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ABSTRACT

The linear combination of Gaussian orb ita ls  (LCGO) method has been 

adopted in developing a spin-polarized molecular o rb ita l calculation  

code. The calculations are based on density functional theory using 

local density approximation for the exchange-correlation p o te n tia l.  A 

variational f i t t in g  method is used to obtain a charge density f i t  to 

avoid the need for using four-center in tegrals in evaluating the Coulomb 

p o ten tia l.  The matrix elements of the exchange potential are evaluated 

by d irec t numerical integration using a doubling grid developed for th is  

purpose. Self-consistent solutions have been obtained using th is  method 

for Fer ?nd F e .c l u s t e r s  with open boundaries and with body-centeredV lo

cubic symmetries. The convergence of several properties to those of 

bulk has been examined, and a good s im ila r i ty  could be obtained between 

the bulk density of states and that of F e ^  confirming the resu lt  

obtained from the m ultip le -scattering  (MS)-Xa method. The charge and 

spin densities for the central atom were found to be very d if fe re n t  from 

those of bulk iron in agreement with the results  reported by other 

authors. However, present results seem to exh ib it stronger tendency of 

minority-spin electron flow to the central s ite  than was obtained by MS- 

Xa method. The ionization potential of the Fe^ cluster is determined by 

the tran s it ion  state method and good agreement with experiment is 

obtained. FegC and Fe^C clusters have also been considered to study 

impurity e ffects  in c lusters.



CHAPTER I

INTRODUCTION

There has been increasing in terest during recent years in the local

atomic environment in a solid due to the be lie fs  shared by many groups

of physicists that many properties of solids are almost determined by
1 ?interactions in the local atomic environment. * This concept has some 

experimental support and regards boundary conditions as having r e la t iv e 

ly  l i t t l e  influence on the overall electronic s t r u c t u r e . ^

This topic has been extensively reviewed and is formulated as the 

Invariance Theorem (though i t  is not a rigorous theorem) which states 

that the density of states and especially  the integrated density of 

states is re la t iv e ly  an invariant quantity independent of boundary
o

conditions.

There are other topics which motivate current in terest in the local 

atomic s itu a tio n . These include surface science, amorphous materials  

and c rys ta ll in e  solids with impurities or with aperiodic symmetry such 

as a lloys. This work is a contribution to those aspects of physics 

where the model of perfect la t t ic e  pe r io d ic ity  is not appropriate.

Though the existence of s ituations with an essential lack of 

p erio d ic ity  is the main motive for in terest in the local e lectronic  

picture , application of th is  point of view w i l l  also be helpful in 

describing a system with perfect c ry s ta ll in e  symmetry, but with emphasis 

given to local situations such as bonding in teractions. By abandoning

1
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the Bloch representation, we can have a better physical picutre of local 

interactions between an atom and its  nearest neighbors in which the 

situation is viewed using chemical bonding concepts.

In such a description, almost a l l  information is expected to be 

contained in the local density of states

n(E,r) = n (E )|^E(r )  |2

where n(E) is the to ta l density of states of the system. The idea that 

the local density of states has an 'invariance property' regardless of 

boundary conditions has a long history starting from Friede l's
2

pioneering work in connection the theory of d i lu te  random a lloys. But 

theoretical confirmations of such a view could not be attempted until  

recently due to d i f f ic u l t ie s  in computation as w il l  be discussed 

la te r .  Recently there have been disputes about th is  point by several 

authors and lack of more convincing results confirming th is  point of 

view s t i l l  leaves some doubts on th is  idea.^ ’ 7

Although the idea of considering an atom in its  local environment

with a rb itra ry  boundary conditions to represent an atom in an extended

periodic la t t ic e  could be a d if fe re n t  problem than that raised by the

above argument, there has been an attempt to id e n tify  the central atom 

plus some neighbors in an open boundary condition as equivalent to the
O

atom in a bulk environment. Such an attempt could have been stimulated
•3

by experimental evidences such as follows. The ferromagnetic ordered 

a lloy  Fe^Al has a body-centered cubic symmetry having two types of iron
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sites: The D-site  for which a ll  eight neighbors are also iron atoms,

and the A-site where only four of i ts  neighbors are iron atoms. What is  

remarkable about th is  example is that the magnetic moment measured on D- 

s ite  is 2.14 Bohr magnetons (ug), close to that fo r an atom in bulk iron 

2.2 ug (the magnetic moment on A -site  is 1 .4 6 ). In th is  example, just  

one shell of iron neighborations was enough to make a D-site iron atom 

have the moment characteris tic  of pure bulk m ateria l. We should note 

however, that th is  example does not have open boundary conditions. With 

an open boundary condition and lim ited number of neighbors the central 

atom may behave very d i f fe re n t ly  from a solid atom. In fa c t ,  a theorem
Q

by von Laue suggests that the local density of states of the central 

site  for a free cluster cannot become similar to that of a bulk s ite  

unless the central s ite  is located fa r  from the boundary, which means a 

very large c lu s te r . Part of our objective is to study the properties of 

local atoms for d if fe re n t types of boundary conditions.

We have discussed an example for which the local environment mainly 

determines the physical properties of the central atom. As examples 

which can support the notion of 'invariance property ', many amorphous 

materials showing s ign if ican t amounts of c ry s ta ll in e  properties can also 

be considered.^  I t  is believed that these amorphous materials never

theless have s ign ificant amounts of short range order which are respon

sible for c rys ta ll in e  properties (however, there has been some 

controversy on th is  point re c e n t ly ) . I f  the 'invariance property' could 

find some basis, then cluster calculations could be a good starting  

point fo r discussing situations such as liquids or glasses.
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There are quite a lo t  of problems for which c luster calculations  

could be useful. Consider systems containing im purities, hydrogen impu

r i t i e s  in tran s it ion  metal systems, for example. The remarkable 

phenomenon that the density of hydrogen per unit volume is greater in

some metal hydrides than in e ither  liqu id  or solid hydrogen makes such a
1 3system a very fascinating one. Carbon impurities in iron provides

another example. I t  is well-known that the mechanical properties of 

iron depend strongly on its  carbon impurity content. This system has 

been of enormous practical in terest in human history but no s ign if icant  

theoretical study on th is  system has been done so fa r .

Other than such atomic impurities or vacancy problems, magnetic 

impurities (such as iron, n icke l, e tc .)  in non-magnetic hosts such as 

copper are other types of s ituations where a cluster approach can be 

e ffe c t iv e .  We could hope to have some explanations on phenomena such as 

the Kondo e ffec t  from f i r s t  principles calculations.^ The Kondo e ffec t  

could be explained so far only by many-body theory using an s-d interac

tion model.

Other than impurity problems, surface structure calculations could

15be another area of application. There has been a tremendous amount of

in terest on surface problems in recent years. Though a cluster system 

cannot be d ire c t ly  related to a solid surface system, i t  ce rta in ly  can 

give a good physical picture of surface structure for f in i t e  size 

clusters at lea s t. Small tran s it ion  metal clusters are known to be very 

important in ca ta lys is . I t  is also known that c a ta ly t ic  properties of 

small tran s it ion  metal clusters less than 10A in size are quite d i f -



1 fiferent from those of solid surfaces. Through calculations of such 

clusters, we may have some explanations on why the tran s it ion  metals 

play such an important ro le in ca ta lys is , through surface structure  

analysis. Transition metals also seem to play an important ro le in 

certain biological systems such as enzymes and p ro te in s .^  Iron in 

hemoglobin is an example. These systems may be too complex to be 

handled by present techniques, but i t  could be possible to understand 

such systems through cluster calculations in the fu ture .

There has been enormous progress in molecular o rb ita l  calculations  

in recent years due to in terest in the areas mentioned and to the 

development of high speed computers. Unlike solids or atoms, molecular 

systems usually require a very large orb ita l basis. In solids with 

p e r io d ic ity , Bloch's theorem reduces the size of the o rb ita l basis to 

that required for a single unit c e l l .  But in molecular o rb ita l  

calculations, some types of approximations are always made due to the 

necessity of a large o rb ita l basis. Sometimes these approximations are 

quite severe.

The most successful methods dealing with large clusters include the 

m ultip le-scattering (MS)-Xa method and the Discrete Variational Method 

(D V M ).^ 9̂  The MS-Xa method is a cluster version of the Green's 

function method (or KKR method) used in band structure calculations and 

employs m uffin -t in  approximation to the crystal potential in an 

essential way. A varie ty  of systems have been studied using this method 

and i t  has proved i t s e l f  to be a re l ia b le  method which can produce 

reasonable resu lts . Attempts to prove the 'invariance property' from
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sophisticated f i r s t -p r in c ip le s  calculations was made for the f i r s t  time 

using th is  method with reasonable success. But lack of more convincing 

resu lts  following th is  work using other methods led to objections to the 

conclusions made from the results  of th is  method, especially  by those 

who used the Hartree-Fock method.'7 Other resu lts  from a local density 

approximation calculation using a d if fe re n t method should help s e tt le  

th is  dispute.

The DVM is another powerful method which depends completely on
Of) pi

numerical integration technique. * In th is  method, every integral 

needed for the calculation is determined by d irec t numerical integration
pp

using a grid based on the Diophantine method. Complete dependence on

numerical integration is DVM's advantage as well as i ts  disadvantage.

For example, th is  method can employ any type of o rb ita l  basis and can

handle systems with a rb itra ry  geometry, whereas the MS-Xa method is not

suitable for systems l ik e  diatomic molecules. On the other hand, th is

method adopts a f i t t in g  of the charge density and has to adopt frozen

core approximation almost necessarily for tran s it io n  metal systems to

control the number of grid points used for in tegration . This method has

been used extensively on many systems containing impurities and with
po on

embedding boundary conditions. ’

Though i t  has never been used on large molecular systems, there is 

another method called LCAO-Xa which has been very successful for small 

molecular systems.25>26 j n method, the charge density as well as 

the exchange-correlation potential is f i t t e d  by a sum of analytic func

tions . Results obtained using th is  method for diatomic molecular
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systems have been given endorsement from a recent local density calcula

tion in which almost no approximations were made at a l l .27

Other than the methods based on local density approximations which 

we have discussed, the Hartree-Fock (H-F) method may be worth mentioning 

though i t  has never been successfully used for tran s it io n  metal systems. 

The H-F method has a well-known problem of generating zero density of 

states at the Fermi level in metals. Furthermore, due to the number of 

four-center integrals which increases as the fourth power of the size of 

the o rb ita l basis, the H-F method cannot be used for large molecular 

systems without s ign if ican t reduction in the size of the o rb ita l
OO

basis. Semi-empirical H-F methods which make drastic  approximations 

for some integrals have been found to be very in e ffec tive  for tran s it ion
o g

metal systems.

We have adopted a varia tiona l f i t t in g  method which w i l l  be de

scribed in deta il in the next chapter, to avoid the troublesome four-

center integrals needed for evaluating the Coulomb po ten tia l. The 

exchange-correlation potential has been treated exactly using a d irect  

numerical integration approach. A doubling grid in three-dimensional 

space has been developed for th is  purpose.

Our method has been applied to Feg and F e ^  c luster systems with 

open boundary conditions. Emphasis was given to checking the 

'invariance property' of the density of states for these clusters.

Also, properties of the central atom in these clusters were studied to 

check the f e a s ib i l i t y  of impurity containing cluster calculations. Our 

method has been developed for systems with fu l l  cubic point group
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symmetry only. For systems with other types of symmetry, a new

symmetrized o rb ita l basis set needs to be found and a new set of grid

points should be determined. In i ts  present form, our method can be 

used for spin-polarized calculations in many other types of clusters  

having fu l l  cubic symmetry.

We can think of other problems which could be handled with the 

present method with proper embedding techniques. Once we have a s u it 

able embedding condition with which the central atom in a cluster can be

made sim ilar to an atom in a bulk environment, we can replace that  

central atom with an impurity atom of our in teres t. This type of calcu

lation could give us valuable informations about the properties of 

solids containing im purities.

In addition, we can consider spin impurity systems in connection 

with the trans it ion  state scheme. With an a r t i f i c i a l  constraint of 

keeping the central atom with no spin po larization (geometrical shapes 

such as Wigner-Seitz ce ll  could be used for th is  purpose as a f i r s t

approximation), we can determine the energy needed for f l ip p in g  one spin 

1 ftin a system. This energy obtained from a f i r s t  principles calculation  

can be used to estimate the Curie temperature of ferromagnetic 

m ateria ls .

Another problem of in terest is the Kondo e f fe c t .  Considering that  

many-body approaches interpreted the s ituation only through the in terac

tion of impurity d-electrons and host s-electrons, we could probably

present a better explanation from f i r s t  principles calculations in which
69there are not only d-s in teraction but also d-p and d-d in teractions.
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I t  is generally known that there are also s ig n if ican t overlap between d- 

electrons on d iffe re n t s ite s .

This d issertation is organized as follows: In Chapter I I ,  the

general outline of the method of calculation is discussed. This in

cludes the general description of the computational techniques, review 

of the existing methods for molecular o rb ita l calculations and a de

scription of the method we used in the present work. In Chapter I I I ,  we 

w ill  discuss the results obtained using the present method and a com

parison with the results obtained from other methods w il l  be made. 

F in a lly ,  the general conclusions we could make from the present work 

w il l  be presented in Chapter IV. Appendix A discusses the grid points 

we used for numerical integration in this work. The symmetrized basis 

forms for the simple cubic, body-centered cubic, and face-centered cubic 

symmetry's f i r s t  nearest-neighbor atomic arrangement are presented in 

Appendicies B, C, and D.



