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The emergence of scanning tunneling microscope (STM) lithography and low temperature molecular beam

epitaxy (MBE) opens the possibility of creating scalable donor based quantum computing architectures. In

particular, atomically precise Si:P monolayer structures (δ-doped layers) serve as crucial contact regions and

in-plane gates in single impurity devices. In this paper we study highly confined δ-doped layers to explain the

disorder in the P dopant placements in realistically extended systems. The band structure is computed using

the tight-binding formalism and charge-potential self-consistency. The exchange-correlation corrected impurity

potential pulls down subbands below the silicon valley minima to create impurity bands. Our methodology is

benchmarked and validated against other theoretical methods for small ordered systems. The doping density

is shown to linearly control the impurity bands. Disorder within the Si:P δ-doped layer is examined using an

extended domain to describe the effects of experimentally unavoidable randomness through explicitly disordered

dopant placement. Disorder in the δ-doped layer breaks the symmetry in the supercell and creates band splitting

in every subband. Vertical segregation of dopants is shown to dramatically reduce valley splitting (VS). Such VS

can be used as a measure of ideality of the fabricated Si:P δ-doped layer. Although the resulting disorder induces

density of states fluctuations, this theoretical analysis shows that δ-doped layers can serve as quasimetallic 2D

electron sources even in the presence of strong nonidealities.

DOI: 10.1103/PhysRevB.84.205309 PACS number(s): 71.15.−m, 71.23.−k, 73.22.−f

I. INTRODUCTION

There has been rapid progress using scanning tunneling

microscopy (STM) to pattern phosphorus donors in silicon

using phosphine gas and then encapsulating them with low

temperature molecular beam epitaxy (MBE).1,2 The combi-

nation of these two technologies has created the possibility

for controlling dopant placement in silicon with atomic-scale

precision in all three dimensions. Using this technology,

experimentalists have built a variety of planar, highly doped

phosphorus δ-doped devices embedded in silicon (Si:P) such

as tunnel junctions, quantum dots, and nanowires.3–5 More

importantly, the precise incorporation of donors enables the

potential realization of donor-based quantum computers.6–10

Central to these planar Si:P device architectures is a highly

conductive 2D δ-doped sheet.11–14 By patterning the 2D

δ-doped layers into specific geometries, they can act as both

Ohmic contacts as well as gates for the control of electron

and spin transport through singly placed donor impurities in

quantum computing architectures. Understanding the impact

of impurity placement and position both within the plane and

vertically in 2D δ-doped sheets is important for understanding

the electron transport in highly confined, STM-patterned ar-

chitectures and essential for continuing efforts in experimental

device design.

Over the past few years a detailed understanding of the

incorporation mechanism of P atoms into silicon using phos-

phine gas has been developed.15–17 From this understanding it

has been possible to use an STM to lithographically position

single P atoms into the top atomic layer of silicon by opening

a hole in a hydrogen resist and annealing to temperatures of

350 ◦C.17 This anneal causes the phosphine gas to loose its

hydrogen atoms on the surface before a single P atom can

incorporate into the top layer of silicon, displacing a silicon

atom. The incorporation anneal can also be performed on

a phosphine saturation dosed sample. At saturation dosing

after room-temperature exposure, depending on the dosing

conditions the surface coverage will be a disordered alloy

of PH2 + H and PH + 2H. However, after the incorporation

anneal the final P dopant density invariably takes the nominal

value of 0.20–0.25 ML with the P atoms located in random

positions within the top layer of the Si surface.16 The high

doping density means that the P atoms are typically 1 nm

apart, which is much smaller than the Bohr radius. As a result,

one can expect extensive wave function overlap and metallic-

like behavior within atomically controlled 2D nanostructured

domains.

There have been efforts made to experimentally identify the

electronic structure of MBE fabricated δ-doped layer in silicon

by Eisele et al. using resonant tunneling spectroscopy.18–20 The

fabricated δ-doped layer was about 2 nm thick with the doping

density exceeding 1013 cm−2 and it showed quantized energy

levels originating from 2D subbands confined in the layer.

To compute the electronic structure of δ-doped layers, several

theoretical studies have been published. Initially, the potential

profile was computed using a Thomas-Fermi approximation

and then subsequently superimposed to the diagonal elements

of the Schrödinger equation to compute confined energy levels

in different types of δ layers in silicon.21–24 More rigorous
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self-consistent calculations were carried out by Qian et al. by

computing such systems using planar Wannier orbitals based

on an empirical pseudopotential method (PP) and parabolic

dispersions of silicon subbands.25 Cartoixà et al. focused on

determining Fermi level fluctuations with temperature and

doping density in the Si:P δ-layer structure using atomistic

sp3s∗ tight-binding (TB) calculations with an antibonding

orbital model.26 However the sp3s∗ model is well known

to misrepresent X points in the conduction band,27 and it

is clear that the basis size is too small to describe L and X

valleys.27–29 Carter et al. has calculated band structures of

Si:P δ-doped layers using different atom configurations within

density functional theory (DFT).30 The computational burden

of DFT calculations, however, prevents the method from

extending to 2D systems and structures with realistic degrees of

disorder, which require large supercell domains. To overcome

the computational limitation, a mixed-atom pseudopotential

(MP) was recently examined, which reduces the level of ab

initio input. This method has been shown to compare well with

earlier theoretical studies.31 In the MP approach, however,

atomistic effects cannot be handled since the model assumes

an averaged nuclear charge between silicon and phosphorus in

the δ layer.

