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A tight-binding model is presented to study the density-of-states and some other electronic 

properties of a liquid metal and an amorphous solid composed of atoms with one-atomic 

orbital per site. A one-electron Green function is expanded in terms of atomic orbitals and 

described by a perturbation expansion series in powers of H'm.,.=Hm,.-WSmn• Hmn and Smn 

being a non-diagonal matrix element of Hamiltonian and an overlap integral, respectively, 

while w designates the energy. An extended chain approximation is introduced in order to 

express atomic correlation functions by means of a radial distribution function g(Rm,.). The 

ensemble-averaged Green function is evaluated based upon the single-site theory of Matsubara 

and Toyozawa, by which a short-range order of atomic configuration in a liquid metal and 

an amorphous solid is most properly taken into account. It . is mentioned that the present 

theory is applicable to liquid transition metals and to alkali metals under a supercritical con­

dition. The non-self-consistent treatment in our scheme is shown to be equivalent to the 

moment-expansion method of Cyrot-Lackmann. In actual implementation of numerical cal­

culation, both the non-self-consistent and self-consistent approximations in our theory are 

applied and the complete set of atomic orbitals is assumed to be quasi-orthogonal, i.e., Smn=lJmn· 

As a pair correlation g(Rm,.), we employ three models: (1) A random liquid, (2) a hard­

core-random liquid and (3) a hard-core-modified liquid; and one real liquid case; the experi­

mental value of Ni at T=1500'C. The effect of a short-range order in the atomic configura­

tion on the density-of-states, etc., is discussed. 

§ 1. Introduction 

The purpose of this paper is to propose a method for studying the effect of 

atomic correlation functions on the density-of-states and some other physical quan­

tities of liquid metals, amorphous solids, doped semiconductors and so on in 

the modified tight-binding approximation, or alternatively for estimating the be­

haviour of the microscopic atomic distribution from the observed data of macro­

scopic electrical properties of structurally-disordered systems. 

*> The present work was originally reported at the meeting on "The Properties of Liquid 

Metals" held in July, 1970, at the Research Institute for Fundamental Physics, Kyoto University 

and the outline of the theory was introduced in the "Reports on Progress in Lattice Dynamics in 

Japan" 26 (1970), No. 2. 
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732 Y. Ishida and F. Yonezawa \ 
It is widely accepted that, in liquid metals and in some of amorphous solids, 

a short-range order in the atomic configuration is preserved in the sense that the 
coordination number or the concept of nearest-neighbour atoms can be defined, 
while a long-range order in the distribution of atoms is destroyed. It is expected 
that the effect of local ordering in the atomic configuration becomes more dis­
tinguished in the systems for which the nearly-free-electron approximation fails 
to work. There has been no systematic and self-consistent theory established on 
the tight-binding basis so as to take properly into account the characteristic fea­
ture of the atomic configuration in systems having structural disorder, although 
some attempts have been suggested in the framework of non-self-consistent theo­
ries.1l'2l Even in the substitutionally disordered alloys or cellular-disordered sys­
tems in which the regularity in the array of atoms makes the problem easier, 
the best single-site theory-the coherent potential approximation-has been suc­
cessful in principle only for such site-random systems that the distribution func­
tion P( {e,.}) of site-random variables {e,.} is assumed to be statistically independ­
ent, i.e., the function is described as .P ({e,.}) = IJ,.P(e,.). The present theory is, 
therefore, the first that assures the self-consistent treatment in the tight-binding 
model and . gives due consideration to the effect of the local. ordering in the dis­
tribution of atoms and the effect of clustering as well. 

As in the ordinary tight-binding approach, let us assume that the wave func­
tion can be expanded in terms of one-atomic orbital per site. Note that the dy­
namical effect of atoms is eliminated from the present theory, since the time­
dependent behaviour of the atomic configuration is not essential so far as we are 
concerned with the physical properties of electrons whose mass is far smaller 
than that of atoms. In an independent electron· model, the one-electron Green 
function is expanded in the non-degenerate atomic orbitals, and is described in a 
locator-propagator-type perturbation expansion series. What we need in discus­
sing the macroscopic feature of the single-electron properties of the system is 
the effective Green function ensemble.-averaged over all possible configurations 
of atoms. In the process of averaging the terms in the perturbation series of 
the Green function, atomic correlation functions p"g<n) (Rio R 2, • • ·, R,.) explicitly 
enter into the formulation. A complete knowledge of g<"l (R1, R 2, • • ·, R,.) for all 
n is not attained either from the theoretical base nor from the experimental re­
sults, for one thing, and even if n-body correlation functions are given, it is 
substantially impossible, for another thing, to construct a theory which takes a 
full account of the higher atomic correlation functions; Usually, g<"l(Rh R 2, ···, 

R,.) is approximated by some appropriate functional of lower-order correlation 
functions g<ml(Rh R 2, ···, R,.) with m<n, and for that purpose we introduce in 
this paper an extended chain approximation which is convenient for the self-
consistent treatment of the ensemble-averaged terms. 

In order to derive a reasonably approximate expression for the ensemble­
averaged Green function, we modify the single-site theory of Matsubara and 
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Electronic Structure of Liquid Metals in the Tight-Binding Approximation. I 733 

Toyozawa (MT theory)B> which has originally been proposed to study the density­

of-states and conductivity of an impurity band in a doped semiconductor. The 

MT method proves to be advantageous to describe the clustering effect when a 

short-range order in the distribution of atoms is important. The theory developed 

in the present article is compared with the approximation by Schwartz and 

Ehrenreich4> in this context. It is shown that the non-self-consistent counterpart 

of· our theory compares with the quasi-crystalline approximation of Lax5> and cor­

responds to the moment-expansion method of Cyrot-Lackmann.1> 

In the actual calculation of the density-of-states and other electrical proper­

ties, the extended chain approximation is applied so that the atomic correlation 

functions g<"> (Rh R,, · 0 o, R,.) is described only by means of g<2> (R), and several 

model- and real-pair correlation functions are employed. As a nondegenerate 

atomic orbital, we use the ls wave function of an isolated atom defined by the 

effective Bohr radius a* characterizing the atom under consideration. Although 

our theory is available to a non-orthogonal set of atomic states, we assume in 

the present paper that the set of atomic wave functions is quasi-orthogonal; the 

overlap integral Smn is taken to be {Jmn• Since consideration of non-orthogonality 

is expected to guarantee the validity of the tight-binding approximation for some­

what extended wave functions,6> the results based upon a non-orthogonal set of 

atomic orbitals will be presented in a succeeding paper.7> 

The present theory is in principle applicable to a structurally disordered 

system in which the tight-binding representation of the electronic wave function 

is appropriate and the effect of a short-range order is eminent. Some sorts of 

liquid metals, amorphous solids and probably doped semiconductors are the can­

didates. Especially, we can consider two special examples: 