CHAPTER I I

THE METHOD OF CALCULATION

This chapter consists of six sections. In Section A, a general de

scription of computational techniques is presented. Section B contains 

a discussion of the tight-b inding method which is the computational 

basis of present work. A review of the existing methods is presented in 

Section C and Sections D and E contains detailed description of the 

techniques we used for the Coulomb and the exchange potential matrix 

element evaluation. F in a l ly ,  the actual computational procedure we 

followed to reach a self-consistent solution is described in Section F.

10



A. General Description

The question of how to describe the complicated potential for an 

electron moving in the f ie ld  of other electrons is one of the most 

challenging topic in ab in i t io  calculations. The true Hamiltonian we 

have to deal with is the many-body Hamiltonian

N o 2-Z{ N i Z .Z ..
h -  I [-?• -1-r-r-+ I ‘ -rV-3 + I '

i=l -A lri' Ĵ i,j=1 Ir i“r j 1

in which the primes denote no summation for identical terms. (Rydberg 

unit of energy w i l l  be used throughout th is  d isserta tion .)

Attempts to solve th is  Hamiltonian by use of the variational
71princip le  led to the Hartree and Hartree-Fock one electron equations.

The trad it io n a l Hartree-Fock (H-F) method, which is s t i l l  used 

extensively among chemists, has been disastrous in applications to 

s o l id s .^  For example, i t  generates zero density of states at the Fermi 

energy for metals and also gives very wide bandwidths to sp-bonded 

m ateria ls . The use of configuration interaction to incorporate electron  

correlations is successful in small systems but quite impractical for  

large ones. The major d i f f i c u l t y  in application of the H-F method is 

the enormous number of four-center integrals to be evaluated which 

increases essentia lly  as (NB)^, where NB is the number of o rb ita l basis 

being used.2®’2*

Due to such enormous d i f f i c u l t y  encountered in obtaining exact H-F 

solutions, several semi-empirical approximations to th is  method such as

11
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the Extended HUckel (E-H) and the complete neglect of d i f fe re n t ia l
31overlap (CNDO) method appeared. These approximations made the H-F 

equation somewhat easier to solve and were partly  successful in describ

ing simple systems with e f f ic ie n c y . But the semi-empirical molecular 

o rb ita l  calculations of t ran s it io n  elements are complicated by strong 

interactions of nearly free electron (NFE) l ik e  sp-orbitals  and rather  

localized d -o rb ita ls .  This in teraction causes hybridization of o rb ita ls  

which is manifested c le a r ly  in the band structures of tran s it io n  

elements. In such a s itu a t io n , i t  becomes quite d i f f i c u l t  to estimate 

any semi-empirical parameters. A detailed comparison of the E-H and 

SCF-Xa-SW method when applied to tran s it io n  metal clusters showed grave 

discrepancies in the results obtained, indicating the d i f f i c u l t ie s
*1 r

involved in proper parametrization in the semi-empirical methods. The 

energy level d is tr ib u tio n  in the E-H method was very d if fe re n t  from that 

of SCF-Xa-SW method, and a comparison with the bulk density of states 

showed no resemblance at a l l  for the E-H resu lt though the SCF-Xa-SW 

resu lt  gave a reasonable resemblance. I t  is in teresting to note that  

whenever such large discrepancies occurred between cluster and solid  

properties due to too many approximations, these have usually been 

routine ly  attributed to the small c luster s ize , namely surface e f fe c t .

Although i t  has been pointed out that the semi-empirical methods 

within the H-F approximation are not e f fe c t iv e ,  especia lly  for the 

tran s it io n  elements, and although these methods are becoming more obso

le te  in the present high-speed computer age, we give a b r ie f  review of 

th is  approach before going on to discussions on methods other than the
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H-F method.

The importance of the E-H method l ie s  in the fact that i t  is one of 

the pioneering methods which was simple enough to handle complex
op

molecules. I t  was introduced in sim plified form by HUckel in 1931 and
33 34was further extended for better accuracy by others. ’ The princip le  

idea in th is  method l ie s  in approximating the diagonal elements of the 

Fock matrix by appropriate parameters such as ionization potentia ls and 

assuming the off-diagonal elements to be proportional to the overlap 

matrix elements such that

H = 0.5 K(H + H0J  S 0 
a8 '  aa 8 3 7 a8

in which K is a parameter usually in the range 1 .0 -2 .0 .  The CNDO is a 

more advanced form of approximating the H-F equations which assumes the 

overlap matrix to be diagonal. This method makes less severe 

approximations to Fock matrix elements than the E-H method but s t i l l  

carries a severe approximation providing no s ign if ican t improvement in

general over the E-H resu lt .

We have discussed major d i f f i c u l t ie s  in the H-F method and i ts  poor 

behavior when applied to the tran s it ion  elements. On the other hand, 

the local density approximation to the density functional theory of the 

exchange-correlation potential was found to produce remarkably good

results  in almost a l l  problems with less computational d i f f i c u l t y .  This
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35approach has started from the work of S later in which he sought to 

approximate the H-F equation which is easier to handle and practicable  

in more complicated systems. He rewrote the one electron H-F equation 

in a form

[ -V 2 + Vm + Vm + V 1 i|) = E L N H xcJ yn nvn

in which = - I  2 Z ^ / | r - ^ |  is the nuclear a ttraction  potential and

v = 2 I d3 r '
H | r - r ' |

is the Coulomb interaction potential between the electrons. Vxc is the

non-local exchange potential written in a local potential form. I t  was
-> 1 /3

suggested that V ~ [ p ( r ) ] can be used as an approximation to the 
X c

actual non-local exchange p o ten tia l.  This resu lt which was obtained as 

an approximation to the H-F equation la te r  found its  theoretical basis 

in the density functional theory which reproduced the same functional 

form with a s l ig h t ly  d i f fe re n t  factor using the free electron gas
0  7

model. ’ There have been further improvements in the local density  

functional form afterwards and i t  has become indispensible in the ab
O O  O Q

in i t io  calculations of solid state physics. ’ Obviously the great 

advantage of such a form results from the local nature of the exchange- 

correlation potential and a p o ss ib il i ty  of doing without four-center  

in tegra ls .
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Though i t  has become possible to have the one-electron Schrodinger 

equation with a local exchange-correlation po ten tia l,  the numerical 

nature of i ts  functional form again causes other types of computational 

d i f f i c u l t i e s .  Due to the d i f f i c u l t ie s  even in th is  simpler form in ab 

in i t io  calculations, some sort of approximations are usually made in 

practice. These include the pseudo-potential approximation,^ frozen
on

core approximation, and the semi-empirical methods within the local

density approximation. The semi-empirical methods usually draw some

information from an experiment or a very accurate computational resu lt

and put th is  in a parameterized form. Several attempts have been made

to parametrize one electron ca lculation, employing f i t t in g  and in ter-

41polation, sometimes together with the pseudo-potential method. These 

e ffo r ts  certa in ly  helped generate reasonable results with e ff ic iency  but 

the physical implications involved in the parameterization step could 

not always be made c lear.

The frozen core approximation is another way of simplifying the 

complexities in real calculations and has been used extensively in the 

completely numerical d iscre te -varia tion a l method (DVM) in cluster calcu-
O  A

la t io n s . This approach exploits the well-known property that the core 

electrons are not influenced very much by bonding in teractions, and 

assumes the core states to be the same as the atomic core states. A 

possible complication in th is  approximation is the problem of ortho

gonal izing the valence o rb ita l basis to the core electron states for  

every atom in the c luster.
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Pseudo-potential approximation has been enormously successful in

semiconductor calculations and could be another a ttra c t iv e  approach.
4?But so fa r  i t  has not been exploited much in cluster calculations.

The handling of the angular momentum dependent (non-local) 

pseudopotential can be a possible d i f f i c u l t y  in th is  case. The task of 

generating a reasonable pseudo-potential form for the trans it ion  metal 

atoms could be another problem, since s ing if ican t spatial overlap of the 

very localized d-electrons with the core orb ita ls  could cause d i f f i c u l t y  

in properly incorporating the exchange-correlation potential 

contribution from the core electrons in the pseudo-potential .^3»44 

is due to the non-linear nature of local density functional form for  

charge density, i . e . ,

. n \ 1/3 *  1/3 . 1/3 
(P} + P2) * + P£

In our present procedure, we have not employed any of the above 

approximations and have made straightforward calculations within the 

local density approximation. The only s ign if ican t approximation we 

adopted is the charge density f i t t in g  which is done to make th is  proce

dure more practicable by avoiding the evaluation of too many four-center  

two-electron integrals which are needed i f  we want exact treatment of 

the Coulomb po ten tia l.



B. Tight Binding Method and Orbital Basis

Tight Binding method was proposed as fa r  back as 50 years ago by F. 

B loch ,^  but i t  has only been recently that any substantial amount of 

work based on th is  method have been accomplished. This was mainly due 

to the d i f f i c u l t ie s  in evaluating three-center in te g ra ls .^  Therefore, 

th is  method was used mostly for q u a lita t iv e  description incorporating 

the semi-empirical approaches such as parameterization and f i t t in g .

This method has been given p articu lar attention in recent years 

because i t  is p a r t ic u la r ly  suitable for describing the local e lectronic  

structure which must be understood when dealing with systems without 

la t t ic e  pe r io d ic ity . This method is also expected to be more 

appropriate for materials with less overlap of valence o rb ita ls  between 

neighboring atoms such as tran s it ion  metals where we are prim arily  

interested in the r e la t iv e ly  localized d-electrons. A localized o rb ita l  

basis approach has been enormously successful in the 3d-trans ition  metal 

elements band structure calculations using the Gaussian type o rb ita l s ^  

and is also expected to be more e ffec t ive  than any other method in 

studying the local e lectronic structure of trans it ion  metal c lusters.

In th is  method, a conceptual picture of the s ituation is very 

simple. A wave-function is expressed in terms of an appropriate set of 

o rb ita ls  such as Slater type o rb ita ls  (STO) or Gaussian type orb ita ls  

(GTO)^ such that

17
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In th is  case, a denotes the type of o rb ita l  at the s ite  ft on which i t

is centered. When <|> ‘ s are the atomic o rb ita ls  i t s e l f ,  the method isa

called the Linear Combination of Atomic Orbitals (LCAO) method. Usually

<t>a is not s t r i c t ly  an atomic o rb ita l and could be e ither an independent

PRGaussian or a contracted combination of Gaussians in practical use.

Gaussian type orb ita ls  are usually preferred in molecular o rb ita l  

calculations re la t iv e  to STO's because of th e ir  advantage in evaluating  

the m ulti-center in teg ra ls . The m ulti-center in tegrals can be evaluated 

a n a ly t ic a lly  in GTO basis set whereas straightforward analytic  

evaluations is not possible with STO's. The STO basis set is more 

appropriate in atomic calculations than in molecular o rb ita l  

calculations and we have adopted GTO's as the basis function type in 

th is  procedure.

The main drawback of Gaussian type functions is that i t  does not 

resemble n icely the actual atomic o rb ita ls  in lacking cusp near the
•31

orig in  and in having an undesirable form fa r  away from the o rig in .

The necessity of a large number of basis functions due to such 

u n rea lis t ic  form is the main disadvantage in using th is  type of 

function. (Twice as many basis functions are generally needed for th is  

type of function compared to the more r e a l is t ic  STO's.) The contraction 

of the basis set which re s tr ic ts  the re la t iv e  freedom of the several 

independent Gaussians is usually adopted i f  the large number of basis 

functions causes d i f f i c u l t y .
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The angular functions attached to each Gaussian type function are

to be appropriately chosen depending upon the system of in te re s t. In

systems with a cubic group symmetry, the Kubic Harmonic functions are

the natural choice and adopted in th is  work also as has been done in the

band structure calculations of cubic m e ta ls ,^  namely (x ,y ,z ) - ty p e  for

7 7 7 7the p-type o rb ita l basis and x -y  , 3z - r  , xy -, y z - ,  zx-type for the d- 

type o rb ita l basis. For systems with symmetry other than cubic symmetry 

group, other types of angular functions could be considered. The 

angular function type should be chosen according to the princip le  of 

being able to describe the bonding and anti-bonding states properly.

Although the t ra d it io n a l Tight-Binding method has been used in a 

form of LCAO-method which takes the atomic o rb ita ls  as its  basis set, we 

adopted independent Gaussian type o rb ita ls  in th is  work following the
A C

previous band ca lculations. This choice is expected to give more 

f l e x i b i l i t y  for the core o rb ita ls  to readjust in the new environment 

which is important in molecular systems. But th is  also could cause 

excessive amounts of computer time.

With the given ansatz

t  = I ci*i

the SchrtJdinger equation can be expressed as

H. .C. = E- S. .C. 
i j  J i iJ J
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in which

and

Hij s < *i lH' V

This leads to the Secular equation

| H.. -  E S . . |  = 0 
1J 1J

for non-trival solutions of { } .  This condition gives the desired 

eigenvalues and eigenfunctions of the Hamiltonian matrix. In general, 

orb ita l basis <J>s■ s are not expected to be mutually orthogonal though 

they can be assumed to be normalized. Thus, the overlap matrix S is 

usually not a diagonal m atrix. contains one-, two-, and three-  

center integrals and the terms can have the significance of on-site  

energies, hopping in tegra ls , e tc .49

The size of the matrix dimension for H and S equals the to ta l  

number of o rb ita l basis functions chosen for the system and i t  could 

become in to lerab ly  large for molecular systems. In systems with la t t ic e  

p e r io d ic ity , Bloch's theorem allows s im plif ica tion  to a much smaller 

size in matrix dimension determined by the number of functions needed to 

describe atoms in a single unit c e l l .  For large molecular systems, i t  

is almost inevitable  to block-diagonalize the Hamiltonian matrix using 

the symmetry of a system whenever possible. This helps reduce the size
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of matrix to be diagonalized and can be a c r i t ic a l  factor for e f f ic ie n t  

ca lcu lation .