Thus, to date all theoretical works have focused on either

ordered configurations or limited disorder using small domain

sizes; none of them have been able to investigate the effect

of realistic disorder in Si:P δ-doped layers using an extended
domain, which is critical for a reasonable approximation of

random dopant placement. Examining how disorder plays

a role in the electronic properties of Si:P δ-doped layers

will ultimately provide a critical theoretical background for

experimentalists. Therefore, the focus of this paper is to

develop the methodology to handle sufficiently large domains

to validate this approach against others, and then to investigate

the effect of horizontal and vertical disorder on the electronic

structure in highly doped monolayer systems.

Atomistic representation in realistically extended spatial

domains is essential to represent dopant disorder effects. The

nanoelectronic modeling tool (NEMO3D)32–35 can simulate

atomistic structures of realistic size and include nonparabol-

icity of bulk materials automatically by using an empirical

sp3d5s∗ TB model. NEMO3D has been successful in mod-

eling a spectrum of systems in which atomistic details and

interface effects are important to understand device behavior,

such as phosphorus impurities in silicon devices,36–40 valley

splitting in miscut Si/SiGe quantum wells,41 and InGaAs

embedded InAs quantum dots.42 Having demonstrated our

ability to model phosphorus in silicon accurately using an

atomistic approach, we expanded NEMO3D’s capabilities to

run efficiently on peta-scaled computer systems and included

a charge-potential self-consistent loop.32–35 We now apply

NEMO3D-peta to a highly doped Si:P system to explore

atomistic effects on the electronic structure of δ-doped

layers.

The paper is organized as follows. Section II summarizes

the simulation methodology and structure modeling. Sec-

tion III discusses the electronic structures of Si:P δ-doped

layers and shows the effect of disorder on band structures.

Section IV summarizes and concludes the paper.

1/4ML (ordered)

1/4ML
1/4ML (vertical spread)

FWHM=0.2
(disordered sample)

[010][100]

[001]

Si:P δ-layer
120ML

(~16nm)

[010]

[100]
Si P
Minimum supercell

)b()a(

)d()c(

Si

FIG. 1. (Color online) (a) The simulation structure used to

represent a 2D Si:P δ-doped layer encapsulated by silicon of thickness

120 ML. 2D periodic boundary conditions are imposed along the

doping plane. (b) A perfectly ordered 1/4 ML (1.7×1014 cm−2) Si:P

supercell used for the atomistic simulations. In this case, p(2 × 2)

represents the smallest supercell marked in red. (c) An example of a

disordered supercell, where p(8 × 8) is used for disorder simulations.

(d) An example representing vertical segregation of the dopants with

a Gaussian distribution (FWHM = 0.2 nm). Note: the lattice constant

of silicon is a = 0.54 nm.

II. METHODOLOGY

Simulation structure: The physical structure used in this

work is depicted in Fig. 1(a). To represent the infinite sheet of

the Si:P δ-layer buried in silicon, periodic boundary conditions

are applied to both in-plane directions ([100]/[010]). The

silicon substrate and encapsulation layer along [001] is

assumed to be intrinsic. We have calculated that at 4 K a

minimum confinement thickness of 120 monolayers (ML), or

approximately 16 nm is needed to avoid hard wall boundary

effects. At such large encapsulation thicknesses we find

variations of eigenenergies smaller than 3 meV upon further

increase in buffer size. Figure 1(b) shows the top view of δ layer

with 1/4 ML (1.7×1014 cm2) doping density in a perfectly
ordered p(8 × 8) unit cell. In such an ordered configuration,

the minimum supercell that we can use is p(2 × 2), which

corresponds to 960 atoms with a 120 ML buffer. The p(8 × 8)

cell corresponds to a total atom count of 15,360 atoms. Figure

1(c) shows an example of a disordered dopant configuration.

Scrambling the dopant placement can be readily achieved

due to the nature of atomistic simulations. However, disorder

simulations require a larger supercell of at least p(8 × 8)

to account for random effects in band structures. A similar

approach can be applied for electronic structure simulations

of III-V or SiGe alloys.43 The vertical straggle of dopants

can also be simulated by using Gaussian distributions to

model diffusive penetration of dopants from the δ-doped plane

205309-2
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FIG. 2. (Color online) The graphical representation of self-

consistent band structure calculation. Eigenstates are computed out

of the single electron Schrödinger equation for each k point and

subband. The equation is comprised of an atomistic TB Hamiltonian

and external potential profiles. The Fermi level (EF ) is determined at

the charge neutrality condition which equates the number of electron

charge to the number of total impurity charge. The charge is then

integrated to determine the electron density [n(r)]. The potential

profile is subsequently computed at a given electron density. The

electrostatic potential {VH [n(r)]} is computed by solving Poisson’s

equation based on a finite difference grid. A correction is included for

electron-electron interaction effects {VXC[n(r)]} based on LDA.46 The

potential profile is the sum of electrostatic and exchange-correlation

potentials and it is finally fed back into the Schrödinger solver for the

next iteration of the charge calculation.