1) The first example is liquid transition metals. Since the tight-binding 

approximation has achieved some success in illustrating the narrow d band of 

solid transition metals, it appears meaningful to study, in the same scheme, the 

feature of such a band in a liquid state. Though the assumptions of one atomic 

state per site and of the isotropic atomic orbital may oversimplify the situation, 

the characteristic behaviour of these systems will be clarified. 

2) Another example is alkali metals under high temperature and high pres­

sure, in which the average interatomic distance is increased too much in order 

for an approach based upon the free-electron model to be available. When the 

interatomic distance is moderately large in alkali metals, the conduction takes 

place via electron transfer between localized atomic orbitals and hence the tight­

binding approximation becomes appropriate. The problem concerned with alkali 

metals of low density is interesting in relation with the recent experimental re­

sults on the electronic ,properties of these systems under supercritical condition.8> 

Although the Coulomb interaction between electrons may play an important role 

in such metals, we confine ourselves to an independent electron picture in the 

present article and the special problem of supercritical fluid will be reported in 
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734 Y. Ishida and F. Yonezawa 

a separate paper where the correlation effect of electrons is taken into account.9> 
The formulation of the problem is given in § 2, where the extended chain 

approximation is introduced and the single-site theory is developed.- The non­
self-consistent (NSC) method and the results of numerical calculation by means 
of the NSC technique are presented in § 3, while the self-consistent (SC) ap­
proach is explained in § 4. In the following section, § 5, the density"of-states in 
the SC theory is evaluated by making use of several models and experimental 
data for g<t> (R) and the effect of a short-range order is illustrated. Some re­
marks on the localization of electrons and conductivity are made in § 6 and dis­
cussion is given in § 7. 

§ 2. Single-site theory with extended chain approximation 

By means of the Hamiltonian operator H for a given configuration of atoms, 
the one-electron Green function G (r, r') is defined by 

(E-H)G(r, r') =D(r-r'). (2·1) 

According to the formulation of Roth,'> let us expand G (r, r') in terms of atomic 
orbitals (/)m. (r) = q; (r- Rm.): 

G (r, r') = :Eq;m. (r)Gm.nq;,.(r') . (2·2) ..... 
From Eqs. (2·1) and (2·2), the equation for Gm.n is obtained in the form 

(2·3) 

where Sm.,. and Hm.n are respectively overlap and Hamiltonian matrices given by 

Smn=(mln), 

Hm.,.=(miHin). 

(2·4) 

(2·5) 

Since the overlap integral Sm." is not generally equal to 0,.,., it is convenient to 
rearrange Eq. (2·3) by writing H;.,.=Hm,.-ESm,. for m~n; thus we have 

(2·6) 

The matrix element of the Green function is therefore expanded in powers of 
H;." in a locator-interactor perturbation series: 

G,.,.=G,.<0>Dmn+Gm<Ol(l-Dmn)H;."G,.<O>+ :E Gm.<O>H;.,G,<OlH!,.Gn(O)+ ... , (2•7) 1("1-m,n) 

in which G,.<o> is an unperturbed locator at R" determined by G"<0>= [E-H,.,.]-1• 

For the purpose of introducing rsome simplifying assumptions, let us assume, 
for example, the one-electron Hamiltonian of an electron interacting with N atoms 
by a set of additive atomic potential V(r-Rm.) = V,.. 

H=T+ :EV(r-R,.) =T+ :EV .... (2·8) .. .. 
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Electronic Structure of Liquid Metals in the Tight-Binding Approximation. I 735 

Assumptions employed in the present paper are as follows: 

(1) Two-centre integrals of the type of (nl Vmln) are neglected with re­

spect to two-ecntre integrals of the type of (nl Vmlm). This assumption leads 

to the result that G.,. <o> = G<0> is a constant, independent of site n and the distri­

bution of the other atoms. 

(2) Three-centre integrals of the type of (nl Vdm) are regarded as small 

compared with two-centre integrals of the type of (nl V,.lm) and discarded. This 

concludes that H:,.,. for m = n is a function only of the relative positions Rmn 

=R,.-Rm; i.e., H:,.,.=H'(Rm,.). 

(3) The atomic functions centred on different atoms m and n are considered 

to be orthogonal, i.e., (min) is neglected with respect to (nln)= 1. Thus we 

have H:,.,.=Hmn=H(Rm 11). As a result, Eq. (2·7) is now rewritten as 

Gmn=G<0>0m,. + [G<0>]2 (1-0m,.)H(Rm,.) + [G<0>]3 :E H(Rmz)H(Rz,.) 
l("<m,n) 

(2·9) 

The mean density-of-states n (E) is calculated by averaging TrO (E- H) over all 

possible distributions of atoms and thus related to the one-electron Green func­

tion as 

n(E) =(TrO(E-H))= - 1 Im :E (Gmm(Et))= -N Im (Gmm). (2·10) 
n m n 

The ensemble average denoted by angular brackets is defined by 

(9'({R,.}))= J:r({R,.})pNg<N>(Rh ... , RN)dRldR2"'dRN, (2·11) 

where 9' ( {R,.}) =9' (Rh ... , RN) is an arbitrary function of Rh R 2, .. ·, RN; p the 

number density of atoms, given by p = N / !J for the number N of atoms and the 

volume !J of the system; and p"'g<"'> (Rh .. ·, Rn) for n = 1, 2, 3, .. ·, N is the atomic 

correlation function which determines the probability of finding a set of n atoms 

located at Rh R 2, .. ·, R,.. In the problem of liquid metals, the n-body correlation 

function is usually given by 

p"g<"'>(Rh R,, ... , R,.) =-!'!J_ fexp[ -{3U(Rh R2, ... , RN)]dRn+l"'dRN , 
(N-n)! Jexp[ -{3U(Rh R2, ... , RN)]dR1dR, ... dRN 

(2·12) 

where {3= 1/kT and U(Rh R 2, ... , RN) is the energy of a given configuration 

{R,.}. 

