states was used in the self–consistency loop of the DMFT
procedure. Energy unit is set to half bandwidth.

tions (dot–dashed line). The low frequency behavior for
a range of dopings is shown in Fig. 43.
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FIG. 42 Calculated optical conductivity spectrum for
LaxSr1−xTiO3, x = 0.10, at large frequency interval using
DMFT method as compared with the experimental data and
results of the corresponding LDA calculations.

First we notice that the DMFT result agrees with the
experiment up to the energy of 2 eV. Above 2 eV, both
the LDA and DMFT optics are quite close and fit the
experiment reasonably well.

Its worth emphasizing that corresponding calculations
based on the local density approximation would com-
pletely fail to reproduce the doping behavior of the opti-
cal conductivity due to the lack of the insulating state of
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FIG. 43 Low frequency behavior of the optical conductiv-
ity for La1−xSrxTiO3 at x = 0.1, 0.2, 0.3 calculated using the
LDA+DMFT method. Experimental results (Okimoto et al.,
1995) are shown by symbols for the case x = 0.1. In the in-
set the effective number of carriers is plotted as a function of
doping. Squares show the results of the LDA+DMFT calcu-
lations. Circles denote the experimental data from Ref. (Oki-
moto et al., 1995).

the parent compound LaTiO3 within LDA. As a result,
the LDA predicts a very large Drude peak even for zero
doping, which remains nearly unchanged as a function of
doping. In view of this data, DMFT captures the correct
trend upon doping as well as the proper frequency behav-
ior, which is a significant improvement over the LDA.

3. Further developments

Understanding the simplest prototypes of the Mott
transition within DMFT has opened the way to many in-
vestigations of modified and generalized models which are
necessary to understand the rich physics of real materials.
Materials with unfilled bands and very different band-
width near the Fermi level (examples include ruthenates
Ca2−xSrxRuO4 (Anisimov et al., 2002), CrO2 (Toropova
et al., 2005), cobaltates (Ishida et al., 2005; Lechermann
et al., 2005b), the classic Mott insulators VO2 (Good-
enough, 1971) and V2O3 (Ezhov et al., 1999), in lay-
ered organic superconductors (Lefebvre et al., 2000),
fullerenes (Takenobu et al., 2000), and many other com-
pounds (Imada et al., 1998)) raise the possibility of an
orbitally selective Mott transition, where upon increase
of the interaction U one band can turn into an insulator
while the other one remains metallic.

This was observed first in connection with the
Ca2−xSrxRuO4 system (Nakatsuji et al., 2003; Nakatsuji
and Maeno, 2000) and also the Lan+1NinO3n+1 system
(Kobayashi et al., 1996; Sreedhar et al., 1994; Zhang
et al., 1994). The qualitative idea is that when two
bands differ substantially in bandwidth, as the interac-
tion strength is increased, there should be a sequence of
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Mott transitions, whereby first narrow band undergoes a
localization transition with the broader band remaining
itinerant while at large U both bands are localized. The
term orbital selective Mott transition (OSMT) was given
for this situation (Anisimov et al., 2002).

The Hubbard interaction is separated into U among
opposite spins, U ′ among different orbitals, and the flip-
ping term, which is proportional to Hund’s coupling J .

This problem is receiving much attention recently.
Most of the work was focused on the case of symmetric
bands in the particle hole symmetric point. It has been
shown that an OSMT is possible provided that the dif-
ference in bandwidth th/tl is small enough. The require-
ment on this ratio is made less extreme and therefore the
OSMT more clearly visible as J is increased, in particular
if its spin rotationally invariant form is treated (Anisi-
mov et al., 2002; Arita and Held, 2005; C. Knecht and N.
Blümer and P. G. J. van Dongen, 2005; de’ Medici et al.,
2005a; Ferrero et al., 2005; Koga et al., 2005, 2004).

Interestingly, it was shown in references (Biermann
et al., 2005a) that in the regime where the heavy or-
bital is localized and the light orbital is itinerant, the
heavy orbital forms a moment which scatters the light
electron resulting in the type of non Fermi liquid be-
havior that was first found in the context of the Falikov
Kimball model, and studied extensively in the context
of manganites. This type of non Fermi liquid, containing
light electrons scattered by local collective modes, is then
realized in many situations in transition metal oxides.

The effects of interactions containing three electrons in
the heavy bands and one electron in the light band have
not been studied in detail. They can be eliminated at
the expenses of generating a hybridization term, which
at least in some cases, has been shown to be a relevant
perturbation turning the insulating band into a metal-
lic state via hybridization (de’ Medici et al., 2005b).
Finally, we note that understanding this problem in the
context of real materials will require the interplay of LDA
band theory and DMFT many body calculations.

Bands are not necessarily symmetric and their center of
gravity may be shifted relative to each other. The funda-
mental issue is how crystal field splittings and spin orbit
splittings are renormalized by many body interactions.
This is important not only for experiments which mea-
sure the orbital occupancies but also because the renor-
malization of the crystal field splitting is a relevant per-
turbation that can modify dramatically the nature of the
OSMT. This is already seen in the atomic limit, where
shifts in ǫh−ǫl can have dramatic effect, even in static ap-
proaches. For example, in V2O3 (Held et al., 2005, 2001a;
Keller et al., 2005) the “heavy” a1g orbital is quickly
renormalized below the bottom of the LDA conduction
band. Notice that if the heavy orbital is moved well above
the light orbital, one can have an essentially weakly cor-
related situation, while if the heavy orbital moves well
below the light orbital and if the number of electrons is
such that the heavy orbital is not full, one encounters a
situation where local collective modes scatter the light

electrons.
A related issue is how interactions renormalize the

Fermi surface beyond the LDA Fermi surface. While in
many cases the LDA Fermi surface provides a good ap-
proximation to the true Fermi surface of many materials
such as heavy fermions, there are materials where this
is not the case. The issue was first raised in connection
with De Haas van Alphen and photoemission experiments
on CaVO3 (Inoue et al., 2002) and SrRuO4 (Kikugawa
et al., 2004) (for a review see (Mackenzie and Maeno,
2003)). This problem was first approached theoretically
by Liebsch and Lichtenstein using DMFT (Liebsch and
Lichtenstein, 2000a) and then by (Ishida et al., 2005;
Lechermann et al., 2005a; Okamoto and Millis, 2004a;
Pavarini et al., 2004; Zhou et al., 2005). For a review and
substantial new information on this topic see (Lecher-
mann et al., 2005b). Indeed, the shape of the Fermi sur-
face is easily extracted from the LDA+DMFT Green’s
function from the zeros of the eigenvalues of the matrix
h(LDA)(k) + Mint(0) − µ − Mdc. The self-energy for
a multi–orbital system treated within single–site DMFT
cannot in general be absorbed in a chemical potential
shift, even if the self-energy at zero frequency is diagonal,
and therefore affects the shape Fermi surface. Moreover,
let us notice that since the form of the double counting
enters explicitly in the equation, a definitive answer to
this issue will require the first principles calculations of
this term, for example using the GW+DMFT technique
described in section I.B.4.

B. Volume collapse transitions

Several rare earths and actinide materials undergo dra-
matic phase transitions as a function of pressure charac-
terized by a first-order volume decrease upon compres-
sion. A classical example of this behavior is the alpha
to gamma (α → γ) transition in Cerium (see phase di-
agram in Fig. 44), where the volume change is of the
order of 15 percent, but similar behavior is observed in
Pr and Gd (for a review see: (McMahan et al., 1998)). A
volume collapse transition as a function of pressure was
also observed in Americium, at around 15 GPa (Lind-
baum et al., 2001). However, unlike the α → γ tran-
sition which is believed to be isostructural, or perhaps
having a small symmetry change (Eliashberg and Capell-
mann, 1998; Nikolaev and Michel, 1999, 2002), the vol-
ume changing transitions in actinides are accompanied
by changes in the structure.

In the larger volume phase the f–electrons are more
localized than in the smaller volume phase, hence, the
volume collapse is a manifestation of the localization–
delocalization phenomenon. The susceptibility measure-
ments indicate that, for example, in Ce the γ–phase is
paramagnetic with well defined spins while the α–phase
is non–magnetic. The challenge is to understand how
small changes in pressure and temperature lead to phases
with different physical properties. A similar challenge is
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FIG. 44 The phase diagram of Cerium.

also posed by the generalized (Smith–Kmetko) phase di-
agram of actinides whereby one interpolates between dif-
ferent elements by alloying. Metallic Plutonium displays
a sequence of phase transitions as a function of temper-
ature between phases with very different volumes, and
the physics of the localization–delocalization phenomena
is believed to be important for their understanding (Jo-
hansson et al., 1995; Savrasov et al., 2001). Realistic
calculations have been performed by McMahan and col-
laborators (McMahan et al., 2003) for Ce and Savrasov et
al. (Savrasov et al., 2001) for Pu. Both groups concluded
that while the localized picture of both materials is im-
portant, the delocalized phases (α–Pu and α–Ce) are not
weakly correlated. This is also in agreement with recent
optical measurements in Ce (van der Eb et al., 2001).
From the DMFT point of view, the “metallic phase” is
more correlated than a naive band picture would sug-
gest, having not only quasiparticles but some weight in
the Hubbard band.

1. Cerium

Johansson proposed a Mott transition scenario (Jo-
hansson, 1974), where the transition is connected to the
delocalization of the f–electron. In the alpha–phase the
f–electron is itinerant while in the gamma–phase it is
localized and hence does not participate in the bond-
ing. In the absence of a theory of a Mott transition,
Johansson and collaborators (Johansson et al., 1995) im-
plemented this model by performing LDA calculations for
the alpha–phase, while treating the f–electrons as core
in the gamma–phase.

Allen and Martin (Allen and Martin, 1982) proposed
the Kondo volume collapse model for the α → γ tran-
sition. Their crucial insight was that the transition was
connected to changes in the spectra, resulting from mod-
ification in the effective hybridization of the spd- band
with the f–electron. In this picture what changes when

going from alpha to gamma is the degree of hybridization
and hence the Kondo scale. In a series of publications
(Allen and Liu, 1992; Liu et al., 1992) they implemented
this idea mathematically by estimating free energy dif-
ferences between these phases by using the solution of
the Anderson–Kondo impurity model supplemented with
elastic energy terms. The modern dynamical mean–field
theory is a more accurate realization of both the vol-
ume collapse model and the Mott transition model. In
fact, these two views are not orthogonal, as it is known
that the Hubbard model is mapped locally to an Ander-
son model satisfying the DMFT self–consistency condi-
tion. Furthermore, near the Mott transition this impu-
rity model leads to a local picture which resembles the
Kondo collapse model.

The Cerium problem was recently studied by Zölfl et
al. (Zölfl et al., 2001) and by McMahan and collabora-
tors (Held et al., 2001b; McMahan et al., 2003). Their
approach consists of deriving a Hamiltonian consisting
of an spd–band and an f–band, and then solving the re-
sulting Anderson lattice model using DMFT. McMahan
et al. used constrained LDA to evaluate the position of
the f–level as well as the value of the interaction U . The
hopping integrals are extracted from the LDA Hamilto-
nian written in an LMTO basis. Zölfl et al. identified the
model Hamiltonian with the Kohn–Sham Hamiltonian of
the LDA calculation in a tight–binding LMTO basis after
the f–level energy is lowered by U(nf − 1

2 ).

