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ABSTRACT

The linear combination of Gaussian orbitals (LCGO) method has been
adopted in developing a spin-polarized molecular orbital calculation
code. The calculations are based on density functional theory using
local density approximation for the exchange-correlation potential. A
variational fitting method is used to obtain a charge density fit to
avoid the need for using four-center integrals in evaluating the Coulomb
potential. The matrix elements of the exchange potential are evaluated
by direct numerical integration using a doubling grid developed for this
purpose. Self-consistent solutions have been obtained using this method
for Feg and Fe15 clusters with open boundaries and with body-centered
cubic symmetries. The convergence of several properties to those of
bulk has been examined, and a good similarity could be obtained between
the bulk density of states and that of Fe15 confirming the result
obtained from the multiple-scattering (MS)-Xa method. The charge and
spin densities for the central atom were found to be very different from
those of bulk iron in agreement with the results reported by other
authors. However, present results seem to exhibit stronger tendency of
minority-spin electron flow to the central site than was obtained by MS-
Xo method. The ionization potential of the Fe9 cluster is determined by
the transition state method and good agreement with experiment is
obtained. Fe,C and Fe

8 14
impurity effects in clusters.

C clusters have also been considered to study

viii



CHAPTER 1

INTRODUCTION

There has been increasing interest during recent years in the local
atomic environment in a solid due to the beliefs shared by many groups
of physicists that many properties of solids are almost determined by
interactions in the local atomic environment.l’2 This concept has some
experimental support and regards boundary conditions as having relative-
ly little influence on the overall electronic structure.3-®

This topic has been extensively reviewed and is formulated as the
Invariance Theorem (though it is not a rigorous theorem) which states
that the density of states and especially the integrated density of
states is relatively an invariant quantity independent of boundary
conditions.2

There are other topics which motivate current interest in the local
atomic situation. These include surface science, amorphous materials
and crystalline solids with impurities or with aperiodic symmetry such
as alloys. This work is a contribution to those aspects of physics
where the model of perfect lattice periodicity is not appropriate.

Though the existence of situations with an essential lack of
periodicity is the main motive for interest in the local electronic
picture, application of this point of view will also be helpful in

describing a system with perfect crystalline symmetry, but with emphasis

given to local situations such as bonding interactions. By abandoning



the Bloch representation, we can have a better physical picutre of local
interactions between an atom and its nearest neighbors in which the
situation is viewed using chemical bonding concepts.

In such a description, almost all information is expected to be

contained in the local density of states

n(E,F) = n(E) 14 (F) 1°

where n(E) is the total density of states of the system. The idea that
the local density of states has an ‘'invariance property' regardless of
boundary conditions has a long history starting from Friedel's
pioneering work in connection the theory of dilute random aHoys.2 But
theoretical confirmations of such a view could not be attempted until
recently due to difficulties in computation as will be discussed
later. Recently there have been disputes about this point by several
authors and lack of more convincing results confirming this point of
view still leaves some doubts on this idea.6’7

Although the idea of considering an atom in its local environment
with arbitrary boundary conditions to represent an atom in an extended
periodic lattice could be a different problem than that raised by the
above argument, there has been an attempt to identify the central atom
plus some neighbors in an open boundary condition as equivalent to the
atom in a bulk environment.8 Such an attempt could have been stimulated
by experimental evidences such as fo]]ows.3 The ferromagnetic ordered

alloy Fe3A1 has a body-centered cubic symmetry having two types of iron



sites: The D-site for which all eight neighbors are also iron atoms,
and the A-site where only four of its neighbors are iron atoms. What is
remarkable about this example is that the magnetic moment measured on D-
site is 2.14 Bohr magnetons (uB), close to that for an atom in bulk iron
2.2 ug (the magnetic moment on A-site is 1.46). In this example, just
one shell of iron neighborations was enough to make a D-site iron atom
have the moment characteristic of pure bulk material. We should note
however, that this example does not have open boundary conditions. With
an open boundary condition and limited number of neighbors the central
atom may behave very differently from a solid atom. In fact, a theorem

9 suggests that the local density of states of the central

by von Laue
site for a free cluster cannot become similar to that of a bulk site
unless the central site is located far from the boundary, which means a
very large cluster. Part of our objective is to study the properties of
local atoms for different types of boundary conditions.

We have discussed an example for which the local environment mainly
determines the physical properties of the central atom. As examples
which can support the notion of 'invariance property', many amorphous
materials showing significant amounts of crystalline properties can also

10 It is believed that these amorphous materials never-

be considered.
theless have significant amounts of short range order which are respon-
sible for crystalline properties (however, there has been some
controversy on this point recently). If the 'invariance property' could
find some basis, then cluster calculations could be a good starting

point for discussing situations such as liquids or glasses.



There are quite a lot of problems for which cluster calculations
could be useful. Consider systems containing impurities, hydrogen impu-
rities in transition metal systems, for example. The remarkable
phenomenon that the density of hydrogen per unit volume is greater in
some metal hydrides than in either liquid or solid hydrogen makes such a
system a very fascinating one.13 Carbon impurities in iron provides
another example. It is well-known that the mechanical properties of
iron depend strongly on its carbon impurity content. This system has
been of enormous practical interest in human history but no significant
theoretical study on this system has been done so far.l4

Other than such atomic impurities or vacancy problems, magnetic
impurities (such as iron, nickel, etc.) in non-magnetic hosts such as
copper are other types of situations where a cluster approach can be
effective. We could hope to have some explanations on phenomena such as
the Kondo effect from first principles ca]cu]ations.8 The Kondo effect
could be explained so far only by many-body theory using an s-d interac-
tion model.

Other than impurity problems, surface structure calculations could
be another area of app]ication.15 There has been a tremendous amount of
interest on surface problems in recent years. Though a cluster system
cannot be directly related to a solid surface system, it certainly can
give a good physical picture of surface structure for finite size
clusters at least. Small transition metal clusters are known to be very
important in catalysis. It is also known that catalytic properties of

small transition metal clusters less than 108 in size are quite dif-



ferent from those of solid surfaces.16 Through calculations of such
clusters, we may have some explanations on why the transition metals
play such an important role in catalysis, throUgh surface structure
analysis. Transitijon metals also seem to play an important role in

17 Iron 1in

certain biological systems such as enzymes and proteins.
hemoglobin is an example. These systems may be too complex to be
handled by present techniques, but it could be possible to understand
such systems through cluster calculations in the future.

There has been enormous progress in molecular orbital calculations
in recent years due to interest in the areas mentioned and to the
development of high speed computers. Unlike solids or atoms, molecular
systems usually require a very large orbital basis. In solids with
periodicity, Bloch's theorem reduces the size of the orbital basis to
that required for a single unit cell. But in molecular orbital
calculations, some types of approximations are always made due to the
necessity of a large orbital basis. Sometimes these approximations are
quite severe.

The most successful methods dealing with large clusters include the
multiple-scattering (MS)-Xo method and the Discrete Variational Method
(DVM).18’19 The MS-Xa method is a cluster version of the Green's
function method (or KKR method) used in band structure calculations and
employs muffin-tin approximation to the crystal potential in an
essential way. A variety of systems have been studied using this method
and it has proved itself to be a reliable method which can produce

reasonable results. Attempts to prove the 'invariance property' from



sophisticated first-principles calculations was made for the first time
using this method with reasonable success. But lack of more convincing
results following this work using other methods led to objections to the
conclusions made from the resuits of this method, especially by those
who used the Hartree-Fock method.7 Other results from a local density
approximation calculation using a different method should help settle
this dispute.

The DVM is another powerful method which depends completely on

20,21 In this method, every integral

numerical integration technique.
needed for the calculation is determined by direct numerical integration
using a grid based on the Diophantine method.22 Complete dependence on
numerical integration is DVM's advantage as well as its disadvantage.
For example, this method can employ any type of orbital basis and can
handle systems with arbitrary geometry, whereas the MS-Xa method is not
suitable for systems 1ike diatomic molecules. On the other hand, this
method adopts a fitting of the charge density and has to adopt frozen
core approximation almost necessarily for transition metal systems to
control the number of grid points used for integration. This method has
been used extensively on many systems containing impurities and with
embedding boundary conditions.23’24
Though it has never been used on large molecular systems, there is
another method calied LCAO-Xa which has been very successful for small
molecular systems.zs’26 In this method, the charge density as well as

the exchange-correlation potential is fitted by a sum of analytic func-

tions. Results obtained using this method for diatomic molecular



systems have been given endorsement from a recent local density calcula-
tion in which almost no approximations were made at al1.27

Other than the methods based on local density approximations which
we have discussed, the Hartree-Fock (H-F) method may be worth mentioning
though it has never been successfully used for transition metal systems.
The H-F method has a well-known problem of generating zero density of
states at the Fermi level in metals. Furthermore, due to the number of
four-center integrals which increases as the fourth power of the size of
the orbital basis, the H-F method cannot be used for large molecular
systems without significant reduction in the size of the orbital
basis.28 Semi-empirical H-F methods which make drastic approximations
for some integrals have been found to be very ineffective for transition
metal systems.29

We have adopted a variational fitting method which will be de-
scribed in detail in the next chapter, to avoid the troublesome four-
center integrals needed for evaluating the Coulomb potential. The
exchange-correlation potential has been treated exactly using a direct
numerical integration approach. A doubling grid in three-dimensional
space has been developed for this purpose.

Our method has been applied to Fe9 and Fe15 cluster systems with
open boundary conditions. Emphasis was given to checking the
"invariance property' of the density of states for these clusters.
Also, properties of the central atom in these clusters were studied to
check the feasibility of impurity containing cluster calculations. Our

method has been developed for systems with full cubic point group



symmetry only. For systems with other types of symmetry, a new
symmetrized orbital basis set needs to be found and a new set of grid
points should be determined. 1In its present form, our method can be
used for spin-polarized calculations in many other types of clusters
having full cubic symmetry.

We can think of other problems which could be handled with the
present method with proper embedding techniques. Once we have a suit-
able embedding condition with which the central atom in a cluster can be
made similar to an atom in a bulk environment, we can replace that
central atom with an impurity atom of our interest. This type of calcu-
lation could give us valuable informations about the properties of
solids containing impurities.

In addition, we can consider spin impurity systems in connection
with the transition state scheme. With an artificial constraint of
keeping the central atom with no spin polarization (geometrical shapes
such as Wigner-Seitz cell could be used for this purpose as a first
approximation), we can determine the energy needed for flipping one spin
in a system.18 This energy obtained from a first principles calculation
can be used to estimate the Curie temperature of ferromagnetic
materials.

Another problem of interest is the Kondo effect. Considering that
many-body approaches interpreted the situation only through the interac-
tion of impurity d-electrons and host s-electrons, we could probably
present a better explanation from first principles calculations in which

there are not only d-s interaction but also d-p and d-d interactions.69



It is generally known that there are also significant overlap between d-
electrons on different sites.

This dissertation is organized as follows: In Chapter II, the
general outline of the method of calculation is discussed. This in-
cludes the general description of the computational techniques, review
of the existing methods for molecular orbital calculations and a de-
scription of the method we used in the present work. In Chapter III, we
will discuss the results obtained using the present method and a com-
parison with the results obtained from other methods will be made.
Finally, the general conclusions we could make from the present work
will be presented in Chapter IV. Appendix A discusses the grid points
we used for numerical integration in this work. The symmetrized basis
forms for the simple cubic, body-centered cubic, and face-centered cubic
symmetry's first nearest-neighbor atomic arrangement are presented in

Appendicies B, C, and D.



CHAPTER 11

THE METHOD OF CALCULATION

This chapter consists of six sections. In Section A, a general de-
scription of computational techniques is presented. Section B contains
a discussion of the tight-binding method which is the computational
basis of present work. A review of the existing methods is presented in
Section C and Sections D and E contains detailed description of the
techniques we used for the Coulomb and the exchange potential matrix
element evaluation. Finally, the actual computational procedure we

followed to reach a self-consistent solution is described in Section F.

10



A. General Description

The question of how to describe the complicated potential for an
electron moving in the field of other electrons is one of the most
challenging topic in ab initio calculations. The true Hamiltonian we
have to deal with is the many-body Hamiltonian

2L, N 1 Z,1

N
2
H= § [-V; - ) ——+ boe—=1+
SRS A MRS S R LR Roet

in which the primes denote no summation for identical terms. (Rydberg
unit of energy will be used throughout this dissertation.)
Attempts to solve this Hamiitonian by use of the variational

principle led to the Hartree and Hartree-Fock one electron equations.27

The traditional Hartree-Fock (H-F) method, which is still used
extensively among chemists, has been disastrous in appiications to
soh'ds.54 For example, it generates zero density of states at the Fermi
energy for metals and also gives very wide bandwidths to sp-bonded
materials. The use of configuration interaction to incorporate electron
correlations is successful in small systems but quite impractical for
large ones. The major difficulty in application of the H-F method is
the enormous number of four-center integrals to be evaluated which

)4

increases essentially as (NB) ', where NB is the number of orbital basis

being used.28’31
Due to such enormous difficulty encountered in obtaining exact H-F

solutions, several semi-empirical approximations to this method such as

1
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the Extended Huckel (E-H) and the complete neglect of differential

31 These approximations made the H-F

overlap (CNDO) method appeared.
equation somewhat easier to solve and were partly successful in describ-
ing simple systems with efficiency. But the semi-empirical molecular
orbital calculations of transition elements are complicated by strong
interactions of nearly free electron (NFE) Tike sp-orbitals and rather
localized d-orbitals. This interaction causes hybridization of orbitals
which is manifested clearly in the band structures of transition
elements. In such a situation, it becomes quite difficult to estimate
any semi-empirical parameters. A detailed comparison of the E-H and
SCF-Xo-SW method when applied to transition metal clusters showed grave
discrepancies in the results obtained, indicating the difficulties
involved in proper parametrization in the semi-empirical methods.16 The
energy level distribution in the E-H method was very different from that
of SCF-Xa-SW method, and a comparison with the bulk density of states
showed no resemblance at all for the E-H result though the SCF-Xa-SW
result gave a reasonable resemblance. It is interesting to note that
whenever such Targe discrepancies occurred between cluster and solid
properties due to too many approximations, these have usually been
routinely attributed to the small cluster size, namely surface effect.
Although it has been pointed out that the semi-empirical methods
within the H-F approximation are not effective, especially for the
transition elements, and although these methods are becoming more obso-
lete in the present high-speed computer age, we give a brief review of

this approach before going on to discussions on methods other than the
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H-F method.

The importance of the E-H method lies in the fact that it is one of
the pioneering methods which was simple enough to handle complex
molecules. It was introduced in simplified form by HuCke132 in 1931 and
was further extended for better accuracy by others.33’34 The principle
jdea in this method lies in approximating the diagonal elements of the
Fock matrix by appropriate parameters such as ionization potentials and
assuming the off-diagonal elements to be proportional to the overlap

matrix elements such that

ac a

S

* Heg) Seg

HaB

0.5 K(Haa
in which K is a parameter usually in the range 1.0-2.0. The CNDO is a
more advanced form of approximating the H-F equations which assumes the
overlap matrix to be diagonal. This method makes less severe
approximations to Fock matrix elements than the E-H method but still
carries a severe approximation providing no significant improvement in
general over the E-H result.

We have discussed major difficulties in the H-F method and its poor
behavior when applied to the transition elements. On the other hand,
the local density approximation to the density functional theory of the
exchange-correlation potential was found to produce remarkably good

results in almost all problems with less computational difficulty. This



approach has started from the work of S]ater35 in which he sought to
approximate the H-F equation which is easier to handle and practicable
in more complicated systems. He rewrote the one electron H-F equation

in a form

['Vz tV Wt VXc] Y = Epv

n'n

in which VN = I ZZQ/I;-ﬁzl is the nuclear attraction potential and
2

is the Coulomb interaction potential between the electrons. ch is the
non-local exchange potential written in a local potential form. It was

]1/3

suggested that VXC ~ [p(;) can be used as an approximation to the
actual non-local exchange potential. This result which was obtained as
an approximation to the H-F equation later found its theoretical basis
in the density functional theory which reproduced the same functional
form with a slightly different factor using the free electron gas
mode1.36’37 There have been further improvements in the local density
functional form afterwards and it has become indispensible in the ab
initio calculations of solid state physics.38’39 Obviously the great
advantage of such a form results from the local nature of the exchange-

correlation potential and a possibility of doing without four-center

integrals.