In th is  work, basis o rb ita ls  were put in symmetrized forms before 

starting the calculation for such purpose. The usual method of generat-
C A

ing symmetrized basis is the projection operator technique. B rie f  

explanations of the generating procedure and tables of symmetrized basis 

forms generated for the simple cubic (SC), body-centered cubic (BCC) and 

face-centered cubic (FCC) nearest neighbor geometry are l is te d  in the 

Appendix. For systems having a symmetry other than the f u l l  cubic group 

0h, the same technique can be used to generate proper symmetrized basis 

sets.

Using the symmetrized form of the basis set can provide more compu

ta tional advantages than ju s t  block diagonalizing the to ta l Hamiltonian 

m atrix. Consider the typical Hamiltonian matrix element

ukt _ - k iui
Hi j  = < *1 |H| Xj >

k
in which x i denotes a symmetrized function belonging to k-th row of the 

i - th  representation. I t  can be shown that

Hi j  d ( i )  6i j Skit £ Hi i
nn

i f  H is unchanged under a l l  operations of the group such that [Pa »H] = 0
51for a l l  operation Pa in the group. The Hamiltonian of a system is 

c e rta in ly  invariant under any group operations. The above equation
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kkshows that the matrix element is independent of the row k, and a ll  

elements between the functions belonging to d if fe re n t  representations i 

and j  or d i f fe re n t  rows k and l  in the same representation are 

id e n t ic a lly  zero. This means that i f  the to ta l Hamiltonian matrix is 

block-diagonalized, then many of the small blocks are identical 

(degenerate) i f  they belong to the same representation, i . e . ,  in most 

cases we need to deal with only a single row in a given representation  

i f  i t  is degenerate.

Added to the above stated advantages, we have found the following  

property in the matrix element evaluation. For,

x - I  a $L m Ym m

in which <t>'s are the independent Gaussians and a's are the coeffic ients  

in the symmetrized function, i t  was also found that

where

< a 1 cf>' |x > = | a ' |2 • S mm 1 u 1 m' o

So E < H ' xu > = < ^ lxu > =  •

Therefore, we have

< xplxv > = I UJ2 < <4IX)J >
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allowing us to find the integral related to a single term in xv i f  there 

are several terms in the combination. Furthermore, i f  the angular 

functions were given in a polynomial form such as (x + y i-z )^ ,  i t  was 

found in many cases that i t  is necessary to evaluate integrals related  

to ju s t  one term of the polynomial. Information was given in the input 

data as to whether such symmetry property could be used. This property 

was used in evaluating not only the overlap matrix but also the 

Hamiltonian matrix elements. All the information about the symmetrized 

o rb ita l basis was provided as input data for the programs.

Choosing an appropriate set of exponents for the Gaussian functions 

is another important task in such varia tiona l calculations. The present 

work employed the same Gaussian exponents was used by Wachters in atomic 

self-consistent ca lcu la tio n ,^2 which gives 14 s-type, 9 p-type and, 5 d- 

type orb ita ls  to describe 3 d trans it ion  metal atoms. There are 

indications that o rb ita l exponents of the atoms are not necessarily most 

appropriate for molecules as can be seen in the hydrogen molecule 

varia tiona l ca lcu la tion . Though s lig h t variations of the exponents can 

be expected to give better varia tiona l solution, i t  is not easy at a l l  

to determine which set of exponents is best suited for each d if fe re n t  

systems. Normal practice is to take the atomic o rb ita l exponents unless 

other obvious modification is necessary.



C. Review of  the Ex ist ing Methods

Before going into description of the procedure used in the present 

work in the following sections, several successful methods of cluster  

calculation being widely used w ill  be discussed in th is  section. This 

w il l  be helpful in understanding the d i f f i c u l t ie s  involved in molecular 

orb ita l calculations and discussing re la t iv e  merits between several 

d if fe re n t  methods.

As has been discussed before, use of localized o rb ita ls  is 

undisputably natural and proper in describing local e lectronic structure  

in contrast to other types of bases such as plane waves. The Discrete 

Variational Method (DVM), LCAO-Xa, and Recursion Method are examples 

developed under th is  p rinc ip le  of tight-b inding method. There has been 

another quite successful method called the M ultip le Scattering-Xa (MS- 

Xa) developed as a cluster version of the KKR Green's function method in
1 D

s o lid . This method assumes m uffin -t in  potential approximation and can 

determine exact solution of the SchrtJdinger equation by numerical 

integration method within th is  potential approximation.

The DVM may be the most widely used method in the cluster

calculations within the LCAO method. This method has been extensively

used for large tran s it ion  metal clusters as well as for small molecular 

70systems. ’ This method has its  basic characteristics in its  

completely numerical treatment of the ca lculation. Due to th is  property 

i t  can take any form of basis functions, sometimes even numerical 

basis. Because of i ts  complete dependence on effectiveness of numerical

24
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in tegration , DVM mostly resorts to frozen core approximation to control

the number of points needed in the in tegration, for which the
0 0

Diophantine integration scheme is usually adopted. Due to the 

d i f f i c u l t y  in evaluating the Coulomb potential at each grid point, 

charge density f i t t in g  is almost indispensible in th is  method such that

p(r) = I a . f . ( r )  ,

where the f ( r )  are a set of functions chosen for th is  purpose). Once 

such a form is obtained

vcc?k) - / d3r
lr  -  r k l

can be used to find the Coulomb potential at the necessary points and

(Vc + vxc>ij = I Wk * i (?k> V ’V  • (vc ( f k> + Vxc( f k>

can be evaluated in a straightforward way. The main advantage of DVM 

l ie s  in the freedom in choosing any form of basis and the a b i l i t y  to 

handle systems with a rb itra ry  geometries. The main disadvantage of DVM 

l ie s  in the l im ita t io n  of the number of points i t  can take for numerical 

in tegration. This d i f f i c u l t y  usually forces DVM to use frozen core 

approximation to l im it  the number of points in practical range. Use of 

the DVM has been quite successful in many impurity containing clusters  

and possible embedding conditions have also been explored.24’ 33



26

Another successful method in molecular calculations within the

tight-b inding approximation is the LCAO-Xa method, although th is  method

has never been applied to large molecular systems. This method is

26essentia lly  an extension of the work of Sambe et a l . in which the

charge density and exchange-correlation potential were f i t t e d  into some

analytic functions. By such extensive use of f i t t i n g ,  the necessity of

four-center integrals for the Coulomb potential could be eliminated and

the d i f f i c u l t y  of handling numerical data for exchange-correlation

potential could be avoided. F i t t in g  of key quantities by use of simple

analytic functions natura lly  provided good e ff ic iency  but the d i f f i c u l t y

involved in the f i t t in g  remains to be the major obstacle in th is  method.

The orig inal least square f i t t in g  scheme for charge density was modified

into the varia tiona l f i t t i n g  scheme (see next section) for better

f i t t in g  q u a lity  by Dunlap et a l . Bond-centered functions were also

added to nuclear-centered f i t t in g  basis functions in th e ir  diatomic
27molecular ca lcu la tion . Their resu lt  with such elaborate f i t t in g  

e f fo r t  was proved to be quite satis factory  from the la te r  work of 

Painter et a l .  in which exact treatment of the Coulomb potential using
EE

the four-center integrals was done. Other than the cumbersome problem 

of choosing a proper f i t t in g  basis set, th is  method can give quite 

satis factory  results with e ff ic ien cy . In our present work, we have 

adopted the variational f i t t in g  scheme used in th is  LCAO-Xa method.

Somewhat alien to the above described approaches, but another 

popular LCAO method for c luster calculations is the Recursion Method. 

This ingenious approach for solving the SchrOdinger equation from local
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electronic point of view could be applied to clusters of even more than

100 atoms and to surface problems. However, r e a l is t ic  potentia ls can

not be employed in th is  method. The main objective of the Recursion 

method in practical applications is limited to finding the local density 

of states of a system from localized o rb ita l  model. The main idea of 

th is  method is transformation of the Schrbdinger equation into a chain 

model which should be determined appropriately for each particu lar  

system such that

H iUn> = an |U > + b . ,  + b |Un ,>n n n n+1 n+1 n n-1

The state |Un>> which is a l in ear combinatin of the localized orb ita l

basis, is expected to represent the n-th shell from the central atom.

The parameters an describe the coupling of each environment to i t s e l f

and b  ̂ the coupling to its  neighbors.

We have described several successful approaches within the t ig h t -

binding method. These methods u t i l i z e  the localized o rb ita l basis to

describe the local e lectronic structure. Completely d if fe re n t  from the

above types of approaches, but which has nevertheless been successful in
1 ftmany aspects is the MS-Xa m ethod.0 Major defect of th is  method is the 

a r t i f i c i a l  partit ion ing  of space into m uffin -tin  type potentia ls . To 

handle the open boundary s ituation which does not occur in solids, a 

large sphere enclosing the whole cluster (called the Watson's sphere) is 

added to the otherwise normal m uffin -t in  potentia ls . Another m uffin -t in  

type potential (spherica lly  symmetric) is assumed in the region outside
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th is  Watson's sphere. The shortcomings of th is  method are manifested 

most severely in systems l ik e  diatomic molecules, but otherwise th is  

method could produce quite reasonable results with e ff ic iency  in many 

s ituations. A lo t of our results obtained from the present calculation  

w il l  be compared la te r  with the results obtained from th is  Ms-Xa method.

We have described several successful methods in the molecular 

o rb ita l calculations. The method we have used in th is  work for large 

tran s it ion  metal clusters is not completely novel and could be regarded 

as a modification of some of the described methods. S p e c if ic a lly ,  we 

have adopted the varia tiona l f i t t in g  method for charge density as in the 

LCAO-Xa method. Our procedure for handling the exchange-correlation 

potential may be regarded as having the same technical implication as in 

DVM, the only difference being the d if fe re n t  choice of grid points for  

its  numerical in tegration.



D. Coulomb Potential and Charge Density F it t in g

In th is  section, d e ta ils  of the charge density f i t t in g  are 

discussed in connection with the Coulomb potential matrix element 

evaluation. As has been pointed out, exact treatment of the Coulomb 

potential necessitates evaluation of the numerous time consuming four-
po

center integrals in the tight-b inding method. This has been the major 

bottleneck in the H-F-Roothaan method (or LCAO-HF) and has been the main 

reason why the H-F method could not be applied to large molecular 

systems.

Though the four-center integrals (which are also called two- 

electron integrals among chemists) are an indispensible part of the H-F- 

Roothaan method in which both the Coulomb and exchange potentia l matrix 

elements are expressed in terms of these in teg ra ls , i t  is not the case 

in the local density approximation (LDA) method. Within the LDA scheme, 

the exchange-correlation potential has to be treated numerically and we 

are less dependent on the four-center in tegrals than in the H-F-Roothaan 

method. In fa c t ,  an appropriate approximation fo r trea ting  the Coulomb 

potential is inevitab le  i f  the LDA method is to be practicable for large 

molecular systems. Use of the four-center integrals for exact Coulomb 

potential treatment without any approximation is also plausible in the 

LDA approach for small molecular systems but w il l  face the same serious 

problem as in the H-F-Roothaan method as the system becomes large and, 

therefore , a large number of bases needed. One of the approximations 

being widely used at the moment is the charge density f i t t i n g .  In this

29
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approach, the charge density of a system is cast into some given form of 

analytic  functions. This has the e ffec t of reducing the number of 

in tegrals to be evaluated from being proportional to (NB)^ to 

approximately (NB)3 , where NB is the number of o rb ita l basis used.

Charge density f i t t in g  was f i r s t  used by Sambe et a l . ,  in th e ir
pC

small molecular system studies. In th e ir  work the charge density was 

f i t  in a least-square sense, i . e . ,  by minimizing the square of deviation  

in the f i t t e d  and real charge density. Dunlap et a l .  further modified 

th is  least square f i t t in g  method into the varia tiona l f i t t i n g  method and
P7

used i t  in th e ir  diatomic molecular ca lculations. ’ Their idea was 

to minimize the error involved in the Coulomb energy due to f i t t in g  and 

not the charge density as in the least square f i t t i n g .  Procedure for  

the m ulti-center charge density f i t t in g  is as follows: In the least  

square f i t t in g  method, the quantity to be minimized is defined as

D = /  d3r [p (r )  -  p ( r ) ] 2

in which

NFB
P(r) = I V - C ? )  

i=l 1 1

and {a..}, { f  ̂  ( r )}  being the f i t t e d  coeff ic ien ts  and f i t t in g  bases 

respectively . NFB is the number of f i t t in g  bases employed. Although 

the f i t t e d  charge density is almost normalized, s t r ic t  normalization can 

be achieved by demanding
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3 [D + X N] = 0 ( i = l ,  NFB)
3ai

in which

and

ni = /  f ^ r )  d3r .

N is the to ta l number of electrons in the system and X the Lagrange 

m u lt ip ie r . Imposing the conditions

0 = -gj7 [D + X N] , ( i  = l ,  NFB)

we find the solution for a as

a = S '1 (£ + X n)

in which

s „  -  I  d3r  f , ( ? )  f  (?)

t • = /  d3r p(r) f i ( r )
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Be requiring the normalization condition

N = n • a = n • (S + I )  + A n • (S“ ^ n )

we get

, _ N -  n » (S"1 t )  

n • (S 1 n)

for the Lagrange m u lt ip l ie r .