Strong hybridization not only between localized f or-
bitals but also between localized f and delocalized spd–
orbitals is the main reason to go beyond the standard
AIM or PAM and to consider the Hamiltonian with the
full (s, p, d, f) basis set. The starting one–particle LDA
Hamiltonian is calculated using the LMTO method con-
sidering 6s-, 6p-, 5d-, and 4f–shells. Claiming small
exchange and spin–orbit interactions both groups used
SU(N) approximation to treat the f–orbitals with the
Coulomb repulsion Uf ≈ 6 eV. McMahan et al. (McMa-
han et al., 2003) used Uf = 5.72 and 5.98 eV for α and γ–
Ce correspondingly) extracted from the constrained LDA
calculations.

The differences between these two approaches are at-
tributed to the impurity solvers used in the DMFT pro-
cedure and to the range of studied physical properties.
Zölfl et al. used the NCA impurity solver to calculate
the one–particle spectra for α- and γ–Ce, Kondo tem-
peratures, and susceptibilities while the McMahan group
used QMC and Hubbard I methods to address a broader
range of physical properties of Ce. Thermodynamic prop-
erties such as the entropy, the specific heat, and the free
energy are studied by McMahan et al. (McMahan et al.,
2003) in a wide range of volume and temperatures in
search of a signature of the α− γ transition. The details
of the spectral function obtained in both publications
differ somewhat mostly due to different impurity solvers
used (NCA and QMC) but the qualitative result, a three
peak spectra for α–Ce and two peak spectra of γ-Ce, is
clear for both methods (the spectra from Ref. McMahan
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FIG. 45 Comparison of the LDA+DMFT(QMC) (solid line)
spectra with experiment (circles) (Liu et al., 1992) (after
(McMahan et al., 2003)).

et al., 2003 are presented in Fig. 45). The Kondo tem-
peratures, TK,α ≈ 1000 K and TK,γ ≈ 30 K obtained by
Zölfl et al. as well as TK,α ≈ 2100 K and TK,γ < 650 K
obtained by McMahan group, are reasonably close to the
experimental estimates of TK,α = 945 K and 1800−2000
K as well as TK,γ = 95 K and 60 K extracted from the
electronic (Liu et al., 1992) and high–energy neutron
spectroscopy (Murani et al., 1993), correspondingly.

To find thermodynamic evidence for the α → γ tran-
sition, the total energy was calculated. McMahan et al.
compute the total energy which consists of three terms:
all–electron LDA energy, DMFT total energy minus so
called “model LDA” energy which originates from the
double counting term in the DMFT calculations. Volume
dependence of the total energy Etot(eV ) is reproduced in
Fig. 46. It was found that the DMFT contribution is the
only candidate to create a region of the negative bulk
modulus. In other words, the correlation contribution
is the main reason for the thermodynamic instability re-
vealing itself in the first order phase transition. As seen
from Fig. 46 the minimum of the total energy in the zero–
temperature limit corresponds to the volume of α–phase,
and for large temperature T = 0.14 eV the minimum
shifts to higher values of volume roughly corresponding
to the γ–phase.

With increasing temperature, the contribution to free
energy from the entropy term becomes important. Hence
one can look for another signature of the α → γ transi-
tion: the behavior of the entropy. The transition was
attributed to rapid increase of the entropy in the region
of volumes 28.2-34.4 Å. At large volumes, when spectral
weight of the 4f–electrons is removed from the Fermi
level, the entropy saturates at value kBln(2J+1), and in
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FIG. 46 Total LDA+DMFT(QMC) and polarized Hartree–
Fock (HF) energy as a function of volume at three temper-
atures. While the polarized HF energy has one pronounced
minimum in the γ–Ce phase, the LDA+DMFT(QMC) shows
a shallowness (T = 0.054, eV), which is consistent with the ob-
served α-γ transition (arrows) within the error bars. These re-
sults are also consistent with the experimental pressure given
by the negative slope of the dashed line. (from (McMahan
et al., 2003))

the case of the SU(N) approximation assumed in the cal-
culation, the logarithm tends to ln(14). For smaller vol-
umes the quasiparticle peak grows which causes changes
in the specific heat and hence in the entropy through∫
dTC(T )/T , substantially reducing it to smaller values.
So, the general qualitative picture which comes out

from the LDA+DMFT calculations is the following. At
large volume (γ–phase) the 4f–spectrum is split into
Hubbard bands and therefore a local moment is present
in the system. With volume reduction a quasiparticle
(Abrikosov–Suhl resonance) develops in the vicinity of
the Fermi level which causes a drop in the entropy and
disappearance of the local moment. Temperature depen-
dence of the quasiparticle peak indicated a substantially
larger Kondo temperature in the α–phase than in γ–Ce
phase. The obtained results also suggest that γ- and α–
phases of Ce are both strongly correlated.

Finally the optical properties of Cerium, were com-
puted both in the alpha and gamma phases by Haule et.
al. (Haule et al., 2005). These authors observed that
the Kondo collapse and the Mott transition scenario can
be differentiated by measuring the optical properties that
are controlled by the light electrons, or by studying theo-
retically the photoemission spectra of the spd–electrons.
In a Mott transition scenario, the spd–electrons are mere
spectators, not strongly affected by the localization of
the f ’s. Alternatively, in the Kondo collapse scenario
a typical hybridization gap should open up in the spd–
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spectra with a clear optical signature. Their calculation
as well as their interpretation of the optical data of Van
Der Eb (van der Eb et al., 2001) supports the Kondo
collapse scenario.

2. Plutonium

Many properties of Plutonium have been a long stand-
ing puzzle (Freeman and Darby, 1974). Pu is known
to have six crystallographic structures with large varia-
tion in their volume (Hecker and Timofeeva, 2000). Pu
shows an enormous volume expansion between α- and
δ–phases which is about 25%. Within the δ–phase, the
system is metallic and has a negative thermal expansion.
Transition between δ- and the higher–temperature ε–
phase occurs with a 5% volume collapse. Also, Pu shows
anomalous resistivity behavior (Boring and Smith, 2000)
characteristic of a heavy fermion systems, but neither of
its phases are magnetic, displaying small and relatively
temperature independent susceptibility. Photoemission
(Arko et al., 2000) exhibits a strong narrow Kondo–like
peak at the Fermi level consistent with large values of
the linear specific heat coefficient, although inverse pho-
toemission experiments have not been done up to now.

Given the practical importance of this material and
enormous amount of past experimental and theoretical
work, we first review the results of conventional LDA and
GGA approaches to describe its properties. Electronic
structure and equilibrium properties of Pu were studied
earlier by Soderlind et al., 1994; Solovyev et al., 1991
as well as recently by Jones et al., 2000; Kutepov and
Kutepova, 2003; Nordstrom et al., 2000; Robert, 2004;
Savrasov and Kotliar, 2000; Soderlind, 2001; Soderlind
et al., 2002; Wan and Sun, 2000. Using non–magnetic
GGA calculations, it was found that the equilibrium vol-
ume of its δ–phase is underestimated by 20-30%. The
spread in the obtained values can be attributed to differ-
ent treatments of spin orbit coupling for the 6p semicore
states. In particular, the problem was recognized (Nord-
strom et al., 2000) that many electronic structure meth-
ods employ basis sets constructed from scalar–relativistic
Hamiltonians and treat spin–orbit interaction variation-
ally (Andersen, 1975). Within the Pauli formulation (i.e.
when only terms up to the order 1

c2 are kept) the spin–
orbit Hamiltonian is given by

2

rc2
dV

dr
l̂̂s, (261)

whose matrix elements are evaluated on the ra-
dial solutions of the scalar relativistic version of
the Schroedinger’s equation φl(r, E) carrying no total
(spin+orbit) moment dependence. It has been pointed
out (Nordstrom et al., 2000) that in the absence of proper
evaluations of φj=1/2(r, Ep1/2) φj=3/2(r, Ep3/2) orbitals,
one of the options is to neglect the spin–orbital inter-
action for 6p states completely. This results in the im-
provement of volume which is of the order of 20% smaller

than the experiment as compared to the relativistic Pauli
treatment which gives a 30% discrepancy.

One can go beyond the Pauli Hamiltonian and treat
the spin–orbital Hamiltonian as an energy–dependent op-
erator (Koelling and Harmon, 1977).

2

rc2[1 + 1
c2 (E − V )]2

dV

dr
l̂̂s. (262)

For a narrow band, the energy in the denominator can
be taken approximately at the center of the band and
the average of the operator can be evaluated without a
problem. Our own simulations done with the full poten-
tial LMTO method show that the discrepancy in atomic
volume is improved from 27% when using Eq. (261) to
21% when using Eq.(262) and appear to be close to the
results when the spin–orbit coupling for the 6 p states
is neglected. The origin of this improvement lies in a
smaller splitting between 6p1/2 and 6p3/2 states when in-
corporating the term beyond 1

c2 .

Models with the assumptions of long range magnetic
order have also been extensively explored in the past
(Kutepov and Kutepova, 2003; Robert, 2004; Savrasov
and Kotliar, 2000; Soderland and Sadigh, 2004; Soder-
lind, 2001; Soderlind et al., 1994, 2002; Solovyev et al.,
1991; Wan and Sun, 2000). While none of Pu phases
are found to be magnetic of either ordered or disordered
type (Lashley et al., 2004) all existing density functional
based calculations predict the existence of long range
magnetism. Using GGA and imposing ferromagnetic or-
der, the predictions in the theoretical volumes for the
δ–phase have ranged from underestimates by as much as
33% (Savrasov and Kotliar, 2000) to overestimates by
16% (Soderlind et al., 2002). Again, the sensitivity of
the results to the treatment of the spin orbit coupling for
6p semicore needs to be emphasized. Our most recent
investigation of this problem shows that a 33% discrep-
ancy found with simulation using the Pauli Hamiltonian
(Savrasov and Kotliar, 2000) can be removed if Eq.(262)
is utilized. This makes the result consistent with the
calculations when spin–orbit coupling for 6p states is
completely omitted (Robert, 2004; Soderlind et al., 2002)
or when using fully relativistic calculation (Kutepov and
Kutepova, 2003).

Despite the described inconsistencies between the the-
ory and the experiment for the δ–phase, the volume of
the α–phase is found to be predicted correctly by LDA
(Jones et al., 2000; Kutepov and Kutepova, 2003; Soder-
lind, 2001) . Since the transport and thermodynamic
properties of α- and δ–Pu are very similar, the nature of
the α–phase and the LDA prediction by itself is another
puzzle.