14
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Though it has become possible to have the one-electron Schrvdinger
equation with a local exchange-correlation potential, the numerical
nature of its functional form again causes other types of computational
difficulties. Due to the difficulties even in this simpler form in ab
initio calculations, some sort of approximations are usually made in
practice. These include the pseudo-potential approximation,40 frozen

20 and the semi-empirical methods within the local

core approximation,
density approximation. The semi-empirical methods usually draw some
information from an experiment or a very accurate computational result
and put this in a parameterized form. Several attempts have been made
to parametrize one electron calculation, employing fitting and inter-

4l These

polation, sometimes together with the pseudo-potential method.
efforts certainly helped generate reasonable results with efficiency but
the physical implications involved in the parameterization step could
not always be made clear.

The frozen core approximation is another way of simplifying the
complexities in real calculations and has been used extensively in the
Comp]ete1y numerical discrete-variational method (DVM) in cluster calcu-
1at1’ons.24 This approach exploits the well-known property that the core
electrons are not influenced very much by bonding interactions, and
assumes the core states to be the same as the atomic core states. A
possible complication in this approximation is the problem of ortho-
gonalizing the valence orbital basis to the core electron states for

every atom in the c]uster.29
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Pseudo-potential approximation has been enormously successful in
semiconductor calcuiations and could be another attractive approach.
But so far it has not been exploited much in cluster ca]cu]ations.42
The handling of the angular momentum dependent (non-local)
pseudopotential can be a possible difficulty in this case. The task of
generating a reasonable pseudo-potential form for the transition metal
atoms could be another problem, since singificant spatial overlap of the
very localized d-electrons with the core orbitals could cause difficulty
in properly incorporating the exchange-correlation potential
contribution from the core electrons in the pseudo-potent1a1.43’44 This

is due to the non-linear nature of local density functional form for

charge density, i.e.,

(pl + 02)1/3 # p%/3 + p%/3 .

In our present procedure, we have not employed any of the above
approximations and have made straightforward calculations within the
Tocal density approximation. The only significant approximation we
adopted is the charge density fitting which is done to make this proce-
dure more practicable by avoiding the evaluation of too many four-center
two-electron integrals which are needed if we want exact treatment of

the Coulomb potential.



B. Tight Binding Method and Orbital Basis

Tight Binding method was proposed as far back as 50 years ago by F.
B]och,45 but it has only been recently that any substantial amount of
work based on this method have been accomp]ished.46 This was mainly due
to the difficulties in evaluating three-center 1ntegra1s.47 Therefore,
this method was used mostly for qualitative description incorporating
the semi-empirical approaches such as parameterization and fitting.41

This method has been given particular attention in recent years
because it is particularly suitable for describing the local electronic
structure which must be understood when dealing with systems without
lTattice periodicity. This method is also expected to be more
appropriate for materials with less overlap of valence orbitals between
neighboring atoms such as transition metals where we are primarily
interested in the relatively localized d-electrons. A localized orbital
basis approach has been enormously successful in the 3d-transition metal
elements band structure calculations using the Gaussian type orbitals?®
and is also expected to be more effective than any other method in
studying the local electronic structure of transition metal clusters.

In this method, a conceptual picture of the situation is very

simple. A wave-function is expressed in terms of an appropriate set of

orbitals such as Slater type orbitals (STO) or Gaussian type orbitals
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(GTO) ™ such that

¢a,2 - ¢a(r - ﬁz)

17
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v=1 a ¢
a,8 o ‘al

In this case, o denotes the type of orbital at the site ﬁz on which it
is centered. When ¢a's are the atomic orbitals itself, the method is
called the Linear Combination of Atomic Orbitals (LCAO) method. Usually
¢, 1s not strictly an atomic orbital and could be either an independent
Gaussian or a contracted combination of Gaussians in practical use.28

Gaussian type orbitals are usually preferred in molecular orbital
calculations relative to STO's because of their advantage in evaluating
the multi-center integrals. The multi-center integrals can be evaluated
analytically in GTO basis set whereas straightforward analytic
evaluations is not possible with STO's. The STO basis set is more
appropriate in atomic calculations than in molecular orbital
calculations and we have adopted GTO's as the basis function type in
this procedure.

The main drawback of Gaussian type functions is that it does not
resemble nicely the actual atomic orbitals in Tacking cusp near the
origin and in having an undesirable form far away from the origin.3l
The necessity of a large number of basis functions due to such
unrealistic form is the main disadvantage in using this type of
function. (Twice as many basis functions are generally needed for this
type of function compared to the more realistic STO's.) The contraction
of the basis set which restricts the relative freedom of the several

independent Gaussians is usually adopted if the large number of basis

functions causes difficulty.
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The angular functions attached to each Gaussian type function are
to be appropriately chosen depending upon the system of interest. In
systems with a cubic group symmetry, the Kubic Harmonic functions are
the natural choice and adopted in this work also as has been done in the
46

band structure calculations of cubic metals,”” namely (x,y,z)-type for

2, 322-r2, Xy-, yz-, zx-type for the d-

the p-type orbital basis and x2—y
type orbital basis. For systems with symmetry other than cubic symmetry
group, othér types of angular functions could be considered. The
angular function type should be chosen according to the principle of
being able to describe the bonding and anti-bonding states properly.
Although the traditional Tight-Binding method has been used in a
form of LCAO-method which takes the atomic orbitals as its basis set, we
adopted independent Gaussian type orbitals in this work following the
previous band ca]cu]ations.46 This choice is expected to give more
flexibility for the core orbitals to readjust in the new environment
which is important in molecular systems. But this also could cause

excessive amounts of computer time.

With the given ansatz
v =1 Cios

the Schrdinger equation can be expressed as
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in which

j
m

ij <¢i IHI ¢j>
and

w
i

ij <¢i I¢j> M

This leads to the Secular equation

‘Hij - E Sij' =0

for non-trival solutions of {Ci}' This condition gives the desired
eigenvalues and eigenfunctions of the Hamiltonian matrix. In general,
orbital basis ¢s's are not expected to be mutually orthogonal though
they can be assumed to be normalized. Thus, the overlap matrix S is
usually not a diagonal matrix. Hij contains one-, two-, and three-
center integrals and the terms can have the significance of on-site
energies, hopping integrals, etc.49

The size of the matrix dimension for H and S equals the total
number of orbital basis functions chosen for the system and it could
become intolerably large for molecular systems. In systems with Tattice
periodicity, Bloch's theorem allows simplification to a much smaller
size in matrix dimension determined by the number of functions needed to
describe atoms in a single unit cell. For large molecuiar systems, it

is almost inevitable to block-diagonalize the Hamiltonian matrix using

the symmetry of a system whenever possible. This helps reduce the size
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of matrix to be diagonalized and can be a critical factor for efficient
calculation.

In this work, basis orbitals were put in symmetrized forms before
starting the calculation for such purpose. The usual method of generat-
ing symmetrized basis 1is the projection operator technique.SO Brief
explanations of the generating procedure and tables of symmetrized basis
forms generated for the simple cubic (SC), body-centered cubic (BCC) and
face-centered cubic (FCC) nearest neighbor geometry are listed in the
Appendix. For systems having a symmetry other than the full cubic group
Oh, the same technique can be used to generate proper symmetrized basis
sets.

Using the symmetrized form of the basis set can provide more compu-
tational advantages than just block diagonalizing the total Hamiltonian

matrix. Consider the typical Hamiltonian matrix element

ke k

_ 2
'ij -<X.] IHE %G

>
J

H

in which x§ denotes a symmetrized function belonging to k-th row of the

i-th representation. It can be shown that

ke _ 1 nn
His™ =30y Si%e & M
if H is unchanged under all operations of the group such that [Pa,H] =0

for all operation Pa in the group.S1 The Hamiltonian of a system is

certainly invariant under any group operations. The above equation



22

shows that the matrix element H§§ is independent of the row k, and all
elements between the functions belonging to different representations i
and j or different rows k and £ in the same representation are
identically zero. This means that if the total Hamiltonian matrix is
block-diagonalized, then many of the small blocks are identical
(degenerate) if they belong to the same representation, i.e., in most
cases we need to deal with only a single row in a given representation
if it is degenerate.

Added to the above stated advantages, we have found the following

property in the matrix element evaluation. For,

X. = ) a6
L %%y

X, = ) a ¢!
Vv m m m

in which ¢'s are the independent Gaussians and a's are the coefficients

in the symmetrized function, it was also found that

1}

<1}

.
w

rFe =
<ad Ixu >
where

= ! = | =
So z < ¢1|xu > =< ¢2|xu > eaes
Therefore, we have

112
lanl? < oflx, >

< xulxv > = 0

3t
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allowing us to find the integral related to a single term in x  if there
are several terms in the combination. Furthermore, if the angular
functions were given in a polynomial form such as (x+y+z)¢,, it was
found in many cases that it is necessary to evaluate integrals related
to just one term of the polynomial. Information was given in the input
data as to whether such symmetry property could be used. This property
was used in evaluating not only the overlap matrix but also the
Hamiltonian matrix elements. All the information about the symmetrized
orbital basis was provided as input data for the programs.

Choosing an appropriate set of exponents for the Gaussian functions
is another important task in such variational calculations. The present
work employed the same Gaussian exponents was used by Wachters in atomic
self-consistent ca]cu]ation,52 which gives 14 s-type, 9 p-type and, 5 d-
type orbitals to describe 3 d transition metal atoms. There are
indications that orbital exponents of the atoms are not necessarily most
appropriate for molecules as can be seen in the hydrogen molecule
variational calculation. Though slight variations of the exponents can
be expected to give better variational solution, it is not easy at all
to determine which set of exponents is best suited for each different
systems. Normal practice is to take the atomic orbital exponents unless

other obvious modification is necessary.



C. Review of the Existing Methods

Before going into description of the procedure used in the present
work in the following sections, several successful methods of cluster
calculation being widely used will be discussed in this section. This
will be helpful in understanding the difficulties involved in molecular
orbital calculations and discussing relative merits between several
different methods.

As has been discussed before, use of localized orbitals is
undisputably natural and proper in describing local electronic structure
in contrast to other types of bases such as plane waves. The Discrete
Variational Method (DVM), LCAO-Xa, and Recursion Method are examples
developed under this principle of tight-binding method. There has been
another quite successful method called the Multiple Scattering-Xa (MS-
Xa) developed as a cluster version of the KKR Green's function method in
soh’d.18 This method assumes muffin-tin potential approximation and can
determine exact solution of the Schrtdinger equation by numerical
integration method within this potential approximation.

The DVM may be the most widely used method in the cluster
calculations within the LCAO method. This method has been extensively
used for large transition metal clusters as well as for small molecular
systems.zo’s3 This method has its basic characteristics in its
completely numerical treatment of the calcultation. Due to this property
it can take any form of basis functions, sometimes even numerical

basis. Because of its complete dependence on effectiveness of numerical

24
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integration, DVM mostly resorts to frozen core approximation to control
the number of points needed in the integration, for which the

d-22 Due to the

Diophantine integration scheme is usually adopte
difficulty in evaluating the Coulomb potential at each grid point,

charge density fitting is almost indispensible in this method such that

where the f(;) are a set of functions chosen for this purpose). Once

such a form is obtained

~, >
v.(F) = | =2t &%

[} >
Ir - rkl

can be used to find the Coulomb potential at the necessary points and

W+ ¥edig = 1 o) gR) = () + v, (7

can be evaluated in a straightforward way. The main advantage of DVM
lies in the freedom in choosing any form of basis and the ability to
handle systems with arbitrary geometries. The main disadvantage of DVM
lies in the 1imitation of the number of points it can take for numerical
integration. This difficulty usually forces DVM to use frozen core
approximation to limit the number of points in practical range. Use of
the DVM has been quite successful in many impurity containing clusters

and possible embedding conditions have also been exp]ored.24’53
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Another successful method in molecular calculations within the
tight-binding approximation is the LCAO-Xa method, although this method
has never been applied to large molecular systems. This method is
essentially an extension of the work of Sambe et a1.25 in which the
charge density and exchange-correlation potential were fitted into some
analytic functions. By such extensive use of fitting, the necessity of
four-center integrals for the Coulomb potential could be eliminated and
the difficulty of handling numerical data for exchange-correlation
potential could be avoided. Fitting of key quantities by use of simple
analytic functions naturally provided good efficiency but the difficulty
involved in the fitting remains to be the major obstacle in this method.
The original least square fitting scheme for charge density was modified
into the variational fitting scheme (see next section) for better
fitting quality by Dunlap et a1.26 Bond-centered functions were also
added to nuclear-centered fitting basis functions in their diatomic
molecular ca]culation.27 Their result with such elaborate fitting
effort was proved to be quite satisfactory from the later work of
Painter et al. in which exact treatment of the Coulomb potential using
the four-center integrals was done.55 Other than the cumbersome problem
of choosing a proper fitting basis set, this method can give quite
satisfactory results with efficiency. In our present work, we have
adopted the variational fitting scheme used in this LCAO-Xa method.

Somewhat alien to the above described approaches, but another
popular LCAO method for cluster calculations is the Recursion Method./0

This ingenious approach for solving the Schrvdinger equation from local
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electronic point of view could be applied to clusters of even more than
100 atoms and to surface problems. However, realistic potentials can
not be employed in this method. The main objective of the Recursion
method in practical applications is limited to finding the Tocal density
of states of a system from localized orbital model. The main idea of
this method is transformation of the Schrbddinger equation into a chain
model which should be determined appropriately for each particular

system such that

H IUn> = a, lUn> + bn+1 |Un+1> + bn IUn-1>
The state |Un>, which is a linear combinatin of the localized orbital
basis, is expected to represent the n-th shell from the central atom.

The parameters a, describe the coupling of each environment to itself

and bn the coupling to its neighbors.

We have described several successful approaches within the tight-
binding method. These methods utilize the localized orbital basis to
describe the Tocal electronic structure. Completely different from the
above types of approaches, but which has nevertheless been successful in
many aspects is the MS-Xa method.18 Major defect of this method is the
artificial partitioning of space into muffin-tin type potentials. To
handle the open boundary situation which does not occur in solids, a
large sphere enclosing the whole cluster (called the Watson's sphere) is
added to the otherwise normal muffin-tin potentials. Another muffin-tin

type potential (spherically symmetric) is assumed in the region outside
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this Watson's sphere. The shortcomings of this method are manifested
most severely in systems Tike diatomic molecules, but otherwise this
method could produce quite reasonable results with efficiency in many
situations. A Tlot of our results obtained from the present calculation
will be compared later with the results obtained from this Ms-Xa method.
We have described several successful methods in the molecular

orbital calculations. The method we have used in this work for large
transition metal clusters is not completely novel and could be regarded
as a modification of some of the described methods. Specifically, we
have adopted the variational fitting method for charge density as in the
LCAO-Xo method. OQur procedure for handling the exchange-correlation
potential may be regarded as having the same technical implication as in
DVM, the only difference being the different choice of grid points for

its numerical integration.



D. Coulomb Potential and Charge Density Fitting

In this section, details of the charge density fitting are
discussed in connection with the Coulomb potential matrix element
evaluation. As has been pointed out, exact treatment of the Coulomb
potential necessitates evaluation of the numerous time consuming four-
center integrals in the tight-binding method.28 This has been the major
bottleneck in the H-F-Roothaan method (or LCAQO-HF) and has been the main
reason why the H-F method could not be applied to large molecular
systems.