Returning to Eq. (2 · 9) of our problem, we find that sums are defined to 

run over a set of discrete variables where any two of successive variables are 

different from each other. For illustration, let us consider for example the fourth­

order term H(Rmz)H(Ru,)H(Rhk)H(R~cm) in which only the term m=n of interest 

in the calculation of n (E) in Eq. (2 ·10) is accounted. The restriction over the 
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736 Y. Ishida and F. Yonezawa 

! h 

mo (b. 
m 

(a) (b) m=h (c) 1 = k 

Fig. 1. Three distinct cases for the summation variables in the fourth-order term H(Rm1)H(R11,) 
H(Rhk)H(Rkm). (1) all the four variables are different from one another: (2) Rh=Rm and 
(3) R 1=Rk. 

summation is such that Rm~Rz, R 1 ~R;,., Rh~Rk and Rk~Rm. It must be noted, 
however, that, still then, four distinct cases are possible; that is to, say, (a) the 
case where all the four points Rz, Rh, Rk and Rm are different from one another, 
(b) the case in which Rh is identical with Rm, (c) the case in which Rz is 
identical with Rk, and (d) the case Rm=Rh and R 1 =Rk. Explanation of the situa~ 
tion is facilitated by the diagrammatic expression as Figs. 1 (a) to. 1 (c). (The 
case (d) is not shown in the :figure, because this is not a single-site term.) For 
carrying out the average, these three terms shown in Fig. 1 should be treated 
individually. Namely, for case (a), the average process is effected by the re­
placement 

:E H(Rmz)H(Rzh)H(Rhk)H(Rkm) 
case(a) 

~p' s H(Rmz)H(Rzh)H(Rhk)H(Rkm)g<'l(Rm, Rz, Rh, Rk)dRzdRhdRk, 

(2 ·13) 

while for cases (b) and (c), the configuration averages are concerned with three­
body atomic distribution function as 

:E H(Rmz) H(Rzm) H(Rmk) H(Rkm) 
case (b) 

and 

:E H(Rmz) H(Rzh) H(Rhz) H(Rzm) 
case (c) 

~p 3 s H(Rmz)H(Rzh)H(Rhz)H(Rzm)g<8l(Rm, R~, Rh)dRzdRh. (2-15) 

The completely analogous situation is met for all the higher-order terms and 
there again the diagrams prove to serve as a great help. For better understand­
ing, take the vth-order term, for instance, as shown in Fig. 2 in which the con­
sideration is confined to single-site diagrams alone. The term with all v distinct 
variables (Fig. 2 (a)) is averaged by means of the v-body correlation function 
g<•l (Rm, Rh · · ·, R.-1), while the diagram with 11 irreducible parts connected at 
articulation points is related to g<•-P+1l (Rm, Rh · · ·, R.-,.). Note that there are 
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Electronic Structure of Liquid Metals in the Tight-Binding Approximation. I 737 

,-, 

u· a· 2 : 

2 •• 1 I 
I 

1 ,' 
1 

m •+1 

m v-1-' ' 
Y-1 

(a) (b) (c) 

Fig. 2. A general example of 11th-order term. Some of possible cases are illustrated; (a) all varia­

bles are distinct, (b) one of the intermediate variables is identical with the original site R,. 

and (c) Rv,·=Rv, and Rv,=Rv, for 111<112<11a<114. 

two irreducible parts for Fig. 2(b) and three for Fig. 2(c). 

Now, the next step is to approximate the many-body correlation functions 

g<n> (Rh R 2, • • ·, Rn) of atomic distribution. 

Let us first pick up the simplest diagrams as Figs. 1 (a) and 2 (a) where all 

the variables are distinct. For these terms, we employ a chain product of pair­

correlation functions1> determined .as 

(2·16) 

With this type of chain approximation, Eq. (2 ·13) is easily converted to a fac­

torized form as follows: 

p4J H(R,.t)H(Ru,)H(Rh~c)H(R~c,.)g< 4 >(R,., Rt, Rh, R~c)dRtdRhdR~c 

where 

= ()4 s H(R,.t)H(Rth)H(Rh~c)H(R~cn) g<2> (R,.t)g<2> (Rth) g<2> (Rh~c) g<2> (R~cn) 

x exp [ik · (R,.t + Rth + Rh~c + R~cn)] dk dR,.tdRthdRh~cdR~cn 
(2nY 

- s[ V(k) ]4 dk 
- P (2nY' 

(2·17) 

V(k) = SH(R)g<2l(R)exp[ik· R]dR, (2·18) 

and generally the contribution from the vth-order term as shown in Fig. 2(a) 

becomes f [p V(k) ]"dk/ (2n)B. For such diagrams with articulation points as shown 

in Figs. 2(b) and 2(c), we extend the concept of the chain approximation so 

that (1) we can assume the correlation function described by a product of the 

lower-order correlation functions denoting the respective irreducible parts; for 

instance, 

g<•-l> (R,., R1o R2, · · ·, R.-1} = g<••> (R,., R1o · · ·, R.,-1) g.<•-••> (R,., R., +h R., +2• · · ·, R.-1) 

(2·19) 
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738 Y. Ishida and F. Yonezawa 

for Fig. 2 (b), and that (2) we apply the chain approximation to each irreducible 
correlation functions. Thus, we have for Fig. 2(b) 

9(2) (Rmt) g<2l (R12) · • .g(2) (Rv 1-1,m) g<2) (Rm,v 1+1) g<2l (Rv1+I,v1+2) • • .g(2 ) (Rv-l,m)' (2 • 20) 

and the averaged result is written as 

p•-1 J[V(k) ]"1 dk1 J[V(k) ]•-•1 dk2 . 
1 (2nY 2 (2n)3 

(2. 21) 

Although the site Rm corresponding to the articulation point appears in both sub­
functions as seen from Eqs. (2 ·19) and (2 · 20), it is readily shown that the 
asumption of spatial homogeneity removes any complexity and the ensemble­
average is expressed in a factorized form as Eq. (2 · 21). 