Several approaches beyond standard LDA/GGA
schemes have been implemented to address these puz-
zles. The LDA+U method was applied to δ–Pu (Bouchet
et al., 2000; Savrasov and Kotliar, 2000). It is able to pro-
duce the correct volume of the δ–phase, for values of the
parameter U∼4 eV consistent with atomic spectral data
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and constrained density functional calculations. How-
ever, the LDA+U calculation has converged to the arti-
ficial magnetically ordered state. This method is unable
to predict the correct excitation spectrum and to recover
the α–phase. To capture these properties, U must be set
to zero. Another approach proposed in the past (Eriksson
et al., 1999) is the constrained LDA approach in which
some of the 5f–electrons, are treated as core, while the
remaining electrons are allowed to participate in band
formation. Results of the self–interaction–corrected LDA
calculations have been also discussed (Setty and Cooper,
2003; Svane et al., 1999). Recent simulations based on
the disordered local moment method (Niklasson et al.,
2003) have emphasized that the volume of the δ–Pu can
be recovered without an assumption of long range mag-
netic order.

The dynamical mean–field theory offers a way to deal
with the problem using the full frequency resolution.
Within DMFT the magnetic moments do not need to
be frozen and can live at short time scales while giv-
ing zero time average values. Also, performing finite
temperature calculation ensures that the various orien-
tations of moments enter with proper statistical weights.
The LDA+DMFT calculations using Pauli Hamiltoni-
ans have been reported in (Dai et al., 2003; Savrasov
et al., 2001). To illustrate the importance of correla-
tions, the authors (Savrasov and Kotliar, 2003; Savrasov
et al., 2001) discussed the results for various strengths
of the on–site Coulomb interaction U. The total energy
as a function of volume of the FCC lattice is computed
for T = 600 K using the self–consistent determination
of the density in a double iteration loop as described in
Section II. The total energy is found to be dramatically
different for non–zero U with the possibility of a double
minimum for U ′s ∼= 4 eV which can be associated with
the low volume α- and high–volume δ–phases.

The calculations for the BCC structure using the tem-
perature T = 900 K have been also reported (Savrasov
and Kotliar, 2004b). Fig. 47 shows these results for
U = 4 eV with a location of the minimum around
V/Vδ = 1.03. While the theory has a residual inaccu-
racy in determining the δ- and ε–phase volumes by a few
percent, a hint of volume decrease with the δ → ε tran-
sition was clearly reproduced.

The values of U ∼ 4 eV, which are needed in these sim-
ulations to describe the α → δ transition, were found to
be in good agreement with the values of on–site Coulomb
repulsion between f–electrons estimated by atomic spec-
tral data (Desclaux and Freeman, 1984), constrained
density functional studies (Turchi et al., 1999), and the
LDA+U studies (Savrasov and Kotliar, 2000).

The double–well behavior in the total energy curve is
unprecedented in LDA or GGA based calculations but it
is a natural consequence of the proximity to a Mott tran-
sition. Indeed, recent studies of model Hamiltonian sys-
tems (Kotliar et al., 2002) have shown that when the f–
orbital occupancy is an integer and the electron–electron
interaction is strong, two DMFT solutions which differ in
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FIG. 47 Total energy as a function of volume in Pu for differ-
ent values of U calculated using the LDA+DMFT approach.
Data for the FCC lattice are computed at T = 600 K, while
data for the BCC lattice are given for T = 900 K.

their spectral distributions can coexist. It is very natural
that allowing the density to relax in these conditions can
give rise to the double minima as seen in Fig. 47.

The calculated spectral density of states for the FCC
structure using the volume V/Vδ = 0.8 and V/Vδ = 1.05
corresponding to the α- and δ–phases have been reported
(Savrasov and Kotliar, 2004b; Savrasov et al., 2001).
Fig. 48 compares the results of these dynamical mean–
field calculations with the LDA method as well as with
the experiment. Fig. 48 (a) shows density of states cal-
culated using LDA+DMFT method in the vicinity of the
Fermi level. The solid black line corresponds to the δ–
phase and solid grey line corresponds to the α–phase.
The appearance of a strong quasiparticle peak near the
Fermi level was predicted in both phases. Also, the lower
and upper Hubbard bands can be clearly distinguished
in this plot. The width of the quasiparticle peak in the
α–phase is found to be larger by 30 percent compared to
the width in the δ–phase. This indicates that the low–
temperature phase is more metallic, i.e. it has larger
spectral weight in the quasiparticle peak and smaller
weight in the Hubbard bands. Recent advances have al-
lowed the experimental determination of these spectra,
and these calculations are consistent with these mea-
surements (Arko et al., 2000). Fig. 48 (b) shows the
measured photoemission spectrum for δ- (black line) and
α–Pu (gray line). A strong quasiparticle peak can clearly
be seen. Also a smaller peak located at 0.8 eV is inter-
preted as the lower Hubbard band. The result of the
local density approximation within the generalized gra-
dient approximation is shown in Fig. 48 (a) as a thin
solid line. The LDA produces two peaks near the Fermi
level corresponding to 5f 5/2 and 5f7/2 states separated
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by the spin–orbit coupling. The Fermi level falls into a
dip between these states and cannot reproduce the fea-
tures seen in photoemission.
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FIG. 48 a) Comparison between calculated density of states
using the LDA+DMFT approach for FCC Pu: the data for
V/Vδ = 1.05, U = 4.0 eV (thick black solid line), the data for
V/Vδ = 0.80, U = 3.8 eV (thick gray line) which correspond
to the volumes of the δ and α–phases respectively. The result
of the GGA calculation (thin solid line) at V/Vδ = 1 (U = 0)
is also given. b) Measured photoemission spectrum of δ (black
line) and α (grey line) Pu at the scale from -1.0 to 0.4 eV (after
Ref. Arko et al., 2000).

A newly developed dynamical mean–field based lin-
ear response technique (Savrasov and Kotliar, 2003) has
been applied to calculate the phonon spectra in δ- and
ε–Pu (Dai et al., 2003). Self–energy effects in the calcu-
lation of the dynamical matrix have been included using
the Hubbard I approximation (Hubbard, 1963). A con-
siderable softening of the transverse phonons is observed
around the L point in the calculated frequencies as a
function of the wave vector along high–symmetry direc-
tions in the Brillouin zone for the δ–phase (see Fig. 49)
This indicates that the δ–phase may be close to an insta-
bility with a doubling of the unit cell. Another anomaly
is seen for the transverse acoustic mode along (011) which
is connected to the non–linear behavior of the lowest
branch at small q. Overall, the phonon frequencies are
positive showing the internal stability of the positions of
the nuclear coordinates in δ–Pu. Remarkably, the ex-
periment (Wong et al., 2003) which came out after the
publication (Dai et al., 2003) has confirmed these the-
oretical predictions. The measured points are shown on
top of the calculated curves in Fig. 49.

The presented results allow us to stress that, in
spite of the various approximations and their respec-
tive shortcomings discussed in the text, it is clear that
LDA+DMFT is a most promising technique for study-
ing volume collapse transition phenomena. Besides the
satisfying agreement with experiment (given the crude-

FIG. 49 Calculated phonon spectrum of δ–Pu (squares con-
nected by full lines) in comparison with experiment (open
circles (Wong et al., 2003))

ness of various approximations) both the studies of Plu-
tonium and Cerium have brought in a somewhat unex-
pected view point for the electronic structure community.
The delocalized phase (α–Plutonium and α–Cerium) are
not weakly correlated, in spite of the success of density
functional theory in predicting their volume and elastic
properties.

C. Systems with local moments

The magnetism of metallic systems has been studied
intensively (Moriya, 1985). Metallic ferromagnets range
from being very weak with a small magnetization to very
strong with a saturated magnetization close to the atomic
value. For a review of early theories see e.g. Refs. (Her-
ring, 1966; Moriya, 1985; Vonsovsky, 1974). Weak ferro-
magnets are well described by spin density wave theory,
where spin fluctuations are localized in a small region of
momentum space. Quantitatively they are well described
by LSDA. The ferromagnetic to paramagnetic transition
is driven by amplitude fluctuations. In strong ferromag-
nets, there is a separation of time scales. h̄/t is the time
scale for an electron to hop from site to site with hop-
ping integral t, which is much shorter than h̄/J, the time
scale for the moment to flip in the paramagnetic state.
The spin fluctuations are localized in real space and the
transition to the paramagnetic state is driven by orien-
tation fluctuations of the spin. The exchange splitting J
is much larger than the critical temperature.

Obtaining a quantitative theory of magnetic materials
valid both in the weak and strong coupling regime, both
above and below the Curie temperature, has been a theo-
retical challenge for many years. It has been particularly
difficult to describe the regime above Tc in strong fer-
romagnets when the moments are well formed but their
orientation fluctuates. A related problem arises in mag-
netic insulators above their ordering temperature, when
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this ordering temperature is small compared to electronic
scales. This is a situation that arises in transition metal
monoxides (NiO and MnO) and led to the concept of a
Mott insulator. In these materials the insulating gap is
much larger than the Néel temperature. Above the order-
ing temperature, we have a collection of atoms with an
open shell interacting via superexchange. This is again
a local moment regime which cannot be accessed easily
with traditional electronic structure methods.

Two important approaches were designed to access
the disordered local moment (DLM) regime. One ap-
proach (Hubbard, 1979a,b, 1981) starts form a Hubbard
like Hamiltonian and introduces spin fluctuations via
the Hubbard–Stratonovich transformation (Cyrot, 1970;
Evenson et al., 1970; Stratonovich, 1958; Wang et al.,
1969) which is then evaluated using a static coherent po-
tential approximation (CPA) and improvements of this
technique. A dynamical CPA (Al-Attar and Kakehashi,
1999) was developed by Kakehashi (Kakehashi, 1992,
2002; Kakehashi et al., 1998) and is closely related to
the DMFT ideas. A second approach begins with solu-
tions of the Kohn–Sham equations of a constrained LDA
approximation in which the local moments point in ran-
dom directions, and averages over their orientation using
the KKR–CPA approach (Faulkner, 1982; Gyorffy and
Stocks, 1979). The average of the Kohn–Sham Green’s
functions then can be taken as the first approximation to
the true Green’s functions, and information about angle
resolved photoemission spectra can be extracted (Gyorffy
et al., 1985; Staunton et al., 1985). There are approaches
that are based on a picture where there is no short range
order to large degree. The opposite point of view, where
the spin fluctuations far away form the critical tempera-
ture are still relatively long ranged was put forward in the
fluctuation local band picture (Capellmann, 1974; Koren-
man et al., 1977a,b,c; Prange and Korenman, 1979a,b).

To describe the behavior near the critical point re-
quires renormalization group methods, and the low–
temperature treatment of this problem is still a subject of
intensive research (Belitz and Kirkpatrick, 2002). There
is also a large literature on describing ferromagnetic met-
als using more standard many–body methods (Liebsch,
1981; Manghi et al., 1997, 1999; Nolting et al., 1987;
Steiner et al., 1992; Tréglia et al., 1982).