Though the four-center integrals (which are also called two-
electron integrals among chemists) are an indispensible part of the H-F-
Roothaan method in which both the Coulomb and exchange potential matrix
elements are expressed in terms of these integrals, it is not the case
in the local density approximation (LDA) method. Within the LDA scheme,
the exchange-correlation potential has to be treated numerically and we
are less dependent on the four-center integrals than in the H-F-Roothaan
method. In fact, an appropriate approximation for treating the Coulomb
potential is inevitable if the LDA method is to be practicable for large
molecular systems. Use of the four-center integrals for exact Coulomb
potential treatment without any approximation is also plausible in the
LDA approach for small molecular systems but will face the same serious
problem as in the H-F-Roothaan method as the system becomes large and,
therefore, a large number of bases needed. One of the approximations

being widely used at the moment is the charge density fitting. In this
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approach, the charge density of a system is cast into some given form of
analytic functions. This has the effect of reducing the number of
integrals to be evaluated from being proportional to (NB)4 to
approximately (NB)3, where NB is the number of orbital basis used.
Charge density fitting was first used by Sambe et al., in their

25 In their work the charge density was

small molecular system studies.
fit in a least-square sense, i.e., by minimizing the square of deviation
in the fitted and real charge density. Dunlap et al. further modified
this least square fitting method into the variational fitting method and
used it in their diatomic molecular ca]culations.27’56 Their idea was
to minimize the error involved in the Coulomb energy due to fitting and
not the charge density as in the least square fitting. Procedure for

the multi-center charge density fitting is as follows: In the least

square fitting method, the quantity to be minimized is defined as
D=1 & [P - F(NI°

in which

and {aj}, {fi(F)} being the fitted coefficients and fitting bases
respectively. NFB is the number of fitting bases employed. Although
the fitted charge density is almost normalized, strict normalization can

be achieved by demanding



';%,‘[D+>\N]=0(i=l, NFB)
in which

N= DS aff @ =) For=dd
and

n; = / f5(r) a3 .

N is the total number of electrons in the system and A the Lagrange

muitipler. Imposing the conditions
0= [D+AN , (i=1, NFB)

i

we find the solution for 2 as

= s (T+arn

=
~—

[T 4

in which

S..
13
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Be requiring the normalization condition

N=hed=ne(S+8) +rn-(sih

we get
NN R Ol 3
he (s

for the Lagrange multiplier.
The variational fitting exactly follows this procedure except that

the quantity to be minimized is replaced by

(o(F) - 8(F)) (e(r*) - 5(F"))

D' = [f d3rd3r
=[p-o10-57]
This means minimizing the error in the Coulomb energy due to fitting

rather than the error in charge density. Definition of T and S should

be replaced by

ot
. -
]

HONENON

Sty = [F(F) 1 F,(7)]

where brackets are for expressions as is given in D'. These integrals
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are special types of two-electron (four-center) integrals we discussed
already. One of the great advantages we have in the Variational Fitting
method is that the approximate value of total Coulomb energy of the
system could be evaluated immediately out of the quantities already

calculated. It can be shown easily that

U= [o(F) | o(F')]

2[p 121 - [P | o] + [20 | 20]

Therefore

in which the contribution from [Ap | Ap] term has been neglected.
Superiority of the variational charge density fitting compared to
other types of fitting schemes such as the least square fitting of
charge density or potential has been discussed in detail by Mintmire et
a1.56 There are several points worth mentioning about the computational
advantages in the Variational Fitting (VF) relative to the least square
fitting. First, three center integrals in 1 need not be calculated in
the VF-Method. Evaluation of ' in the VF is necessary for the matrix
element calculation anyway if we ask for the analytical evaluation of
matrix element from the fitted charge density. Avoiding the evaluation

of three-center integrals in t was found to give great savings in effort
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and complexity as well as in computer time. Second, the VF can give
quantities which can be a good check for the accuracy of fitting without

any further effort. The quantities

[plp]=);ait!i
;
and
5 1pl=:2za. a.sS'.
(e | p] ) a; aJ i

should be very close to each other for an acceptable fitting quality.

We could adopt the VF-method in this work because our choice of the
Gaussian type orbital basis allows analytical evaluation of the two-
electron integrals needed in the VF-method quite efficiently. It should
be noted that the two-electron integrals cannot be evaluated by numeri-
cal means in practical sense due to its double space integral nature.
The ability to evaluate two-electron integrals analytically also gives
our method no restriction in performing all-electron calculation. The
main reason why DVM has to adopt the frozen core approximation is due to
the necessity of allocating very large number of points near the atomic
centers around which the charge density is varying extremely rapidly.
This is a very undesirable situation because atomic core region is the
region of least interest due to its almost frozen characteristics.
Therefore it is almost inevitable to have the frozen core approximation
and least square fitting if the integral quantities needed in the

fitting procedure are to be evaluated numerically.
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The detailed steps for calculating the necessary quantities in

fitting is as follows. Let

#) x.
W, = [ ddrdder K ‘

1]

[fk | X XJ]

in which {fk} are the charge density fitting basis and {xi} are the

symmetrized orbital basis. It can be noted that

and that M?j is equivalent for symmetrized basis pairs (x%,xj) for all
rows in a given representation. This is due to the fact that {fk} are
the functions invariant under all group operations making up the speci-
fic point group and the selection rules property described in Chapter
II, Section B. (It should be noted that {fk} are chosen to assume the
same form as some of the symmetrized basis functions belonging to the
identity representation, which are invariant under all point group
operations.)

Consider the charge density expression belonging to some arbitrary

representation R having dimension d(R)

pR(?) =
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in which r denotes rows and g, the occupancy of the n-th energy level.

Then the component of t& due to the representation R becomes

[telg /] a3rddr

in which Mﬁ. has been used as a quantity independent of rows as has been
discussed and {Cni} are the eigenfunction coefficients of the n-th
energy level. It is assumed here that {Cni} have been made identical
for different rows in a given representation by a proper normalization

of the basis functions, making {Cni} independent of the rows.
Now we can discuss an important result out of this form. Because

{gn}, {an}, and M?j have been shown to be the quantities independent of

different rows, we can put t, as

17 = k
[tk]R = d(R) [} 9 Z Cm' M'ij]
n 15d
j.e., it is needed to evaluate this quantity only for any single row in
a given representation R and simply multiply it by its degeneracy d(R).
In the actual calculation, this form was rearranged as
NB
K
)

NB i
k
[t'],=d(R) « Jg (2§ ¥ Cc.C.M.- Y C.C .M.
k=R poon i1 j=1 ni nj iJ i=1 ni“ni ii
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exploiting the symmetry property of the matrix M. These steps can be
reformulated for the spin polarized case in a straightforward way.
Evaluation of other quantities needed for the variational fitting is
trivial and will not be discussed.

Once the expression for the fitted charge density is obtained, such

that

then the matrix element can be found directly as follows.

<x; VC(F) | x.>

_ k
= E 3 Mij

we can see that the two-electron integral expressions {Mﬁj} are the only
major quantity needed for the entire process of fitting and matrix
element evaluation. The VF-method is expected to give better accuracy
for the total energy of a system than the LSF-method due to the very
fact that it is based on the principle of minimization of the Coulomb
energy error rather than the charge density error.

Though we have discussed the advantages which could be obtained
from the fitting approach, there are also some difficulties in fitting
itself. It has been reported that the fitting bases can become very

unstable as the number of fitting bases is increased. Fitting method
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using the exponential function type basis is a well-known ill-
conditioned problem. The main difficulty comes from the fact that
fitting basis functions are not linearly independent to each other for
such functions. There is another difficulty in determining optimal
basis set for the fitting, due to non-linear fitting problems. Fitting
functions of different functional forms such as e'“rz, rze'“rz, etc. can

be used to reduce the problem of linear dependency to each other but
some undesirable situations could certainly occur as the size of fitting

basis becomes very large.

Charge density fitting basis form was deduced from the symmetrized

basis form belonging to the T'l-representation in cubic point group Oh.

We used s-type symmetrized form as our fitting basis form for the
2

2 2
-type Gaussian fitting functions, i.e., e™*" and rle-or

2

simple- and r
respectively. It is obvious that r“-type Gaussians have the same

symmetry properties as that of the simple Gaussians. Exponents for the
simple Gaussians were chosen to be double the s-type orbital exponents

2-type Gaussian exponents were chosen to be double the p-type

and the r
orbital exponents. This makes 23 fitting bases for each shell, giving a

total of 46 fitting bases for the Fe9 system and 69 fitting bases for

the Fe15 system.

2-type Gaussians improve fitting quality a

We have found that the r
lot, especially near the atomic core region around which the level
structure is expectd to be rich. We also tried (x+y+z)-type fitting
bases (with the same form as the p-type symmetrized basis) as an attempt

to pursue improved fitting quality for Fe9 system. Surprisingly, we
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couldn't get any improvement in fitting quality. The fitted
coefficients for such bases showed a systematic oscillatory behavior
(from positive to negative signs for example) indicating its useless
nature. However, such %=1 type fitting basis with parabolic radial
functional form (instead of the Gaussian) was reported to be effective
for least square charge density fitting in the DVM calculation.?l

We can also include %£=2 type fitting functions such as (xy,yz,zx)-
type Gaussians or off-center Gaussian functions (such as bond-centered
Gaussians used by Dunlap et a1.27) as an attempt for better fitting
quality. These type of functions have not been used in the present

calculation.



E. Exchange-Correlation Potential

The very nature of local density functional type potential requires
the exchange-correlation potential to be treated only by numerical
means. Although this is the case, general trend for dealing with this
potential has been to fit this into some analytical form for
convenience. Although fitting itself needs numerical integration,
analytical form obtained from the fitting can lead to simple and
explicit evaluation of the matrix elements. On the other hand, attempt
to handle such numerical function without an aid of fitting can be quite
time consuming in the computer CPU time. We have considered both
approaches in our work and have chosen the direct numerical evaluation
approach rather that the fitting method. We describe the fitting
procedure we tried in our work first and will discuss the doubling grid
scheme we used for numerical integration next.

Fitting of the exchange-correlation (XC-) potential looks like an
easier task than the fitting of charge-density because the XC-potential
is a very slowly varying function in space. It certainly is not
difficult but we have experienced some difficulty in obtaining a very
good fit using the Gaussian type functions as fitting bases. For the
multi-center XC-potential fitting purpose, bond-centered Gaussians could
be of great help. But it should be noted that even in the fitting
approach, use of very good grid points are indispensible in handling the

nunerical integrations needed for fitting.
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Instead of following the conventional fitting procedure of using
Gaussian type functions as the fitting bases, we have tried using the
Kubic Harmonic functions Kz,l (6,0)'s which are the basis functions of
different angular order for T'l-representation in Oh group.57 There is a
well-known theorem that the crystal field in systems having a cubic
symmetry can be expanded in terms of these functions. One advantage of
this idea is that once a good Kubic Harmonic fitting could be obtained,
matrix elements can be evaluated exactly. Another advantage is the
inclusion of correction to the Coulomb potential due to insufficient
fitting accuracy using the Gaussian fitting basis only. It is a very
attractive point that we can get corrections to the incomplete charge
density fitting without much more effort.

We have not pursued this approach due to two main reasons. First
difficulty was in the fitting itself. Though the Kubic Harmonic
functions are very powerful bases of expansion, rapid variation of the
necessary quantities near the ligand atomic centers caused great
difficulty in getting a satisfactory fitting. For transition metal
Tigand atoms which have very localized d-orbitals near the atomic
nucleus (peak probability position of d-electrons is located at around
0.5 a.u. from the nucleus), Kubic Harmonic functions of order as high as
2=10 was needed for an acceptable fitting at the first shell region with
possibly higher order terms needed at the second shell region. Even

58 it was not easy to achieve satisfactory

with 28 special directions,
angular integrations in such situations. We concluded that this

approach is not suitable for systems involving d-orbital electrons
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though it could be acceptable for other systems such as aluminum
clusters for which valence electrons are of delocalized character.
Second difficulty was the ever increasing CPU time needed for the matrix
element calculation as higher order Kubic Harmonic functions were
included.

We adopted the direct numerical integration approach because the
Kubic Harmonic fitting approach was not as efficient as we expected.
For our numerical integration purpose, a doubiing grid scheme in the
three dimensional space of 1/48-th wedge zone was developed. For
systems having full cubic point group Oh, which has 48 possible
operations in its group, it can be shown that there are 48 equivalent
space regions.

Though it is known that only a 1/48-th wedge zone is needed to be
considered for such systems, another property from the group theory is

essential in exploiting this property. Consider

(045 = 1 @ {7 e D

(r)

which is the matrix element between the symmetrized bases xir

(r)

Xj » which belong to the r-th row in a given representation. Though

and

VXC(;) has been found to be invariant under all group operations,
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(r)

product is not invariant in general, namely if X; (?) belongs to a

degenerate representation. There is an important theorem in group

theory related to this problem which is called the generalized Unsvld

59

Theorem. This theorem prescribes a method of generating an invariant

function out of the basis of an irreducible representation. It says

d(R)
G

r=1

is invariant under all operations of the group, in which d(R) is the
degeneracy of the irreducible representation R. This is a

generalization of the theorem by UnsBld which says that

L

2
Y, (8,0)]
L Yoy (050)

js invariant, in which Yzm are the spherical harmonics. Proof of the

generalized Unstld theorem is as follows.

Let P, denote the rotation operator and r(a)ij be the (i,j)-th

element of matrix representation for operation o defined such that

L d(R) .
P, x3) = % K1) r(a) 5
i=1

Then,
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in which unitary property of the representation has been used. The
index for denoting the irreducible representation R has been suppressed
in the above for simplicty. This important property of the symmetrized
basis is essential in making direct numerical integration feasible by
allowing us to deal with a 1/48-th zone of the space only.

During the process of doubling, we encountered a problem which
makes the 'strict' doubling procedure quite unattractive. It demanded
too many grid points to be generated if strict doubling was imposed.
This problem could be resolved easily by taking approximately doubled
length at one stage of the doubling process. About 1,300 points were
generated for 9-atom (BCC) cluster system by having two sub-divisions in
each division and 11 basic divisions. The details of doubling grid
scheme is presented in Appendix A.

In the actual calculation of the matrix elements, we have not

calculated some element and assumed it to be zero if the value of the
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overlap integral related to that element were smaller than a certain
number such as 10'6. Because of the slowly varying characteristic of
the XC-potential in space, this is expected to be a reasonable
approximation. To make the iteration cycle more efficient, all the
values of the basis product with the weight factor at each grid point

multiplied, i.e.,

were calculated at a preparatory stage and stored. Furthermore, if this

8 at certain point k, it was taken

value was smaller than the number 10~
to be zero and that point was systematically deleted in the matrix
element evaluation. This means that an information carrying the data
describing which points are significant, is also needed to be determined
for each matrix element. This scheme was found to be very helpful
because only a small fraction of grid points is involved for the
integration purpoe, i.e., the XC-potentials at those points only are
multiplied to the previously generated values and summed. Less than
three minutes CPU time was needed for one iteration for Feg cluster with
a total of 1,302 grid points. A similar scheme was also used to

generate the charge density at the grid points, i.e., values of Xi(rk)

were pre-determined before the start of iteration cycle.



F. Seif-Consistent Procedure

The calculation was started with the initial configuration of
overlapping fitted atomic charge density and the numerical data of
exchange-correlation potential VXC at the gird points (VXC was evaluated
directly from the charge density generated). The charge density was
generated from the well-documented Hartree-Fock atomic wave functions
and the least-square fitting method was used to obtain the initial
fitted atomic charge density.

During the iteration process, charge density for each

representation R was obtained from the expression

d%R) nocc |¢(r)|2

pR(F) = nzzl gn n

r=1
Occupancy of the eigenstates g, Was determined from T=0°K Fermi
distribution function which gives the occupancy of 1 if that state Ties
below the Fermi level and 0 if it T1ies above. It can be shown
rigorously that the energy levels generated from the LDA calculation
satisfy the Fermi statistics.60’61

As has been discussed before, any single row only in a given
irreducible representation needs to be considered in forming and
diagonalizing the Hamiltonian matrix because of the degeneracy
property. This means that identical wave function coefficients could be

assumed for all the rows in a given representation if the basis

functions are properly normalized. Proper normalization of the basis
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functions to obtain identical eigenfunction coefficients is important
because basis functions belonging to every row in a given representation
should be used in generating the charge density, whereas the
eigenfunctions are determined from any single row.