With the aid of the extended chain approximation, our formulation becomes 
substantially parallel to that of the tight-binding model for a completely random 
distribution of atoms where g<"l (Rh · · ·, R,.) = 1 for all n and for any set of {R}. 

(a) --------" g (R..,) m 

(b) 

~n __,. ~n 
m 

m 
li (R...) H(R .... ) g(R,.. l 

(C) o" ---+ &" ' m m 
H(R...) H (R..,) H(R...,)H(R.,.) g(Rmn) 

(d) The diagrams of the type t:?' ' 
are not adopted. 

Fig. 3. The prescription to interpret the tight· 
binding formulation for a completely random 
distribution of atoms into the case with the 
extended chain approximation for the atomic 
correlation functions. 

The interpretation is achieved by the 
replacement as shown in Fig. 3 (b) 
where the dotted line represents the 
pair correlation function g<2J (Rmn) 
(Fig. 3 (a)) and the arrowed solid line 
designates the mn elements of the 
Hamiltonian matrix. The only excep­
tion is the diagrams of the type as 
Fig. 3(c) for which one dotted line 
is assigned to two solid lines. It must 
be emphasized here again that only 
the single-site diagrams are taken into 
account throughout the present sec­
tion, where single-site diagrams are 
those diagrams in which any two rings 
formed of solid-dotted lines correspond­
ing to H(Rmn)g(Rmn) are connected 

with each other by a single common site (ca.lled an articulation point). The 
many-site diagrams as shown in Fig. 17 will be discussed in § 7. 

§ 3. Non-self-consistent theory 

In the present section, we study the simplest solution for the averaged Green 
function <Gmm) along the line of the last section. Let us consider only the self­
avoiding paths as given by Figs. 1 (a) and 2 (a) where none of the sites are 
identical among themselves. In this case, the ordinary chain approximation is 
enough to give the factorized expression for each term in the perturbation 
expansion and hence we have a geometric series of the form 
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Electronic Structure of Liquid Metals in the Tight-Binding Approximation. I 739 

<G,.,.)=G<0>+ [G<0>]8p s H(R)H( -R)g(R)dR 

+:E[G<D>J-+lp• f[V(k)]" dk 
v=3 J I (27r )8 

- s 1 dk + [G<D>]B s V(k) [V. (k)- V(k)] dk 
- [G<0>]- 1 -pV(k) (27r)8 p 0 p (27r)8 ' 

(3·1) 

where use is made of V0 (k)=JH(R)exp[ik··R]dR and of the relation 

S V(k)~=H(R=O)g< 2 >(R=O) =0. (3·2) 
(2n)8 

There the density-of-states is given by 

n(E) = stJ(E-pV(k)) dk , 
(2n)8 

(3·3) 

in which the zero of energy is so defined that H,.n = 0. This is equivalent to 

the result obtained from the moment-expansion method of Cyrot-Lackmann.1> It 

must be noted that the formulation employed by Roth2> according to the quasi­

crystalline approximation of Lax5> differs from ours in that the diagram in Fig. 

3(d) instead of Fig. 3(c) is included in the theory of Roth, which is shown to 

lead to an unphysical result.7> When the atomic orbital is chosen to be isotropic, 

H(R) is a function of R= IRI. On the other hand, the pair correlation func­

tion is described as g<2> (R) = g (R) with g (R) expressing the radial distribution 

function. Thus, V(k) is shown to be a function of k= lkl alone, which reduces 

Eq. (3 · 3) to a simpler form 

n(E) =-1-:E k,2 
2n2 

• PI8Vk/8klk=ll:a 
(3·4) 

where k, is the s-th solution of E-pV~~:=O. 

For the actual development of numerical calculation we adopt the atomic 

wave function of 1s-like orbital defined by 

(3·5) 

where a* is the effective Bohr radius. When the potential V (r- R,.) in Eq. 

(2 · 8) is given by the Coulomb interaction between an electron at r and an ion 

at R,., i.e., V(r-R,.) = -Ze2/!Cir-Rml, then the off-diagonal matrix element of 

H is written as 

The energy unit is taken to be V0 =Ze2/!Ca*, Z being the charge of ion and IC 

the dielectric constant. Besides energy, it is convenient to use dimensionless 

variables and for that purpose the unit of distance, momentum, concentration, 
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740 Y. Ishida and F. Yonezawa 

the Fourier-transformed energy and the density-of-states are chosen as follows: 
R/a*=T, ka*=t, 32npa*8=p, V(k)/V0a* 8=v(t) and n(E) V 0a*8=n(w). Then 
Eq. (3·4) is rewritten as 

( ) _16"" t.~ n w --£...J , 
n • plav(t)fatit=t· 

(3·4') 

where t, is the s-th solution of w-pv(t)f32n=0. 
In the present section, we apply Eq. (3 · 4) to a random liquid and a hard-

core-random liquid. 

3. 1 Random liquid 

Let us first consider a random liquid for which g (R) = 1 for all R and then 
we have v (t) = - 32n/ (1 + t 2) 8, which is shown by a dotted line in Fig. 4. The 
density-of-states n (w) is evaluated on the basis of Eq. (3 ·4) and depicted by a 
dotted line in Fig. 5. Note that w=E/V0• 

3. 2 Hard-core-random liquid 

A more realistic but rather simple model of a liquid metal is a hard-core­
random liquid for which 

g(R) = {
0, 

1' 

Rja*<f1, 

Rja*>fJ, 
(3·7) 

where fJa* is called a hard-core diameter. The packing fraction r; is related to 
f1 and p by 

- 4n ((Ja*)s_p(Ja r;-p-- --. 
3 2 192 

(3·8) 

The case of a random liquid discussed in subsection 3. 1 is regarded as a limit 
of f1=0 or r;=O. Equation (2·18) is calculated as 

v (t) = - 471: e-a [ {8 + (1 + t 2) (5 + t 2) (J + (1 + t 2) 262} t cos (Jt 
t (l + t 2) 8 

+ {- (t'+ 6t2 -3) - (t2 + 1) (t2 -3)6 + (t2 + 1)3f12}sin (Jt]. (3 · 9) 