While the density functional theory can in princi-
ple provide a rigorous description of the thermody-
namic properties, at present there is no accurate prac-
tical implementation available. As a result, the finite–
temperature properties of magnetic materials are esti-
mated following a simple suggestion (Liechtenstein et al.,
1987). Constrained DFT at T = 0 is used to extract ex-
change constants for a classical Heisenberg model, which
in turn is solved using approximate methods (e.g. RPA,
mean–field) from classical statistical mechanics of spin
systems (Antropov et al., 1996; Halilov et al., 1998;
Liechtenstein et al., 1987; Rosengaard and Johansson,
1997). The most recent implementation of this approach
gives good values for the transition temperature of Iron

but not of Nickel (Pajda et al., 2001). However it is pos-
sible that this is the result of not extracting the exchange
constants correctly, and a different algorithm for carrying
out this procedure was proposed (Bruno, 2003).

DMFT can be used to improve the existing treatments
of DLM to include dynamical fluctuations beyond the
static approximation. Notice that single–site DMFT in-
cludes some degree of short range correlations. Cluster
methods can be used to go beyond the single–site DMFT
to improve the description of short range order on the
quasiparticle spectrum. DMFT also allows us to incorpo-
rate the effects of the electron–electron interaction on the
electronic degrees of freedom. This is relatively impor-
tant in metallic systems such as Fe and Ni and absolutely
essential to obtain the Mott–Hubbard gap in transition
metal monoxides.

The dynamical mean–field theory offers a very clear
description of the local moment regime. Mathemati-
cally, it is given by an effective action of a degenerate
impurity model in a bath which is sufficiently weak at
a given temperature to quench the local moment. This
bath obeys the DMFT self–consistency condition. If one
treats the impurity model by introducing the Hubbard–
Stratonovich field and treats it in a static approximation,
one obtains very simple equations as those previously
used to substantiate the DLM picture.

1. Iron and Nickel

Iron and Nickel were studied in Refs. Katsnelson and
Lichtenstein, 2000; Lichtenstein et al., 2001. The values
U = 2.3 (3.0) eV for Fe (Ni) and interatomic exchange
of J = 0.9 eV for both Fe and Ni were used, as ob-
tained from the constrained LDA calculations (Anisimov
et al., 1997a; Bandyopadhyay and Sarma, 1989; Lichten-
stein and Katsnelson, 1997, 1998). These parameters are
consistent with those of many earlier studies and resulted
in a good description of the physical properties of Fe and
Ni. In Ref. Lichtenstein et al., 2001 the general form of
the double counting correction V DC

σ = 1
2TrσMσ(0) was

taken. Notice that because of the different self–energies
in the eg and t2g blocks the DMFT Fermi surface does
not coincide with the LDA Fermi surface.

The LDA+U method, which is the static limit of the
LDA+DMFT approach, was applied to the calculation
of the magnetic anisotropy energies (Imseok et al., 2001).
This study revealed that the double counting correction
induces shifts in the Fermi surface which brings it in
closer agreement with the De Haas Van Alphen exper-
iments. The values of U used in this LDA+U work are
slightly lower than in the DMFT work, which is consis-
tent with the idea that DMFT contains additional screen-
ing mechanisms, not present in LDA+U. This can be
mimicked by a smaller value of the interaction U in the
LDA+U calculation. However, the overall consistency of
the trends found in the LDA+U and the DMFT studies
are very satisfactory.



68

More accurate solutions of the LDA+DMFT equations
have been presented as well. The impurity model was
solved by QMC in Ref. Lichtenstein et al., 2001 and by
the FLEX scheme in Ref. Katsnelson and Lichtenstein,
2002. It is clear that Nickel is more itinerant than Iron
(the spin–spin autocorrelation decays faster), which has
longer lived spin fluctuations. On the other hand, the
one–particle density of states of Iron closely resembles
the LSDA density of states while the DOS of Nickel, be-
low Tc, has additional features which are not present in
the LSDA spectra (Altmann et al., 2000; Eberhardt and
Plummer, 1980; Iwan et al., 1979): the presence of the
famous 6 eV satellite, the 30% narrowing of the occu-
pied part of d–band and the 50% decrease of exchange
splittings compared to the LDA results. Note that the
satellite in Ni has substantially more spin–up contribu-
tions in agreement with photoemission spectra (Altmann
et al., 2000). The exchange splitting of the d–band de-
pends very weakly on temperature from T = 0.6TC to
T = 0.9TC. Correlation effects in Fe are less pronounced
than in Ni due to its large spin splitting and the char-
acteristic BCC structural dip in the density of states for
the spin–down states near the Fermi level, which reduces
the density of states for particle–hole excitations.

The uniform spin susceptibility in the paramagnetic
state, χq=0 = dM/dH , was extracted from the QMC
simulations by measuring the induced magnetic moment
in a small external magnetic field. It includes the polar-
ization of the impurity Weiss field by the external field
(Georges et al., 1996). The dynamical mean–field results
account for the Curie–Weiss law which is observed ex-
perimentally in Fe and Ni. As the temperature increases
above Tc, the atomic character of the system is partially
restored resulting in an atomic like susceptibility with
an effective moment µeff . The temperature dependence
of the ordered magnetic moment below the Curie tem-
perature and the inverse of the uniform susceptibility
above the Curie point are plotted in Fig. 50 together
with the corresponding experimental data for Iron and
Nickel (Wolfarth, 1986). The LDA+DMFT calculation
describes the magnetization curve and the slope of the
high–temperature Curie–Weiss susceptibility remarkably
well. The calculated values of high–temperature mag-
netic moments extracted from the uniform spin suscepti-
bility are µeff = 3.09 (1.50)µB for Fe (Ni), in good agree-
ment with the experimental data µeff = 3.13 (1.62)µB

for Fe (Ni) (Wolfarth, 1986).

The Curie temperatures of Fe and Ni were estimated
from the disappearance of spin polarization in the self–
consistent solution of the DMFT problem and from the
Curie–Weiss law. The estimates for TC = 1900 (700) K
are in reasonable agreement with experimental values of
1043 (631) K for Fe (Ni) respectively (Wolfarth, 1986),
considering the single–site nature of the DMFT ap-
proach, which is not able to capture the reduction of
TC due to long–wavelength spin waves. These effects are
governed by the spin–wave stiffness. Since the ratio of
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FIG. 50 Temperature dependence of ordered moment and the
inverse ferromagnetic susceptibility for Fe (open square) and
Ni (open circle) compared with experimental results for Fe
(square) and Ni (circle) (from Ref. Stocks et al., 1998). The
calculated moments were normalized to the LDA ground state
magnetization (2.2 µB for Fe and 0.6 µB for Ni).

the spin–wave stiffness D to TC , TC/a2D, is nearly a
factor of 3 larger for Fe than for Ni (Wolfarth, 1986) (a
is the lattice constant), we expect the TC in DMFT to be
much higher than the observed Curie temperature in Fe
than in Ni. Quantitative calculations demonstrating the
sizeable reduction of TC due to spin waves in Fe in the
framework of a Heisenberg model were performed in Ref.
Pajda et al., 2001. This physics whereby the long wave-
length fluctuations renormalize the critical temperature
would be reintroduced in the DMFT using E–DMFT. Al-
ternatively, the reduction of the critical temperature due
to spatial fluctuations can be investigated with cluster
DMFT methods.

The local susceptibility is easily computed within the
DMFT–QMC. Its behavior as a function of temperature
gives a very intuitive picture of the degree of correlations
in the system. In a weakly correlated regime we expect
the local susceptibility to be nearly temperature inde-
pendent, while in a strongly correlated regime we expect
a leading Curie–Weiss behavior at high temperatures
χlocal = µ2

loc/(3T+const.) where µloc is an effective local
magnetic moment. In the Heisenberg model with spin S,
µ2

loc = S(S + 1)g2
s and for the well–defined local mag-

netic moments (e.g., for rare–earth magnets) this quan-
tity should be temperature independent. For the itin-
erant electron magnets, µloc is temperature–dependent
due to a variety of competing many–body effects such
as Kondo screening, the induction of local magnetic mo-
ment by temperature (Moriya, 1985) and thermal fluctu-
ations which disorder the moments (Irkhin and Katsnel-
son, 1994). All these effects are included in the DMFT
calculations.

The comparison of the values of the local and the
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q = 0 susceptibility gives a crude measure of the de-
gree of short–range order which is present above TC . As
expected, the moments extracted from the local suscep-
tibility are a bit smaller (2.8 µB for Iron and 1.3 µB for
Nickel) than those extracted from the uniform magnetic
susceptibility. This reflects the small degree of the short–
range correlations which remain well above TC (Mook
and Lynn, 1985). The high–temperature LDA+DMFT
clearly shows the presence of a local moment above TC .
This moment is correlated with the presence of high–
energy features (of the order of the Coulomb energies) in
the photoemission. This is also true below TC , where the
spin dependence of the spectra is more pronounced for
the satellite region in Nickel than for that of the quasipar-
ticle bands near the Fermi level. This can explain the ap-
parent discrepancies between different experimental de-
terminations of the high–temperature magnetic splittings
(Kakizaki et al., 1994; Kisker et al., 1984; Kreutz et al.,
1989; Sinkovic et al., 1997) as being the results of prob-
ing different energy regions. The resonant photoemission
experiments (Sinkovic et al., 1997) reflect the presence
of local–moment polarization in the high–energy spec-
trum above the Curie temperature in Nickel, while the
low–energy ARPES investigations (Kreutz et al., 1989)
results in non–magnetic bands near the Fermi level. This
is exactly the DMFT view on the electronic structure of
transition metals above TC . Fluctuating moments and
atomic–like configurations are large at short times, which
results in correlation effects in the high–energy spectra
such as spin–multiplet splittings. The moment is reduced
at longer time scales, corresponding to a more band–like,
less correlated electronic structure near the Fermi level.

2. Classical Mott insulators

NiO and MnO represent two classical Mott–Hubbard
systems (in this section we shall not distinguish between
Mott–Hubbard insulators and charge transfer insulators
(Zaanen et al., 1985)). Both materials are insulators with
the energy gap of a few eV regardless whether they are
antiferromagnetic or paramagnetic. The spin–dependent
LSDA theory strongly underestimates the energy gap in
the ordered phase. This can be corrected by the use of the
LDA+U method. Both theories however fail completely
to describe the local moment regime reflecting a general
drawback of band theory to reproduce the atomic limit.
Therefore the real challenge is to describe the paramag-
netic insulating state where the self–energy effects are
crucial both for the electronic structure and for recov-
ering the correct phonon dispersions in these materials.
The DMFT calculations have been performed (Savrasov
and Kotliar, 2003) by taking into account correlations
among d–electrons. In the regime of large U , adequate
for both for NiO and MnO in the paramagnetic phase,
the correlations were treated within the well–known Hub-
bard I approximation.

The calculated densities of states using the

LDA+DMFT method for the paramagnetic state
of NiO and MnO (Savrasov and Kotliar, 2003) have
revealed the presence of both lower and upper Hubbard
sub–bands. These were found in agreement with the
LDA+U calculations of Anisimov (Anisimov et al.,
1991) which have been performed for the ordered
states of these oxides. Clearly, spin integrated spectral
functions do not show an appreciable dependence with
temperature and look similar below and above phase
transition point.