[Fig. 1(d)]. We use a measurement temperature of 4 K for all

numerical experiments. At 4 K it is valid to only consider the

conduction band occupation since electrons are only coming

from the donor levels and not from thermal excitation from

valence bands. Band gap and valence electrons are therefore

ignored in the charge calculations presented here, even though

our 20 band sp3d5s∗ model provides accurate results.

Self-consistent procedure: The simulation approach used

in this work is to obtain the potential profile and band

structure with charge density based self-consistent calculation

using NEMO3D-peta.44,45 The self-consistent loop has been

applied previously to observe the temperature dependence of

electronic properties in Si:P δ-doped layers.45 The graphical

representation of the self-consistent methodology is shown in

Fig. 2. First, eigenstates of the δ-doped layer from an atomistic

sp3d5s∗ TB single electron Hamiltonian28 are computed over

the first Brillouin zone (BZ) in the discretized 2D k space. Only

conduction band states are of interest in these simulations,

since the intrinsic carriers are frozen out at low temperature and

all carriers in the δ-doped layer are provided by the donors. We

can therefore reduce the basis size from 20 to 10 in the sp3d5s∗

model by only considering a single spin explicitly. This reduces

the computational burden by at least a factor of 2. The Fermi

level (EF ) of the system is determined iteratively by the

charge neutrality condition, which assumes the total number

of electrons to be equal to the number of donors. The local

density of states (LDOS) is obtained by binning k states and by

integrating the LDOS over the occupied 2D k space, resulting

in the electron charge profile [n(r)] of Si:P δ-doped layer.

The electron charge density profile is used to

determine two different terms that enter the Schrödinger

equation: the Hartree potential and the exchange-correlation

potential. The Hartree term VH [[n(r)]] can be obtained by

solving Poisson’s equation with a given electron and donor

ion profile. All charge contributions are treated as local point

charges on a zincblende lattice. Electron-electron interactions

must also be taken into account in such many-electron systems.

To first order we include an analytical form of exchange

and correlation functionals {VXC[n(r)]}46 based on the local

density approximation (LDA),47 which lowers the total energy

of the system and modifies the wave function.48 To obtain

the local charge density in space from the point charge in the

atomistic grid, the charge is assumed to be uniform within a

finite volume around each atom. The volume around each site

is computed as the volume of the unit cell divided by number of

atoms per unit cell. Therefore the local electron charge density

used for the exchange-correlation potential can be calculated

as the amount of charge at each site divided by its surrounding

volume. Note that VXC is treated as a linear function of

electron density and therefore is computed only for electrons

from donors, assuming the exchange-correlation effect of the

frozen-out valence electrons {VXC[nV (r)]} of silicon is inher-

ently included in the TB Hamiltonian {VXC ≈ VXC[n(r)] +

VXC[nV (r)]} . More rigorous calculation considering the non-

linear behavior of VXC in atomistic TB formalism is beyond the

scope of this paper, but can be found in other density-functional

based methodologies that also utilizes a TB scheme.49

In general, convergence is difficult to achieve because of the

sharp potential variations around each impurity location and

the low temperature condition. Therefore, the under-relaxed

potential [V (r)] is updated for the next iteration of the charge

calculation and the charge-potential loop is continued until

the mean square value of the potential is converged to within

0.1 meV. Convergence is typically achieved in about 25–35

iteration steps. The computations are carried out on state-of-

the-art cluster machines50 with 2 GB of memory per core and

a typical total compute time of 48 h using 256 cores.

III. RESULTS

A. Equilibrium properties of the ordered Si:P δ layer

Band structure: Figure 3(a) compares the equilibrium band

structure of the 1/4 ML Si:P δ-doped layer plotted with respect

to the silicon bulk band minimum with the band structure of the

pure silicon structure (without the δ-doped layer) of the same

minimal unit cell p(2 × 2) as depicted. The δ-doped layer

creates a strong confinement [Fig. 3(b)] and pulls down the

bands significantly, causing large splitting between confined

subbands. The positions of the 1Ŵ, 2Ŵ, � valleys, and Fermi

level (EF ) all reside under the silicon bulk band edge and are

within the confinement potential created by the δ-doped layer.