The curves v (t) vs. t with p = 0.2 are shown in Fig. 4 for several values of r; 
(or equivalently 6). It is apparent that the oscillatory property of sin (6t) and 
cos (f1t) in Eq. (3 · 9) causes an infinite sequence of extrema in these curves for 
r;~O. On the other hand, we can easily see from Eq. (3·4) that the existence 
of extrema in v (t) results in an infinite sequence of singularities in the density­
of-states. This sort of difficulty is not encountered in the problem of regular 
systems because in this case the integral of Eq. (3 · 3) is restricted within the 
first Brillouin zone, while no such region of integration variables is defined in 
disordered systems. Although non-orthogonality of atomic orbitals introduces a 
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0.2 

0.1 

I 
I 
I 

: 
I 
I 
I 
I 

' I 
I 
I 

' I 
I 

'l =o.o: 
: 
I 
I 

I 

' ' ' I 

/ 

. ' 
I 

' 

Fig. 4. The dispersion relation curve v(t)/4rr vs. t. 
' 

/ 
__ ,/ 

The dotted line corresponds to the case ~=0.0, 

while the four solid lines represents v(t) for ~ 

=0.005, O.Ql, 0.02 and 0.05 respectively. Arrows 

designate t,, while crosses to. The concentration 

p is fixed to be 0.2. 

-0.15 -0.05 0 w 

Fig. 5. The density-of-states for p=0.2 and 

for ~=0.0 (the dotted line), 0.01, 0.02, 

0.03 (solid lines). 

natural cutoff for the integral,~l the situation is not completely improved. One 

possible cutoff may be determined from the relation (2rc/CJ)8 = (4rc/3)kq8, where 

the volume of the first quasi-Brillouin zone for a simple cubic lattice is connected 

to (J and equated to a sphere with radius kq . . The cutoff momenta tq=k.a* are 

denoted by arrows in Fig. 4, while the first maxima t0 are indicated by crosses. 

2.0 

0 0.1 02 0.3 ? 

Fig. 6. The cutoff t, and the value of 

t=trJ at the first maximum of v(t) 

represented as functions of 7J. The 

cutoff tM is also denoted. 

For reasonable values of 1], the cutoff covers 

only the first maximum and approaches infinity 

with 11~0 (see Fig. 6). The band-edges ob­

tained with tq>t0 are illustrated in Fig. 7. 

w 

o.l 

-0.2 

0 0.1 0.2 0.3 0.4 

Fig. 7. The upper and lower band-edges vs. 7}, which are 

determined from the cutoff t,. The dotted line shows 

the upper .band-edge yielded from the cutoff kM=tMa*. 
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742 Y. Ishida and F. Yonezawa 

The dotted line represents an upper band-edge determined from the cutoff t M 

=kMa* estimated by (2rc/d) 8 = (4rc/3)kM8, d the lattice constant satisfying Nd 8 

= 1,1> Unphysical behaviour of the band-edge suggests tha.t this way of deter­
mining kM is not appropriate. The density-of-states calculated with the cutoff k~ 
is expressed by a respective solid line in Fig. 5. Unsatisfactory features of the 
non-self-consistent theory are: (1) The density-of-states has a singularity at the 
upper band-edge and may have more, even if the natural cutoff is introduced, 
(2) for 7J = 0 (a random liquid), non-zero value of n ( w) is obtained only for w 
<O and (3) the 7}-dependence of the upper band-edge is not physically explained. 
It is expected that these demerits are eliminated when a self-consistent formula­
tion is applied, which is discussed in the succeeding two sections. 

§ 4. Self-consistent theory 

According to the definition of single-site diagrams (see the last paragraph 
of § 2), the diagrams in Figs. 1 and 2 are all included in the category of single­
site diagrams. As has been explained in § 2, the extended chain approximation 
enables us to write the contributions from these single-site terms in factorized 
forms like Eq. (2 · 21). When this is the case, it has been shown by Matsubara 
and Toyozawa3> that all these single-site terms can be summed up by renormaliz­
ing each point. The situation is illustrated by diagrams in Fig. 8. A small 

• = G<4 

• = Gflj f[dR 

Fig. 8. Diagrammatic representation for the process of the self-consistent formulation. 

open circle represents a site which is not summed, while a small filled circle 
designates a site over which the summation or equivalent integration is carried 
out. A large circle is used to indicate that an open or filled small circle inside 
the large circle is renormalized in_ the sense that an arbitrary number of rings 
are attached thereto. It is convenient to associate with a large circle a quantity 
~ given by 

1 
~= 1 +7}+7}2+ ... =--' 

1-7} 

where the renormalization is effected by writing 7J as 

(4·1) 
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+ [G< 0 >] 8 (~p)2 J H(Ru)H(R,a)H(R3l)g(Ru)g(R,a)Y(Ral)dR,dRs+ ... 

= [G<o>]'~p J [V(k) ]' dk + [G<o>]'~ J p V(k) [V. (k) _ V(k)] dk . 
1-~pG< 0 >V(k) (2~)1 ° (2~)1 

(4·2) 

It is easy to see that the diagonal element of the ensemble-averaged Green func­

tion is related to ~ by 

~=E(G,.,.(E))=w· V0(G,.,.(w)), (4·3) 

and therefore the self-consistent solution of associated equations (4·1) and (4·2) 

yields the density-of-states via Eqs. ( 4 · 3) and (2 ·10). The numerical calcula­

tion of n (E) along this line will be carried out in § 5 for various pair-distribu­

tion functions. 

It is interesting to note that the self-consistent theory of the present paper 

is compared with the approximation by Schwartz and Ehrenreich.'> In our theory, 

atomic correlations are considered such that diagram (a) in Fig. 9 is taken into 

account. On the other hand, in the approximation of Schwartz and Ehrenreich, 

those diagrams counted in our treatment are discarded but diagrams like (b) or 

(c) in Fig. 9 are included, where the formulation does not preserve the symmetry 

as to the atomic sites. 

,:a 
?/J~~-' 
5 ---· 

(a) 

I ••••··• ~ 

0 

5 •••• 

(b) 

. 
. 

. . 
j 

(c) 

Fig. 9. Comparison between the self-consistent treatment in our theory (a) and that of Schwartz 

and Ehrenreich (b) or (c). 