The variational f i t t in g  exactly follows th is  procedure except that 

the quantity to be minimized is replaced by

o ,  ( p ( ? )  -  ?(?)) ( p ( r ' )  -  P ( f ' ) )
D1 = i f  d rd r '  ----------------------------------------------------

Ir -  f '  |

= [ p -  p I p -  p ]

This means minimizing the error in the Coulomb energy due to f i t t in g  

rather than the error in charge density. Defin ition of t  and S should 

be replaced by

where brackets are for expressions as is given in D ' . These integrals
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are special types of two-electron (four-center) integrals we discussed 

already. One of the great advantages we have in the Variational F it t in g  

method is that the approximate value of to ta l Coulomb energy of the 

system could be evaluated immediately out of the quantities already 

calculated. I t  can be shown easily  that

Uc = [p(r)  | p(r 1) ]

= 2 [ p  | p ]  -  [ p  | p ]  + [A p  | Ap]  .

Therefore

U = 2 y a-t'. -  y y a.a. S'..c 4 i t  4 j  i j  i j

in which the contribution from [Ap | Ap]  term has been neglected.

Superiority  of the variational charge density f i t t in g  compared to 

other types of f i t t in g  schemes such as the least square f i t t in g  of 

charge density or potential has been discussed in de ta il by Mintmire et
eg

a l . There are several points worth mentioning about the computational 

advantages in the Variational F i t t in g  (VF) re la t iv e  to the least square 

f i t t i n g .  F i rs t ,  three center integrals in t  need not be calculated in 

the VF-Method. Evaluation of t '  in the VF is necessary for the matrix

element calculation anyway i f  we ask for the analytical evaluation of

matrix element from the f i t t e d  charge density. Avoiding the evaluation  

of three-center integrals in t  was found to give great savings in e f fo r t
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and complexity as well as in computer time. Second, the VF can give 

quantities which can be a good check for the accuracy of f i t t in g  without 

any further e f fo r t .  The quantities

[ p  | p ]  = z ai t l

and

[p | p] = E £ a. a. S'..
L i j  i J iJ

should be very close to each other fo r an acceptable f i t t in g  qu a lity .

We could adopt the VF-method in th is  work because our choice of the 

Gaussian type o rb ita l basis allows analytical evaluation of the two- 

electron integrals needed in the VF-method quite e f f ic ie n t ly .  I t  should 

be noted that the two-electron integrals cannot be evaluated by numeri

cal means in practical sense due to its  double space integral nature.

The a b i l i t y  to evaluate two-electron in tegrals a n a ly t ic a lly  also gives 

our method no re s tr ic t io n  in performing a ll-e le c tro n  ca lcu la tion . The 

main reason why DVM has to adopt the frozen core approximation is due to 

the necessity of a llocating very large number of points near the atomic 

centers around which the charge density is varying extremely rap id ly .  

This is a very undesirable s ituation because atomic core region is the 

region of least in terest due to i ts  almost frozen characteris tics .  

Therefore i t  is almost inevitab le  to have the frozen core approximation 

and least square f i t t in g  i f  the integral quantities needed in the 

f i t t in g  procedure are to be evaluated numerically.
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The detailed steps for calculating the necessary quantities in 

f i t t in g  is as follows. Let

in which { f k> are the charge density f i t t in g  basis and { x^> are the 

symmetrized o rb ita l basis. I t  can be noted that

rows in a given representation. This is due to the fac t that {f^} are 

the functions invariant under a l l  group operations making up the speci

f ic  point group and the selection rules property described in Chapter 

I I ,  Section B. ( I t  should be noted that { f a r e  chosen to assume the 

same form as some of the symmetrized basis functions belonging to the 

id en tity  representation, which are invariant under a l l  point group 

operations.)

Consider the charge density expression belonging to some a rb itra ry  

representation R having dimension d(R)

= / /  d3rd3r
f k ( r ' )  x i ( r )  x j ( r )  

|r - P  |

E [ f k I X j ]

and that M. . is equivalent fo r symmetrized basis pairs (x^>xp for a ll
• J ' J

d(R) nocc
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in which r denotes rows and gn the occupancy of the n-th energy level 

Then the component of t£ due to the representation R becomes

M r ' )  p(r)
-  r r .

kJR[ t t ] R -  S I  d3rd3r '  J £ - L -
\r -  r* |

= I  £ 9n ? ? Cni Cnj [ f k 1 x i r )  4 r ) ]

" r n 9" 1 j  Cn1 CnJ

in which M.. has been used as a quantity independent of rows as has been
 ̂J

discussed and { }̂ are the eigenfunction coeff ic ien ts  of the n-th 

energy le v e l.  I t  is assumed here that {C •} have been made identical 

for d i f fe re n t  rows in a given representation by a proper normalization 

of the basis functions, making independent of the rows.

Now we can discuss an important resu lt  out of th is  form. Because

{gn} ,  {Cn_j}, and have been shown to be the quantities independent of 

d if fe re n t  rows, we can put t£ as

[ t y R .  d(R) a  9n .1. Cni

i . e . ,  i t  is needed to evaluate th is  quantity only for any single row in 

a given representation R and simply m ultip ly  i t  by i ts  degeneracy d(R). 

In the actual ca lcu la tion , th is  form was rearranged as

NB i . NB
[ t y R -  d(R) • I  gn (2 I I Cn1 Cnj ^  -  I  Cn1Cn1M ^)
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exploiting the symmetry property of the matrix M. These steps can be 

reformulated for the spin polarized case in a straightforward way. 

Evaluation of other quantities needed for the varia tiona l f i t t in g  is 

t r i v ia l  and w i l l  not be discussed.

Once the expression for the f i t t e d  charge density is obtained, such

that

NFB
p(?) = I ak f  (?)

k=l K K

then the matrix element can be found d ire c t ly  as follows.

<Xji v f > 1 y  ■ £ \  [ f k 1 x i xj ]

■  I  ^  ^

k
we can see that the two-electron integral expressions {M ..} are the only

 ̂J
major quantity needed for the en tire  process of f i t t in g  and matrix 

element evaluation. The VF-method is expected to give better accuracy 

for the to ta l energy of a system than the LSF-method due to the very 

fac t that i t  is based on the princip le  of minimization of the Coulomb 

energy error rather than the charge density erro r.

Though we have discussed the advantages which could be obtained 

from the f i t t in g  approach, there are also some d i f f i c u l t ie s  in f i t t in g  

i t s e l f .  I t  has been reported that the f i t t in g  bases can become very 

unstable as the number of f i t t in g  bases is increased. F it t in g  method
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using the exponential function type basis is a well-known i l l -

conditioned problem. The main d i f f i c u l t y  comes from the fact that

f i t t in g  basis functions are not l in e a r ly  independent to each other for

such functions. There is another d i f f i c u l t y  in determining optimal

basis set for the f i t t i n g ,  due to non-linear f i t t in g  problems. F it t in g

2 2 2functions of d if fe re n t  functional forms such as e"ar , r e"ar , e tc . can 

be used to reduce the problem of l inear dependency to each other but 

some undesirable situations could ce rta in ly  occur as the size of f i t t in g  

basis becomes very large.

Charge density f i t t in g  basis form was deduced from the symmetrized 

basis form belonging to the rl-representation  in cubic point group Oh.

We used s-type symmetrized form as our f i t t in g  basis form for the
2 2

simple- and r^-type Gaussian f i t t in g  functions, i . e . ,  e"ar and r^e“cxr
7respectively . I t  is obvious that r -type Gaussians have the same

symmetry properties as that of the simple Gaussians. Exponents for the

simple Gaussians were chosen to be double the s-type o rb ita l exponents 

2
and the r -type Gaussian exponents were chosen to be double the p-type 

o rb ita l exponents. This makes 23 f i t t in g  bases for each sh e ll ,  giving a 

to ta l of 46 f i t t in g  bases for the Feg system and 69 f i t t in g  bases for  

the Fe15 system.
2

We have found that the r  -type Gaussians improve f i t t in g  qu ality  a 

lo t ,  especially  near the atomic core region around which the level 

structure is expectd to be r ic h . We also t r ie d  (x+y+z)-type f i t t in g  

bases (with the same form as the p-type symmetrized basis) as an attempt 

to pursue improved f i t t in g  q u a lity  for Feg system. Surprisingly, we
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couldn't get any improvement in f i t t in g  q u a lity .  The f i t t e d

coeffic ients  for such bases showed a systematic o s c il la to ry  behavior

(from positive to negative signs for example) indicating i ts  useless

nature. However, such n=l type f i t t in g  basis with parabolic radial

functional form (instead of the Gaussian) was reported to be e ffec tive

for least square charge density f i t t in g  in the DVM c a lc u la t io n .2^

We can also include £=2 type f i t t in g  functions such as (x y ,y z ,zx )-

type Gaussians or off-center Gaussian functions (such as bond-centered
91Gaussians used by Dunlap et a l . ) as an attempt for better f i t t in g

q u a lity . These type of functions have not been used in the present 

calculation.



E. Exchange-Correlation Potential

The very nature of local density functional type potential requires 

the exchange-correlation potential to be treated only by numerical 

means. Although th is  is the case, general trend for dealing with th is  

potential has been to f i t  th is  into some analytical form for  

convenience. Although f i t t in g  i t s e l f  needs numerical in tegration,  

analytical form obtained from the f i t t in g  can lead to simple and 

e x p lic i t  evaluation of the matrix elements. On the other hand, attempt 

to handle such numerical function without an aid of f i t t in g  can be quite 

time consuming in the computer CPU time. We have considered both 

approaches in our work and have chosen the d irec t numerical evaluation  

approach rather that the f i t t in g  method. We describe the f i t t in g

procedure we tr ie d  in our work f i r s t  and w il l  discuss the doubling grid

scheme we used for numerical integration next.

F i t t in g  of the exchange-correlation (XC-) potential looks l ik e  an

easier task than the f i t t in g  of charge-density because the XC-potential 

is a very slowly varying function in space. I t  ce rta in ly  is not 

d i f f i c u l t  but we have experienced some d i f f i c u l t y  in obtaining a very 

good f i t  using the Gaussian type functions as f i t t in g  bases. For the 

m ulti-center XC-potential f i t t in g  purpose, bond-centered Gaussians could 

be of great help. But i t  should be noted that even in the f i t t in g  

approach, use of very good grid points are indispensible in handling the 

numerical integrations needed for f i t t i n g .

40
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Instead of following the conventional f i t t in g  procedure of using

Gaussian type functions as the f i t t in g  bases, we have t r ie d  using the

Kubic Harmonic functions K̂  (0,<t>)'s which are the basis functions of

57d iffe re n t angular order fo r  r l-representation in Oh group. There is a 

well-known theorem that the crystal f ie ld  in systems having a cubic 

symmetry can be expanded in terms of these functions. One advantage of 

th is  idea is that once a good Kubic Harmonic f i t t in g  could be obtained, 

matrix elements can be evaluated exactly . Another advantage is the 

inclusion of correction to the Coulomb potential due to in su ff ic ie n t  

f i t t in g  accuracy using the Gaussian f i t t in g  basis only. I t  is a very 

a ttra c t iv e  point that we can get corrections to the incomplete charge 

density f i t t in g  without much more e f fo r t .

We have not pursued th is  approach due to two main reasons. F irs t  

d i f f i c u l t y  was in the f i t t in g  i t s e l f .  Though the Kubic Harmonic 

functions are very powerful bases of expansion, rapid variation of the 

necessary quantities near the ligand atomic centers caused great 

d i f f i c u l t y  in getting a satis factory  f i t t in g .  For tran s it ion  metal 

ligand atoms which have very localized d -orb ita ls  near the atomic 

nucleus (peak probab ility  position of d-electrons is located at around 

0.5 a.u. from the nucleus), Kubic Harmonic functions of order as high as 

£=10 was needed for an acceptable f i t t in g  at the f i r s t  shell region with 

possibly higher order terms needed at the second shell region. Even
C O

with 28 special d irections, i t  was not easy to achieve satisfactory  

angular integrations in such s ituations. We concluded that th is  

approach is not suitable for systems involving d -o rb ita l electrons
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though i t  could be acceptable for other systems such as aluminum 

clusters for which valence electrons are of delocalized character.

Second d i f f i c u l t y  was the ever increasing CPU time needed for the matrix 

element calculation as higher order Kubic Harmonic functions were 

included.

We adopted the d irec t numerical integration approach because the 

Kubic Harmonic f i t t in g  approach was not as e f f ic ie n t  as we expected.

For our numerical integration purpose, a doubling grid scheme in the 

three dimensional space of 1 /48-th wedge zone was developed. For 

systems having fu l l  cubic point group Oh, which has 48 possible 

operations in its  group, i t  can be shown that there are 48 equivalent 

space regions.

Though i t  is known that only a 1 /48-th  wedge zone is needed to be 

considered for such systems, another property from the group theory is 

essential in exploiting th is  property. Consider

(VXC) id = I d3r  x| r ) (r )  VXC(r )  x j r ) (?)

( r )which is the matrix element between the symmetrized bases x- and 
( r )x  ̂ > which belong to the r - th  row in a given representation. Though
J

XCV (r )  has been found to be invariant under a l l  group operations,
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( r )product is not invariant in general, namely i f  ( r )  belongs to a 

degenerate representation. There is an important theorem in group

theory related to th is  problem which is called the generalized Unsold 

59Theorem. This theorem prescribes a method of generating an invariant  

function out of the basis of an irreducib le  representation. I t  says

d(R)
I
r=l
I lx(r)|2

is invariant under a l l  operations of the group, in which d(R) is the 

degeneracy of the irreducib le  representation R. This is a 

generalization of the theorem by Unsold which says that

j  , 1 % <9 -+>i2
m = - £

is invarian t, in which Y^m are the spherical harmonics. Proof of the

generalized Unsold theorem is as follows.