Although every degenerate eigenfunctions have to be used in
generating the numerical charge density and therefore the XC-potential
from it, any single row eigenfunctions only are needed when the
integrated quantity from the charge density is generated such as T in
the charge density fitting. Evaluation of t can be done by using
analytical integrals and the original eigenfunctions, as has been
discussed.

Iterative method which is the most conventional way of solving non-
linear differential equations such as the Schrbvdinger equation has been
employed to obtain the self-consistent solution.2 In this method, the
best possible estimate of the input potential is constructed out of the
potentials from previous iterations. This potential is used to find new
eigenfunctions and therefore a new potential. The most commonly used

form of constructing the new potential,

has been used in this work. Usually f is a very small positive constant
less than 1.0. Generally f should become smaller to get convergence as

the degree of freedom of a system is increased.
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In the present calculation, we have tried the 'iteration cycle'

63 In this scheme, the mixing factor f is not

scheme proposed recently.
kept constant but is allowed to vary from iteration to iteration between
a small and a large constant. This 'iteration cycle' scheme helped
speed the converging process, but the difficulty invoived in proper
choice of the alternating factors still made this scheme very cumbersome
to use systematically. In the process of iteration, we have found that
the choice of two damping factors being used could be varied for faster
convergence, especially at the final stage of convergence where very
large factors could be used. We also experienced difficulty in getting
convergence due to flipping of two competing levels near the Fermi
energy. Instability of energy levels due to flipping tendency of the
two levels is a well-known phenomenon in the LDA in contrast to the H-F
method in which the levels have a tendency of not flipping from each

64 Incomplete self-interaction correction in the LDA potential

other.
form has been pointed out for this problem.

Such nature in LDA calculation makes the convergence rate very slow
due to the necessity of having to use only very small damping factors,
since large damping factors usually Tead to wild oscillation of charge
density and the eventual divergence especially in the early period of
iteration.

In our calculation, we could reach steady state at about 10~20
iterations with damping factors of 0.04~0.08. At this stage, relative

position of energy levels stayed fixed, and therefore the average

magnetization number also. But convergence to absolutely self-
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consistent solution became very slow after that as has been described in
Ref. 63.

We have found that Fe15 cluster convergence is harder to get than
that of the Fe9 cluster as could be expected due to a larger degree of
freedom in Feqs basis set. At one stage of iteration process in Fe15
calculation, we had to impose degenerate occupancy to the flipping
levels near the Fermi level. This constraint was removed after the two
levels became sufficiently separated. Setting the convergeﬁce criterion
in this type of calculation does not seem to be clear-cut. We checked
the convergence rate of the exchange potential, the charge density
fitting coefficients, and the total energy for signs of convergence.

We stopped the iterations when the energy level changes were less
than 0.0002 Ryd and the total energy change less than 0.01 Ryd.
Convergence rate of the charge density fitting coefficients could also
be used for this purpose and all quantities checked showed a reasonably
consistent trend in the convergence rate.

Because of the increasingly slow nature of convergence rate near
the end of iteration, we sometimes experienced difficulty in getting
perfect convergence but have found that the general features of cluster
properties does not show any noticable difference through iteration at
this final stage.

Equal fractional occupancy for degenerate Fermi level was imposed
if that level happens to be partially occupied. This choice certainly
preserves symmetry of clusters which is a necess ty in our calculation,

but giving full occupancy of 1 to eigenfunctions belonging to some
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arbitrary row and 0 for others in a given representation can create a
symmetry problem in the calculation. If a calculation of better
accuracy for such clusters were needed, our choice of equal fractional
occupancy for degenerate Fermi level should be given another
consideration since the symmetry Towering possibility such as the Jahn-

51 In our present

Teller effect could be more realistic situation.
calculation, we do not have sufficient accuracy to treat such problems

and we intend to pursue more general features of cluster properties.



CHAPTER III.

RESULTS AND DISCUSSION

In this chapter, we discuss the systems studied in this work and
the results obtained from the present method. We describe the cluster
models in Section A and the energy levels for clusters Fe9 and Fe15 is
presented in Section B. Section C contains the discussion of density of
states (DOS) obtained from the cluster energy levels and a comparison
with the solid DOS is made. Spin densities at various locations in the
cluster systems are discused in Section D, and the ionization potential
obtained from the transition state calculation is presented in Section
E. Finally, a brief discussion on the result obtained for the carbon

impurity system is given in Section F.
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A. Cluster Models

The first system we considered was Fe7 atomic cluster with two
different lattice spacings of 5.4 a.u. and 4.0 a.u. each. The atomic
arrangement of this system is octahedral and corresponds to an atom and
jts first six nearest-neighbors in simple cubic lattice. Though iron is
known to have BCC symmetry, this system was chosen for testing purposes
in the preliminary stage of calculation. For this system only, Kubic
Harmonic expansion techniques were used instead of the direct numerical
evaluation approach for the exchange potential.

Our procedure was then applied to body-centered cubic (BCC) iron
atomic clusters, first to Fe9 cluster which corresponds to an atom and
its eight first nearest-neighbors in BCC solid iron. To help study
convergence of the cluster properties to those of solid, we then added
six more atoms which corresponds to second nearest-neighbors. Though a
comparison of cluster properties with those of bulk is one of the main
objectives in this work, embedding conditions were not imposed and free
clusters with open boundary only were considered. Geometrical
arrangement of atoms for these custers and those for simple- and face-
centered cubic symmetries are shown in Fig. III-1.

Lattice parameter for the clusters was put to 5.40 a.u. which
roughly corresponds to the solid parameter. This gives the distance
between the central and first nearest-neighbor to be about 4.68 a.u.
This choice of lattice spacing is somewhat smalier than the number

5.4057 a.u. used in Ref. 6. The exchange-correlation potential of von
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38

Barth-Hedin type”~ which has the abstract form of

VEE = ae) (Por0)l/3 + B(e)

was employed for this calculation. Parameters used in A(p) and B(p) can
be found in Ref. 39. Results obtained from this potential could be
directly compared with the band structure properties obtained using the
same potentia].46 Although other types of Tlocal density form such as
the Xa-type potential could also be used and compared with the relevant
band structure calculations, it does not seem to alter the essential
physical properties very much.

Although the study of cluster property was the main objective in
this work, we also considered Fe8C and Fe14C clusters, for which the
central iron atom is replaced by a carbon atom. We have considered this
system to prepare for future study of impurity containing systems,
though other type of boundary condition is expected to be needed for
this purpose.

Though we have considered only the simple cubic and body-centered
cubic symmetry clusters in this study, our method is immediately
extendable to systems which have face-centered cubic symmetry. For
example, N113 and Nilg clusters or Cu13 and Cu19 clusters could be
directly handled with this method (Copper cluster calculation will need
slight modification of the code, however, to adopt paramagnetic form of

the exchange potential).



B. Energy Levels

The molecular orbital energy eigenvalues from the spin polarized
calculations of Feg and Fe15 clusters are shown in Figs. III-2 and -3,
respectively. The values of several important quantities resulting from
these energy levels are summarized in Table III-1, where they are
compared with the results obtained from the MS-Xa method. Relevant
quantities from the band structure calculation of iron using the VBH
potential are also listed to see the convergence trend of cluster
properties to those of bulk iron.

Because of the availability of results reported previously which
were obtained using the MS-Xo method,6 our results are compared with
those results extensively. However, it should be noted that the Tocal
density functional used in MS-Xa is the Xo potential with «=0.71.

Figure III-2 shows that our levels for Fe9 cluster compares
favorably with the MS-Xa energy levels. We have the same 3tiu+ level as
the last occupied level with double electron occupancy. Also, the
distribution of occupied and unoccupied levels for each representation
is identical in both cases. Although the general features are
identical, relative locations of the energy levels can be seen to be
somewhat different. For example, the very large gap between occupied
majority-spin d-manifold and the unoccupied d-character levels above
them which existed in the MS-Xa result is found to not be as large in
this case. Thus we have less ambiguity in defining the d-bandwidth due

to this reason. This gap was maintained significantly large in Fe15
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cluster also in the MS-Xa result which led to an ambiguous determination
of the d-bandwidth (see Table I of Ref. 6). As could be seen in Fig.
II1-3, this gap has almost disappeared for Fe15 levels in our case. The
trend of convergence towards bulk bandwidths from Fe9 to Fe15 is obvious
from Table III-1. The present result can be seen to agree with most of
the conclusions made in Ref. 6 and, in fact, provides even stronger
support for them in many respects. We can summarize those aspects in
the following categories. First, the occupied s-bandwidths for both
spins are significantly larger in the present result. They are about
65% and 25% larger than the MS-Xa result for Fe9 and Fe15 clusters,
respectively. Therefore, more than 90% of the bulk bandwidths are
obtained for Fe15 in the present case. Second, present occupied d-
bandwidths are converging to those of bulk more uniformly. Though the
majority-spin occupied widths are about the same magnitude as were
obtained in Ref. 6, the minority-spin widths are larger in the present
case. This makes the relative magnitude of the occupied d-widths for
both spins to be very similar to those of bulk for both clusters. In
Ref. 6, the minority-spin occupied d-widths were noticably small
compared to its majority-spin counterpart, which probably is due to the
use of Xa-potential (Xa-potential is known to produce too large exchange
splitting). The present occupied d-bandwidths for Fe15 are also found
to be more than 90% of the bulk widths. Third, the present full d-
bandwidths are again larger than those reported in Ref. 6 and the
cluster d-widths can be determined unambiguously. Determination of the

d-bandwidths was not easy in the MS-Xa result and this led to ambiguous
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and disputable d-bandwidths. Furthermore, in either choice of its
determination, convergence td bulk d-widths could not be achieved
satisfactorily in a quantitative sense. Present result shows that d-
bandwidths are converging to those of bulk in an unambiguous and
satisfactory manner. We also find that the level dispersion is
significantly larger for the minority spin levels in agreement with band
theory. Present full d-bandwidths for Fe15 are also found to be about
90% of those of bulk. We have discussed the convergence trend to bulk
properties in terms of cluster bandwidths obtained from the energy
levels and have found that all the major quantities for Fe15 are within
10% difference from those of bulk.

Another point which strongly supports the convergence property to
bulk can be made from the positions of the sp-like levels. As is well
known, transition metal band structure is characterized by the
relatively narrow d-band overlapped by wide sp-band originating from the
rather delocalized sp-electrons, with a possible hybridization of the
two bands in the overlapping region. Energy levels in Figs. III-2 and
I111I-3 show this characteristic very obviously if we regard present sp-
levels as the precursor for sp-bands, e.g., relatively narrow and dense
distribution of d-levels is overlapped by a broader and sparse distribu-
tion of predominantly sp-like levels for both spins. The a1g and tlu
levels, which are the s- and p-type analogs are enveloping the whole d-
manifold from both ends. The a, level located at the top region is
mainly of s-character. Also coinciding with band theory, our sp-level

exchange splittings are a lot smaller than those of the d-levels. Our
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value of exchange splitting 0.5 eV for the 34 level at the bottom lies
in the middle of the s-band range in the band-theory, which is
0.16~0.85eV.

Because of the difference in method and the difference in the
adopted local density functional form for exchange potential, some of
our results are significantiy different from those of Ref. 6, especially
the Fe15 energy level distribution. Considering that the muffin-tin
potential is used in MS-Xa method, we can expect that rather delocalized
sp-1ike levels to exhibit more difference in the two methods due to the
constant potential approximation made outside the muffin-tin region. On
the other hand, relative locations of the rather localized d-like levels
are not expected to be very different in the results from both
methods. In fact, we find large differences in the relative positions
of sp-1ike levels from those of Ref. 6, providing an even stronger
symptom of the sp-band overlapping of the d-band character. This fact
shows that by removing the muffin-tin approximation, convergence trend
to bulk properties is manifested even more favorably.

The general feature of our levels shows that exchange splitting of
the levels are reduced compared to the MS-Xo result. This is seen by
shifting of the whole majority-spin levels closer to the Fermi level and
is consistent with the fact that the Xa-potential usually generates
larger exchange splitting than it should.

Our occupied level configuration for Fe15 was found to be slightly
different from that of Ref. 6. We find 4alg+ level as the non-

degenerate Fermi level and the 6e_+ level fully occupied. Instead the

9
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4ty level is not occupied anymore. These differences result in the
relatively large magneton number for the Fe15 cluster, which is 2.9 net
spin per atom compared to 2.7 reported in Ref. 6. This shows that
convergence of the magnetron number of clusters to that of bulk is not
as obvious as was pointed out in Ref. 6. We will discuss this situation
further in connection with the spin density problem later.

We have discussed the energy levels and the properties obtained
from them in the present work in comparison with the MS-Xa result.
Overall features of the present result indicate that our result exhibits
the convergence trend of the cluster properties to those of bulk more
unambiguously and convincingly. Comparison of the results for Fe9 and
Fe15 indicate that the bandwidths properties are extremely rapidly
converging to those of bulk iron. The removal of muffin-tin
approximation also led to the shift of sp-like levels and contributed to
exhibiting clearly the s-band overlap feature of the bulk. These are
indirect but obvious indications that the short-range atomic
interactions are mostly responsible for determining the bulk properties.

An objection to the above point of view was made recently which may

7 Those authors who used the H-F method for their

be worth mentioning.
Copper cluster calculations reported that they couldn't observe the sp-
band overlapping feature even for Cu13. Their result showed that the

sp-levels are just beginning to overlap with the d-levels for Cu13 and
claimed that such a feature observed in the MS-Xa levels is a spurious

result due to the incomplete self-interaction correction defect of local

density functionals. Their argument was based on the fact that the
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self-interaction correction is more significant for finite systems and
that the s-Tevel correction term could be very different from that of d-
level. However, other authors later showed that such differences in the
correction term is almost negligible for Cu9 cluster a]ready.65 Since
the sp-band extends over 10 eV range for both spins and since it
envelops the d-bands so completely in the present case, it seems that
more than 5 eV self-interaction correction difference is needed to claim

its spuriousness, which is very unlikely.



C. Density of States

Though Tots of quantitative evidences showing the convergence
property of clusters to bulk have been discussed in the previous Sec-
tion, direct comparison of the density of states (DOS) profiles could be
more convincing.

The quantity which involves least ambiguity will be the integrated
DOS, N(E), which is defined to be the number of states per atom with

energies less than or equal to E. Specifically,

ME) = I g, ofE - £
in which 9; is the degeneracy of the state whose energy is Ei and 6
indicates step-function. This quantity is shown in Fig. I1I-4 for the
Feqs cluster for both majority and minority spins. Figure I1I-5 shows
the quantity when both spins were added, e.g., total integrated DOS.
The result obtained from the band calculation of Ref. 46 are presented
for comparison in both Figures. The zero of energy has been taken as
the Fermi energy for this purpose.

It will be seen that there is a substantial degree of general
agreement between the cluster and bulk results in regard to the position
of regions of relative flatness and of rapid increase. Because of the
large magneton number difference between the two systems, Fig. II1I-4
shows large gap near the Fermi energy. In Fig. II1I-5, where this dif-

ference is not manifested anymore, the relative similarity between the
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two quantities is remarkable. This indicates that this relatively small

Fe,. cluster already possesses an energy level distribution which re-

15
sembles remarkably well that of bulk iron, supporting the "invariance
property" of DOS discussed in Chapter I. The reasonable agreement
obtained for the integrated DOS suggests that DOS itself could also have
reasonable resemblance, if we manipulate the levels properly to generate
approximate DOS.