§ 5. Density-of-states in the self-consistent theory 

In the present section, the density-of-states n (E) is evaluated m the self­

consistent framework using three model pair-correlation functions and one ex­

perimental data. Most of the calculations are performed for the concentration 

p=0.2, which corresponds to the atomic number density of a hard-core-random 

liquid satisfying r; = 0.45 and (j = 7;56. Since the computer work10l estimates the 

hard-core diameter of liquid transition metals to be about 2.2A and the radius 

of 3d orbits in these metals are calculated to be approximately 0.3A, the value 

a= 7.56 is considered to simulate some aspects of these metals. 
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744 Y. Ishida and F. Yonezawa 

5. 1 Random. liquid 

The self-consistent density-of-states for a random liquid will be discussed m 
the following subsection as a limiting case of a hard-core-random liquid. 

5. 2 Hard-core-random liquid 

The pair-distribution function defined by Eq. (3 · 7) is used to calculate the 
density-of-states. The results are illustrated in Figs. 10 (a) and (b) in which p 
is fixed to be 0.2 and the packing fraction 'fJ is changed. Note that 'tj=O cor­
responds to a random liquid. According as 'fJ is increased, we notice the re­
markable behaviour of (1) the band width and (2) the band shape. 

As for (1), the larger 'fJ is, the narrower the band width becomes, and both 
the upper and lower edges move monotonically towards the centre of the band 
as shown in Fig. 11, where curves of the band edges vs. 'fJ are pictured and 

n( w ) 

1.0 

0.5 

0 ~~~~--~~----~-L~~~--~~ 
0.4 0.0 0.2 0.4 w 

(a) 

n(w) 

p =0.2 

0.2 

-0.02 -0.01 0.0 0.01 w 

(b) 

Fig. 10. The density-of-states for hard-core-random liquids for p=0.2. The parameters associated 
with the curves denote the packing fractions 7J. Thus, for (a), 7J=O.O, 0.005, 0.01, 0.02 and 0.05, 
and for (b), '1/=0.3 and 0.45 are employed. 
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compared with the edges due to 

the non-self-consistent calculation 

designated by dotted lines in the 

figure. The r;-dependence of the 

upper band edge in the NSC theory 

is qualitatively different from that 

in the SC theory, and the latter is 

reasonable from physical point of 

view, while the former is not. 

Namely, the mentioned characteri­

stics are attributed to the fact 

w 

OJ 

0.1 

0.1 

0.0 

-OJ 

-0.5 

w=Q 

0.1 02 ·0.3 OA 

that the hard-core pair-correlation Fig. ll. Comparison of the band-edges due to the NSC 

function of Eq. (3 · 7) cuts off the calculation (dotted lines) and the SC calculation 

domain of integration at which the (solid lines). 

transfer matrix H (R), related to Eq. (3 · 9) and expressed by Fig. 4, is most domi­

nant. As a result, the effect of broadening the atomic level by means of the transfer 

integral is reduced and this reduction is more serious for a larger hard-core dia­

meter. Note that n (E) around the peak of the band increases as the band width 

decreases; it is ascertained that the accumulated density-of-states in a band is the 

same for all values of 1J and. thus the sum rule is proved. 

Concerning (2), we can conclude from Figs. 10(a) and (b) that the band 

shape is most asymmetric for a random liquid with r;=O and a more and more 

symmetric density-of-states is· obtained when the value 1J is increased. Here the 

term "symmetric" is used to express the symmetry of the band in the sense 

that the position of the peak is approximately at the centre of the band and the 

band tails at both the upper and lower edges are of the similar shape. In the 

first place, the reason for the asymmetry is explained as follows: Suppose we 

have a cluster made of N 0 atoms, in which the atomic levels for the constituent 

atoms are all identical, being equal to E0, and the transfer integral between any 

two of atoms has also a common value - vt. It is apparent that vt depends on 

the size of the cluster. Eigenvalues for the energy of an electron in the cluster 

are obtained on solving the secular equation of N 0-th-order: 

Eo-A -Vt -Vt -Vt 

-Vt Eo-A -Vt -Vt 

- vt - Vt Eo-A -Vt =0' (5·1) 

from which we have an (N0 -1)-fold degenerate eigenvalue A=Eo+ Vt and a non­

degenerate solution A=E0 - (N0 -1) Vt. Therefore the bigger the number N 0 of 

atoms in the cluster is and the smaller the size of the cluster is, the more asym-
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746 Y. Ishida and F. Yonezawa 

metric density-of-states is expected, and this explains the eminent feature of the 
band for small r;. In the second place, approach to a symmetric shape for a 
large value of r; is understood to be an outcome of hard-core pair-correlations 
which work to eliminate a large density fluctuation. In other words, the pro­
bability of finding clusters which are composed of many atoms brought together 
is decreased remarkably because of the geometric requirement for hard spheres. 
Consequently, a less random distribution of atoms is attained and the symmetric 
properties of the band for a regular system is recovered. This situation is also 
suggested from the consideration of Eq. (5 ·1) and the explanation thereabout. 
For the largest r; calculated, i.e., r;=0.45, the position of the peak is near the 
atomic level, E0 = Hnn = 0, and the band is almost symmetric except for a small 
shoulder at the lower band edge. This shoulder is regarded as originating from 
the energy levels of clusters which happen to form in a partially ordered system 
and may serve as a sort of trap centres. 

Figure 12 represents the calculated density-of-states in which r; is taken to 

w 

'1=0.45 

-0.03 

Fig. 12. The density-of-states for hard-core-random liquids. The packing parameter is fixed at 0.45 and the concentration p is changed. 

be a fixed value 0.45 and the concentration p is changed. The constant packing 
fraction indicates that the corresponding systems are geometrically analogous and 
thus the degrees of randomness in these systems are not different. This predicts 
that, for various concentrations p, we may have the same symmetry of the band 
that is related to the degree of randomness. On the other hand, the increase of 
p under a constant r; leads to the decrease of (J, the ratio of the hard-core dia­
meter to the effective Bohr radius, as is seen from Eq. (3 · 8). The effect of 
bringing (J smaller is to include into the integrant the most dominant part of the 
transfer energy H(R) and therefore to broaden the band. It is directly con­
cluded from Fig. 12 that the increase of p gives rise to a wider band but does 
not alter the symmetry of the band shape. These results of the numerical cal-
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culation coincide with the above-described theoretical conjecture. 