The same trend is known to be true for the phonon
spectra which do not depend dramatically on magnetic
ordering since the Néel temperatures in these materi-
als are much lower of their energy gaps. Fig. 51 shows
phonon dispersions for NiO along major symmetry direc-
tions. A good agreement with experiment (Roy et al.,
1976) can be found for both acoustic and transverse
modes. A pronounced softening of the longitudinal op-
tical mode along both ΓX and ΓL lines is seen at the
measured data which is in part captured by the theoreti-
cal DMFT calculation: the agreement is somewhat better
along the ΓX direction while the detailed q–dependence
of these branches shows some residual discrepancies.
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FIG. 51 Comparison between calculated using the DMFT
method (filled circles) and experimental (open circles) phonon
dispersion curves for NiO.

The results of these calculations have been compared
with the paramagnetic LDA, as well as with the antiferro-
magnetic LSDA and LSDA+U solutions in Ref. Savrasov
and Kotliar, 2003. The paramagnetic LDA did not re-
produce the insulating behavior and therefore fails to
predict the splitting between the LO and TO modes.
Due to metallic screening, it underestimates the vibra-
tions for NiO and predicts them to be unstable for MnO.
The spin resolved LSDA solution imposes the existence
of long–range magnetic order and is an improvement,
but strongly underestimates the energy gap. As a result,
an apparent underestimation of the longitudinal optical
modes has been detected (Savrasov and Kotliar, 2003).
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On the other hand, the calculations with correlations pro-
duce much better results. This is found both for the
LSDA+U and the LDA+Hubbard I calculations which
can be interpreted as good approximations to the DMFT
solutions for the ordered and disordered magnetic states.
Such an agreement can be related with the fact that the
direct d−d gap is fixed by U , and the charge transfer gap
comes out better in the theory. Thus, the local screening
of charge fluctuations are treated more appropriately.

D. Other applications

DMFT concepts and techniques are currently being
applied to investigate a broad range of materials and
a wide variety of strong correlation problems. This is
a very active research frontier, comprising topics as di-
verse as manganites, ruthenates, vanadates, actinides,
lanthanides, Buckminster fullerenes, quantum criticality
in heavy fermion systems, magnetic semiconductors, ac-
tinides, lanthanides, Bechgaard salts, high–temperature
superconductors, as well as surfaces heterostructures al-
loys and many other types of materials. We mention
below a small subset of the systems under investiga-
tion using the techniques described in this review, just
in order to give the reader a glimpse of the breadth of
this rapidly developing field and the great potential of
DMFT methods to investigate strongly correlated mate-
rials. For earlier reviews see Ref. Held et al., 2001c and
also (Held et al., 2003), (Lichtenstein et al., 2002b) and
(Georges, 2004a,b; Kotliar, 2005; Kotliar and Savrasov,
2001; Kotliar and Vollhardt, 2004; Lichtenstein et al.,
2002a).

Transition Metal Oxides
• A large body of DMFT studies focused on the Mangan-
ites with the perovskite structure, like La1−xCaxMnO3

or La1−xSrxMnO3. These materials attracted attention
because of their “colossal” magnetoresistance, which is an
extreme sensitivity of resistance to an applied magnetic
field (Dagotto, 2002; Tokura, 1990, 2003). The phase
diagram of these materials in the temperature composi-
tion plane is very rich, displaying ferromagnetism, anti-
ferromagnetism, and charge and orbital ordering. Several
physical mechanism and various interactions are impor-
tant in these materials such as the double exchange mech-
anism (i.e. the gain in kinetic energy of the eg electrons
when the t2g electrons are ferromagnetically aligned), the
coupling of the eg electrons to Jahn–Teller modes (i.e.
distortions of the Oxygen octahedra which lift the cu-
bic degeneracy of the eg orbitals) and breathing Oxy-
gen phonon modes. These materials, as well as the cop-
per oxides, also spurred new studies on strong electron-
phonon coupling problems and their interplay with the
electron electron interactions. Semiclassical treatments
of the core spins and the phonons, help to dramatically
simplify the solution of the DMFT equations.

For various DMFT studies of the electron phonon cou-
pling problem in the manganites see (Benedetti and Zey-

her, 1999; Blawid et al., 2003; Chernyshev and Fishman,
2003; Ciuchi and De Pasquale, 1999; Ciuchi et al., 1997;
Deppeler and Millis, 2002a,b; Fishman and Jarrell, 2002,
2003a,b; Fratini et al., 2000, 2001; Furukawa, 1994; Held
and Vollhardt, 2000; Imai and Kawakami, 2000; Izyu-
mov Yu and Letfulov, 2001; Michaelis and Millis, 2003;
Millis et al., 1996b; Pankov et al., 2002; Phan and Tran,
2003; Ramakrishnan et al., 2003, 2004; Tran, 2003; Ven-
keteswara Pai et al., 2003).

• High-temperature superconductivity The discovery
of high-temperature superconductivity in the cuprates
posed the great theoretical and computational challenge
of uncovering the mechanism of this phenomena, which
is still not sufficiently understood to this day. The clus-
ter extensions of DMFT are actively being applied in
an effort to further unravel the mystery of the high-
temperature superconductivity (Aryanpour et al., 2002;
Civelli et al., 2005; Dahnken et al., 2004, 2005; Huscroft
et al., 2001; Katsnelson and Lichtenstein, 2000; Macridin
et al., 2004, 2005; Maier et al., 2000a, 2005, 2004b, 2002b;
Potthoff et al., 2003).

• Other transition-metal oxides have recently been
studied with DMFT. NaxCoO2 has received much inter-
est due to anomalous thermoelectric properties in addi-
tion to superconductivity upon hydration. (Ishida et al.,
2005; Lechermann et al., 2005b; Saha-Dasgupta et al.,
2005b). LiVO2 displays an unusually large effective mass
for a d-electron system, which gave rise to the idea that
this may be an example of a heavy-fermion d-electron ma-
terial (Nekrasov et al., 2003). TiOCl displays 1d orbital
ordering at low temperatures, and exhibits a spin-Peierls
transition (Hoinkis et al., 2005; Saha-Dasgupta et al.,
2005a; Seidel et al., 2003). Ca2−xSrxRuO4 attracted a
lot of attention as it exhibits unconventional p–wave su-
perconductivity at low temperatures, a Mott transition,
and a surface-sensitive spectra (Anisimov et al., 2002;
Lichtenstein and Liebsch, 2002; Liebsch, 2003a,b; Lieb-
sch and Lichtenstein, 2000b).

Organic Materials and Supramolecular Struc-
tures
• Fullerines KnC 60. The doped Buckminster fullerenes
are solids formed from C60 – a molecule shaped like a
soccer ball – with the alkali metal sitting in the middle.
Their proximity to the Mott transition was pointed out
by Gunnarsson, 1997. At low temperatures K3C60 is an
s–wave superconductor, where both the strong electron–
phonon interaction and the Coulomb repulsion need to
be taken into account. DMFT has been helpful in under-
standing the transition to superconductivity (Capone
et al., 2002a, 2000, 2002b; Han et al., 2003). A Mott in-
sulating state has also been realized recently in another
nanostructured supercrystal family, that of potassium
loaded zeolites, and realistic DMFT calculations have
been carried out (Arita et al., 2004).

• Bechgaard salts (Biermann et al., 2001; Vescoli et al.,
2000). In addition to the quasi-two dimensional organic
compounds of the kappa and theta families mentioned
in section IV, there have been chain-DMFT studies of
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(TMTTF )2X and (TMTSF )2X . These are strongly
anisotropic materials made of stacks of organic molecules.
Their optical properties are very unusual. At high tem-
peratures the electrons move mainly along the chains, be-
fore undergoing inelastic collisions forming a “Luttinger
liquid” – one of the possible states of the one–dimensional
electron gas. By contrast, at sufficiently low tempera-
tures the electronic structure becomes effectively three–
dimensional. For example, they exhibit a very narrow
Drude peak carrying only one percent of the total optical
weight (Biermann et al., 2001; Vescoli et al., 2000). In-
vestigations of the unusual properties of these materials,
and in particular of the crossover between the low- and
high–temperature regimes, using cluster generalizations
of DMFT have been performed in Refs. Biermann et al.,
2001; Vescoli et al., 2000. Other aspects have recently
been addressed in Refs. Georges et al., 2000; Giamarchi
et al., 2004.

Heavy Fermion Systems and Silicides
• Heavy fermion materials are compounds containing
both f–electrons and lighter s, p, d–electrons. They can
form a “heavy” Fermi liquid state at low temperatures
where the quasiparticles are composites of f–electron
spins and conduction electron charges, or can order anti-
ferromagnetically at low temperatures (for recent review
see (Stewart, 2001)).

The boundary between the Fermi liquid and the itin-
erant antiferromagnet has been a subject of intensive
theoretical and experimental study. Recent neutron
scattering experiments are consistent with a local spin
self–energy, and have motivated an extended dynami-
cal mean–field descriptions of the Kondo lattice model
(Si et. al. et al., 1999; Grempel and Si, 2003; Ingersent
and Si, 2002; Jian-Xin et al., 2003; Si, 2001; Si et al.,
2003, 2001) which reproduces many features of the ex-
periment at zero temperature. For a recent discussion
see (Si, 2003). A corresponding study of Anderson lat-
tice model (Sun and Kotliar, 2003) suggests that nonlo-
cal effects, which require a cluster dynamical mean–field
study, play an important role.

An interesting issue is whether the optical sum rule,
integrated up to some cutoff of the order of one eV, can
be a strong function of temperature in heavy fermion
insulators. The f–sum rule states that if the integra-
tion is performed up to infinite frequency, the result is
temperature independent. In most materials, this sum
rule is obeyed even when a finite upper limit of the or-
der of an electronic energy is used. This was found in
Ce3Bi4Pt3 (Bucher et al., 1994) and in FeSi (Schlesinger
et al., 1993)) (Smith et al., 2003; Urasaki and Saso, 2000;
van der Marel, 2003). In Ref. Damascelli, 1999, it
has been shown that the integrated optical weight up to
0.5 eV is a strong function of temperature, and if an insu-
lating gap much smaller than the cutoff is open, spectral
weight is transferred to very high frequencies. This prob-
lem was theoretically addressed using single–site DMFT
applied to the Anderson lattice model, and the theory
supports a gradual filling of the gap without area conser-

vation (Rozenberg et al., 1995). More recent studies ap-
plied to a multiband Hubbard model (Smith et al., 2003;
Urasaki and Saso, 2000; van der Marel, 2003) and to the
Anderson lattice (Vidhyadhiraja et al., 2003) yield excel-
lent quantitative agreement with the most recent experi-
ments. Of great interest is the behavior of these materials
in an external field, which is easily incorporated into the
DMFT equations (de’ Medici et al., 2005b; Meyer and
Nolting, 2001).One interesting phenomena is the possibil-
ity of metamagnetism, namely the anomalous increase of
the magnetization and the concomitant changes in elec-
tronic structure as a function of external field, known as
a metamagnetic transition. This is displayed in many
heavy fermion systems such as CeRu2Si2. An important
issue is whether a transition between a state with a large
Fermi surface and a small Fermi surface takes place as a
function of magnetic field.