We have generated the DOS profile for clusters by replacing éach
enegy level by a Gassian of width parameter 0.2 eV, the same parameter

as was used in Ref. 6. Using this scheme, the DOS per atom can be

written as

in which NA is the number of atoms in the cluster, 9 is the degeneracy
of Tevel Ei’ and o is the width parameter.

Result of such broadening of each level can be shown to be identi-
cal to smoothening the original step-function like integrated DOS,
larger o corresponding to more severe smoothening. Choice of ¢ = 0.2 eV
was found to be reasonable, the resulting integrated DOS being
moderately smoothening the original integrated DOS. The physical impli-
cation of such broadening is equivalent to embedding the cluster in a
periodic lattice, but only approximately. Such scheme of broadening
each level by a uniform factor has the defect of disregarding the dif-

ference between the localized d-levels and the relatively delocalized
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states such as predominantly sp-like levels. It would be desirable to
assign broader Gaussians for delocalized states, which has not been done
in this work.

The resulting DOS generated using this scheme is shown in Figs.
111-6, -7, and -8. Figure III-6 shows the total, majority- and
minority-spin DOS of the Fe9 cluster in a single figure. It is obvious
that it does not resemble those of bulk at all. But the minority-spin
and total DOS parts begin to show slight signs of bulk property already.

In Fig. I1I-7, the majority- and minority-spin DOS's of the Fe15
cluster and bulk are superposed for direct comparison. The degree of
similarity is truly remarkable obviously. It should be noted that the
two peaks on the far left and far right for majority-spin DOS are coming
from the delocalized sp-character levels. These are the spurious peaks
resulting from the use of a same broadening factor for all the levels.
The two peaks on the far left and hidden peaks on the far right for the
minority-spin DOS are of the same spurious nature. Comparison of Fig.
I11-7 with Fig. 7 of Ref. 6 shows that present result demonstrates the
sp-band overlapping character more explicitly. Furthermore, present
result describes the majority-spin DOS shape near the Fermi level a lot
better than before. This is due to the absence of large gap of energy
levels which was discussed before. Present result also represents three
distinct peaks manifested in band majority-spin DOS better by having a
larger gap between peaks 2 and 3 in Fig. 7 of Ref. 6. Another noticable
feature of the present majority-spin DOS is that the highest peak part

of the band DOS is represented by splitted two peaks. On the other
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hand, peak 3 of Fig. 8 of Ref. 6 which is the central peak of band
majority-spin DOS with some structure is represented by a single
structureless peak in our result as it has been in the MS-Xa result.

The minority-spin DOS in Fig. III-7 shows that three distinct peaks
of band minority-spin DOS are also well represented in this work as it
has been in Ref. 6. MWe have a local minimum at the Fermi level and
another local minimum at about 2 eV below. Better representation of
band DOS by Fe15 DOS of present work than by that of Ref. 6 can be seen
convincingly when we check the overall relative postions of peaks and
valleys for both majority- and minority-spin DOS. This result could be
related partly to the use of different exchange potentials in the two
calculations since Xo-potential is generally known to produce relatively
Targe exchange splitting.

To prove the similarity property between the cluster and bulk DOS
further, we also plotted the total DOS of the Fe15 cluster and iron
solid. Figure III-8 shows the two quantities in superimposed form again
for direct comparison. Except for the two spurious peaks on the Teft
and others on the right, there is again remarkable resemblance between
the two results. Total number of major peaks as well as the positions
of local minimums of band total DOS are almost perfectly represented in
the Fe15 total DOS already.

Remarkable resemblance between the approximate DOS generated by
broadening each energy level of Fe15 by Gaussian type functions and the
bulk DOS generated by band structure calculations has been discussed in

this Section. First doubt we can have is such a close similarity it-
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self. Considering that most of the atoms in Fe15 are surface-1ike
atoms, we could expect our DOS to be more similar to the surface DOS
than the bulk D0S, and surface DOS is known to be very different from
bulk DOS. We could not think of any convincing explanations for this
guestion. But one point about this situation can be made clear, which
is the fact that the ligand atoms in Fe15 which is still a relatively
small cluster, are not in similar environment at all as the atoms on the
surface of a solid, e.g., they could have very different local DOS.

What we could get for the DOS using the energy levels obtained from the
short-range atomic interactions of such a miniature solid like Fe15

seems to show a lot of infinite solid character already.



D. Spin-Density and Magneton Number

Spin density distributicn in space is known to be a very sensitive
quantity which depends a lot on the choice of exchange potential used.40

One of the characteristic features of spin density in iron and some
other transition metal solid is the appearance of weak but significantly
large regions of negative polarization (e.g., minority spin dominated
regions) at the interatomic space r‘egion.15 Such negative polarization
also occurs at the nucleus site where it is extended to extremely small
region around the nucleus, resulting in a negative hyperfine field at
the nucleus site. This is one of the important properties of some
transition metals. Other than the above described regions, the space is
composed of approximate spherically symmetric regions of strong pisitive
polarization centered on each nuclei.

It was reported in Ref. 6 that {100} plane of Feqs which contains
four atoms of the first shell atoms already shows the negative polariza-
tion character described above. We have plotted spin density contour on
several planes to prove this feature and other features and we have
found the most serious difference with the results of Ref. 6 in this
property. Very surprisingly, our central atom was found to be dominated
by minority spin electrons. This situation was more profound for Fe9
cluster and was alleviated a Tot for FelS' The value of approximate net
spin number for this central atom, determined by rough geometrical
region integration was -0.70 and -0.10 for Fe9 and Fe15 respectively.

This is a quite surprising result considering that iron is a typical
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ferromagnet.

Contour plot of spin density of {100} plane showed that we neither
have negative polarization region on this surface in Fe15 at all. How-
ever, for Feg, some region of negative polarization appeared at the
central region of {100} plane. To see the effect coming from the dif-
ference in the configuration of occupation numbers in the two results,
we also tried the occupation number configuration reported in Ref. 6 in
generating spin density. We have found that even with such change, the
reported spin density map could not be reproduced exactly. However, a
small region of negative polarization at the center of the plane could
be observed in this case. This situation is somewhat embarassing since
the eignefunctions for each relevant level are not expected to be very
different, although a significant difference could be expected for
delocalized orbitals due to the muffin-tin approximation in MS-Xa. But
considering that the magnitude of negative polarization is very small,
small difference in eigenfunctions may be enough to cause such dif-
ference.

However, the most surprising outcome of present calculation should
be the minority-spin dominating situation for the central atom. In MS-
Xa result of Ref. 6, the central atom was reported to have a net spin
number of +1.15 for FelS’ a small but definitely a positive quantity.
The reason for such a small magneton number was analyzed to be due to
the influx of minority-spin electrons to the central site, resulting in
more total number of valence electrons for the central atom. We also

observed such trend for the Fe9 cluster which was manifested in
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relatively lifted core energy levels of the central atom. Core energy
levels for Fe9 and Fe15 designated with each shell index are presented
in Table III-2. Though the central atom for Fe9 was found to have more
electrons than others, the situation for Fe15 was different. The Fe15
cluster core level study shows that core levels have become deeper than
those of other atoms, indicating the possibility of outward flow of
electrons to ligand atoms. This is contrary to the findings of MS-Xa
calculation, and also opposite to the situation in Feg.

Spin density around the central atom was also found to be very
anisotropic. Along the [111]-direction, a local maximum (in magnitude)
of negative polarization was found at about 0.5 a.u. and the range of
negative polarization was found to reach up to about 2.3 a.u. On the
other hand, it was limited to a very small distance from the center
along [100]-direction.

Contact spin density, which is the spin density at nucleus site is
another quantity of interest. This quantity was, however, found to have
a difference of over 50% when different types of local density potential
were used in the LCGO method band ca]cu]ation.46 In this band
calculation, contact spin densities of -0.406 and -0.655 were obtained
for VBH and Kohn-Sham potentials respectively, whereas the experimental
value was -0.647. On the other hand, MS-Xa calculation of Fe15 with
parameter a = 0.71 was reported to produce -1.05, -0.77, and -0.55 for
the central, firts- and second-shell atoms respectively. Furthermore,

comparison of relative contributions from each orbital showed that the

ligand cluster atoms are behaving quite similar to bulk atoms as far as



68

this quantity is concerned (especially the first-shell atoms). This is
quite surprising since the ligand atoms have very large mageton number
compared to the bulk atom.

The contact spin densities in our calculation shows somewhat
reverse trend from those of MS-Xo calculation, giving -0.08, -0.24, and
-0.40 for the central, first- and second-shell atoms for FelS' For Feg,
the central- and first-shell atoms were found to have -0.71 and +0.24
respectively. Obviously, there is a large difference in qualitative as
well as in quantitative character between the two clusters Fe9 and
Feyg- Open boundary condition for Fe9 seems to result in Tlarge
abnormality not only for the central atom but also for the ligand
atoms. Compared to Feg, the Fe15 cluster obviously have converged to
bulk quite significantly. Though the central atom still shows a sign of
substantial abnormality, 1igand atoms for Fe15 look quite similar to
bulk atoms.

Because of such abnormal nature of the central atom in both
clusters, it is suggested that such open boundary clusters are not
expected to be a good model for impurities in a solid. Convergence
trend of average magneton number to that of bulk as the cluster size
becomes large could not be confirmed due to this reason also. For Feg,
abnormally strong domination by minority-spin electrons at the central
site gives a small average spin number of 2.89. Assuning that the
central atom has spin number of -0.70, a ligand atom is found to have a
spin number of 3.34 for this Fe9 cluster. For Fe15’ assuming a net spin

number of -0.10 for the central atom, a net spin number of 3.15 for the
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ligand atoms is obtained. To be exact, the second shell atoms are
expected to have slightly larger spin number than the first shell
atoms. Though we have not evaluated such quantities, estimated average
values of 3.10 and 3.20 for the first- and second-shell atoms can be
guessed from the known information.

Average net spin numbers for the surface like ligand atoms, 3.34
and 3.15 for Fe9 and Fe15 respectively, are reasonably consistent with
the value of 3.0 Bohr magnetons for the solid surface atom obtained from
surface ca]cu]ation.l5 We can expect that the ligand atoms for such
small clusters are in a more severe "surface" situation than the solid
surface itself. As the size of the cluster becomes larger, it is
expected that the net spin number of cluster surface atoms to approach
that of the solid surface atoms. In this respect, average spin numbers
in Ref. 6, wihch are 2.71 and 2.80 for the first- and second-shell atoms
in Fe15, are quite inconsistent with both this work and Ref. 15.

As have been mentioned earlier, preliminary calculations using the
Kubic Harmonic expansion method was also made for Fe7 clusters at two
different atomic spacings 5.4 a.u. and 4.0 a.u. The atoms in this
cluster were arranged in an octahedral geometry. Average moments
obtained were 3.7 net spin per atom for the 5.4 a.u. spacing and 3.0 for
the 4.0 a.u. spacing. Assuming that widely separated iron atoms have
magneton number of 4.0 ¥g belonging to the iron atom itself, our value
of 3.7 for the large 5.4 a.u. spacing seems reasonable. As the atoms
were squeezed further to 4.0 a.u. spacing, broadening of energy levels

resulted in a smaller magneton number as was expected.



E. Transition State and Ionization Potential

In the H-F method, orbital energy E?F has some meaning in relation

to the total energy of a system by Koopman's Theorem, which says that

_ HF _ HF -
ei—E (n].-l)-E (ni_o)

The first term on the right is the total energy of a system and the

th electron removed

second term is the total energy of ion with the i
without allowing all other orbitals to relax. Therefore, the eigenvalue
of the last occupied level is an approximate (although not exact)
jonization potential (I.P.) in magnitude.

On the other hand, in the LDA method, orbital energies are related
to total energy as e%DA = aE/ani and have less physical significance
than the H-F eigenvalues in this respect. One obvious way of
calculating the energy differences involved in optical transitions in
LDA method is to make two separate calculations, one for a system itself
and another for the system after the transition has occurred. Though
this procedure is straightforward and true in theory, usual inaccurate
evaluation of total energy for a system causes practical difficulty very
often. Furthermore, it is time-consuming and laborious to make two
separate calculations.

An alternative Transition State procedure was proposed by Slater to

facilitate such ca]cu]ation.18’66 The basic principles behind this

method are the recognition that occupation number n; could be continuous
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between 0 and 1 in LDA and that the total energy is mainly a function of

linear and quadratic term of ni's. (If only a linear term exists, then

E?F = EEDA can be shown to hold.) A much smaller but finite third order
term was also found to exist but is neglected in this method.

If we take up to quadratic expansion of n; for E, then

2 n.= %
i

holds if the expansion is done with n, =-% (and all other n's unchanged)

as the reference state. Then

Eln.:l - EIn.:O

_2E
i i ani

PO

n,=

can be obtained using the above expansion form. The left hand side is

the ionization energy expression and the right hand side is the ith

energy eigenvalue obtained from the Transition State calculation.

Therefore, if a calculation is made with non-integer occupation

th

number of-% for the i*" state, e; is itself the ionization energy of the

1th electron. Although this example considered specifically ionization

energy, it is obvious that it can be generalized to any arbitrary
optical transition from state i + j. In this case, the difference of

eigenvalues Isi - ejl equals the excitation energy, if a Transition

State calculation is made with n; = nj = %—constraint.

The transition state which is considered here is obviously not a

physical state but a fictitious state which is the average of initial
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and final state. With proper consideration of initial and final state
for any excitation problem, such scheme has been shown to be quite
powerful in many examples of previous ca]cu]ations.67 This scheme can
also be used for magnetic excitation problems in a ferromagnetic
material and the energy difference calculated for a Tocal spin flip
using this method can be used for estimating the Curie temperature.18
Estimation of the Curie temperature from first-principles calculation
could be quite an achievement, but we have found that open cluster model
cannot be used for such purpose due to already discussed abnormality of
the central atom.

However, we used this scheme to determine the ionization potential
of Fe9 cluster. This calculation can be done by simply removing half an
electron from the finally occupied level. This calculation, which was
also spin-polarized, gave 0.378 Ryd (5.2 eV). This guantity is
reasonably close to recent experimental value of 5.3~5.6 ev/?2
considering the uncertain geometry of the experimental Fe9 cluster.
Since the doubling grid we used was found to reduce the matrix element
value by about 3% generally, we expect our result can be within the
experimental range if a finer grid is used.

To test the reliability of total energy calculated, ionization

potential was determined also from the total energy differences. For

the Fe9 system,
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<ED -22686.11 Ryd

<E >2-1 -22685.90 Ryd

were obtained from two separate calculations of a regular system and of
a system with one electron removed. Therefore we find 0.21 Ryd (2.9 eV)
for the ionization potential by this procedure, which is obviously far
off from the experimental value range. This and other informations we
checked indicate that the total energy obtained by present method is not
accurate enough to give good result on such sensitive quantities. It
was found that the charge density fitting is most responsible for the

error involved in the total energy calculation.



F. Carbon Impurity Systems

From the analysis of pure iron clusters, it was found that the
central atom in such small clusters does not resemble a typical bulk
atom at all. This indicates that the open boundary condition for such
small clusters is not a good model for describing impurity problems in
solids. In fact, it was reported that such small clusters are not very
effective for impurity problems even when some embedding potential was
1'mposed.68

Carbon impurity in iron systems was considered in our present work
only to prepare for more realistic work in the future, e.g., with a
possible embedding potential. The central atom in the Fe9 and Fe15
clusters were replaced by a carbon atom and self-consistent, spin-
polarized solutions were obtained following exactly the same proceaure
as was used for the pure iron clusters.

The basic trend of the physical situation was found to be
consistent with those of pure iron clusters. The central atom was
dominated again by minority-spin electrons for Fe8C and the contact spin
density for the ligand iron atoms was found to be a positive quantity
+0.47 as it has been for Feg . Such abnormality for the ligand atoms
already implies that the central carbon atom is not placed in the
desired environment and is unduly perturbed also. The contact spin
density for the carbon site was +0.22 and the magneton number for the

ligand iron atoms was found to be about 3.5 Hp for Fe8C.