It should also be noted that the difficulty of divergence encountered m the 

NSC calculation is now removed. 

5. 3 Hard-core-modified liquid 

In order to make the model pair-distribution function g (R) more realistic, 

let us introduce a modified hard-core correlation defined by 

1
0' 

g(R) = h, 

1' 

Rja*<a, 

a<R!a*<a+o, 

a+o<R!a*, 

(5·2) 

where h>l. The width a of the modified part is determined so as to satisfy 

the given number z of the nearest-neighbour atoms by the following relation: 

z = p f<<T+6Ja* g (R) 4-rrR2dR = 4-rrpa*•h [(a+ o)B- a3]. 

Jcra• 3 
(5·3) 

In Fig. 13, the density-of­

states for a hard-core-modified 

liquid is shown by the curve 

(b) in comparison with the 

curve (a) of the hard-core­

random liquid. For numerical 

calculation, h is chosen to be 

2. Three distinguished features 

are recognized: 

(1) The band of (b) is broad­

er than that of (a). This is 

due to the fact that the elevated 

portion in g (R) for a<Rj a* 

<a+o works to emphasize the 

contribution from the dominant 

part of the transfer matrix 

H(R); thus a wider band be-

ing expected. 

n(w) 

p:0.2 

7 = 0.45 

( z. = 12 for( b)) 

W. 

Fig. 13. Comparison of the calculated density-of-states for 

(a) a hard-core-random liquid, (b) a modified hard-core 

liquid and (c) a real liquid. The packing fraction 7J is 

0.45 for all the three cases. For a hard-core-modified 

liquid of (b), the coordination number z is taken to be 12. 

(2) A hard-core-modified liquid has a steep denstiy-of-states around the atomic 

level compared with n (E) for a hard-core-random liquid. This is explained as 

follows: The probability of finding atoms within the shell (a<Rja*<a+o) is 

greater than that of having atoms outside the shell, which yields a more regular 

system as a whole, and thus some properties of a regular system appear. 

(3) The band tail at the lower edge is remarkable. The same reason as in (2) 

for having larger probability density in the shell causes a local fluctuation, since 

the formation of clusters with a larger number of atoms is promoted. This pro-
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748 Y. Ishida and F. Yonezawa 

Z=l2 
~=0.45 

n(w) 

0.! 

---- Z=l2 
·-·-·- z= !0 
-- z=B 

o.ol--==:::;:;s:::::::::~:;±-------;;~,;---~)_-~ 
-om 

Fig. 14 (a). The density-of-states for two hard-core­
modified liquids with z=l2, p=0.2 and 7J is changed 
('1/=0.4 and 0.45). 

Fig. 14(b). The density-of-states for three 
hard-core-modified liquids with z=l2, 
10 and 8. 

vides energy levels somewhat deep in the tail of the lower band edge. 
Figure 14 (a) represents the 7]-dependence of the density-of-states of hard­

core-modified liquids with z = 12 and p = 0.2. The tendency that a larger pack­
ing fraction gives a narrower and more symmetric band is here again observed. 

In Fig. 14 (b), three different hard-core-modified liquids are compared, where 
the packing fraction 7J = 0.45 and the concentration p = 0.2 are fixed and only the 
coordination number z is changed. Comments are made on two points. 

(1) As the hard-core diameter remains constant for these three cases, the 
cutoff of the integration domain takes place at the same distance R = (Ja* and 
therefore the contribution from the dominant transfer matrices is also unchanged. 
This is the reason why the shape of the band in the both tail regions is not al­
tered for different values of z. 

(2) When z is increased under the condition that (J is constant, only the 
width iJ of the first peak in g (R) becomes large. However, the change of iJ is 
not so serious as that of z as is apparent from Eq. (5 · 3). Moreover, the effect 
of the transfer matrix around R= (rJ+iJ}a* is to broaden the atomic level ap­
proximately as much as H((rJ+iJ)a*), which is rather small for parameters un­
der consideration. This accounts for the numerical results in Fig. 14 that the 
sharpness of the peak near the atomic level is slightly modified when z shifts 
from 8 to 12. 

From the above two remarks, we can conclude that the shape of the band 
in the tail regions is determined from the hard-core diameter or from the be­
haviour of g (R) around the core-cutoff, while the sharpness, height, etc., of the 
density-of-states peak is determined from the nature of the first peak in g (R). 

5. 4 Real liquid 

Finally, we apply our theory, for illustration, to the pair-distribution function 
for a real liquid. The observed structure factor a (k) for Ni at T= 1500°C11> is 
compared with the exact solution of the Percus-Yevick equation for a hard-sphere 
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liquid12l and, for given values of p and (J moderately chosen from the physical 

consideration, the packing fraction is determined such that the first peak in a(k) 

of the experimental result agrees with the calculated a (k) of the Percus-Yevick 

hard-core liquid. The density-of"states, which is calculated using the radial dis­

tribution .function g (R) obtained from a (k) for Ni, is shown by curve (c) in 

Fig. 13, in 'comparison with the results of a hardccore-random liquid (curve (a)) 

and of a hard"core-modified liquid (curve (b)). Since the characteristic feature 

of· g (R) for a real liquid guarantees the configuration more regular than that of 

the model liquids· adopted in this article, the sharper and higher peak around the 

atomic level is attained. On the. othe.r hand, the real pair-correlation function in­

dicates a less probability of finding atoms just outside the "so-called" hard sphere 

in contrast to the model distributions ·and this is understood to be the origin of 

a narrower band for a .real liquid. 

§ 6. Some remarks on the localization of electrons and conductivity 

Let us consider in the present section the problem of electron localization 

F(w) 

n(w) 
HARD-CORE ~ANoOM LJQUJD 

0.01 

0.005 

n(w) 

ID 

n(w) 

0.01 

0.005 

n w) 

(d) 
- 1.5 

(c) 

HARD-CORE RANDOM LJQUJO 

p,0.2 

~=0.3 
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Fig. 15. Modified localization function F (w) vs. w curve compared with the density-of-states n(w). 