Let P denote the ro tation  operator and r ( a ) . .  be the ( i , j ) - t h  
ot 1J

element of matrix representation fo r operation a defined such that

p.  * « >  -  X * 1' r ( . ) y

Then,
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P „ T  lx( r ) l2 = p „ h (r)* » W
01 r= l a r

I  I  x(1)* r*(<x) x(J)r(o).
r i j  J

= I x( l ) * x(j) I r(a) r(a-1) . 
i j  r

: I X ( i )  X ^  * 6 ^  
i j  J

r
i= l

in which unitary property of the representation has been used. The 

index for denoting the irreducib le  representation R has been suppressed 

in the above for sim plicty. This important property of the symmetrized 

basis is essential in making d irec t numerical integration feasible  by 

allowing us to deal with a 1 /48-th  zone of the space only.

During the process of doubling, we encountered a problem which 

makes the 's t r i c t '  doubling procedure quite unattractive. I t  demanded 

too many grid points to be generated i f  s t r ic t  doubling was imposed.

This problem could be resolved easily  by taking approximately doubled 

length at one stage of the doubling process. About 1,300 points were 

generated for 9-atom (BCC) c luster system by having two sub-divisions in 

each division and 11 basic d iv is ions. The d e ta ils  of doubling grid  

scheme is presented in Appendix A.

In the actual calculation of the matrix elements, we have not 

calculated some element and assumed i t  to be zero i f  the value of the
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overlap integral related to that element were smaller than a certain
£

number such as 10" . Because of the slowly varying characteris tic  of 

the XC-potential in space, th is  is expected to be a reasonable 

approximation. To make the ite ra t io n  cycle more e f f ic ie n t ,  a l l  the 

values of the basis product with the weight factor at each grid point 

m ultip lied , i . e . ,

were calculated at a preparatory stage and stored. Furthermore, i f  th is
8value was smaller than the number 10 at certa in  point k, i t  was taken 

to be zero and that point was systematically deleted in the matrix 

element evaluation. This means that an information carrying the data 

describing which points are s ig n if ic a n t ,  is also needed to be determined 

for each matrix element. This scheme was found to be very helpful 

because only a small fraction  of grid points is involved for the 

integration purpoe, i . e . ,  the XC-potentials at those points only are 

m ultip lied to the previously generated values and summed. Less than 

three minutes CPU time was needed for one ite ra t io n  for Feg cluster with 

a to ta l of 1,302 grid points. A sim ilar scheme was also used to 

generate the charge density at the grid points, i . e . ,  values of X j ( r k) 

were pre-determined before the s ta r t  of i te ra t io n  cycle.



F. Self-Consistent Procedure

The calculation was started with the in i t i a l  configuration of 

overlapping f i t t e d  atomic charge density and the numerical data of 

exchange-correlation potential Vx  ̂ at the gird points (Vxc was evaluated 

d ire c t ly  from the charge density generated). The charge density was 

generated from the well-documented Hartree-Fock atomic wave functions 

and the least-square f i t t in g  method was used to obtain the in i t i a l  

f i t t e d  atomic charge density.

During the i te ra t io n  process, charge density for each 

representation R was obtained from the expression

Occupancy of the eigenstates gn was determined from T=0°K Fermi 

d istr ib u tio n  function which gives the occupancy of 1 i f  that state l ie s  

below the Fermi level and 0 i f  i t  l ie s  above. I t  can be shown 

rigorously that the energy levels generated from the LDA calculation

As has been discussed before, any single row only in a given 

irreducible representation needs to be considered in forming and 

diagonalizing the Hamiltonian matrix because of the degeneracy 

property. This means that identical wave function coeff ic ien ts  could be 

assumed for a l l  the rows in a given representation i f  the basis 

functions are properly normalized. Proper normalization of the basis

d(R) nocc

s a t is fy  the Fermi s ta t is t ic s .

46
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functions to obtain identical eigenfunction coeffic ients  is important 

because basis functions belonging to every row in a given representation  

should be used in generating the charge density, whereas the 

eigenfunctions are determined from any single row.

Although every degenerate eigenfunctions have to be used in 

generating the numerical charge density and therefore the XC-potential 

from i t ,  any single row eigenfunctions only are needed when the 

integrated quantity from the charge density is generated such as t  in 

the charge density f i t t in g .  Evaluation of t  can be done by using 

analytical integrals and the orig inal eigenfunctions, as has been 

discussed.

Ite ra t iv e  method which is the most conventional way of solving non

linear d i f fe re n t ia l  equations such as the SchrOdinger equation has been 

employed to obtain the self-consistent s o lu t io n .^  In th is  method, the 

best possible estimate of the input potential is constructed out of the 

potentials from previous ite ra t io n s . This potential is used to find new 

eigenfunctions and therefore a new po ten tia l.  The most commonly used 

form of constructing the new po ten tia l,

v" = (i -  f i  + f  vn_1 in u  T' in T out

has been used in th is  work. Usually f  is a very small positive constant 

less than 1 .0 . Generally f  should become smaller to get convergence as 

the degree of freedom of a system is increased.
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In the present ca lcu la tion , we have tr ie d  the ' i te ra t io n  cycle1 

scheme proposed r e c e n t ly .^  In th is  scheme, the mixing factor f  is not 

kept constant but is allowed to vary from ite ra t io n  to i te ra t io n  between 

a small and a large constant. This ' i te ra t io n  cycle' scheme helped 

speed the converging process, but the d i f f i c u l t y  involved in proper 

choice of the a lternating factors s t i l l  made this scheme very cumbersome 

to use systematically. In the process of i te ra t io n ,  we have found that 

the choice of two damping factors being used could be varied for fas ter  

convergence, especially at the f in a l stage of convergence where very 

large factors could be used. We also experienced d i f f i c u l t y  in getting  

convergence due to f l ipp ing  of two competing levels near the Fermi 

energy. In s ta b i l i ty  of energy levels due to fl ipp ing  tendency of the 

two levels is a well-known phenomenon in the LDA in contrast to the H-F 

method in which the levels have a tendency of not flipp ing  from each 

o t h e r . I n c o m p l e t e  s e lf - in te ra c t io n  correction in the LDA potential 

form has been pointed out for th is  problem.

Such nature in LDA calculation makes the convergence rate very slow 

due to the necessity of having to use only very small damping factors , 

since large damping factors usually lead to wild o s c il la t io n  of charge 

density and the eventual divergence especially  in the early  period of 

i te ra t io n .

In our calculation, we could reach steady state at about 10~20 

i te ra tions  with damping factors of 0.04~0.08. At th is  stage, re la t iv e  

position of energy levels stayed fixed , and therefore the average 

magnetization number also. But convergence to absolutely s e lf -
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consistent solution became very slow a fte r  that as has been described in 

Ref. 63.

We have found that F e^  cluster convergence is harder to get than 

that of the Feg cluster as could be expected due to a larger degree of 

freedom in F e ^  basis set. At one stage of ite ra t io n  process in Fe^  

calcu la tion , we had to impose degenerate occupancy to the flipp ing  

levels near the Fermi le v e l.  This constraint was removed a fte r  the two 

levels became s u f f ic ie n t ly  separated. Setting the convergence c r ite r io n  

in th is  type of calculation does not seem to be c lear-cu t. We checked 

the convergence rate of the exchange po ten tia l, the charge density 

f i t t in g  co e ff ic ie n ts , and the to ta l energy for signs of convergence.

We stopped the itera tions  when the energy level changes were less 

than 0.0002 Ryd and the to ta l energy change less than 0.01 Ryd. 

Convergence rate of the charge density f i t t in g  coeffic ients  could also 

be used for th is  purpose and a ll  quantities checked showed a reasonably 

consistent trend in the convergence ra te .

Because of the increasingly slow nature of convergence rate  near 

the end of i te ra t io n ,  we sometimes experienced d i f f i c u l t y  in getting  

perfect convergence but have found that the general features of c luster  

properties does not show any noticable difference through ite ra t io n  at 

th is  f in a l  stage.

Equal frac tiona l occupancy for degenerate Fermi level was imposed 

i f  that level happens to be p a r t ia l ly  occupied. This choice ce rta in ly  

preserves symmetry of clusters which is a necess ty in our ca lculation,  

but giving fu l l  occupancy of 1 to eigenfunctions belonging to some
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a rb itra ry  row and 0 for others in a given representation can create a

symmetry problem in the ca lcu la tion . I f  a calculation of better

accuracy fo r such clusters were needed, our choice of equal fractional

occupancy for degenerate Fermi level should be given another

consideration since the symmetry lowering p o s s ib il i ty  such as the Jahn-
51T e lle r  e ffec t could be more r e a l is t ic  s itua tio n . In our present 

calcu la tion , we do not have su ff ic ie n t  accuracy to t re a t  such problems 

and we intend to pursue more general features of c luster properties.



CHAPTER I I I .

RESULTS AND DISCUSSION

In th is  chapter, we discuss the systems studied in th is  work ana 

the results obtained from the present method. We describe the cluster  

models in Section A and the energy levels for clusters Feg and F e ^  is 

presented in Section B. Section C contains the discussion of density of 

states (DOS) obtained from the cluster energy levels and a comparison 

with the solid DOS is made. Spin densities at various locations in the 

cluster systems are discused in Section D, and the ionization potential 

obtained from the tran s it ion  state calculation is presented in Section 

E. F in a lly ,  a b r ie f  discussion on the resu lt  obtained for the carbon 

impurity system is given in Section F.
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A. Cluster Models

The f i r s t  system we considered was Fe  ̂ atomic cluster with two 

d if fe re n t  la t t ic e  spacings of 5.4 a.u. and 4.0 a.u. each. The atomic 

arrangement of th is  system is octahedral and corresponds to an atom and 

i ts  f i r s t  six nearest-neighbors in simple cubic la t t ic e .  Though iron is 

known to have BCC symmetry, th is  system was chosen for testing purposes 

in the preliminary stage of ca lculation. For th is  system only, Kubic 

Harmonic expansion techniques were used instead of the d irect numerical 

evaluation approach for the exchange po ten tia l.

Our procedure was then applied to body-centered cubic (BCC) iron 

atomic c lusters, f i r s t  to Fe  ̂ c luster which corresponds to an atom and 

i ts  eight f i r s t  nearest-neighbors in BCC solid iron. To help study 

convergence of the cluster properties to those of so lid , we then added 

six more atoms which corresponds to second nearest-neighbors. Though a 

comparison of cluster properties with those of bulk is one of the main 

objectives in th is  work, embedding conditions were not imposed and free  

clusters with open boundary only were considered. Geometrical 

arrangement of atoms for these custers and those for simple- and face- 

centered cubic symmetries are shown in Fig. 111-1.

Lattice parameter for the clusters was put to 5.40 a.u. which 

roughly corresponds to the solid parameter. This gives the distance 

between the central and f i r s t  nearest-neighbor to be about 4.68 a.u.

This choice of la t t ic e  spacing is somewhat smaller than the number 

5.4057 a.u. used in Ref. 6. The exchange-correlation potential of von
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00
Barth-Hedin type which has the abstract form of 

v f = A(p) ( pa /p )1/3 + B(p)

was employed for th is  ca lculation. Parameters used in A(p) and B(p) can 

be found in Ref. 39. Results obtained from this potential could be 

d ire c t ly  compared with the band structure properties obtained using the 

same potential Although other types of local density form such as 

the Xa-type potential could also be used and compared with the relevant 

band structure calculations, i t  does not seem to a lte r  the essential 

physical properties very much.

Although the study of c luster property was the main objective in 

th is  work, we also considered FegC and Fe^C c lusters, for which the 

central iron atom is replaced by a carbon atom. We have considered th is  

system to prepare for future study of impurity containing systems, 

though other type of boundary condition is expected to be needed for  

th is  purpose.

Though we have considered only the simple cubic and body-centered 

cubic symmetry clusters in th is  study, our method is immediately 

extendable to systems which have face-centered cubic symmetry. For 

example, N i^  and Ni^g clusters or Cu^ and Cu-̂ g clusters could be 

d ire c t ly  handled with th is  method (Copper cluster calculation w i l l  need 

s light modification of the code, however, to adopt paramagnetic form of 

the exchange p o te n tia l) .



B. Energy Levels

The molecular o rb ita l energy eigenvalues from the spin polarized 

calculations of Feg and Fe^5 clusters are shown in Figs. 111-2 and -3 ,  

respectively . The values of several important quantities resulting from 

these energy levels are summarized in Table I I I - l ,  where they are 

compared with the results obtained from the MS-Xa method. Relevant 

quantities from the band structure calculation of iron using the VBH 

potential are also lis ted  to see the convergence trend of c luster  

properties to those of bulk iron.

Because of the a v a i la b i l i t y  of results reported previously which 

were obtained using the MS-Xa method,® our results are compared with 

those results extensively. However, i t  should be noted that the local 

density functional used in MS-Xa is the Xa potential with a=0.71.

Figure 111-2 shows that our levels for Feg c luster compares 

favorably with the MS-Xa energy leve ls . We have the same 3t.j + level as 

the last occupied level with double electron occupancy. Also, the 

d istr ibu tion  of occupied and unoccupied levels for each representation  

is identical in both cases. Although the general features are 

id en tic a l,  re la t iv e  locations of the energy levels can be seen to be 

somewhat d i f fe re n t .  For example, the very large gap between occupied 

majority-spin d-manifold and the unoccupied d-character levels above 

them which existed in the MS-Xa resu lt  is found to not be as large in 

th is  case. Thus we have less ambiguity in defining the d-bandwidth due 

to th is  reason. This gap was maintained s ig n if ic a n t ly  large in F e ^
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cluster also in the MS-Xa re su lt  which led to an ambiguous determination 

of the d-bandwidth (see Table I of Ref. 6 ) .  As could be seen in Fig.