74



75

For Fe14C, the central carbon atom was, however, found to have
slightly positive polarization. The contact spin densities of the
central-, first-, and second-shell atoms were +0.40, -0.07, and -0.45
respectively. The DOS profile for Fe14C generated by the same scheme as
before is shown in Fig. III-9. Though many of the features discussed on
Fe15 DOS 1is still found, the whole structure itself is obviously vastly
different from that of the pure iron cluster. It is surprising that the
seemingly minor perturbation of a carbon atom could destroy the nice
similarity between the cluster and bulk DOS to such an extent. The
overlapping nature of sp- and d-band is also found in this case and the
minority-spin DOS seems to be less perturbed than the majority-spin
part. Another peak appearing on the left side and heavily perturbed
shape for the majority-spin DOS is probably due to carbon sp-level
presence. Tne breakdown of good DOS similarity between the cluster and
bulk due to carbon atom replacement in Fe14C may be an indication that
such similarity obtained for Fe15 DOS 1is not an accidental consequence.

Replacement of the central iron atom by a carbon atom seems to
reduce negative polarization trend on that site. The magnitude of
negative polarization was smaller for Fe8C than it was for Fe9 and it
could recover slightly positive polarization for Fe14C though the Fe15
central atom was still slightly minority-spin dominated. The contact
spin densities show that the first-shell atoms were perturbed more than
before but the secnod-shell atoms have not been perturbed much in this
case. This may indicate that the existence of a carbon atom instead of

an iron atom at the center only weakly influences the second nearest-



neighbors. Average magneton number for the ligand atoms in Fel4C is

about 3.3 Hp which seems reasonable.
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IV. CONCLUSIONS

Se]f-consi;tent spin-polarized calculations were made for small
iron clusters Fe7, Feg, and Fe15. Similar calculations were made for
FeSC and Fe14C in which the central atoms were carbon atoms instead of
iron atoms, to prepare for impurity system studies.

Our method which does analytical charge density fitting for the
Coulomb potential as the only approximation for evaluating the matrix
elements is regarded to be a more accurate approach than any other
methods used before in dealing with large atomic clusters.

The overall features we could obtain for such 'miniature solid'
Feigs containing only the first and second nearest-neighbors arranged in
solid BCC geometry are found to be remarkably close to those of bulk
already. The full d-bandwidths as well as the occupied portions are a
Tot wider in the present result for Fe15 than the values obtained
previously using the MS-Xo method and are within 10% difference from the
relevant bulk quantities. Furthermore, present DOS profiles for Fe15
are virtually identical in characteristic shape with those 6f bulk,
whicii means that not only the qunatitative features but also the
gualitative features are well represented already. Another remarkable
feature of the present result is the obvious overlapping of the sp-band
with the d-band, which is even more explicitly manifested in this work
than was shown in Ref. 6. On the other hand, hardly any features
resembling the bulk could be noticed for the Fe9 result, though there

are some early symptoms of similarity.
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That the DOS profile for Feqg already represents the bulk character
is particularly surprising since such a small cluster with open boundary
is expected to have quite a significant amount of surface effect. What
we find from the present calculation is that the basic characteristics
of bulk DOS is somehow manifested even for such small systems which have
relatively large surface effect. To what extent the variances observed
in the two DOS profiles are due to such size effect is not clear however
and should be considered more carefully, since most of the previous
calculations referred to size effect whenever it could not find any
reasonable relevance for the physical properties between the two
systems, bulk and cluster. OQur calculation, which is expected to be the
most accurate work done so far on such systems, seems to exhibit such
similarity more extensively than the previous less accurate
calculations. It looks as_if better similarity in physical properties
can be obtained as the calculation becomes more accurate. It will be
interesting to have the result for the Fe27 cluster, which has another
shell added to Fe15, to see the relative importance of the surface
effect for such small clusters.

Although we could obtain superior result compared to Ref. 6 as far
as the DOS similarity is concerned, we failed to observe the bulk-1ike
spin density distribution at the interatomic regions (specifically [100]
plane for Fe15). Furthermore, the central atomic site was found to have
a tendency to become negatively polarized. This was obvious in Fe9 for
which the central site was completely dominated by minority-spin

electrons. However, for Fejz, the central site was almost neutral
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showing the trend of becoming positively polarized as the cluster size
becomes large. Although the MS-Xo calculation also showed such trend of
minority-spin electron flow to the central site, present work seems to
show an even stronger trend for such flow. It is not clear at this time
why such an unexpected situation develops although one explanation was
suggested in Ref. 6. The more extended nature in space of the minority-
spin orbitals could be an explanation also, providing accumulated
minority-spin electron contributions from the ligand atoms to the
central site.

The slow convergence of the central atom to a typical bulk atom for
even very large clusters was reported and it is generally accepted at
present that the central atom is not like the bulk atom for small
c1usters,68’7l The convergence to bulk of the central atom for larger
clusters is expected to be obtained according to a theorem by von Laue,9
which states that the local density of states becomes approximately
independent of the form of the boundary condition at distances from the
boundary greater than a characteristic length inversely proportional to
the wave number. Considering that the Fe15 cluster has only two ligand
shells, it is expected that charge density distribution around the
central site could hardly resmeble that of bulk according to the above
theorem. In this respect, it is hard to believe that the spin density
resembles that of bulk as was reported in Ref. 6 for such small clusters
with open boundary.

Present work seems to indicate that a good similarity to bulk DOS

could be obtained from such 'miniature solid' even though the charge and
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spin density around the central site are extremely perturbed. The
central atom for such small clusters should be very vulnerable since it
has to adopt all the combined changes of the ligand 'surface-1ike'
atoms. Even small changes of the ligand atoms could cause significant
influence on the central atom when they are summed up. We tend to give
up pursuing charge and spin density similarity with the bulk due to
these reasons. Though it is not expected to be an effective model for
realistic impurity problem, carbon impurity in the iron cluster with
open boundary was also studied in this work. The good resemblance with
bulk DOS is lost significantly for Fe14C, and it seems the presence of
the carbon impurity is almost ignored already by the second shell
atoms. But we conclude that impurity calculations should not be done
unless cluster size becomes significantly large or a satisfactory
embedding scheme is imposed on small clusters.

The consequences of the present calculation could be checked for
consistency using other systems such as N113 and Nilg. Convergence
trend of the central atom's charge and spin density to those of bulk
could also be studied by extending the cluster size even larger (Fe27

for example), as a next step of calculation.



—
.

N

10.
11.

12.
13.

14.

15.

16.

17.
18.

REFERENCES

V. Heine, Solid State Physics 35, 1 (1980); also D. W. Bullet, ibid
35, 129 (1980).

J. Friedel, Adv. Phys. 3, 446 (1954).

R. Nathans, M. T. Pigott, and C. G. Shull, J. Phys. Chem. Solids 6,
38 (1958).

J. E. Inglesfield, J. Phys. F2, 898 (1972); J. E. Inglesfield, J.
Phys. C 4, L14 (1971).

R. L. Jacobs, J. Phys. F 3, L166 (1973).

C. Y. Yang, K. H. Johnson, D.R. Salahub, J. Kaspar, and R. P.
Messmer, Phys. Rev. B 24, 5673 (1981).

J. Demuynck, M. M. Rohmer, A. Strich, and A. Veillard, J. Chem.
Phys. 75, 3443 (1981).

K. H. Johnson, D. D. Vvedensky, and R. P. Messmer, Phys. Rev. B 19,
1519 (1979).

H. von Laue, Ann. Phys. 44, 1197 (1914).
J. C. Phillips, Phys. Today, February (1982).

H. A. Mook, J. W. Lynn, and R. M. Nicklow, Phys. Rev. Lett. 30, 556
(1973).

J. W. Lynn, Phys. Rev. B 11, 2624 (1975).

D. G. Westlake, C. B. Satterthwaite, and J. H. Weaver, Phys. Today,
November (1978).

?. Demangeat, F. Gauthier, and J. C. Parlebas, J. Phys. F 8, 1879
1978).

C. S. Wang and A. J. Freeman, Phys. Rev. B_lg, 793 and 4930 (1979)
and JMMM 15, 869 (1980).

R. P. Messmer, S. K. Knudson, K. H. Johnson, J. B. Diamond, and C.
Y. Yang, Phys. Rev. B 13, 1369 (1976).

J. C. Slater, K. H. Johnson, Phys. Today, October (1974).
J. C. Slater and K. H. Johnson, Phys. Rev. B 5, 844 (1972); K. H.
Johnson and F. C. Smith, Jr., Phys. Rev. B 5,7831 (1972).

81



19.
20.
21.

22.
23.
24.
25.
26.

27.

28.
29.

30.
31.

32.
33.
34.
35.
36.
37.
38.
39.

40.

82

o

. E. E1lis and G. S. Painter, Phys. Rev., B 2, 2887 (1970).

m

. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys. 2, 41 (1973).

. Delley and D. E. E1lis, J. Chem. Phys. 76, 1949 (1982), also F.
. Averill and D. E. E11is, J. Chem. Phys. 59, 6412 (1973).

=W

C. B. Haselgrove, Math. Comput. 15, 323 (1961).

G. A. Benesh and D. E. E1lis, Phys. Rev. B 24, 1603 (1981).
B. Lindgren and D. E. E11is, Phys. Rev. B 26, 636 (1982).
H. Sambe and R. H. Felton, J. Chem. Phys. 62, 1122 (1975).

B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys.
71, 3396 (1979).

B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys.
71, 4993 (1979).

E. Clementi, D. R. Davis, J. Comp. Phys. 2, 223 (1967) .

R. C. Baetzold, J. Chem. Phys. 55, 4355, 4363 (1971); ibid. 62,
1513 (1975).

J. Kondo, Solid State Phys. 23, (1969).

W. G. Richards and J. A. Horsley, Oxford Science Research Papers 4,
Clarendon Press, Oxford (1970). -

E. Huckel, Z. Phys. 70, 204 (1931), 72, 310 (1932).

R. Hoffmann, J. Chem. Phys. 39, 1397, 40, 2047 (1964).

R. S. Mulliken, J. Chem. Phys. 46, 497 (1949).

J. C. Slater, Phys. Rev. 81, 385 (1951).

P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

W. Kohn and L. J. Sham, Phys. Rev. Al40, 1133 (1965).

U. von Barth and L. Hedin, J. Phys. C5, 1629 (1972).

A. K. Rajagopal, S. P. Singhal and J. Kimball (unpublished) as
quoted by A. K. Rajagopal in Advances in Chemical Physics 41, 59
(Wiley, New York, (1979)). T

M. L. Cohen and V. Heine, Solid State Phys. 24, 1 (1970).



41.
42.
43.

44.
45.
46 .

47.
48.
49.
50.

51.

52.
53.
54.
55.
56.
57.

58.

59.

60.
61.

83

J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
S. H. Lamson and R. P. Messmer, Chem. Phys. Lett. 98, 72 (1983).

G. B. Bachelet, D. R. Hamann and M. Schluter, Phys. Rev. B 26, 4199
(1982).

M. T. Yin, M. L. Cohen, Phys. Rev. B 25, 7403 (1982).
F. Bloch, Z. Phys. 52, 555 (1928).

J. Callaway and C. S. Wang, Phys. Rev. 16, 2095 (1977), also C. S.
Wang and J. Callaway, Comp. Phys. Comm.” 14, 327 (1978).

E. E. Lafon and C. C. Lin, Phys. Rev. 152, 579 (1966).
S. F. Boys, Proc. Rey. Soc. A 200, 542 (1950).

J. Callaway, Energy Band Theory, Academic Press, New York, (1964).

J. F. Cornwell, Group Theory and Elec. Energy Band in Solids,
North-Holland Pub. Co., Netherlands (1969).

J. Callaway, Quantum Theory of the Solid State, Academic Press, New
York (1976).

A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).

B. Delley, D. E. Ellis, and A. J. Freeman, JMMM 30, 71 (1982).
D. Pines, Solid State Phys. 1, 367 (1955).

G. S. Painter, A. W. Averill, Phys. Rev. B 26, 1781 (1982).

J. W. Mintmire and B. I. Dunlap, Phys. Rev. A 25, 251 (1982).
F. C. von der Lage and H. Bethe, Phys. Rev. 71, 612 (1947)

R. Prasad and A. Bansil, Phys. Rev. B 21, 496 (1980) also W. R.
Fehlner and S. H. Vosko, Can. J. Phys. 54, 2159 (1976).

M. Tinkham, Group Theory and Quantum Mechanics, McGraw-Hill, New
York (1964) aTso M. Hamermesh, Group Theory, Addison-Wesley,
Reading, Massachusetts.

J. C. Slater, Adv. in Quantum Chem. 6, 1 (1972).

J. Callaway and N. H. March (preprint).



62.

63.
64.

65.
66.

67.
68.

69.

70.
71.
72.

84

D. R. Hartree, The Calculations of Atomic Structures, Wiley, New
York (1955).

P. H. Dedericks and R. Zeller, Phys. Rev. B 28, 5462 (1983).
B. I. Dunlap, Phys. Rev. A 25, 2847 (1982).
D. Post and E. J. Baerends, Chem. Phys. Lett. 86, 176 (1982).

J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 4,
McGraw-Hill, New York (1974).

V. Gubanov and D. E. E11is, Phys. Rev. Lett. 44, 1633 (1980).

B. Delley, D. E. E11is, A. J. Freeman, E. J. Baerends, and D. Post,
Phys. Rev. B 27, 2132 (1983).

R. Podloucky, R. Zeller, and P. H. Dederichs, Phys. Rev. B 22, 5777
(1980).

R. Haydock, Solid State Phys. 35, 216 (1980).
A. Hintermann and M. Manninen, Phys. Rev. B 27, 7262 (1983).

E. A. Rohifing, D. M. Cox and A. Kalder, Chem. Phys. Lett. 99, 161
(1983).



Table III-1

Comparison of properties of iron clusters with those of bulk iron
(eneriges in eV)

Feg Feys Bulk

MS-X, present MS-Xa present Ref. 46
(nt=n+)/N 2.89 2.89 2.67 2.93 2.16
Occupied j
s-band (+) 4.7 6.7 6.2 7.78 8.20!
width (+) 3.7 6.32 5.4 7.28 8.03"
Occupied b .
d-band (+) 3.8 3.8, 4.5 4.4 4.759
width(+) 1.5 2.8 2.9 3.3¢ 3.609
Total d f k
d-band (+) 2.4 2.8%.4%  (2.9)4.5 4.7 5.13
width (+) 2.8 4.0 (4.3)4.5 5.39 6.12K
Range of Exchange
Splitting (d) 1.8-3.2  0.7-3.1  1.2-3.2  1.0-2.7 1.1-2.2
Average Exchange
Splitting (d) 2.7 2.3 2.5 2.4
Exchange h h
Splitting (sp) 1.0 0.4 0.8 0.5 0.16-0.85
a ; EF—]alg ; sF-lt29 c 3 3eg-1t2g d ; 5t29-1t2g
e ; eF-leg 5 7t29-1eg g ; 3tlg'leg h ; lalg+'lalg+
i EF-I‘l s EF—Nl K ; N3'N1
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Table I1I-2

Core levels and contact spin density for each atoms in the clusters.

FEq FE15
Site 1 2 1 2 3
1s 507.80 507.83 507.89 507.85 507.84
507.80 507 .83 507.89 507 .85 507 .84
2s 58.71 58.79 58.81 58.82 58.81
58.73 58.68 58.81 58.71 58.69
2p 50.68 50.75 50.78 50.77 50.76
50.70 50.66 50.80 50.69 50.67
3s 6.35 6.53 6.45 6.53 6.53
6.40 6.29 6.46 6.32 6.30
3p 4.02 4.19 4.12 4.20 4.19
4.07 3.96 4.13 3.99 3.96
Contact spin
. -0.71 +0.24 -0.08 -0.24 -0.40
density (a.u.)
EF -0.240 -0.299

Note 1. Site 1, 2, and 3 denote the central, first- and second-shell
atoms.