Numerical calcUlations· are performed for several values of 71; i.e., (a) 7J=O.O, (b) 7J=0.02, (c) 

.7J=0.3 and (d) 7J=0.45. The concentration p=02 for all figures. 
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in the calculated band for structurally disordered systems such as liquids, amorph­
ous solids and doped semiconductors. For systems with cellular disorder, Eco­
nomou and Cohen18> introduced a localization function F(E) =E./IE-I(E) I to 
check the localizability of electronic states corresponding to eigenenergy E. The 
k-independent self-energy I(E) is defined by an ensemble-averaged one-electron 
Green function by the relation G~c(E) = [E-E~c-I]- 1 and E0 denotes the half­
width of the band for the corresponding regular system. They argue that the 
state with energy E is localized if F(E) <1. Although the localiztrtion 'function 
given by them cannot be directly applied to our problem where structurally dis­
ordered systems are treated, it would be reasonable to extend the definition of 
the localization function by replacing E. by a quantity which serves as a measure 
for the half-width of our density-of-states and thereafter to make use of the mo­
dified localization function for the purpose of estimating the degree of localiza­
tion in systems with structural disorder. The modified localization function may 
be written as 

F(E) = pfH(R)g(R)dR . 
IE-I(E)i 

(6·1) 

A smaller value of F(E) is considered to correspond to a more localized state. 
In Fig. 15, F(w) (w=E/V0) for several values of 1J are plotted. For small 
values of 1J (curve (a) with 1J=O.O and curve (b) with 7J=0.02), the asymmetric 
property of the density-of-states is reflected to the behaviour of 'F(w) and the 
states near the upper band edge are extended, while the states in the lower 
band tail are localized. This result seems to be reasonable from physical point 
of view. According as the symmetric property of the band is recovered accom­
panying the increase of 1J (curve (c) with 1J = 0.3 and curve (d) with 1J = 0.45), 
the asymmetric feature of F(w) slips off and the states in the middle of the 
band become more extended. The absolute value of F(w) increases when the 
packing fraction is made large, and this is consistent with our conjecture that a 
less random configuration is obtained for a greater value of 11· Note that 'F(w) 
in Figs. 15(c) and (d) are scaled by 7!, If the criterion F(w)<1 is employed 
to test the localization of electrons; we can see that, for 1J = 0.0, about two thirds 
of low-energy side in the band are localized, while only the states lower than 
the middle of the band are localized for 1J = 0.02. The energy region in which 
the states are localized decreases monotonically when the packing fraction is made 
bigger. For 1J as large as 0.3, only the small region in the lower band tail cor­
responds to localized states, while for 7J=0.45 almost all states are extended. 

In Fig. 16, the electiical conductivity fJ and mobility p. are plotted as a func­
tion of the Fermi energy w=w, and compared with F(w). The conductivity 
fJ ( w) is evaluated on the basis of the Kubo-Greenwood formula and the ensem­
ble average of two Green functions <G,.Jc, (E) G,.,,. (E')) is approximated by the 
product <G,.,.,(E))<G,.,,.(E')). The mobility at the Fermi level is determined 
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by p(wF)ocfJ(wF)/n(wF). The Wr 

dependence of mobility expressed by 

a dotted line in the figure indicates 

that the mobility is large in the 

lower band tail and rather small for 

higher energy. This result is in­

consistent with the behaviour of 

F(w) and is not compatible, as well, 

with the widely-accepted knowledge 

that the states in the lower band 

tail are generally localized. This 

inappropriate suggestion of the cal­

culated mobility is considered to 

come from the crude approximation 

(GG)-:::::.(G)(G). 

Fig. 16. Electrical conductivity tT and mo­

bility tt as functions of the Fermi ener­

gy w=wF; F(w) and n('UI) are also 

plotted for comparison. 
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§ 7. Discussion 

1,0 

0.5 

w 

In the present paper, we have proposed a method to study the electronic 

structure of topologically disordered systems in which a short-range order in the 

atomic distribution is retained, while a long-range order characteristic of the 

crystal is lost. The one-electron Green function G ( w) is expanded in the tight­

binding representation and a partial summation of the perturbation expansion 

series for G ( w) is derived. In the summation, the effect of clustering is included 

by counting all sorts of complicated single-site diagrams up to the infinite order. 

The atomic distributionfunctions are expressed by means of pair-correlation func­

tions g (R) based upon the extended chain approximation and taken into account 

in the process of ensemble-average. For actual calculatiop, some of model liquids 

and one real liquid are employed, and the radial distribution functions for these 

liquids are made use of. The density-of-states, etc., are evaluated in accordance 

with the non-self-consistent (NSC) scheme and the self-consistent (SC) scheme 

in our theory. It has been concluded that making the treatment self-consistent 

is essential in several respects. Especially, singularities inherent in the NSC 

calculation of the density-of-states are removed when the SC theory is applied. 

Moreover, the SC theory gives a physically reasonable dependence of the band-
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edge position on the packing fraction, while the NSC theory fails to. Another 
conclusion is that, even in the framework of the extended chain approximation 
for the atomic configuration and the single-site treatment of the perturbation series 
of G ( w), the calculated density-of-states and other electronic properties reflect 
the short-range order which is measurable in terms of the atomic distribution 
functions. Although some quantitative alternation may be introduced ·when· the 
approximations are improved, it is expected that the qualitative features of the 
density-of-states reflecting the types of pair-correlation functions are substantially 
unmodified. 

Several possibilities are considered in order to develop better approximations. 
One possible step is to include higher-order terms such as double-site diagrams 
as shown in Fig. 17. The transfer integral H(R) multiplied by g(R) in the 
above formulation may be replaced by H(R) g (R) [1- {G<0l}2H(R)H( -R) ]-1• 

Another way to improve the approximations is to relax the condition of a quasi­
orthogonal set of atomic orbitals and to count the effect of non-orthogonality, 
which will be studied in a 'succeeding paper.7l 

W2{Rmn)= /"+ /~~+ ~~ f·· 
m tn~ m~ 

. . 
Fig. 17. Some of the double-site diagrams. 

Although most of the discussion and numerical calculations are concerned 
with some models for liquid metals, the theory is as well applicable to amorphous 
metals, doped semiconductors, etc. In the popular doped semicondutors of physi­
cal interest, the hard-core diameter (Ja* is comparable with the ion-core diameter 
and is of about a few A, while the effective Bohr radius is far larger, i.e., ""'100A, 
and therefore (J is small, which corresponds to a small packing fraction 1J. 
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