The first few subbands in this band structure can be easily

interpreted by the band projection of the bulk silicon valleys

as shown in Fig. 4. The two out-of-plane valleys marked in dark
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FIG. 3. (Color online) (a) Equilibrium band structure of an ideal

ordered 1/4 ML Si:P δ-doped layer at 4 K. The band structure of a

pure silicon structure with the same dimension without the δ-doped

layer is plotted (dashed line) for comparison. (b) Potential profile

plotted along confinement direction ([001]) passing through impurity

site. The relative position of the valley minimum point and Fermi level

with respect to the silicon conduction band minimum is indicated.

color are projected to the kx-ky plane to form 1Ŵ and 2Ŵ bands,

while the remaining four in-plane valleys are projected along

kx,y = ±0.18 × 2π/a in the reduced zone scheme. The lower

quantization energy (∝ m∗−1) of Ŵ-projected valleys is always

observed since the confinement mass is larger in Ŵ-projected

valleys (ml = 0.91m0) than in the remaining in-plane valleys

(mt = 0.19m0). The sharp electrostatic confinement in the z
direction due to the screened donor potential creates a very

narrow quantum well, which results in a large valley splitting

(VS, E2Ŵ − E1Ŵ) of ∼25 meV. This VS in a V-shaped QW51

is an order of magnitude larger than the VS of typical Si-SiGe

quantum wells.52

Table I compares the Fermi level and valley minimum

values with results from other methods for the ordered 1/4

Δ

1Γ,2Γ -400

-300

-200

-100

 0

 100

 200

 0  0.05  0.1

[100]

k (2π/a)

En
erg

y (m
eV

)

FIG. 4. (Color online) Band projection diagram for the highly

confined 2D δ layers. Two valleys (dark) along the z-confinement

direction are projected to the Ŵ point and four other valleys are

projected to their own positions.

ML δ-doped layers. The overall comparison results show that

the atomistic TB approach predicts reasonable values for the

band minima and Fermi level with respect to other methods.

Computed Fermi levels stay very close to each other except for

the MP method. Since the MP method uses an averaged dopant

representation, it may result in a weakly confined potential,

which causes a Fermi level shift and reduced valley splitting.31

DFT predicts a larger VS and lower Ŵ valleys but a higher �

valley. PP shows similar values to our results but smaller VS.

A major difference of the PP method can be seen by comparing

the details of the band structure, which for PP is based on a

parabolic band assumption.25 Details such as nonparabolicity

and band anticrossing, which may cause nonlinear modulation

of low-bias conductance, are not taken into account in the PP

method.

Potential and charge: The charge profile along the confine-

ment or z direction is shown in Fig. 5. 96% of the charge is

confined vertically within 21 monolayers (<3 nm) from the

donor positions, leaving the donor charges in the δ-doped layer

perfectly screened. Therefore, the potential profile along the

confinement direction decays faster than the ideal Coulombic

potential (∝ r−1) and the local field vanishes within a range

of ±20 monolayers (±3 nm) from the δ-doped layer. Our

charge distribution (FWHM = 0.81 nm = 7 ML) agrees well

with both DFT and MP calculations, which predict 0.67 nm

(DFT) and 0.84 nm (MP), respectively.30,31 The temperature

dependence of the charge screening in such Si:P δ-doped layers

is described further in Ref. 45.

TABLE I. Energies obtained from different models of the 1/4 ML

Si:P 2D δ layers showing the Fermi energy, 1Ŵ, 2Ŵ, and 1� bands in

meV (reference: silicon EC = 0.0 meV).

Approach EF 1Ŵ 2Ŵ 1�

This work −110 −394 −369 −242

Wannier/PP25 −111 −410 −400 −270

TB (sp3s∗)26 −110 N/A N/A N/A

DFT30 −110 −540 −420 −210

DFT/MP31 −62 −445 −425 −236
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FIG. 5. (Color online) Charge profile of a perfectly ordered

1/4 ML Si:P δ-doped layer at 4 K. 90%, 96%, and 99% of the charge

is confined within 15 (2.03 nm), 21 (2.85 nm), and 31 (4.21 nm)

ML, respectively. For reference, FWHM = 7 ML (0.81 nm) and it

contains 66% of the charge.

B. The effect of doping density in the Si:P δ layer

To examine the doping density dependence on the Si:P

δ-doped layer band structure, different numbers of impurities

are placed in a 4a × 4a simulation domain. The doping density

conversion table which relates the discrete atomistic density

with the more common per square centimeter density is

provided in Table II. As the doping density increases, more

subbands are occupied under the Fermi level to maintain

charge neutrality. Stronger electrostatic coupling contributes

to a further downshift of the subbands, promoting an increased

number of occupied subbands [Fig. 6(a)]. Our model predicts

a linear dependence of the critical 1Ŵ, 2Ŵ, and � energies as

a function of doping density as shown in Fig. 6(b). A slight

increase in VS as the doping density increase indicates that the

potential confinement of the δ-doped layer is also becoming

stronger. A more gradual trend of the � valley compared to Ŵ

valleys is predicted since the density of states (DOS) effective

mass of the � valley is larger. In other words, even a small

inclusion of sub-bands originating from � valleys causes a

TABLE II. Conversion table between doping constant and number

of impurities in the 4a × 4a supercell. Total number of atoms in the

δ layer is 32.