2. Energies are in Ryd. unit and upper (lower) numbers are for
majority (minority) spins.
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Tablie C-1

Labelling the Polynomial Type Basis Forms

Note: 1. Vertical number 1, 2, 3, 4, .... denotes J
2. horizontal columns 1, 2, 3 denotes K
3. x denotes angular index assigned.
in the expression CCOE (&x, J, K)
LLIJ (2x, K, I)
* X = 2 *x = 3
X2 _ y2 + 0 2x2 _ y2 _ Z2
0+ y2 - 2 x2 + 2y2 22
K+ 0+ 2P x2 - y2 + 222
*x = 4 *3x = 5
1. x-y+0 l. x+y+z
2. x+y+0 2. xX+y-12
3. 0+y-2z 3. x-y+2z
4, 0+ y+ z 4, x -y - 2z
5. x+ 0+ z 5. x+ y+ 2z
6. x+ 0+ 2z 6. X ~-y+ 2z
7. - 7. =x+y+ 2z
8. - 8. ~x -y+ 22z
*2x = 6 *x = 7
1. xy-yz+ 0 1. xy + yz + zx
2. xy+yz+20 2. Xy + yz - 2x
3. 0+ yz - zx 3. Xy - yz + zx
4. 0+ yz + zx 4, xy - yz - zx
5. -xy + 0+ zx 5. 2xy + yz + zx
6. xy+ 0+ z 6. 2xy + yx - zx
7. - 7. 2xy - yz + zx
8. - 8. 2xy - yz - zx
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Figure III-1.

Figure III-2.

Figure III-3.

Figure I1I-4.

Figure III-5.

Figure III-6.

FIGURE CAPTIONS

Geometries for the SC-, BCC-, and FCC-systems with up to

the second nearest neighbors.

Energy level diagram for the Fe9 cluster. The symmetries

of levels and the occupancies (N ) are given. The dashed

e)
Tine shows the position of the Fermi lend at t» and
the crosses indicate that it is occupied by two

electrons.

Energy level diagram for the Fe15 cluster.

Integrated density of states for Fe15 with majority and
minority spins separated. The ordinate shows the number

of states per atom Results from the band calculation of

Ref. 15 are presented, with the energies shifted so that

the Fermi energies of cluster and bulk coincide.

Integrated density of states for Feis with spins

combined.

Cluster density of states for Feg.
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Figure III-7.

Figure III-8.

Figure II1I-9.

Figure A-1

Figure A-2

Cluster density of states for Fe g with majority and
minority spins separated. Solid line: present calcula-

tion, dashed line, bulk iron from Ref. 15.

Cluster density of states for fe15 with spoin states

combined.

Fe14C total ana majority and minority spin density of

states.

Figures arising from the partition of cubes by wedge

boundaries.

Two dimensional cross section of the doubling grid for a
one shell BCC system. The cross hatched areas are
regions of smaller divisions than those explicitly

jllustrated.

89



FCC

BCC

SC

Figure III-1

90



91

ORBITAL ENERGY (RYD)

: -c :c ey omc._c 06 mo nmo # & *No wa o_o r: G2, €y ._o -m:
0.0f —  — R
-0 b =
0.2} I Y — -
lllll.ll.lll:ll-“'..lll.l'.l.lllllwnlnll" I.X*Hl”.rldo'.lj
-0.3}F . =
-04F I —— T -
- - mmmm ] -
-o.mq.l —— Hﬂ\l -
-0.6}
Fes
-0.7} . - —
-0.8f
6 6 4 | 122 6 12|49 23

6 428 000 3

Figure III-2



ORBITAL ENERGY (RYD)

oy ~_e ey omcomo._c 015 &4 -No ‘

4No Oo D.o :: ONGON:Q: n_o -Nc

A
A=
L SV Ay S -
'lllII.lIl'l —"

_ Fe15

2 9 6 2 | 18 41218

82

3889 6 2 9 01 23 6

Figure III-3



MAJORITY SPIN
E,~ 0.0

MINORITY SPIN

4.0 4

$.0 1

N s 6.0

'0:5 0.4 -0.3 -02 -0O. 0.0 0. 0.2 0.3

ENERGY (RYD)

Figure 11I1-4

93



N(E)

12

10

-0.5

04 -03 -02 001 00 o1
ENERGY (Ry)

Figure VII-5

0.2

0.3

94



95

Fe 9 Ciluster

£
Q
(77]
£
S Arv
z /
2 >
8 T
© £
° P
1 [ ] | [ 1 [ L 1 [l | m
o o O O o O
Fd S 8 9 e Q& & © ¢ 8 »®

S$31VLS 4O ALISN3Q

02

-03 -02 -0l 00 Ol

-0.5 -04

-0.6

‘40

ENERGY (Ry)

Figure III-6



96

Majority Spin

Minority

I5r

30}

0.2 03

-04 -03 -02 -01 00 Ol

-0.5

-06

ENERGY (Ry)

Figure III-7



97

0.2 03 04

00 O.l

-0.1

-0.2

-0.3

60

O o B
n <

S31vlS 40

ALISN3Q

0

ENERGY (Ry)

Figure III-8



98

DOS (ARB. UNITS)

50 l I

-30+—

|

-09 -0.8 =07

-06 05 -04 -03 -0.2
ENERGY (RYD)

-0.1

0]

Figure III-9



99

4
4

».\-l_ _

- D D W W o G O
; Ty

Figure A-1



100~

- -t - —— -

- - —

[ e

— fo i - ——— e

{
!
!
{
|

— e - -

]
]
[
|
]
[}
]
o ot o e e e e e e
]
t
[}
]
]
—————d e

' 1 Pt “ |
ll.—ilLll...._.Il.wllLll 4llhlln—lll||

I S

H |
1 1
l.“ 1
" “
'J—l.ll-'-'r ''''''' 4"“'—""'
; |
-{ H
] ]
1 |

1

]
wle =

]

[}

{

i

- ——— -
o e - —
b -

Figure A-2




Appendix A
The Doubling Grid

In our doubling grid, which is intended for cubic geometries, we
divide space within the 1/48-th irreducible wedge in several division.
Space within each division is filled with elementary cubes of the same
size. The size of the elementary cubes are made sufficiently small near
atomic centers where some orbital basis functions vary rapidly. The
elementary cube size is increased as distances from atomic centers are
increased. We could double the elementary cube length for most of the
successive divisions except at one stage where "approximate doubling"
was used to avoid unnecessary explosion in the number of elementary
cubes due to the necessity of rapidly increasing number of sub-
divisions.

The sampling points for integration are chosen to be at the center
of each elementary cubes even in cases where only part of cube remains
within the wedge. This choice of sampling point is obviously natural
for cubes which are completely within the wedge and is also natural for
cubes having only portions of their volume within the wedge although it
can be seen with simple reasoning that we are wasting sampling points by
such a choice. Avoiding high symmetry planes may be desirable in plac-
ing sampling points but we could not find any other choice of sampling
points which could give a better result. For example, we tried shfiting
our points to center of mass positions for fractional cubes (in the full

cube it remains at the same position) only to get worse results.
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Another point of importance is the necessity of choosing comparable
cube size for comparable regions of space. If one part of the space
were given finer grid due to some interest in the particular region, the
integration result became worse for those cases where proper cancella-
tion could not be obtained due to failure to employ a finer grid in
other relevant regions.

The fact that we have a situation where we cannot fill the region
with cubes only if we go on with strict doubling can be seen with simple
reasoning. Consider a two dimensional grid: In the two sub-division
case, wehre each doubled length division is divided into two alogn the
abscissa within its own division, we have found it acceptable to have

basic length increasing by

a, 2a, 3a, 6a, 12a, 24a, ....

for divisions I, II, III, .... respectively. If this procedure is not
followed awkwardly shaped fractionally filled regions result.

The accuracy obtainable from a given grid was evaluated by using
the grid to compute overlap integrals. Analytic results for these are
easy to obtain for comparison purposes. Since the exchange-correlation
potential for which the grid is intended is slowly varying, the overlap
integral test should be representative.

In the iron cluster system, we chose II basic doubling for a two
sub-division case with a minimun cube length of a=0.00044 a.u., giving a

total number of =~ 1300 points in the Fe9 system and =~ 2100 points in the
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Fe15 system. The errors in the overlap test are about 3%. Choosing a
four sub-division case gave better accuracy with 8 doublings and a
minimum cube length of a=0.0015 a.u. This generating =~ 6300 points in

Fe, system and yielded about 1% accuracy additional. Four additional

9
doubling regions were added to the above mentioned number of basic
doubling regions to extend the integration region into the exterior of
the cluster. The errors in our overlap test were almost always under-
estimates of the magnitude of the integrals. This implies that we may
underestimate slightly the magnitude of exchange correlation effects in
our calculation.

In the actual implementation of grid generation we filled the space
within each division by several typical blocks. Sub-programs were made
for each typical block in which all grid points as well as weight
factors are generated once the choice of sub-division number along the
abscissa and the data for block dimension lengths elementary cube length
are provided.

We have found that any elementary region within the wedge takes one
of the four shapes shown in Fig. A-1. There is no ambiguity in choosing
the sampling points for these shapes which obviously are at the center
of the cubes, though this will be on a high symmetry plane in some
cases. This in effect, reduces the number of independent sampling
points as a result.

A two dimensional cross section of a two sub-division case is

sketched in Fig. A-2 (this could be either the BCc or FCC first neighbor

situation.



APPENIIX B.

THE FOLLCHING FUNCTICOHAL FCRM3 WERE CONSTRUCTED USING THE
PROJECTION TECHNIGUE OF GEMERATING SYHMETRIZED WAVE FUNCTION
BASIS HAICH IS DESCRIBED I DBETAIL ELSKHERE(REF.50 AND 51).

BASIS FUNCTICNS FOR THE CENTRAL SITE(LOCATED AT THE ORIGIN)
ANGULAR FUNCTIONS ARE GIVEN AS FOLLOWS;

1.A15
§=5
2.7
P=X
pP=Y
P=Z
3.E6
DeX*X-YY
D=-( 25Z%Z-X*X-Y%Y )
4.725
D=XY
D=YZ
D=2X ' .

LEGENDS
XXYY=X%X-Y3Y
YYZZ=Y%Y-Z%2
ZZXX=2Z%Z~X%X
XX=2EXnX~Y#Y-I*Z2
YY=2nYuY-Z%Z2-XX
2Z=2kZHZ K5 X~Y%Y

MOTE 1; NUMBERS HITHIH THE PARENTHESIS FOR EACH IRREDUCIBLE
REFRESENTATION SYMEOL INDICATES THE ORDER{DEGEMERACY).
NOTE 2; FGR BREVITY, CONLY THE SIGHS ARE GIVEN FOR FOLLOHINS TERMS
KHICH HAVE IDENTICAL ANSULAR TERMS AS THE FIRST TERH.
MOTE 3; BLANK PARENTHESIS ( 0 ) HEANS NO FUNCTIONS FRESENT.

BASIS FOR THE SIMFLE CUBIC SYSTEM

PCSITIONS ARE ASSIGMED AS
1=(4,0,0 )
2=(-4,0,0 )
3=(0,4,0 )
4=(0»"A,0 )
5=(070)A)
6=(0,0,-4)

AHD COMBINATIONS ARE LISTED IM THE GRDER OF
BASIS=+(1 2)+(3 41+(5 6)

1.A15(1)
S=+{+8+SJ+(+5+5)+(+543)

Pa+(+X-X)+(+Y=-Y)+(+2-Z)
D=+ (+XX-XX)+(+YY-YY )+ (+22-22)
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2.TII3)

S=+(+8-8)+( 0 )+( 0 )
S=+#( 0 )+(+5-8)+({ 0 )
S=+{ 0 )+( 0 )+(+5-3)

P=+{+X+X)+( 0 )+( 0 )
P=:{ 0 J+(+Y+Y)+( 0 )
P=+{ 0 )+( 0 )+(+2+2)

P=+( § 1+(+X+X)+(+X+X)
P=+{+Y+Y )+ 0 )+(+Y+Y)
P=+(+2+Z)+(+2+2)+( 0 )

B=+( 0 ) +(+XY-XY)+(+2X~2X)
D=+(+XY-XY)+( 0 )+(4Y2-Y2}
D=4 +ZX-ZLI+(+¥YZ~Y2}+( 0 )

D=+ (+XX=-XX)+C 0 )+( 0 )
Da+( 0 )+{+YY-YY)+( 0 )
D=+( 0 )30 0 )+(+22-22)

3.T1E3

P=+( § )+(-2+2)+(+Y-Y]}
P=+(+2~2)+( 0 )+(-X+X)
P=+(~Y+Y)+{+X-X)+( G )

Dz¢{ 0 I+ (+YZ+YZ)+({-YZ-YZ}
D=+(-ZX-ZX)+{ G )+{(+2X+ZX)
D+ (+XY+XY)+(=XY-XY)+( 0 )

%.T2H 3

P=+{+2+23+(-Z-2)1+( 0 )
P=4{ 0 I+(+X+X)+(-X~X)
P=+{-Y-Y3+( 0 )+(3Y+Y)

D=+ (+ZX=-ZXI+{-YZ22YZ)+( 0 )
B=+{ 0 )+{+XY=-XY)2(~ZX+2X)
D=+(~XY+XY)+( B )+{+YZ-YZ)

D=+( 0 )+ 0 )+ (+XUYY-XXYY)
D=+{+YYZZ-YYZZI+( 0 )+( 0 )
D=+( 0 I+(+Z2XX-ZZXX)+( 0 )

5.726(3)

P4 (+Y-Y)+{+X~-X)+( 0 )
P=+( 0 J}+(+2-2)+(+Y-Y)
P=+(+Z-Z)+( 0 )+(+X-X)

D=+{ 0 )+( 0 )+(+XY+XY)
D¢ (+YZ+Y2)+C 0 )+ 0 )
D=+0 0 )+(+ZX+ZX)+( 0 )

D+ (4X7+XY I+ { +XY+XY)+{ 0 )
D=+0 0 J+(+YZ+YZ)s(+YZ+YZ)
B=4(32X+4ZX)+( 0 I+ (+2X+2ZXK)
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126.
121.
122.
123.
124.
125.
126.
127.
128.
12%.
133.
131.
132.
133,
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
164,
145,
146.
147.
148.