Inhomogeneous Systems
• Magnetic semiconductors are materials where the mag-
netization is strongly tied to the carrier concentration.
They offer the possibility of controlling the charge con-
ductivity (as in the usual semiconductors) and the spin
conductivity (by controlling the magnetization), by vary-
ing the carrier concentration. Great excitement in
this field has been generated by the discovery of high–
temperature ferromagnetism in these materials (Kübler,
2000; Kuebler, 2002; Vollhardt et al., 1999). A main
challenge is to understand the strong dependence of the
magnetization on the carrier concentration of the mag-
netic atoms and on the concentration of the conduction
electrons or holes. This problem is closely related to
the Anderson lattice model and several DMFT studies
of this problem have appeared (Chattopadhyay et al.,
2001; Das Sarma et al., 2003). DMFT has been success-
fully applied to half magnets such as NiMnSb (Chioncel
et al., 2003a, 2005; Irkhin et al., 2004) as well as mag-
netic multilayers (Chioncel and Lichtenstein, 2004). For
a recent DMFT study of the dependence of the critical
temperature on various physical parameters see (Moreno
et al., 2005).

• Strongly inhomogeneous systems: systems near an
Anderson transition. The dynamical mean–field theory
has been formulated to accommodate strongly inhomoge-
neous situations such as systems near an Anderson tran-
sition, by allowing an arbitrary site dependence of the
Weiss field (Dobrosavljevic and Kotliar, 1997). Recent
progress in simplifying the analysis and solution of these
equations was achieved using the typical medium ap-
proach of Dobrosavljevic et al. (Dobrosavljec et al., 2003).
The statistical DMFT approach can also be used to study
the interplay of disorder and the electron–phonon cou-
pling (Bronold and Fehske, 2003).

• Heterostructures surfaces and interfaces

Another application of DMFT is to study correlation
effects on surfaces, which likely to be more pronounced
than in the bulk (Freericks, 2004; Okamoto and Millis,
2004b,c,d). For an early discussion of these effects see
Refs. Hesper et al., 2000; Sawatzky, 1995. DMFT equa-
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tions for the study of correlation effects on surfaces and
surfaces phase transitions were written down by Potthoff
and collaborators (Potthoff and Nolting, 1999a,b,c). and
successfully applied to study the Mott transition on sur-
faces by (Liebsch, 2003c; Perfetti et al., 2003). DMFT
has been applied to inhomogeneous situations involving
a much longer periodicity. These studies were motivated
by the discovery of stripes in high–temperature super-
conductors.

V. OUTLOOK

Dynamical mean–field methods represent a new ad-
vance in many–body physics. They provide an excellent
description of the strongly correlated regime of many
three–dimensional transition–metal oxides, which had
not been accessible to other techniques. Additionally,
DMFT has given new insights into strongly correlated
electron systems near a metal–insulator transition, or
localization–delocalization boundary.

The combination of advanced electronic structure
methods with the dynamical mean–field technique has
already resulted in new powerful methods for modeling
correlated materials. Further improvements are currently
being pursued, as the implementations of GW methods
and dynamical mean–field ideas (Aryasetiawan and Gun-
narsson, 1998; Biermann et al., 2003; Sun and Kotliar,
2002, 2004; Zein and Antropov, 2002).

In the field of statistical mechanics, the development
of mean–field theories was followed up by the develop-
ment of renormalization group approaches incorporating
the physics of long wavelength fluctuations which become
dominant near critical points. The development of effec-
tive renormalization techniques for correlated electrons
and electronic structure applications is a major challenge
ahead. It will allow for more accurate derivation of low–
energy Hamiltonians, and improve the solution of model
Hamiltonians beyond the dynamical mean–field theory
based on small clusters.

The forces acting on the atoms have been recently eval-
uated in the realistic DMFT treatment of phonons in
correlated electron systems (Dai et al., 2003; Savrasov
and Kotliar, 2003). The indications that DMFT captures
correctly the forces on the atoms in correlated materials
bodes well for combining this development with molec-
ular dynamics to treat the motion of ions and electrons
simultaneously. This remains one of the great challenges
for the future.

In conclusion, DMFT is a theory which can accurately
capture local physics. We emphasize that the notion
of local is flexible, and generically refers to some pre-
defined region in which correlations are treated directly
(e.g. a single–site, or a cluster of sites). Current com-
putational limitations restrict the local region to be a
relatively small number of sites for lattice models. De-
spite this restriction, DMFT and its cluster extensions
have been very successful in describing a wide variety of

materials properties where conventional techniques such
as LDA have failed. Therefore, it seems that there finally
exists a general tool which can accurately treat many of
the problems posed by strong correlation in realistic ma-
terials. With the increasing number of realistic DMFT
implementations and studies of materials, more detailed
comparisons with experiments will emerge. Ultimately,
this experience will allow us to understand which aspects
of the strong correlation problem lie within the scope of
the method, and which aspects require the treatment of
non–Gaussian, long wavelength fluctuations of collective
modes not included in the approach.
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APPENDIX A: Derivations for the QMC section

a. Derivation of Eq. (211) First, we show that

Trd†,d




∏

1≤k≤K

ed†A(k)d



 = det



1 +
∏

1≤k≤K

eA(k)





(A1)
where di (1 ≤ i ≤ n) are fermionic operators, A(k) (1 ≤
k ≤ K) n × n matrices, and the notation d†A(k)d ≡∑

1≤i,j≤n d
†
iA

(k)
ij dj . Indeed using

[
d†Ad, d†Bd

]
= d† [A,B] d (A2)

and Baker–Campbell–Hausdorff formula eAeB = eM

with

M ≡ A+B +
1

2
[A,B] + a2[A, [A,B]] + . . . (A3)

we have

exp(d†Ad) exp(d†Bd) = exp(d†Md)

By recursion, this generalizes to K matrices, so we just
have to prove the result for K = 1, A(1) = M . If M is di-
agonal, the result is straightforward. For a general matrix
M , by directly expanding the exponential of the left hand

side and using Wick theorem, we see that Trd†,de
d†Md is

a series in TrMk (k ≥ 0) and is therefore invariant under
any change of basis, and therefore det(1 + eM ). Hence
the result follows by diagonalizing M .

Second, we use the determinant formula

∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 BL

−B1 1 . . . . . . 0

0 −B2 1 . . . . . .

. . . . . . . . . 1 0

. . . . . . . . . −BL−1 1

∣∣∣∣∣∣∣∣∣∣∣

= det(1 +BLBL−1 . . . B1)

where B1, . . . , BL are n×nmatrices. This formula results
by recursion from the general formula for block matrices:

det

(
A B

C D

)
= det

[(
1 B

0 D

)(
A−BD−1C 0

D−1C 1

)]

= detD det(A−BD−1C) (A4)

b. Derivation of Eq.(212) The first step is to obtain an
explicit formula for g{S} (Blankenbecler et al., 1981).

A quick way is to replace apµ and a†pν in the trace by

exp(ψ†Λ†
µa) and exp(a†Λνψ), where ψ is an auxiliary

fermion and (Λµ)ij = λδj0δiµ where 0 is the index of ψ.
Starting from the explicit trace expression of the Green’s
function, distinguishing the cases l1 ≥ l2 and l1 < l2, us-
ing Eq. (A1) and Eq. (A4), we finally expand to second
order in λ and obtain (see also (Georges et al., 1996) ):

gσ
{S}(l1, l2) =

{
Bσ

l1−1 . . . B
σ
l2

(
1 +Bσ

l2−1 . . . B
σ
1B

σ
L . . . B

σ
l2

)−1
for l1 ≥ l2

−Bσ
l1−1 . . . B

σ
1B

σ
L . . . B

σ
l2

(
1 +Bσ

l2−1 . . . B
σ
1B

σ
L . . . B

σ
l2

)−1
for l1 < l2

(A5)

A straightforward calculation then shows that
gσ
{S}Oσ({S}) = 1.

c. Derivation of Eq.(214) Equation (214) follows from the

observation that Oσ({S})∏1
i=n e

−eViσ({S}) depends on
the configuration {S} only on its diagonal blocks, which
leads to

Oσ({S})
1∏

i=n

e−
eViσ({S}) −Oσ({S′})

1∏

i=n

e−
eViσ({S′}) =

1∏

i=n

e−
eViσ({S}) −

1∏

i=n

e−
eViσ({S′}) (A6)

which yields Eq. (214).

d. Derivation of the fast update formula (219) We present
here the steps to go from Eq. (219) to Eq. (220). Since
the difference between the two V is in the l block, Aσ

has the form

Aσ =




1 0 . . . Aσ
1l . . . 0

0 1 . . . Aσ
2l . . . 0

...
...

...
...

...
...

0 0 . . . Aσ
ll . . . 0

...
...

...
...

...
...

0 0 . . . Aσ
Ll . . . 1




Using (A4), we have detAσ = detAσ
ll. If detAσ

ll 6= 0, we
use the Woodbury formula where M is a N ×N matrix
and U and V areN×P matrices (Golub and Loan, 1996):

(M +U tV )−1 = M−1 −M−1U
(
1 + tVM−1U

)−1tVM−1



74

with N = LN , P = N , M = 1, tU =
(
Ail

)
, tV =(

δil
)
, 1 ≤ i ≤ L). to get

A−1
σ =




1 0 . . . −Aσ
1l(A

σ
ll)

−1 . . . 0

0 1 . . . −Aσ
2l(A

σ
ll)

−1 . . . 0
...

...
...

...
...

...

0 0 . . . (Aσ
ll)

−1 . . . 0
...

...
...

...
...

...

0 0 . . . −Aσ
Ll(A

σ
ll)

−1 . . . 1




(A7)

which leads to Eq. (220).

APPENDIX B: Software for carrying out realistic DMFT

studies.

There is a growing interest to apply DMFT to real-
istic models of strongly–correlated materials. In con-
junction with this review, we provide a suite of DMFT
codes which implement some of the ideas outlined in
the review (http://dmftreview.rutgers.edu). These codes
should serve as a practical illustration of the method,
in addition to lowering the barrier to newcomers in the
field who wish to apply DMFT. A strong effort was made
to isolate the various aspects of the DMFT calculation
into distinct subroutines and programs. This is a neces-
sity both for conceptual clarity, and due to the fact that
various pieces of the code are under constant develop-
ment. Additionally, we hope that this will increase the
ability of others to borrow different aspects of our codes
and apply them in future codes or applications. Each of
the codes performs some task or set of tasks outlined in
the LDA+DMFT flow chart (see Fig. 9) or the simpler
DMFT flow chart (see Fig. 5).

a. Impurity solvers

DMFT is a mapping of a lattice problem onto an impu-
rity problem. Therefore, at the heart of every DMFT cal-
culation is the solution of the Anderson impurity model
(section III). Solving the AIM is the most computation-
ally demanding aspect of DMFT. No one solver is opti-
mum for all of parameter space when considering both ac-
curacy and computational cost. Therefore, we provide a
variety of impurity solvers with this review. Additionally,
more impurity solvers will be added to the webpage with
time, and existing impurity solvers will be generalized. It
should be noted that some solvers are more general than
others, and some of the solvers are already embedded
in codes which will perform DMFT on simple Hubbard
models. The following solvers are currently available:
QMC, FLEX, NCA, Hubbard I, and interpolative solver.
(See sections III.D,III.A,III.B, III.C, and III.F, respec-
tively.)

b. Density functional theory

Density functional theory (see section I.B.1) is the pri-
mary tool used to study realistic materials, and in prac-
tice it is usually the starting point for the study of re-
alistic materials with strong correlations. Furthermore,
current implementations of DMFT require the definition
of local orbitals. Therefore, DFT performed using an
LMTO basis set is ideal match for DMFT. However, we
should emphasize that any basis set may be used (i.e.
plane waves, etc) as long as local orbitals are defined.