P coverage 1/6.4 1/5.3 1/4.6 1/4.0 1/3.6 1/3.2 1/2.9

Doping (1014 cm−2) 1.06 1.27 1.48 1.70 1.91 2.12 2.33

Impurities 5 6 7 8 9 10 11

larger increase in DOS and occupied states compared to the

lighter Ŵ valley subbands.

C. The effect of disorder in the Si:P δ layer

In reality it is impossible to make a perfectly arranged

infinite δ-doped layer. Random dopant incorporation causes a

disordered donor configuration within the Si:P δ-doped layer.

The Si:P system can be viewed as a random alloy system

with a different set of bonding parameters (Si-P, P-Si, Si-Si)

and an additional electrostatic potential caused by the donor

charges screened by their electrons. This is analogous to

typical III-V and Si-Ge alloys in heterostructures that have

different TB and strain parameters and bond lengths. For

δ-doped layers, however, it is computationally more intensive

to obtain the dispersion since the potential has to be computed

self-consistently. The simulation of such random alloy systems

is generally performed with repeated supercells that represent

the randomness. While true band structures only exist for

large supercells, the existence of band gaps and effective

masses in alloys validates the concept of an approximate band

structure.53

Supercell geometry: To represent the electronic properties

of a realistic alloy system, a large enough supercell is needed to

mimic the random nature of the target system and to consider

a sufficient number of statistical samples. Since the potential

profile in a Si:P δ-doped layer requires heavy computation,

it is difficult to collect enough samples without a reduced

supercell. Therefore, to set up a reasonable supercell geometry,

the size is first increased to 8a × 8a in the periodic plane

to appropriately represent randomness (Fig. 1). The cladding

thickness is reduced to save the overall computational burden
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FIG. 6. (Color online) (a) Band structure results of 1/6.4, 1/4.0, and 1/2.9 ML δ-doped layers. Inset in each band structure plot provides

dopant placement used for the simulation. Due to odd number of dopants in 1/6.4 and 1/2.9 ML cases, unavoidable disorders are present.

(b) Valley minimum values of different doping densities plotted with respect to the Fermi level. Statistical samples of 1/4.0 and 1/2.9 ML

cases are plotted against other doping cases.
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FIG. 7. (Color online) (a) Eigenvalues of valley minima with

respect to Fermi levels vs encapsulation thickness. The relative

position stays constant down to 64 ML regardless of the thickness. (b)

Energy change of 1Ŵ, 2Ŵ, and � measured against 120 ML structure.

Inset provides a zoom-in view of energy difference down to 40 ML

and difference is less than 1 meV.

and to enable the collection of a sufficient number of samples.

To determine the minimum cladding thickness to satisfy the

above conditions without losing any physical meaning due to

artificial domain boundaries, the valley minima with respect

to the corresponding Fermi levels are compared with varying

encapsulation thicknesses (120, 96, 80, 64, 40, and 24 ML).

As shown in Fig. 7, valley energies vary little within 1 meV

indicating the minimal effect on the band structure down to

40 ML. Therefore it is reasonable to reduce the encapsulation

thickness from 120 to 64 ML in modeling disordered samples,

which reduces the overall computational burden by 50%.

In-plane disorder: Initially, we considered a δ-doped layer

with a disordered dopant configuration within the atomic

dopant plane. Figure 8 compares the effect of disorder with

a 1/4 ML ordered supercell. Multiple band crossings of the Ŵ

and � originating bands occur due to the repeating supercell

structure as shown in Fig. 8(a). In contrast, disordered config-

urations couple some of these bands such that they anticross.

The disordered dopant configuration used for the disordered

sample [Fig. 8(a)] also breaks the translational symmetry

along [100]/[010], introducing distortions to every subband.

AC1–AC2 and AC3–AC4 labeled in the band structures in

Fig. 8(a) are the major anticrossings in the impurity subbands

for the ordered and disordered cases, respectively. Figures 8(b)

and 8(c) compare the effects of disorder on the potential and

charge density in the impurity plane. The disordered charge

shows a significant charge accumulation in impurity clusters,

while the ordered array shows a much smoother background

charge distribution. However, the randomness causes little

change in the positions of the 1Ŵ, 2Ŵ, and � valleys, as seen

in Fig. 6(b) where the statistical results of valley energies for

1/2.9 and 1/4.0 ML are indicated.

Since the band structure of the large supercell is com-

plicated without much insight beyond the lowest two band

edges, we also study the density of states (DOS). Figure 9

compares the DOS between the ordered and disordered Si:P

δ-doped layers. The ordered layer (Fig. 9, dashed line), shows

a nonparabolicity of the first two subbands as seen from the

(a)
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FIG. 8. (Color online) (a) Band structure comparison between

ordered and an example of disordered supercell. Zone unfolding

relationship in the perfectly ordered case is displayed (top) and the

band structure of ordered 8a × 8a supercell (bottom left) is shown

next to the disordered supercell (bottom right) for direct comparison.