111-3, th is  gap has almost disappeared fo r F e ^  levels in our case. The 

trend of convergence towards bulk bandwidths from Feg to F e ^  is obvious 

from Table 111-1. The present resu lt can be seen to agree with most of 

the conclusions made in Ref. 6 and, in fa c t ,  provides even stronger 

support for them in many respects. We can summarize those aspects in 

the following categories. F i rs t ,  the occupied s-bandwidths for both 

spins are s ig n if ic a n t ly  larger in the present re s u lt .  They are about 

65% and 25% larger than the MS-Xa resu lt for Feg and Fe^5 c lusters , 

respective ly . Therefore, more than 90% of the bulk bandwidths are 

obtained for Fe^  in the present case. Second, present occupied d- 

bandwidths are converging to those of bulk more uniformly. Though the 

majority-spin occupied widths are about the same magnitude as were 

obtained in Ref. 6, the minority-spin widths are larger in the present 

case. This makes the re la t iv e  magnitude of the occupied d-widths for  

both spins to be very sim ilar to those of bulk for both c lusters. In 

Ref. 6, the minority-spin occupied d-widths were noticably small 

compared to i ts  m ajority-spin counterpart, which probably is due to the 

use of Xa-potential ( Xa-potential is known to produce too large exchange 

s p l i t t in g ) .  The present occupied d-bandwidths fo r F e ^  are also found 

to be more than 90% of the bulk widths. Third, the present fu l l  d- 

bandwidths are again larger than those reported in Ref. 6 and the 

cluster d-widths can be determined unambiguously. Determination of the 

d-bandwidths was not easy in the MS-Xa resu lt  and th is  led to ambiguous
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and disputable d-bandwidths. Furthermore, in e ither choice of i ts  

determination, convergence to bulk d-widths could not be achieved 

s a t is fa c to r i ly  in a quantita tive  sense. Present resu lt shows that d- 

bandwidths are converging to those of bulk in an unambiguous and 

satis factory  manner. We also find that the level dispersion is 

s ig n if ic a n t ly  larger for the minority spin levels in agreement with band 

theory. Present fu l l  d-bandwidths for F e ^  are also found to be about 

90% of those of bulk. We have discussed the convergence trend to bulk 

properties in terms of c luster bandwidths obtained from the energy 

levels and have found that a l l  the major quantities for Fe^5 are within  

10% difference from those of bulk.

Another point which strongly supports the convergence property to 

bulk can be made from the positions of the sp-like  leve ls . As is well 

known, trans it ion  metal band structure is characterized by the

re la t iv e ly  narrow d-band overlapped by wide sp-band orig inating from the

rather delocalized sp-electrons, with a possible hybridization of the 

two bands in the overlapping region. Energy levels in Figs. 111-2 and 

I I I - 3 show th is  characteris tic  very obviously i f  we regard present sp- 

levels as the precursor for sp-bands, e . g . ,  re la t iv e ly  narrow and dense 

d istr ib u tio n  of d-levels  is overlapped by a broader and sparse d is tr ib u 

tion of predominantly sp -like  levels for both spins. The a ^  and t^ u 

leve ls , which are the s- and p-type analogs are enveloping the whole d-

manifold from both ends. The a2u level located at the top region is

mainly of s-character. Also coinciding with band theory, our sp-level 

exchange sp litt in g s  are a lo t  smaller than those of the d -leve ls . Our
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value of exchange s p li t t in g  0.5 eV for the a^g level at the bottom l i es  

in the middle of the s-band range in the band-theory, which is 

0.16~0.85eV.

Because of the difference in method and the difference in the 

adopted local density functional form for exchange po ten tia l,  some of 

our results are s ig n if ic a n t ly  d i f fe re n t  from those of Ref. 6, especially  

the Fe^g energy level d is tr ib u t io n . Considering that the m uffin -tin  

potential is used in MS-Xa method, we can expect that rather delocalized  

sp-like  levels to exhibit more difference in the two methods due to the 

constant potential approximation made outside the m uffin -t in  region. On 

the other hand, re la t iv e  locations of the rather localized d - l ik e  levels  

are not expected to be very d if fe re n t  in the results from both 

methods. In fa c t ,  we find large differences in the re la t iv e  positions 

of sp -like  levels from those of Ref. 6, providing an even stronger 

symptom of the sp-band overlapping of the d-band character. This fact  

shows that by removing the m u ff in -t in  approximation, convergence trend 

to bulk properties is manifested even more favorably.

The general feature of our levels shows that exchange s p li t t in g  of 

the levels are reduced compared to the MS-Xa re s u lt .  This is seen by 

sh ift ing  of the whole majority-spin levels closer to the Fermi level and 

is consistent with the fact that the Xa-potential usually generates 

larger exchange s p li t t in g  than i t  should.

Our occupied level configuration for F e^  was found to be s l ig h t ly  

d if fe re n t  from that of Ref. 6 . We find 4a^g+ level as the non

degenerate Fermi level and the 6eg+ level fu l ly  occupied. Instead the
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4 t i u+ level is not occupied anymore. These differences resu lt in the 

r e la t iv e ly  large magneton number for the F e ^  c lu s te r , which is 2.9 net 

spin per atom compared to 2.7 reported in Ref. 6. This shows that

convergence of the magnetron number of clusters to that of bulk is not

as obvious as was pointed out in Ref. 6. We wi l l  discuss th is  situation  

further in connection with the spin density problem la te r .

We have discussed the energy levels and the properties obtained 

from them in the present work in comparison with the MS-Xa re s u lt .  

Overall features of the present resu lt  indicate that our resu lt  exhibits  

the convergence trend of the cluster properties to those of bulk more 

unambiguously and convincingly. Comparison of the results for Feg and 

Fe^  indicate that the bandwidths properties are extremely rapid ly  

converging to those of bulk iron. The removal of m uffin -t in

approximation also led to the sh if t  of sp-like  levels and contributed to

exhibiting c lea rly  the s-band overlap feature of the bulk. These are 

indirect but obvious indications that the short-range atomic 

interactions are mostly responsible fo r determining the bulk properties.

An objection to the above point of view was made recently which may 

be worth mentioning.^ Those authors who used the H-F method for th e ir  

Copper cluster calculations reported that they couldn't observe the sp- 

band overlapping feature even for Cu^g. Their resu lt showed that the 

sp-levels are just beginning to overlap with the d-levels  for Cu^g and 

claimed that such a feature observed in the MS-Xa levels is a spurious 

resu lt due to the incomplete se lf - in te ra c tio n  correction defect of local 

density functionals. Their argument was based on the fact that the
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s e lf - in te ra c t io n  correction is more s ign if icant for f in i t e  systems and 

that the s-level correction term could be very d if fe re n t  from that of d- 

le v e l.  However, other authors la te r  showed that such differences in the 

correction term is almost neglig ib le  for Cug cluster a l r e a d y . S i n c e  

the sp-band extends over 10 eV range for both spins and since i t  

envelops the d-bands so completely in the present case, i t  seems that  

more than 5 eV s e lf - in te rac tio n  correction difference is needed to claim 

i ts  spuriousness, which is very un like ly .



C. Density of States

Though lots of quantita tive  evidences showing the convergence 

property of clusters to bulk have been discussed in the previous Sec

t io n , d irec t comparison of the density of states (DOS) pro files  could be 

more convincing.

The quantity which involves least ambiguity w i l l  be the integrated  

DOS, N(E),  which is defined to be the number of states per atom with

energies less than or equal to E. S p e c if ica lly ,

N(E) = I g. 6(E - Ei )

in which ĝ  is the degeneracy of the state whose energy is Ê  and 6

indicates step-function. This quantity is shown in Fig. 111-4 fo r the 

Fe^5 c luster fo r both m ajority  and minority spins. Figure I I I - 5 shows 

the quantity when both spins were added, e . g . ,  to ta l integrated DOS.

The resu lt  obtained from the band calculation of Ref. 46 are presented 

for comparison in both Figures. The zero of energy has been taken as 

the Fermi energy for th is  purpose.

I t  w i l l  be seen that there is a substantial degree of general 

agreement between the c luster and bulk results in regard to the position  

of regions of re la t iv e  flatness and of rapid increase. Because of the 

large magneton number difference between the two systems, Fig. 111-4 

shows large gap near the Fermi energy. In Fig. I I I - 5, where th is  d i f 

ference is not manifested anymore, the re la t iv e  s im ila r ity  between the
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two quantities is remarkable. This indicates that th is  re la t iv e ly  small 

Fe^g c luster already possesses an energy level d is tr ib u tio n  which re

sembles remarkably well that of bulk iron, supporting the "invariance  

property" of DOS discussed in Chapter I .  The reasonable agreement

obtained for the integrated DOS suggests that DOS i t s e l f  could also have

reasonable resemblance, i f  we manipulate the levels properly to generate 

approximate DOS.

We have generated the DOS p ro f i le  fo r clusters by replacing each 

enegy level by a Gassian of width parameter 0.2 eV, the same parameter 

as was used in Ref. 6. Using th is  scheme, the DOS per atom can be 

written as

6 ( E )  -  <— ^ - )  I 9 i e - ( E - E i ) 2 / 2 ° 2
N^*/2tT • a i

in which NA is the number of atoms in the c lus ter, gi is the degeneracy

of level E.j, and a is the width parameter.

Result of such broadening of each level can be shown to be id en ti

cal to smoothening the orig ina l step-function l ik e  integrated DOS, 

larger a corresponding to more severe smoothening. Choice of a = 0.2 eV 

was found to be reasonable, the resulting integrated DOS being 

moderately smoothening the orig ina l integrated DOS. The physical impli

cation of such broadening is equivalent to embedding the c luster in a 

periodic la t t ic e ,  but only approximately. Such scheme of broadening 

each level by a uniform factor has the defect of disregarding the d i f 

ference between the localized d -levels  and the re la t iv e ly  delocalized
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states such as predominantly sp -like  l evels.  I t  would be desirable to 

assign broader Gaussians for delocalized states, which has not been done 

in th is  work.

The resulting DOS generated using th is  scheme is shown in Figs.

111-6, -7 ,  and -8 .  Figure 111-6 shows the t o ta l ,  m ajority - and 

m inority-spin DOS of the Feg cluster in a single f ig ure . I t  is obvious 

that i t  does not resemble those of bulk at a l l .  But the minority-spin  

and to ta l DOS parts begin to show s lig h t signs of bulk property already.

In Fig. 111-7, the m ajority- and minority-spin DOS's of the F e ^  

cluster and bulk are superposed for d irec t comparison. The degree of 

s im ila r i ty  is t ru ly  remarkable obviously. I t  should be noted that the 

two peaks on the fa r  l e f t  and fa r  r ig h t for m ajority-spin DOS are coming 

from the delocalized sp-character leve ls . These are the spurious peaks 

resulting from the use of a same broadening factor for a l l  the levels .  

The two peaks on the fa r  l e f t  and hidden peaks on the fa r  r igh t for the 

minority-spin DOS are of the same spurious nature. Comparison of Fig.

I I 1-7 with Fig. 7 of Ref. 6 shows that present resu lt demonstrates the 

sp-band overlapping character more e x p l ic i t ly .  Furthermore, present 

resu lt describes the m ajority-spin DOS shape near the Fermi level a lo t  

better than before. This is due to the absence of large gap of energy 

levels which was discussed before. Present resu lt also represents three 

d is t in c t  peaks manifested in band m ajority-spin DOS better by having a 

larger gap between peaks 2 and 3 in Fig. 7 of Ref. 6. Another noticable  

feature of the present m ajority-spin DOS is that the highest peak part 

of the band DOS is represented by s p lit ted  two peaks. On the other



63

hand, peak 3 of Fig. 8 of Ref. 6 which is the central peak of band 

majority-spin DOS with some structure is represented by a single  

structureless peak in our resu lt  as i t  has been in the MS-Xa re su lt .

The minority-spin DOS in Fig. 111-7 shows that three d is t in c t  peaks 

of band minority-spin DOS are also well represented in th is  work as i t  

has been in Ref. 6. We have a local minimum at the Fermi level and 

another local minimum at about 2 eV below. Better representation of 

band DOS by F e ^  DOS of present work than by that of Ref. 6 can be seen 

convincingly when we check the overall re la t iv e  postions of peaks and 

valleys for both m ajority- and minority-spin DOS. This resu lt  could be 

related partly  to the use of d i f fe re n t  exchange potentia ls in the two 

calculations since Xa-potential is generally known to produce re la t iv e ly  

large exchange s p l i t t in g .

To prove the s im ila r i ty  property between the c luster and bulk DOS 

fu r th e r ,  we also plotted the to ta l DOS of the Fe^5 cluster and iron 

so lid . Figure I I I - 8 shows the two quantities in superimposed form again 

for d irect comparison. Except for the two spurious peaks on the le f t  

and others on the r ig h t ,  there is again remarkable resemblance between 

the two resu lts . Total number of major peaks as well as the positions 

of local minimums of band to ta l DOS are almost perfectly  represented in 

the Fe^  to ta l DOS already.