Sergej Savrasov’s full–potential LMTO code (i.e. LM-
TART) is provided to perform both DFT and DFT+U
(i.e. LDA+U or GGA+U) calculations (see sections I.B.1
and II.C, respectively). This code possesses a high degree
of automation, and only requires a few user inputs such
as the unit cell and the atomic species. The code out-
puts a variety of quantities such as the total ground state
energy, bands, density of states, optical properties, and
real–space hopping parameters. The code additionally
calculates forces, but no automatic relaxation scheme is
currently implemented.

A Microsoft windows based graphical interface for LM-
TART, Mindlab, is also provided. This allows an unfa-
miliar user an intuitive interface to construct the input
files for LMTART, run LMTART, and analyze the results
in a point–and–click environment. This code is especially
helpful for plotting and visualization of various results
ranging from the projected density of states to the Fermi
surface.

c. DFT+DMFT

As stressed in this review, the ultimate goal of our
research is a fully first–principles electronic structure
method which can treat strongly–correlated systems (i.e.
see section I.B.3 II.E). Because this ambitious method-
ology is still under development, we continue to rely on
the simplified approach which is DFT+DMFT (section
I.B.1). Although simplified, DFT+DMFT is still techni-
cally difficult to implement, and currently we only pro-
vide codes which work within the atomic–sphere approx-
imation (ASA) for the DFT portion of the calculation.
One of the great merits of DFT+DMFT is that it is a
nearly first–principles method. The user only needs to
input the structure, the atomic species, and the inter-
actions (i.e. U). The DFT+DMFT code suite is broken
into three codes.

The first part is the DFT code, which is simply a mod-
ified version of LMTART. It has nearly identical input
files, with minor differences in how the correlated or-
bitals are specified. Therefore, the main inputs of this
code are the unit cell and the atomic species. The main
role of this code is to generate and export the converged
DFT Hamiltonian matrix in an orthogonalized local ba-
sis for each k–point. Therefore, this code essentially gen-
erates the parameters of the unperturbed Hamiltonian
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automatically. This information is needed to construct
the local Green’s function.

The second part is the code which implements the
DMFT self–consistency condition Eq. (121), which re-
quires a choice of correlated orbitals. This code takes
the Hamiltonian matrix and the self–energy as input, and
provides the bath function as output.

The third part is the various codes which solve the
Anderson impurity model, and these have been described
above in the first section. These codes take the bath
function as input and provide the self–energy, which is
used in the self–consistency condition in the preceding
step.

These three pieces allow one to perform a non–self–
consistent DFT+DMFT calculation as follows. First,
the DFT code is used to generate the local, orthogo-
nalized Hamiltonian matrix at each k–point. Second,
one starts with a guess for the self–energy and uses
the DMFT self–consistency condition code to find the
bath function. Third, the bath function is fed into the
impurity solver producing a new self–energy. The sec-
ond and third steps are then repeated until DMFT self–
consistency is achieved. This is considered a non–self–
consistent DFT+DMFT calculation. In order to be fully
self– consistent, one should recompute the total density
after DMFT self–consistency is achieved and use this as
input for the initial DFT calculation. This process should
be continued until both the total density and the local
Green’s function have converged. At the present time,
we have not provided a routine to recompute the total
density following the self–consistent DMFT calculation,
and therefore only non–self–consistent DFT+DMFT cal-
culations are currently supported.

One should note that the above pieces which compose
the DFT+DMFT suite are three separate codes. There-
fore, one must write a simple script to iterate the above
algorithm until self–consistency is reached (ie. the self-
energy converges to within some tolerance). Addition-
ally, the DFT portion of this code suite (i.e. the first
part) can in principle be replaced by any DFT code as
long as a local basis set is generated.

d. Tight–binding cluster DMFT code (LISA)

The LISA (local Impurity Self-Consistent Approxima-
tion) project is designed to provide a set of numerical
tools to solve the quantum many-body problem of solid
state physics using Dynamical Mean Field Theory meth-
ods (single site or clusters). The input to the program
can be either model Hamiltonians, or the output of other
ab-initio calculations (in the form of tight binding pa-
rameters and interaction matrices). This should greatly
facilitate the development of realistic implementations of
dynamical mean field theory in electronic structure codes
using arbitrary basis sets.

This tool is provided to allow non-DMFT specialists to
make DMFT calculations with a reasonable investment.

However, DMFT methods are still in development and
undergoing constant improvements. In particular, new
impurity solvers need to be developed and new cluster
schemes will possibly be explored. Therefore numerical
tools have to be flexible to accommodate foreseeable ex-
tensions of the methods. In particular, one needs to be
able to switch the solver easily while keeping the same
self-consistency condition. This can be achieved most ef-
ficiently with modern programming techniques (e.g. ob-
ject orientation, generic programming without sacrificing
speed since intensive parts of the program are quite lo-
calized and can be easily optimized). These techniques
allow for a standardization of DMFT solvers by using an
abstract solver class such that any new solver can be used
immediately in various DMFT calculations. The use of
an abstract Lattice class allows for programs designed for
tight-binding models like the Hubbard model to also be
used for realistic calculations. A decomposition of the
self-consistency conditions into small classes is beneficial
in that various summation techniques on the Brillouin
zone can be used or new cluster schemes can be tested.

With LISA, we hope to achieve flexible, reusable, and
efficient software that is general enough to solve a variety
of models and to serve as a basis for future developments.
Documentation, including examples, is provided with the
web page. At present, a library and a self–contained
DMFT program are provided to solve a generalized tight–
binding Hamiltonian with single–site or many variants of
cluster DMFT described in section II.B with the Hirsch-
Fye QMC method. The tight–binding Hamiltonian may
be very simple, such as the traditional Hubbard model
or the p − d model of the cuprates, or very complex,
such as a real material with longer range hoppings. This
is markedly different than the DFT+DMFT code which
takes the structure as input and generates the Hamilto-
nian. The tight–binding Hamiltonian may be generated
by a variety of different electronic structure methods and
codes, or trivially specified in the case of a model Hamil-
tonian.

APPENDIX C: Basics of the Baym–Kadanoff functional

The aim of these online notes is to provide a more
pedagogical description of the use of functionals by using
the Baym–Kadanoff functional as an example, and to
derive, step–by–step, a few simple relations and formulae
which are used in the main text.

In the Baym–Kadanoff theory, the observable of inter-
est is the following operator

ψ†(x)ψ(x′), (C1)

and its average is the electron Green’s function G(x′, x) =
−〈Tτψ(x′)ψ†(x)〉. As in the main text of the review we
use the notation x = (r, τ). The aim of the theory is to
construct a functional that expresses the free energy of
the system when the Green’s function is constrained to
have a given value.
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First, we modify the action of the system so that it
gives rise to the observable of our choice. This is achieved

by adding a source term to the action in the following way

e−F [J] =

∫
D[ψ†ψ] exp

(
−S −

∫
dxdx′ψ†(x)J(x, x′)ψ(x′)

)
, (C2)

where the action S is given by S = S0 + λS1 where S0

is the free part of the action and S1 the interacting part.
In electronic structure calculations

S1 =
1

2
λ

∫
dxdx′ψ†(x)ψ†(x′)vC(x−x′)ψ(x′)ψ(x). (C3)

and vC is the Coulomb interaction.
λ is a coupling constant that allows us to ”turn on”

the interaction. When λ = 0 we have a non interacting
problem and we have the interacting problem of interest
when λ = 1.

The modified free energy Eq. (C2) is a functional of
the source field J . F = F [J ]. By varying modified free
energy Eq. (C2), F with respect to J we get

δF [J, λ]

δJ
= G, (C4)

The solution of this equation, gives J = J(λ,G).
Its meaning is the source that results for a given

Green’s function G when the interaction is λ. Notice
that when λ is set to unity and G is the true Greens
function of the original problem (i.e. J = 0, λ = 1 ) J
vanishes by definition.

When G is the true Greens function of the original
problem and λ = 0, J(λ = 0, G) is non–zero and is equal
to the interacting self–energy Σint. This is because the
interacting self–energy is the quantity that needs to be
added to the non–interacting action to get the interacting
Green’s function. We will show how this works mathe-
matically below.

We now make a Legendre transform from source the
J to Green’s function G, to get a functional of Green’s
function only

ΓBK [G, λ] = F [J [λ,G], λ] − Tr[JG] (C5)

with the differential

δΓBK = −Tr[J δG]. (C6)

ΓBK [G] is the functional which, as we will show be-
low, gives the free–energy and the Greens function of the
interacting system at its saddle point. It is very useful
for constructing numerous approximations. The Legen-
dre transform is used extensively in statistical mechan-
ics, and the above procedure parallels transforming from
the canonical to the grand–canonical ensemble where the
chemical potential replaces the density as the indepen-
dent variable.

Now we want to connect the solution of the interact-
ing system λ = 1 with the corresponding non–interacting
λ = 0 problem and split functional ΓBK [G] into the sim-
ple non–interacting part and a more complicated inter-
acting part.

1. Baym–Kadanoff functional at λ = 0

If λ is set to zero, the functional integral (C2) can
readily be computed

e−F0[J0] =

∫
D[ψ†ψ] exp

(
−
∫
dxdx′ψ†(x)(

∂

∂τ
− µ+H0 + J0)ψ(x′)

)
= Det(

∂

∂τ
− µ+H0 + J0), (C7)

and the free energy becomes

F0[J0] = −Tr ln
(
G−1

0 − J0

)
, (C8)

where we neglected a constant term Tr ln(−1). Here J0 is
J(λ = 0) and F0 is F (λ = 0), while G0 = (ω+µ−H0)

−1

is the usual non–interacting Green’s function. Taking

into account Eq. (C4), the Green’s function at λ = 0 is

G =
δF0[J0]

δJ0
=
(
G−1

0 − J0

)−1
. (C9)

Since the Green’s function G is fixed at the interacting
Green’s function, it is clear that the source field J0 is
the interacting self–energy, viewed as a function of the
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Greens function G i.e.,

J0 ≡ Σint[G] ≡ G−1
0 −G−1 (C10)

viewed as a functional ofG (sinceG0 fixed and given from
the very beginning). In general, J0 is the constraining
field that needs to be added to the non–interacting action
S0 to get the interacting Green’s function. Finally, the
Baym–Kadanoff functional at λ = 0, being the Legendre
transform of F0[J0], takes the form

Γ0[G] = −Tr ln
[
G−1

0 − Σint[G]
]
− Tr[Σint[G]G] (C11)

2. Baym–Kadanoff functional at λ = 1

When the interaction is switched on, the functional is
altered and in general we do not know its form. We will
write it as

ΓBK [G] = −Tr ln
[
G−1

0 − Σint[G]
]
−Tr[Σint[G]G]+ΦBK [G]

(C12)
where ΦBK is a non–trivial functional of λ and G. We are
interested in λ = 1 but it is useful sometime to retain its
dependence of λ for theoretical considerations. It will be
shown (see section C.3) that ΦBK can be represented as
the sum of all two–particle irreducible skeleton diagrams.