AC1–AC2 and AC3–AC4 indicate gaps due to the band anticrossing in

the ordered and disordered supercell, respectively. The anticrossings

affect the density of states distribution, which will be discussed in

Fig. 9. Comparison of the (b) potential and (c) charge profile between

ordered and in-plane disordered supercell shown in (a).

gradual increase in the DOS. A perfectly parabolic dispersion

would show a flat DOS. The steep increase in the DOS at

−130 meV indicates the turn-on of the � bands, which have a

larger DOS mass (ml = 0.9 > mt = 0.19). The first subband

(1Ŵ) turns off at around −100 meV due to band anticrossing,

resulting in a decrease of the DOS at this energy as observed.

At the AC1–AC2 gap in Fig. 9, the DOS is lowered due to

anticrossing of the impurity bands indicated in Fig. 8(a).

The DOS for the disordered δ-doped layer (red line) has

a couple of interesting features compared to the ordered

case. The disordered DOS in Fig. 9 is averaged over 20
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FIG. 9. (Color online) DOS comparison between ordered (dashed

line) and disordered Si:P δ-doped layers (solid lines). Fluctuations in

DOS for ordered supercell is shown between AC1 and AC2 which is

caused by band anticrossing labeled in Fig. 8(a). Similar fluctuation

is also captured in disordered supercell between AC3 and AC4. For

disordered cases, the DOS for single sample (blue) and the DOS

averaged over 20 samples (red) are indicated.

statistical samples. Again, the � valley contribution can be

identified easily regardless of complicated subband splitting.

This subband splitting in addition to the gaps in the BZ

boundaries create additional fluctuations in the DOS as

indicated in the energy range AC3–AC4 of Figs. 8(a) and

9. Despite these additional DOS fluctuations, the overall DOS

appears very similar to the ideally ordered DOS and the DOS

is large enough to constantly provide electrons to the attached

narrow leads, which clearly have a smaller DOS. We note that

it is the DOS fluctuation at the Fermi level that will modulate

the conductance in the low bias regime. However, the variation

of the conductance is expected to be minimal among samples

fabricated under the same doping density.

Out-of-plane (vertical) disorder: Finally, to simulate what

would happen if there were dopant diffusion leading to disorder

out of the δ-doped layer, a Gaussian distribution of dopants

with a varying FWHM is considered assuming a vertical

segregation of no more than 7 layers, or 0.81 nm. To date

the maximum limit of vertical segregation of δ-doped layers

encapsulated at low temperatures of 250 ◦C has been measured

experimentally to be 0.58 nm.11 To mimic this finding in

simulation, 1/4 ML is taken into account and an ensemble

of 20 samples for every case (FWHM = 0.0, 0.15, 0.2, 0.3,

and 0.4 nm) is considered.

Figure 10(a) compares the valley minimum values of these

samples. Spreading out the doping out of the central layer

can be associated with a weak doping reduction in that

particular layer. Such doping reduction allows the impurity

bands to rise slightly in energy (compare with Fig. 6). A

more significant effect is seen by the reduction of the strong

confinement, which will be most evident in the VS between

the Ŵ valleys [Fig 10(b)]. A perfect Si:P δ-doped layer

exhibits large VS (∼27 meV) with small variations. On the
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FIG. 10. (Color online) (a) 1Ŵ, 2Ŵ, and � valley minimum values

are plotted with respected to the Fermi level vs vertical impurity

segregation. Statistical samples of vertical segregation of dopant

atoms with a nominal 1/4 ML doping is considered. (b) Valley

splitting as a function of vertical segregation.

contrary, as the vertical impurity segregation increases, the

VS decreases significantly. As a result measuring the VS

experimentally, such as by using Schottky-barrier tunneling

spectroscopy,18,20,54,55 can be used to determine the degree of

vertical dopant diffusion.

IV. CONCLUSION

We use an empirical tight binding, self-consistent poten-

tial approach to model realistically extended Si:P δ-doped

layer structures. The methodology is validated against other

approaches, such as DFT and pseudopotential methods. The

scalability of the NEMO methodology enables us to study

supercells that resemble realistically disordered systems. We

compare statistical samples for dopant disorder in the doping

plane and out of the doping plane, and study the sensitivity

to doping density. The δ-doped layer creates a Coulombic

quantum well that confines electrons in a dense quasimetallic

impurity band under the standard silicon conduction band. An

increased doping density is found to increase the confinement

and to lower the impurity band energies. The 1Ŵ, 2Ŵ, and �

bands all depend linearly on the doping, but react to doping

changes at a different rate, mainly due to the DOS effective

mass difference. In-plane disorder is predicted to only weakly

affect the VS and DOS of the quasimetallic sheet. Doping

disorder leads to an increased DOS modulation close to the

Fermi energy, thus in turn leading to stronger conductance

variation with device gating. Out-of-plane disorder shows a

significant effect on the band edges and VS. VS is predicted

to be reduced with increased out-of-plane disorder. The strong

VS modulation may serve as a metrology tool to gauge vertical

doping straggle in a well-controlled sequence of experiments.