Remarkable resemblance between the approximate DOS generated by 

broadening each energy level of F e^  by Gaussian type functions and the 

bulk DOS generated by band structure calculations has been discussed in 

th is  Section. F irs t  doubt we can have is such a close s im ila r i ty  i t 
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s e lf .  Considering that most of the atoms in F e ^  are surface-like  

atoms, we could expect our DOS to be more s im ilar to the surface DOS 

than the bulk DOS, and surface DOS is known to be very d if fe re n t  from 

bulk DOS. We could not think of any convincing explanations for th is  

question. But one point about th is  s ituation can be made c lear, which 

is the fact that the ligand atoms in Fe^  which is s t i l l  a re la t iv e ly  

small c lus ter, are not in s im ilar environment at a l l  as the atoms on the 

surface of a so lid , e .g . ,  they could have very d if fe re n t  local DOS.

What we could get for the DOS using the energy levels obtained from the 

short-range atomic interactions of such a miniature solid l ik e  Fe^  

seems to show a lo t  of in f in i te  solid character already.



D. Spin-Density and Magneton Number

Spin density d is tr ib u tio n  in space is known to be a very sensitive  

quantity which depends a lo t  on the choice of exchange potential used.^  

One of the characteris tic  features of spin density in iron and some 

other tran s it ion  metal solid is the appearance of weak but s ig n if ic a n tly  

large regions of negative polarization ( e .g . ,  minority spin dominated 

regions) at the interatomic space r e g io n .^  Such negative polarization  

also occurs at the nucleus s ite  where i t  is extended to extremely small 

region around the nucleus, resulting in a negative hyperfine f ie ld  at 

the nucleus s i te .  This is one of the important properties of some 

trans ition  metals. Other than the above described regions, the space is 

composed of approximate spherically  symmetric regions of strong p is i t iv e  

polarization centered on each nuclei.

I t  was reported in Ref. 6 that {100} plane of Fe-^ which contains 

four atoms of the f i r s t  shell atoms already shows the negative polariza

tion character described above. We have plotted spin density contour on 

several planes to prove th is  feature and other features and we have 

found the most serious difference with the results of Ref. 6 in th is  

property. Very surpris ingly , our central atom was found to be dominated

by minority spin electrons. This s ituation was more profound for Feny
cluster and was a llev iated  a lo t  for F e ^ .  The value of approximate net 

spin number for th is  central atom, determined by rough geometrical 

region integration was -0 .70  and -0 .10  for Feg and F e ^  respectively.  

This is a quite surprising resu lt considering that iron is a typical
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ferromagnet.

Contour plot of spin density of {100} plane showed that we neither 

have negative polarization region on th is  surface in F e ^  at a l l .  How

ever, for Feg, some region of negative polarization appeared at the 

central region of (100) plane. To see the e ffec t  coming from the d i f 

ference in the configuration of occupation numbers in the two resu lts ,  

we also tr ie d  the occupation number configuration reported in Ref. 6 in 

generating spin density. We have found that even with such change, the 

reported spin density map could not be reproduced exactly. However, a 

small region of negative po larization at the center of the plane could 

be observed in th is  case. This s ituation is somewhat embarassing since 

the eignefunctions for each relevant level are not expected to be very 

d if fe re n t ,  although a s ig n if ican t difference could be expected for  

delocalized orb ita ls  due to the m u ffin -t in  approximation in MS-Xa. But 

considering that the magnitude of negative polarization is very small, a 

small difference in eigenfunctions may be enough to cause such d i f 

ference.

However, the most surprising outcome of present calculation should 

be the minority-spin dominating s ituation for the central atom. In MS- 

Xa resu lt of Ref. 6 , the central atom was reported to have a net spin 

number of +1.15 for a small but d e f in i te ly  a positive quantity.

The reason for such a small magneton number was analyzed to be due to 

the influx of minority-spin electrons to the central s i te ,  resulting in 

more to ta l number of valence electrons for the central atom. We also 

observed such trend for the Feg cluster which was manifested in
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r e la t iv e ly  l i f t e d  core energy levels of the central atom. Core energy 

levels for Feg and F e ^  designated with each shell index are presented 

in Table I I I - 2 .  Though the central atom for Feg was found to have more 

electrons than others, the s ituation  for Fe^  was d i f fe re n t .  The Fe^  

cluster core level study shows that core levels have become deeper than 

those of other atoms, indicating the p o s s ib il i ty  of outward flow of 

electrons to ligand atoms. This is contrary to the findings of MS-Xa 

calcu la tion , and also opposite to the s ituation in Feg.

Spin density around the central atom was also found to be very 

anisotropic. Along the [ l l l ] - d i r e c t i o n ,  a local maximum (in  magnitude) 

of negative po larization was found at about 0.5 a.u. and the range of 

negative polarization was found to reach up to about 2.3 a.u. On the 

other hand, i t  was lim ited to a very small distance from the center 

along [ 100] -d ire c t io n .

Contact spin density, which is the spin density at nucleus s ite  is 

another quantity of in te re s t .  This quantity was, however, found to have 

a difference of over 50% when d if fe re n t  types of local density potential 

were used in the LC60 method band ca lcu la tion . In th is  band 

ca lcu la tio n , contact spin densities of -0 .406 and -0.655 were obtained 

for VBH and Kohn-Sham potentia ls  respective ly , whereas the experimental 

value was -0 .647 . On the other hand, MS-Xa calculation of Fe-^ with 

parameter a = 0.71 was reported to produce -1 .0 5 ,  -0 .7 7 ,  and -0 .55  for  

the cen tra l,  f i r t s -  and second-shell atoms respectively . Furthermore, 

comparison of re la t iv e  contributions from each o rb ita l showed that the 

ligand cluster atoms are behaving quite s im ilar to bulk atoms as fa r  as
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th is  quantity is concerned (especia lly  the f i r s t -s h e l l  atoms). This is 

quite surprising since the ligand atoms have very large mageton number 

compared to the bulk atom.

The contact spin densities in our calculation shows somewhat 

reverse trend from those of MS-Xa ca lcu la tion , giving -0 .0 8 ,  -0 .2 4 ,  and 

-0 .40  for the cen tra l, f i r s t -  and second-shell atoms for Fe-^g. For Feg, 

the centra l-  and f i r s t -s h e l l  atoms were found to have -0.71 and +0.24 

respective ly . Obviously, there is a large difference in q u a lita t iv e  as 

well as in quantita tive  character between the two clusters Feg and 

Feis . Open boundary condition for Feg seems to resu lt  in large 

abnormality not only for the central atom but also for the ligand 

atoms. Compared to Feg, the Fe^g c luster obviously have converged to 

bulk quite s ig n if ic a n t ly .  Though the central atom s t i l l  shows a sign of 

substantial abnormality, ligand atoms for Fe^g look quite s im ilar to 

bulk atoms.

Because of such abnormal nature of the central atom in both 

clusters , i t  is suggested that such open boundary clusters are not 

expected to be a good model fo r impurities in a so lid . Convergence 

trend of average magneton number to that of bulk as the cluster size 

becomes large could not be confirmed due to th is  reason also. For Feg , 

abnormally strong domination by minority-spin electrons at the central 

s ite  gives a small average spin nunber of 2 .89. Assuming that the 

central atom has spin number of -0 .7 0 ,  a ligand atom is found to have a 

spin number of 3.34 for th is  Feg c lus te r . For Fe^g, assuming a net spin 

number of - 0.10 for the central atom, a net spin number of 3.15 for the
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ligand atoms is obtained. To be exact, the second shell atoms are 

expected to have s l ig h t ly  larger spin number than the f i r s t  shell 

atoms. Though we have not evaluated such quantit ies , estimated average 

values of 3.10 and 3.20 for the f i r s t -  and second-shell atoms can be 

guessed from the known information.

Average net spin numbers for the surface l ik e  ligand atoms, 3.34 

and 3.15 for Fe  ̂ and Fe^  respectively , are reasonably consistent with 

the value of 3 .0 Bohr magnetons for the solid surface atom obtained from 

surface c a lc u la t io n .^  We can expect that the ligand atoms for such 

small clusters are in a more severe "surface" s ituation than the solid  

surface i t s e l f .  As the size of the cluster becomes la rger, i t  is 

expected that the net spin number of c luster surface atoms to approach 

that of the solid surface atoms. In th is  respect, average spin numbers 

in Ref. 6 , wihch are 2.71 and 2.80 for the f i r s t -  and second-shell atoms 

in Fe^cj, are quite inconsistent with both th is  work and Ref. 15.

As have been mentioned e a r l ie r ,  preliminary calculations using the 

Kubic Harmonic expansion method was also made for Fe  ̂ clusters at two 

d if fe re n t  atomic spacings 5.4 a.u. and 4.0 a .u . The atoms in th is  

cluster were arranged in an octahedral geometry. Average moments 

obtained were 3.7 net spin per atom for the 5.4 a.u. spacing and 3.0 for  

the 4.0 a.u. spacing. Assuming that widely separated iron atoms have 

magneton number of 4 .0  Pg belonging to the iron atom i t s e l f ,  our value 

of 3.7 for the large 5.4 a.u. spacing seems reasonable. As the atoms 

were squeezed further to 4.0 a .u . spacing, broadening of energy levels  

resulted in a smaller magneton number as was expected.



E. Transition State and Ionization Potential

In the H-F method, o rb ita l energy e.. has some meaning in re la tion  

to the to ta l energy of a system by Koopman's Theorem, which says that

HF rHF , rHF . _ nxei = E (n i = 1) -  E (n i = 0) .

The f i r s t  term on the r ig h t is the to ta l energy of a system and the 

second term is the to ta l energy of ion with the i t *1 electron removed 

without allowing a l l  other orb ita ls  to re lax . Therefore, the eigenvalue 

of the last occupied level is an approximate (although not exact) 

ionization potential ( I . P . )  in magnitude.

On the other hand, in the LDA method, o rb ita l energies are re lated  

to to ta l energy as = 9E/8n^ and have less physical significance  

than the H-F eigenvalues in th is  respect. One obvious way of

calculating the energy differences involved in optical transitions in

LDA method is to make two separate calculations, one for a system i t s e l f  

and another for the system a fte r  the trans it ion  has occurred. Though 

th is  procedure is straightforward and true in theory, usual inaccurate 

evaluation of to ta l energy for a system causes practical d i f f ic u l t y  very 

often. Furthermore, i t  is time-consuming and laborious to make two 

separate calculations.

An a lte rna tive  Transition State procedure was proposed by Slater to 

f a c i l i t a t e  such c a l c u l a t i o n . T h e  basic principles behind th is  

method are the recognition that occupation number n̂  could be continuous
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between 0 and 1 in LDA and that the to ta l energy is mainly a function of 

l inear and quadratic term of n ^ s .  ( I f  only a linear term ex is ts , then 

can s(10wn t0  hQid.) /\ much smaller but f in i t e  th ird  order 

term was also found to ex ist but is neglected in th is  method.

I f  we take up to quadratic expansion of n̂  for E, then

- EL. 1 ♦ <nr  4) 4|-l . 1 4  (n, - -|)2 -J -l 1
I L  l l C  0(1  ̂ I C

I
holds i f  the expansion is done with ru = -g (and a ll  other n's unchanged) 

as the reference state. Then

El - E l  = I 1 ni =l ni =0 3ni 'ni = - |

can be obtained using the above expansion form. The l e f t  hand side is 

the ionization energy expression and the r ig h t hand side is the i tfl 

energy eigenvalue obtained from the Transition State calculation.

Therefore, i f  a calculation is made with non-integer occupation 

number of ^ for the i th s ta te , e i is i t s e l f  the ionization energy of the
+ u

i electron. Although th is  example considered s p e c if ic a lly  ionization  

energy, i t  is obvious that i t  can be generalized to any a rb itra ry  

optical tran s it ion  from state i + j .  In th is  case, the difference of 

eigenvalues |e. -  e . | equals the excitation energy, i f  a Transition
' J

State calculation is made with n-j = nj  = jr constra int.

The tran s it io n  state which is considered here is obviously not a 

physical state but a f ic t i t io u s  state which is the average of in i t i a l
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and f in a l s tate . With proper consideration of in i t i a l  and f in a l state

for any excita tion  problem, such scheme has been shown to be quite
7powerful in many examples of previous calculations. This scheme can 

also be used for magnetic excitation problems in a ferromagnetic 

material and the energy difference calculated for a local spin f l i p

1 Rusing th is  method can be used for estimating the Curie temperature/ 0 

Estimation of the Curie temperature from f i rs t -p r in c ip le s  calculation  

could be quite an achievement, but we have found that open cluster model 

cannot be used for such purpose due to already discussed abnormality of 

the central atom.

However, we used th is  scheme to determine the ionization potential 

of Feg c lu s te r . This calculation can be done by simply removing ha lf an 

electron from the f in a l ly  occupied le v e l.  This ca lcu la tion , which was 

also spin-polarized, gave 0.378 Ryd (5 .2  eV). This quantity is
J O

reasonably close to recent experimental value of 5.3~5.6 eV 

considering the uncertain geometry of the experimental Feg c lu s te r .

Since the doubling grid we used was found to reduce the matrix element 

value by about 3% generally, we expect our resu lt can be within the 

experimental range i f  a f in e r  grid is used.

To tes t the r e l i a b i l i t y  of to ta l energy calculated, ionization  

potential was determined also from the to ta l energy differences. For 

the Feg system,
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< E >z = -22686.11 Ryd

< E >z_1 = -22685.90 Ryd

were obtained from two separate calculations of a regular system and of 

a system with one electron removed. Therefore we find 0.21 Ryd (2.9 eV) 

fo r  the ionization potential by th is  procedure, which is obviously fa r  

o ff  from the experimental value range. This and other informations we 

checked indicate that the to ta l energy obtained by present method is not 

accurate enough to give good resu lt on such sensitive quantit ies . I t  

was found that the charge density f i t t in g  is most responsible for the 

error involved in the to ta l energy ca lculation.