We have seen in the previous subsection that J van-
ishes at λ = 1, J(λ = 1, G) = 0. This has the important
consequence that the Baym–Kadanoff functional is sta-
tionary at λ = 1 (see Eq. (C6)) and is equal to free energy
of the system (see Eq. (C5)).

Stationarity of ΓBK means that the saddle point equa-
tions determine the relationship between the quantities
that appear in the functional, i.e.,

δΓBK [G]

δG
= Tr

{
δΣint

δG

[
(G−1

0 − Σint)
−1 −G

]}

− Σint +
δΦBK [G]

δG
= 0. (C13)

The first term in parenthesis vanishes from Eq. (C10).
Therefore at the stationary point , which determines the
Greens function of interest Gsp, the constraining field,
denoted by Σint[G] in Baym–Kadanoff theory, is equal
to the derivative of the interacting part of functional,
i.e.,

Σint[Gsp] =
δΦBK [G]

δG

∣∣∣∣
Gsp

(C14)

Using the definition of Σint in eq. (C10 ) we see that
this is nothing but the standard Dyson equation, a non
linear equation that determines the Greens function of
interest, Gsp, at the saddle point of the BK functional:

(
G−1

0 −G−1
sp

)
=
δΦBK [G]

δG

∣∣∣∣
Gsp

(C15)

Eq. (C14) offers a the diagrammatic interpretation of
ΦBK as a sum of all two particle irreducible skeleton
graphs. Namely, a functional derivative amounts to open-
ing or erasing one Green’s function line and since the self
energy by definition contains all one particle irreducible
graphs, ΦBK must contain all two particle irreducible
graphs (skeleton graphs, see (deDominicis and Martin,
1964a,b)).

Note that the functional ΓBK can also be regarded as
a stationary functional of two independent variables, G
and Σint.

ΓBK [G,Σint] = −Tr ln
[
G−1

0 − Σint

]
−Tr[ΣintG]+ΦBK [G]

(C16)
The derivative with respect to Σint gives Eq. (C10), while
derivative with respect to G leads to Eq. (C14).

Finally, by construction, the free energy of the interact-
ing system at (λ = 1) is simply obtained by evaluating
ΓBK at its stationary point, which is the true Greens
function of the system, which by abuse of notation we
will still refer to as G (instead of Gsp):

FBK = Tr lnG− Tr[
(
G−1

0 −G−1]G
)

+ ΦBK [G]. (C17)

3. Interacting part of Baym–Kadanoff functional

In this subsection, we want to give an alternative proof
that the interacting part of the Baym–Kadanoff func-
tional ΦBK is the sum of all two–particle irreducible
skeleton diagrams.

To prove this we go back and reintroduce the coupling
constant λ which multiplies the interacting part of the
Hamiltonian Hint = λV and the interacting part of the
action which was used to define the path between the
non–interacting λ = 0 and interacting λ = 1 system.

We first evaluate the derivative of the Baym Kadanoff
functional with respect to λ at fixed G, namely

∂ΓBK [G, λ]

∂λ
=
∂ΦBK [G, λ]

∂λ
(C18)

Using Eq. (C5) and the relation between J and G,
Eq. (C4) valid at any given λ, (ΓBK [G] = F [Jλ, λ] −
Tr[Jλ, G]), we obtain

∂ΦBK [G, λ]

∂λ
=
∂F [J, λ]

∂λ

∣∣∣∣
J=J(λ,G)

(C19)

Here J is a function of both λ and G, i.e., J(λ,G).
The derivative of the free energy functional with re-

spect to the coupling constant (at fixed source ) is readily
obtained

∂F

∂λ
=

1

Z

∫
D[ψ†ψ]V e−S =

1

λ
〈Hint〉. (C20)

and

∂ΦBK [G, λ]

∂λ
=

1

λ
〈Hint〉[λ, J(λ,G)] (C21)
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Notice that Hint or S1 is independent of of J, but the
average 〈 〉 is carried out with respect to a weight which
contains the source explicitly. Integrating equation (C21)
:

ΦBK [G] =

∫

0

1 1

λ
〈Hint〉[λ, J(λ,G)]dλ (C22)

This is another example of the coupling constant in-
tegration formula for the interaction energy of the ef-
fective actions constructed in our review. Equation
(C22) can be expanded in a standard perturbation the-
ory. We take as the inverse unperturbed propagator
G0

−1−J(λ = 0) ( namely G ) and as interaction vertices
Hint and [J(λ) − J(λ = 0)]ψ†ψ as interaction vertices.
This means that the perturbation theory contains two
kinds of vertices , the first carries 4 legs and the second
denoted by a cross carries only two legs and represents
[J(λ) − J(λ = 0)]ψ†ψ. The role of the second vertex is
to eliminate the graphs which are two particle reducible,
this cancellation is illustrated in figure 52. which demon-
strates that for each reducible graph (i.e. one having a
self energy insertion ), there is also a cross, their sum is
zero as a result of the equation

J [λ] − J [λ = 0] + Σ[λ] = 0 (C23)

This equation is proved by noticing that at a given
value of λ the Greens function of the problem is by defini-

tion G0
−1 − J(λ = 0) − Σ[λ]

−1
= G and since by defini-

tion G0
−1 − J(λ = 0)

−1
= G combining these two equa-

tions we obtain Eq. (C23). The role of the coupling

= 0+

FIG. 52 Mechanism of cancellation of reducible graphs. The
”X” denotes J(λ) − J(λ = 0) and the circles in blue are the
self-energy insertions that make the graph reducible.

constant integration is to provide the standard symme-
try factors in the free energy graphs.

4. The total energy

In this subsection, we want to derive the relationship
between the total energy of the system and the corre-
sponding Green’s function. Let us start by the definition

of the Green’s function

G(x1, x2) = −〈Tτψ(x1)ψ
†(x2)〉. (C24)

The non–interacting (quadratic) part of the Hamiltonian

βH0 =

∫
dx1dx2ψ

†(x1)H0x1x2δ(τ1 − τ2)ψ(x2), (C25)

can be expressed by the Green’s function in the following
way

β〈H0〉 =

∫
dx1dx2H0x1x2δ(τ1 − τ2)〈ψ†(x1)ψ(x2)〉(C26)

=

∫
dx1dx2H0x1x2G(x2, x1)δ(τ2 − τ1 + 0+).(C27)

To get the interacting part of the total energy, we are
going to examine the time derivative of the Green’s func-
tion which follows directly from the definition Eq. (C24)
and takes the form
(
∂G(x1, x2)

∂τ1

)

τ1 → τ2 − 0+

r1 → r2

= 〈ψ†(x1) [H − µn, ψ(x1)]〉. (C28)

The resulting commutator can be simplified by noting
that the following two commutators take a very simple
form

∫
dxψ†(x) [ψ(x), V ] = 2V (C29)

∫
dxψ†(x) [ψ(x), H0] = H0. (C30)

where V is the normal–ordered electron–electron interac-
tion. The factor two in the above equation follows from
the fact that the interaction term is quartic in ψ while
H0 is quadratic.

It is more convenient to express the equations in imagi-
nary frequency than the imaginary time. Using the trans-
formation

G(x1, x2) = T
∑

iω

e−iω(τ1−τ2)Giω(r1, r2), (C31)

one obtains for the non–interacting part

T

∫
dr1dr2H0r1r2

∑

iω

Giω(r2, r1)e
iω0+

= 〈H0〉, (C32)

while the time derivative from Eq. (C28) gives

T

∫
dr1

∑

iω

(iω)eiω0+

Giω(r1, r1) = 〈H0 + 2V − µn〉.

(C33)
Combining equations (C32) and (C33) leads to the fol-
lowing expression for the interaction energy
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〈V 〉 =
1

2
T

∫
dr1dr2

∑

iω

eiω0+ [(iω + µ)δ(r1 − r2) −H0r1r2 ]Giω(r2, r1) =
1

2
Tr[eiω0+ G−1

0 G] =
1

2
Tr[ΣG]. (C34)

Here we took into account that
∑

iω e
iω0+ = 0. Finally, the total energy becomes

〈H〉 =
1

2
T

∫
dr1dr2

∑

iω

eiω0+ [(iω + µ)δ(r1 − r2) +H0r1r2 ]Giω(r2, r1) = Tr[H0G+
1

2
ΣG]. (C35)
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Blöechl, P., 1989, Total Energies, Forces and Metal-

Semiconductor Interfaces, Ph.D. thesis, Max-Planck Instu-
ture für Festkoeperforschung, Stuttgart, Germany.

Bohm, D., and D. Pines, 1951, Phys. Rev. 82, 625.
Bohm, D., and D. Pines, 1952, Phys. Rev. 85, 338.
Bohm, D., and D. Pines, 1953, Phys. Rev. 92, 609.
Bolech, C. J., S. S. Kancharla, and G. Kotliar, 2003, Phys.

Rev. B 67, 75110.
Bonca, J., and J. E. Gubernatis, 1993, Phys. Rev. B 47,



80

13137.
Boring, A. M., and J. L. Smith, 2000, Los Alamos Science 26,

91.
Bouchet, J., B. Siberchicot, F. Jollet, and A. Pasturel, 2000,

J. Phys.: Condens. Matter 12, 1723.
Bray, A. J., and M. A. Moore, 1980, J. Phys. C 13(24), L655.
Bronold, F. X., and H. Fehske, 2003, Inst. Phys. Jagellonian

Univ. Acta Physica Polonica B 34, 851.
Bruno, P., 2003, Phys. Rev. Lett. 90, 087205.
Bucher, B., Z. Schlesinger, P. C. Canfield, and Z. Fisk, 1994,

Phys. Rev. Lett. 72, 522.
Bulut, N., D. Scalapino, and S. White, 1993, Phys. Rev. B

47, 2742.
Bünemann, J., F. Gebhard, T. Ohm, R. Umstätter, S. Weiser,

W. Weber, R. Claessen, D. Ehm, A. Harasawa, A. Kakizak,
A. Kimura, G. Nicolay, et al., 2003, Europhys. Lett. 61,
667.

Bünemann, J., and W. Weber, 1997, Phys. Rev. B 55, 4011.
Bünemann, J., W. Weber, and F. Gebhard, 1998, Phys. Rev.

B 57, 6896.
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