6.E6(2)

S=+(+5+S)+(~5-S)+( 0 )
S=+(+548)+(+S+S)+(-2)(+5+5)

Pt (+X=-X)+(-Y+Y)+{ 0 )
P+ (+X=-X)+(+Y=-Y}+(~2)(+2~2)

D=+ +XX+XX)+(-YY-YY)+( C )
D=+ (+ XX+ XX+ (+YY+YYI+(-2){+22+22)

D=+ ($YYZZ+YY2Z)+ (+ZZXX+ 22X+ (=23 +XXYY-XXYY)
D=+ {-YYZZ-YYZZ}+{(+ZZXX+ZZXK)

7.E412)

D=+(+YZ-YZI+(-ZX+ZX)+( 0 )
D=+{+YZ-YZ)+(+ZX-ZX)+ (-2} (+XY-XY)

8.A2U( 1)

D=+ (+YYZ2Z+YYZZ )+ {(+Z2ZXX+ZZXX )+ (+XXYY+XXYY)
9.825(1)

D=+ (+¥Z~YZ)+(4ZX-ZX I+ +X(-KY)
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LoV

(~+)=(=+)~[++)4(X2+2A+)+=0
(+4)=(-+)~{t+)- (~+]~-
(-+)+(++}+( -+ )+ {ZA+AX+)+=0
(+4)-(-2)+(-+)- (++)+
(4 )-(~+)+(-+)-(AX+¥Z4)+=20

(-++AX-)+{+-~4K+}+=0
(~++XZ2- )t (+~=XZ+)+=0
(-++Z2A-)+{+~-~ZA+}+=0
(++)+(+)-(~+)4(-#)=
(-+)=(-+)+ (24 )-(+X+)t=d
{(44+)+(=-+)-(t1)= (-¢+)+
(=+)}+(+4)-(-4}-(X+Z+}1+=d
(++)+(~+)t(-¢)- (+4)-
(++)=(~+)-(~4)+(Z+A+)+=d

(+++7+)+( 2442+ )4=d
(+++A+)2( 2242 )e=d
(44X )40 244N+ )22d

(~+=St)+(=+-G+ )iz
{(--+8+)+(--45+)2=8
(--=-S~)+{+++5+}+=8§

(£)81L°g

{(+4)=-{~=t)s(-t4)- (+-t])+
(4-#)=(-t+ ) (~-=4)~(NZ+ZA+AK+)+=0
(++)4{-i4)-{s-4)-(~--%+]}+
(——#)2(+-t]-(-++J-(Z+R+X+)4=d
(~445-)¢(4--54)+=§

(Linzy'e

{(+++)4+{-—4)+(-1¢)~ (r=%)-
(4=t )=(~44)-(--+)+{XZ+ZA+ AKX+ ) +=0
(ti4)={~42)=(4-%4)- (==}~
(==4)4(t-4)t(=++)2(Z4AsNt)t=d
(++45134(++45+)4=8
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. (V-‘v ‘¥ 1=¢
(v ‘v ‘v )=l
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+(4-)  H(+-)-(++)~-(+4)

D=+ {+XX+##)+(-XX~-~)
D4 (+Y 4= )+ (4YY+-=)
D=4{+22-+-)4(+22~4~])

TIUC3)

P=+(+Y-Z)=(++)#(++)-(+-)
+#(+=~) ~(4+)+(34)-(+=)
Pz+{+2-XJ+{++)s(3-)3(+3+)
=(++)  =(4=)-(+8)-(+~)
Po4{+X-Y)+{ 4= )-(++)=-(++)
++4) {5 )-(4=3-(+-)

D=+ (+2X-XY)+(++)-(++)-(+-)
~{+~) ={35)(++)3(4-)
D+ {+XY-YZ)=( 44 )=(+-)4(4+)
+{++) —{+-)-(++)2(+-)
D+ {+Y2~-2¥)-(+=)4{++)-(4*)
-{++) F(F+)-(+=-)4(+~)

D=+(+YYZ2--+)}+{+YYZZ-~4)
D=+ +ZZXX+=-~ 1+ (~ZZXX-++)
D+ {+ XYY 4= )+ {(=XXYY-++)

LT2U3)

P=+{+X-Y)-{+=)#(+#)-{42)
—(++) H(3+)-(+-)+(+~)
P=+{+Y-Z)+(++)-(++)-(+-)
(=) (4+)3{43)4(+-)
P=+{+2-X)-(+&)~(+~Y5(+3}
+{4++) “(+-)-(++)+(3+-)

D= (#YZ-ZX )1+ (4=}~ (++)-(34)
+{+4) +{++)-{+=-)~(+-)
D4 (+2K-XY}- (44 )+ (+4)~(+~)
¥(+-) (44 )4(43)=(4~)
D=+ (+XY-YZ)+(44)2(5-04(44)
-(++]) (=)= (++)=(+=-)

D=+ (XYY =4 =)+ [+ XXYY=¢+-)
D (VYL 25~ )4 {#YY2ZZ+~~)}
D=4 (+ZZXK+~= )+ (+22Z¥X+~~)

TEG(3)

S=4(4G+~=)4{-CS~++)
S=+(+5--+}+(+S--+)
Sz+(+5~+-)+(-S+=+)

P=t{+Z-=+)(-Z++-)
Pt (4+X-~+)4(-X++-]
P=t{4Y=~+)+(~Y+3+~)

P (X4 )+ (44 )~(4-)-(+-)
(+~) #(+=)-(++)-(+1)
P4 (442 )-(4- 3+ (+=)-(++)
#(++) ~(¥-)(4=)-(44)



P=#{+Z+X )+ {4-)4(+4)+(+~)
=(+=) =(++)-(+=)-(++)

Dut(+¥Ve++ Y r{+XT+H1)
Do+ (4YZ4+++)+(4YZv44)
D+ +ZA+ b+ Jr( v ZX+ 4 %)

De+(+22+=-)+(-2Z2-4})
D=+ (+YY-4-J+(-TY+-+]
D=+(+YY-4#=)+(~YY+-4])

D=e(+YZ4ZX)-(+4)4(4-)-(+-)
-(+~) - )={+3 )i {+¢+])
D #2244 XV )+ (+-)-(4-)-(++)

-{++) —{3=)+(+=)3[++)

D=+ {aXY+YZI-(+=}-(++)+(+-)

+{+-) (44} -(e-)+{++)
7.€G{2)

P4 (+X-Y)s(+=)+(++ )+ +%)
={++) —(+3)-(+=)-(+~)
Pz=(+Z2Z2-X-Y}+{+++]}~(+=4)3(++-)
-(++-) (v -+)-(++e )3 (++-)

D=+ (+YZ-ZX)-(#=)-(++)+(++)

+{++) =(+4)=(+-)+(+~]}
D=-(2X(-YZ-2ZX)=(+++ }+ (=4 )+ {++-)
+(++-) Hr-+)=(++5)~{4-~)

D+ +XAVY 443 )5 CHXXY Y444 )
D=+(-2Z-=~)4(-22--~)

8.EU(2)

P=~(2Z-X-Y)-{++$)p(+-#):(43=)
+{++-) (¥~ )-(++44+)-{+-=)

P+ (+X-Y)={+-)~(++)+(++)
+{++) (4 )~(3=-)3(+-)

B==(2XY-YZ-2X)i(#4+)=( 4=+ )+ (4+-)
-{+t~-) (=4 )-(++4)+{+~-)
D+ (+YZ-2X (=) (44 )4 (++)
=(++} “(++)-(2-)-(+-)

Dz=+(-22++-)+(422--%)
D=+ {#XMYY ==+ 3+ (=XXY T 4-)
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APPEMDIX D.
BASIS FCR THE FACE-CENTERED CUBIC SYSTEM.

PCSITICHS ARE ASSTINGED AS
A, A, 0)
A)'A) 0 )
'Ay A’ 0 )
A=A, 0 )
0, &, A)
0) A)"A)
OI“A) A)
0)"A;"A,
A 0, A)
(-A, 0) A)
11=( A, 0,'A)
12=(-4, 0,-43

—~ o — e~ —

KR L N R Y Y T LI S N I O ]

OVOONCOVMIDUWN a2l

-

BASIS FUMCTICONS ARE GIVEN IH THE
BASIS=(1 2 3 4)+(5 6 7 &)+(9 10

1.A16(1)

C

R“OER OF
11 12

2

Sz4(+S+++ )+ {+5+++)}3+( 1S+ +4)

P (+ (XY )4 (+=)~(+-)-(+1)]}
(V4234 (4= )= (4= )=(4+))
F(H(ZEX (4= )-(4-)-(++))

D4 {4 XY= J+(+YZ-~+}+(42X~-+)

Dt (+2Z++4 )+ {+NK{++4 )+ (Y 5 44)

2.A%U(N
B (~{Y2-24)-(++)i(++)4(+-))
(= (ZX=-XT )~ (41 )4 (4 4)4(+~))
(- (XY-YZ)-(34 )4 (+5)4(+~]))
3.526(1)
Pa+(+(X-Y)+{2#)-(44])-(+-))
H(H{Y=-Z)4(#+)={44])-(4-))
H(H(Z-K34 (44 )-(44)=(+-])
D=+ {+XKYYH+4 ) e (FYYZZ5 4+ )+ (422Z4X+++)
4. 2001
Pt (#Z-=5 )4 {+X--+}+(+Y-~4%)
D=+ (+(YZ12X)3 (4= )~(+-])=-(++])
FOHZXX V(=)= (4= )-(+1))
H(H(XVVZ)3 (=)= (4= )-(++]))
5.TW(3)
Sz (48+-=)+( Q@ )+(45-+-}
S=#(+5-+-)+{48+--)+( 0 )
Sz+( 0 )+(45~+~)+(+S+~--)

P=+( § )+(#X+++)+( 0 )
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Pz+( 0 340 0 )+(+Yitt)
P=+{+Z+++)4( 0 J+( 0 )

Po#(+X4++4¢)+( 0 J+(+X++4)
P=4+(3Ys+4)4 (Y443 )+ 0 )
P=+{ 0 J4(+2++#)+(+2+44)

Po#(+Y-~#)+{ 0 )+{+2--%)
P=4+{+X-~+)+{+Z--4)+( 0 )
P=t{ 0 Y+(rY--#)+(#)~-%)

Dt (+XY~4=J+( C I4+(4ZX¢--)
D=+ (XY 4= (4YZ-3+=)+( 0 )
D=l 0 Ye(+YZ4-=)+(42X-+-)

D=+( 0 J4(+{2X+XY)-{4=)+(+=-)=(+4))+( 0 )
D=+{ 0 )4( 0 J4(+(XY+YZ)-(+=)+{4-)-(4+})
D (+(YZeZXI-(4=) (4= )=(++) )40 0 )+( 0 )

De4(42230+-=3+0 0 )+ (-XX\V(+~-+)
Dut(=YVEZ+=+ )+ (XX +~~2+( 0 )
D=+{ 0 Y+ (-ZZVs~4 )+ (+YYZZ+~~)

Dt (+XXYYi-=)+( § )4 (-2ZXX+-+%)
D+ (=XXYY+ -+ 1+ (#YYZ24-- )+ 0 )
D=+( 0 )#{-YYZZ+~+)+(+Z2ZXX+~-~)

LTI8(3)

S=#(=Z+~+)4( 0 )+(+Y+--)
Szr(+Zt==):(=X+-4+)+( 0 )
S=+( 0 J+(eXb-=)4(-Y4-+)

P=4( 0 )+(+({Y=-2)-(++)+(+3)-(+-))+( 0 )}
P=+( 0 )+ 0 I+ (+{Z-X)-(++])t{++])-(4-))
P+ {(#(X=Y)-{++)4(+4)=(+=))+0 0 }+( 0 )

D=4 =YZ---3+( 0 )+(3VZ+t+)
D4 (+ZKri+)+{-20-~-~)+( 0 )
B=+( 0 Y+{+Xr+54+)+(-KY-~-~)

Dar{+ZX=-+)4( 0 Y+(-XY++-)
De(-YZ+s=)s{+XY--+)+( 0 )
Da+{ 0§ J+(-2X++-)4{2Y2~-%+)

D=+{ 0 J)+(+YYZZ--+)3( 0 )
D=+{ 0 )+( 0 }+(+2ZXX--+)
D+ (+XXYY=-~+)+( 3 )+( 0 )

LT2U03)

Szv( 0 )+(-3+-#)4{25+¢--)
Sz+{+G+-~)2{ 0 )+(-S:-+%)
Sz -S+=+)+{+S+-=)+( 0 )
P=v( G }+{+Zt24)4(~-2--~)
Pos(~i—==)+#( 0 D3{+X++4)
P=+{tYs+4)4(-Y=-~-}+( 0 )

Pzi( 0 JH{+Y-—4)4{-X++-)
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Pz+(=Y++=)+( 0 )+(+2~-+)
Pa(+X-~+)+(=2¢+-)+( 0 )

D=#(~(YZ-ZX)+(4e)=C44)34(+=-))+( 0 )+( O }
D=+( 0 )+(=(2X-XY)+{++}~(+4)+(4-))+( O )
D=+{ 0 )+4( O I+{~(XY-YZ)+(+4)-(++)}4(+-)])

D=+( 0 )+(+YYZZ-+-)+(+ZZXX4--)
D=+ (+XKYY+-=)4C 0 )+{+Z2K~+-)
D=4 (+XXYY-4- )+ (+YYZZ+--3+( 0 )

D=+( 0 J#{+2ZXX-+-)+{+YYZ2Z+--)
D=+(+ZZXX+==)+( 0 I+ (+XXYY-+~-)
B=+{+4((Z2Z-+~)+{3XXYY+-=)+( D )}

D=+{ 0 )+ (4YZ4==)4(-2ZX+-+])
D=+ (=XY+-+)1+{ 0 )+(+2X+-~)
D+ (4XY+-=34(~YZ+-+)+( O )

LT256(3)

S=+{+S~-+)}+( 0 )+( 0 )
S=4( 0 J+(+S-~:)+( 0 )
S=+( 0 )+( 0 )+(+85--+)

P+ (#{X+Y)=(#=)+(+=)=(++)2+( 0 )+( 0 )
P=+( 0 )+ (+(Y+Z)-(4-)4(4=)=(++))+( 0 )
P2l 0 3+( 0 )+{+(2Z+X)-(+=)3(+-)~(++]})

P=+( 0 J+(+X+--Je(+Y-4-]
P+ +Z-+-)1( 0 )+(+¥+--)
Pe+{+Z4==)+(4X-+=)+( 0 )

D=+(4XY++4)4( 0 )+( 0O )
B=+( 0 }+(+YZ+44)+( 0 )
D=+( 0 )+( 0 )+(+ZX+++)

D=+( 0 J+(3ZX--+)+(+YZ-~+)
D=+{+2X~=+)1+( 0 )+(+XY~--+)
D=+#(+YZ--+)+(+XY--+)+( 0 )

D=+{ 0 )#{+X0+++)+(+)Y+++)
D=+ (+YZ+++ )3 0 )+ (+YZ#+1)
D+ (+2ZX+++ )+ (+2ZX+++)+( Q0 )

D=4(-ZZ++~)+( 0 )+( 0 )
D=+{ 0 )+(-XX++-3+( 0 }
D=+{ 0 }+( 0 )+(-YY+i-)

LEGT2)

§=3( 0 )#(-S---)+{(+5+++)
Sz=+{(+2)}(+8+++)+{~G-~=-)+(-8-~--)

P=+( 0 )+(+(Y+Z)+(+-)—(+—)-(++i)+(-(Z+X)-(+—)+t+-)+(++))
Po#+{32)(#{X+Y )2 (4= )=(+=)+{#4 )Y+ {={Y+2)~{ 3= )2 (5= }4(+%))
F(=(Z+X)=(+=)+(4-)3(4+4) ]

P+ (=20 (# (Y=Y + (44 )- (4 ) =(++ 1)+ (4 (7=Z)+(++)-(#4}=(+~])
F{H(Z-Y)+(43)-(+4)-(+-) ]
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P=+( 0 )+(+((-Z)4(++)-(43)=(+=))+(~(Z=X)-(++ )+ {4+ )4 (+~))

Dz#( 0 )+(-YZti-1e(+ZX-~+}
DE4{42) (XY= +)4{=Y2Z5t=)¥(-2ZX++-)

D=+ 0 J+(#XX++4)+(-YY~--)
Dt (=2)(+Z2Z2+++ I+ + XX+ 43 )+ (4YY++4)

D=+(+2) (+XAYY 4+ )4(=YY2Z-~= )+ [-2Z{K-~~]}
D2+ 0 )+(+YYZZ#++ )+ [ =22XX~--~)

10.EU(2)

P24 (42 -Z++=)4(+X-~+)+(4Y-~+)
P=+( 0 J+(#X--4)+(-Y+t-)

D+ 0 J+{#+{ZX-XY )+ {43 )=( 4+ )=(#=) )+ (=(XY-YZ)}- {4+ )+ (+4)4(+-))
D+ (42 +(YZ-ZX)# (F4 )~ (4~ )=+~ ) )+ (= (ZX-XY)-(+3 )+ (++ )+ (+-))
H-(XY-YZ)=(+4]34(+4)2(+-))

D+ (#2)(+(YZ+ZXI+(+=F=-( 4= )= (+ £ ) )+ (- (ZX+XY )= (+-)+(+~)2(++))
H(={XI-YZ)-(+=)+(+=)4(++))
Dz4{ 0 )+(~(ZX+XV)I=(4= )+ (=) (+ £ 1)+ (+(X(+YZ)4 (4= )-( 4= )= (¢2]))
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