With extensive simulation results, we provide new information

about the properties of these highly confined sheets that

will guide experimentalists in understanding and validating

electronic properties of Si:P δ-doped layers.
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26X. Cartoixà and Y. C. Chang, Phys. Rev. B 72, 125330 (2005).
27G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A.

Cwik, and A. Stoica, Superlattices Microstruct. 27, 77 (2000).
28J. M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Rev. B 57,

6493 (1998).
29T. B. Boykin, G. Klimeck, and F. Oyafuso, Phys. Rev. B 69, 115201

(2004).
30D. J. Carter, O. Warschkow, N. A. Marks, and D. R. McKenzie,

Phys. Rev. B 79, 033204 (2009).
31D. J. Carter, N. A. Marks, O. Warschkow, and D. R. McKenzie,

Nanotechnology 22, 065701 (2011).
32G. Klimeck, F. Oyafuso, T. B. Boykin, R. C. Bowen, and P. von

Allmen, Comput. Model. Eng. Sci. 3, 601 (2002).
33G. Klimeck, S. Ahmed, H. Bae, N. Kharche, S. Clark, B. Haley,

S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski,

T. Boykin, and R. Rahman, IEEE Trans. Electron Devices 54, 2079

(2007).
34G. Klimeck, S. Ahmed, N. Kharche, M. Korkusinski, M. Usman,

M. Prada, and T. Boykin, IEEE Trans. Electron Devices 54, 2090

(2007).
35S. Ahmed, N. Kharche, R. Rahman, M. Usman, S. Lee, H. Ryu,

H. Bae, S. Clark, B. Haley, M. Naumov, F. Saied, M. Korkusinski,

R. Kennel, M. McLennan, T. B. Boykin, and G. Klimeck, Ency-

clopedia of Complexity and Systems Science (Springer, New York,

2009), pp. 5745–5783.
36G. P. Lansbergen, R. Rahman, C. J. Wellard, I. Woo, J. Caro,

N. Collaert, S. Biesemans, G. Klimeck, L. C. L. Hollenberg, and S.

Rogge, Nat. Phys. 4, 656 (2008).
37R. Rahman, C. J. Wellard, F. R. Bradbury, M. Prada, J. H. Cole,

G. Klimeck, and L. C. L. Hollenberg, Phys. Rev. Lett. 99, 036403

(2007).
38R. Rahman, S. H. Park, J. H. Cole, A. D. Greentree, R. P. Muller,

G. Klimeck, and L. C. L. Hollenberg, Phys. Rev. B 80, 035302

(2009).
39R. Rahman, S. H. Park, T. B. Boykin, G. Klimeck, S. Rogge, and

L. C. L. Hollenberg, Phys. Rev. B 80, 155301 (2009).
40R. Rahman, G. P. Lansbergen, S. H. Park, J. Verduijn, G. Klimeck,

S. Rogge, and L. C. L. Hollenberg, Phys. Rev. B 80, 165314

(2009).

205309-8

http://dx.doi.org/10.1016/S0039-6028(03)00485-0
http://dx.doi.org/10.1016/S0039-6028(03)00485-0
http://dx.doi.org/10.1021/nl048808v
http://dx.doi.org/10.1103/PhysRevB.75.121303
http://dx.doi.org/10.1038/nnano.2010.95
http://dx.doi.org/10.1103/PhysRevB.76.085403
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1103/PhysRevA.62.012306
http://dx.doi.org/10.1103/PhysRevA.62.012306
http://dx.doi.org/10.1103/PhysRevB.69.113301
http://dx.doi.org/10.1103/PhysRevB.69.113301
http://dx.doi.org/10.1103/PhysRevB.72.045350
http://dx.doi.org/10.1103/PhysRevB.74.045311
http://dx.doi.org/10.1063/1.1516859
http://dx.doi.org/10.1063/1.1516859
http://dx.doi.org/10.1063/1.1827940
http://dx.doi.org/10.1063/1.2996582
http://dx.doi.org/10.1063/1.2996582
http://dx.doi.org/10.1063/1.3245313
http://dx.doi.org/10.1063/1.3245313
http://dx.doi.org/10.1103/PhysRevLett.93.226102
http://dx.doi.org/10.1103/PhysRevB.74.195310
http://dx.doi.org/10.1103/PhysRevB.74.195310
http://dx.doi.org/10.1103/PhysRevLett.91.136104
http://dx.doi.org/10.1103/PhysRevLett.91.136104
http://dx.doi.org/10.1051/jphyscol:1987555
http://dx.doi.org/10.1051/jphyscol:1987555
http://dx.doi.org/10.1016/0169-4332(89)90897-0
http://dx.doi.org/10.1016/0749-6036(89)90107-9
http://dx.doi.org/10.1103/PhysRevB.57.6286
http://dx.doi.org/10.1016/S0927-0256(00)00175-0
http://dx.doi.org/10.1016/S0927-0256(00)00175-0
http://dx.doi.org/10.1103/PhysRevB.58.15675
http://dx.doi.org/10.1103/PhysRevB.50.8699
http://dx.doi.org/10.1103/PhysRevB.50.8699
http://dx.doi.org/10.1103/PhysRevB.71.045309
http://dx.doi.org/10.1103/PhysRevB.71.045309
http://dx.doi.org/10.1103/PhysRevB.72.125330
http://dx.doi.org/10.1006/spmi.1999.0797
http://dx.doi.org/10.1103/PhysRevB.57.6493
http://dx.doi.org/10.1103/PhysRevB.57.6493
http://dx.doi.org/10.1103/PhysRevB.69.115201
http://dx.doi.org/10.1103/PhysRevB.69.115201
http://dx.doi.org/10.1103/PhysRevB.79.033204
http://dx.doi.org/10.1088/0957-4484/22/6/065701
http://dx.doi.org/10.1109/TED.2007.902879
http://dx.doi.org/10.1109/TED.2007.902879
http://dx.doi.org/10.1109/TED.2007.904877
http://dx.doi.org/10.1109/TED.2007.904877
http://dx.doi.org/10.1038/nphys994
http://dx.doi.org/10.1103/PhysRevLett.99.036403
http://dx.doi.org/10.1103/PhysRevLett.99.036403
http://dx.doi.org/10.1103/PhysRevB.80.035302
http://dx.doi.org/10.1103/PhysRevB.80.035302
http://dx.doi.org/10.1103/PhysRevB.80.155301
http://dx.doi.org/10.1103/PhysRevB.80.165314
http://dx.doi.org/10.1103/PhysRevB.80.165314


ELECTRONIC STRUCTURE OF REALISTICALLY . . . PHYSICAL REVIEW B 84, 205309 (2011)

41N. Kharche, M. Prada, T. B. Boykin, and G. Klimeck, Appl. Phys.

Lett. 90, 092109 (2007).
42M. Usman, H. Ryu, I. Woo, D. Ebert, and G. Klimeck, IEEE Trans.

Nanotech. 8, 330 (2009).
43N. Kharche, M. Luisier, T. Boykin, and G. Klimeck, J. Comput.

Elec. 7, 350 (2008).
44S. Lee, H. Ryu, Z. Jiang, and G. Klimeck, in 13th International

Workshop on Computational Electronics 2009, IWCE’09 (Beijing,

2009).
45H. Ryu, S. Lee, and G. Klimeck, in 13th International Workshop

on Computational Electronics 2009, IWCE’09 (Beijing, 2009).
46E. Gawlinski, T. Dzurak, and R. A. Tahir-Kheli, J. Appl. Phys. 72,

3562 (1992).
47R. G. Parr and W. Yang, Density-functional Theory of Atoms and

Molecules (Oxford University Press, 1994).

48E. Wigner, Phys. Rev. 46, 1002 (1934).
49T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel,

D. Porezag, S. Suhai, and R. Scholz, in Computer Simulation of

Materials at Atomic Level (Wiley, New York, 2005), pp. 41–62.
50[http://top500.org].
51T. B. Boykin, G. Klimeck, P. von Allmen, S. Lee, and F. Oyafuso,

J. Appl. Phys. 97, 113702 (2005).
52T. B. Boykin, G. Klimeck, M. A. Eriksson, M. Friesen, S. N.

Coppersmith, P. von Allmen, F. Oyafuso, and S. Lee, Appl. Phys.

Lett. 84, 115 (2004).
53T. B. Boykin, N. Kharche, G. Klimeck, and M. Korkusinski, J. Phys.

Condens. Matter 19, 036203 (2007).
54D. C. Tsui, Phys. Rev. Lett. 24, 303 (1970).
55M. Zachau, F. Koch, K. Ploog, P. Roentgen, and H. Beneking, Solid

State Commun. 59, 591 (1986).

205309-9

http://dx.doi.org/10.1063/1.2591432
http://dx.doi.org/10.1063/1.2591432
http://dx.doi.org/10.1109/TNANO.2008.2011900
http://dx.doi.org/10.1109/TNANO.2008.2011900
http://dx.doi.org/10.1007/s10825-008-0191-9
http://dx.doi.org/10.1007/s10825-008-0191-9
http://dx.doi.org/10.1063/1.351435
http://dx.doi.org/10.1063/1.351435
http://dx.doi.org/10.1103/PhysRev.46.1002
http://top500.org
http://dx.doi.org/10.1063/1.1913798
http://dx.doi.org/10.1063/1.1637718
http://dx.doi.org/10.1063/1.1637718
http://dx.doi.org/10.1088/0953-8984/19/3/036203
http://dx.doi.org/10.1088/0953-8984/19/3/036203
http://dx.doi.org/10.1103/PhysRevLett.24.303
http://dx.doi.org/10.1016/0038-1098(86)90066-9
http://dx.doi.org/10.1016/0038-1098(86)90066-9

	Purdue University
	Purdue e-Pubs
	11-14-2011

	Electronic structure of realistically extended atomistically resolved disordered Si:P delta-doped layers
	Sunhee Lee
	Hoon Ryu
	Lloyd Hollenberg
	Michelle Simmons
	Gerhard Klimeck

	tmp.1324304118.pdf.bwBXE