F. Carbon Impurity Systems

From the analysis of pure iron c lusters, i t  was found that the 

central atom in such small clusters does not resemble a typical bulk 

atom at a l l .  This indicates that the open boundary condition for such 

small clusters is not a good model fo r describing impurity problems in 

solids. In fa c t ,  i t  was reported that such small clusters are not very 

e ffec t iv e  for impurity problems even when some embedding potential was 

imposed.^

Carbon impurity in iron systems was considered in our present work 

only to prepare for more r e a l is t ic  work in the fu ture , e .g . ,  with a 

possible embedding po ten tia l. The central atom in the Feg and Fe^g 

clusters were replaced by a carbon atom and se lf-consis ten t, spin- 

polarized solutions were obtained following exactly the same proceaure 

as was used for the pure iron clusters.

The basic trend of the physical s ituation was found to be 

consistent with those of pure iron c lusters . The central atom was 

dominated again by minority-spin electrons for FegC and the contact spin 

density for the ligand iron atoms was found to be a positive quantity  

+0.47 as i t  has been for Feg . Such abnormality for the ligand atoms 

already implies that the central carbon atom is not placed in the 

desired environment and is unduly perturbed also. The contact spin 

density for the carbon s ite  was +0.22 and the magneton number for the 

ligand iron atoms was found to be about 3.5 ug fo r  FegC.
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For Fe^C, the central carbon atom was, however, found to have 

s l ig h t ly  positive po la riza tion . The contact spin densities of the 

c e n tra l - ,  f i r s t - ,  and second-shell atoms were +0.40, -0 .0 7 , and -0 .45  

respective ly . The DOS p ro f i le  for Fe^C generated by the same scheme as 

before is shown in Fig. 111-9. Though many of the features discussed on 

Fe^j. DOS is s t i l l  found, the whole structure i t s e l f  is obviously vastly  

d if fe re n t  from that of the pure iron c luster. I t  is surprising that the 

seemingly minor perturbation of a carbon atom could destroy the nice 

s im ila r i ty  between the c luster and bulk DOS to such an extent. The 

overlapping nature of sp- and d-band is also found in th is  case and the 

minority-spin DOS seems to be less perturbed than the m ajority-spin  

part. Another peak appearing on the le f t  side and heavily perturbed 

shape for the m ajority-spin DOS is probably due to carbon sp-level 

presence. Tne breakdown of good DOS s im ila r i ty  between the c luster and 

bulk due to carbon atom replacement in Fe-^C may be an indication that 

such s im ila r i ty  obtained for Fe- ĝ DOS is not an accidental consequence.

Replacement of the central iron atom by a carbon atom seems to 

reduce negative polarization trend on that s i te .  The magnitude of 

negative polarization was smaller fo r FegC than i t  was for Feg and i t  

could recover s l ig h t ly  positive po larization for Fe^C though the Fe^  

central atom was s t i l l  s l ig h t ly  minority-spin dominated. The contact 

spin densities show that the f i r s t -s h e l l  atoms were perturbed more than 

before but the secnod-shell atoms have not been perturbed much in th is  

case. This may indicate that the existence of a carbon atom instead of 

an iron atom at the center only weakly influences the second nearest-



neighbors. Average magneton number 

about 3 .3 uB which seems reasonable.



IV. CONCLUSIONS 

Self-consistent spin-polarized calculations were made for small 

iron clusters Fe^, Feg , and Fe-^. Similar calculations were made for 

FegC and Fe^C in which the central atoms were carbon atoms instead of 

iron atoms, to prepare for impurity system studies.

Our method which does analytical charge density f i t t in g  for the 

Coulomb potential as the only approximation for evaluating the matrix 

elements is regarded to be a more accurate approach than any other 

methods used before in dealing with large atomic clusters.

The overall features we could obtain for such 'miniature s o lid 1 

Fe-j^, containing only the f i r s t  and second nearest-neighbors arranged in 

solid BCC geometry are found to be remarkably close to those of bulk 

already. The f u l l  d-bandwidths as well as the occupied portions are a 

lo t  wider in the present resu lt  for Fe^5 than the values obtained 

previously using the MS-Xa method and are within 10% difference from the 

relevant bulk quantit ies . Furthermore, present DOS p ro fi les  for Fe^  

are v i r tu a l ly  identical in characteris tic  shape with those of bulk, 

which means that not only the qunatita tive  features but also the 

q u a lita t ive  features are well represented already. Another remarkable 

feature of the present resu lt is the obvious overlapping of the sp-band 

with the d-band, which is even more e x p l ic i t ly  manifested in th is  work 

than was shown in Ref. 6 . On the other hand, hardly any features  

resembling the bulk could be noticed for the Feg re s u lt ,  though there 

are some early  symptoms of s im ila r i ty .
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That the DOS p ro f i le  for Fe15 already represents the bulk character 

is p a r t ic u la r ly  surprising since such a small cluster with open boundary 

is expected to have quite a s ign if icant amount of surface e f fe c t .  What 

we find from the present calculation is that the basic characteris tics  

of bulk DOS is somehow manifested even for such small systems which have 

re la t iv e ly  large surface e f fe c t .  To what extent the variances observed 

in the two DOS pro files  are due to such size e ffe c t  is not clear however 

and should be considered more c a re fu l ly ,  since most of the previous 

calculations referred to size e ffec t whenever i t  could not find any 

reasonable relevance for the physical properties between the two 

systems, bulk and c luster. Our calculation, which is expected to be the 

most accurate work done so fa r  on such systems, seems to exh ib it such 

s im ila r ity  more extensively than the previous less accurate 

calculations. I t  looks as J f :  better s im ila r i ty  in physical properties  

can be obtained as the calculation becomes more accurate. I t  w i l l  be 

interesting to have the resu lt for the Fe^^ c lus te r , which has another 

shell added to Fe1ir, to see the re la t iv e  importance of the surfaceID

effec t for such small c lusters.

Although we could obtain superior resu lt  compared to Ref. 6 as fa r  

as the DOS s im ila r i ty  is concerned, we fa i le d  to observe the bu lk - lik e  

spin density d is tr ib u tio n  at the interatomic regions (s p e c if ic a l ly  [ 100] 

plane for F e ^ ) . Furthermore, the central atomic s ite  was found to have 

a tendency to become negatively polarized. This was obvious in Feg for  

which the central s ite  was completely dominated by minority-spin  

electrons. However, for Fe15, the central s ite  was almost neutral
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showing the trend of becoming positive ly  polarized as the cluster size 

becomes large. Although the MS-Xa calculation also showed such trend of 

minority-spin electron flow to the central s i te ,  present work seems to 

show an even stronger trend for such flow. I t  is not clear at th is  time 

why such an unexpected situation develops although one explanation was 

suggested in Ref. 6 . The more extended nature in space of the minority-  

spin orb ita ls  could be an explanation also, providing accumulated 

minority-spin electron contributions from the ligand atoms to the 

central s ite .

The slow convergence of the central atom to a typical bulk atom for 

even very large clusters was reported and i t  is generally accepted at 

present that the central atom is not l ik e  the bulk atom for small 

c lu s t e r s . ^ ’ ^  The convergence to bulk of the central atom for larger
Q

clusters is expected to be obtained according to a theorem by von Laue, 

which states that the local density of states becomes approximately 

independent of the form of the boundary condition at distances from the 

boundary greater than a characteris tic  length inversely proportional to 

the wave number. Considering that the Fe15 c luster has only two ligand 

shells , i t  is expected that charge density d is tr ib u tio n  around the 

central s ite  could hardly resmeble that of bulk according to the above 

theorem. In th is  respect, i t  is hard to believe that the spin density  

resembles that of bulk as was reported in Ref. 6 for such small clusters  

with open boundary.

Present work seems to indicate that a good s im ila r i ty  to bulk DOS 

could be obtained from such 'miniature solid ' even though the charge and
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spin density around the central s ite  are extremely perturbed. The 

central atom for such small clusters should be very vulnerable since i t  

has to adopt a l l  the combined changes of the ligand 's u r fa c e - l ik e 1 

atoms. Even small changes of the ligand atoms could cause s ign if icant  

influence on the central atom when they are summed up. We tend to give 

up pursuing charge and spin density s im ila r i ty  with the bulk due to 

these reasons. Though i t  is not expected to be an e ffec t iv e  model for  

r e a l is t ic  impurity problem, carbon impurity in the iron cluster with 

open boundary was also studied in th is  work. The good resemblance with 

bulk DOS is lost s ig n if ic a n t ly  for Fe^C, and i t  seems the presence of 

the carbon impurity is almost ignored already by the second shell 

atoms. But we conclude that impurity calculations should not be done 

unless cluster size becomes s ig n if ic a n t ly  large or a satis factory  

embedding scheme is imposed on small c lusters.

The consequences of the present calculation could be checked for  

consistency using other systems such as N i^  and Ni^g . Convergence 

trend of the central atom's charge and spin density to those of bulk 

could also be studied by extending the c luster size even larger ^ 2 7  

for example), as a next step of calculation.
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Table I I I - l

Comparison of properties of iron clusters with those of bulk iron
(eneriges in eV)

Feg Fe15 Bulk

MS-Xa present MS-Xa present Ref. 46

(nt-n4-)/N 2.89 2.89 2.67 2.93 2.16

Occupied 
s-band (+) 
width (+)

4.7
3.7

6 .7 a
6 .3 a

6.2
5.4

7 .7 a
7 .2 a

8 .20  ̂
8 .0 3 1

Occupied 
d-band (+) 
width(+)

3.8
1.5

3 .8 d 
2.8

4.5
2.9

4 .4 e
3 .3 e

4.75J
3.60J

Total
d-band (+) 
width (4-)

2.4
2.8

2.8c4 .4 d
4.0

(2 .9 )4 .5  
(4 .3 )4 .5

4 .7 f
5 .39

5.13^
6.12

Range of Exchange 
S p lit t in g  (d) 1 .8-3 .2 0 .7 -3 .1 1 .2 -3 .2 1 . 0- 2 .7 1 . 1- 2.2

Average Exchange 
S p lit t in g  (d) 2.7 2.3 2.5 2.4

Exchange 
S p lit t in g  (sp) 1.0 0 .4 h 0.8 0 .5h 0.16-0.85



Table I I 1-2

Core levels and contact spin density for each atoms in the c lu s te rs .

FEg FE15

Site 1 2 1 2 3

Is 507.80 507.83 507.89 507.85 507.84
507.80 507.83 507.89 507 .85 507.84

2s 58.71 58.79 58.81 58.82 58.81
58.73 58.68 58.81 58.71 58.69

2p 50.68 50.75 50.78 50.77 50.76
50.70 50.66 50.80 50.69 50.67

3s 6.35 6.53 6.45 6.53 6.53
6.40 6.29 6.46 6.32 6.30

3p 4.02 4.19 4.12 4.20 4.19
4.07 3.96 4.13 3.99 3.96

Contact spin 
density (a .u . ) -0.71 +0.24 -0 .08 -0 .24 -0 .40

ef -0.240 -0.299

Note 1. Site 1, 2, and 3 denote the cen tra l,  f i r s t -  and second-shell 
atoms.

2. Energies are in Ryd. unit and upper (lower) numbers are for  
m ajority  (minority) spins.
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Table C-l

Labelling the Polynomial Type Basis Forms

Note: 1. Vertical number 1, 2, 3, 4, ------- denotes
2. horizontal columns 1, 2, 3 denotes K
3. Ax denotes angular index assigned.

in the expression

*Ax = 2

1. x2 -  y2 + 0
2. 0 + y2 -  z2

3. -x 2 + 0 + z2

*Ax = 4

1. x -  y + 0

2. x + y + 0
3. 0 + y -  z
4 . 0 + y + z

5. -x + 0 + z

6. x + 0 + z

7.

8 .

*Ax = 6

1. xy -  yz + 0

2. xy + yz + 0
3. 0 + yz -  zx

4 . 0 + yz + zx
5. -xy + 0 + zx

6. xy + 0 + zx
7.

8 .

CCOE (Ax, J, K)
LLIJ (Ax, K, I)

*Ax = 3

1. 2x2 -  y2 -  z2
2. -x 2 + 2y2 -  z2
3. x2 -  y2 + 2z2

*Ax = 5

1. x + y + z

2. x + y -  z
3. x -  y + z

4. x -  y -  z
5. x + y + 2z

6. x -  y + 2z
7. -x + y + 2z

8. -x -  y + 2z

*Ax = 7

1. xy + yz + zx

2. xy + yz -  zx

3. xy -  yz + zx
4. xy -  yz -  zx
5. 2xy + yz + zx

6. 2xy + yx -  zx
7. 2xy -  yz + zx
8. 2xy -  yz -  zx
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FIGURE CAPTIONS

Figure

Figure

Figure

Figure

Figure

Figure

I I I - l .  Geometries for the SC-, BCC-, and FCC-systems with up to 

the second nearest neighbors.

111-2. Energy level diagram for the Feg c lu s te r . The symmetries 

of levels and the occupancies (Ng) are given. The dashed 

l ine  shows the position of the Fermi lend at t^ and 

the crosses indicate that i t  is occupied by two 

electrons.

111-3. Energy level diagram for the Fe-^ c lus ter.

111-4. Integrated density of states for Fe15 with majority and

minority spins separated. The ordinate shows the number 

of states per atom Results from the band calculation of 

Ref. 15 are presented, with the energies shifted so that 

the Fermi energies of cluster and bulk coincide.

111-5. Integrated density of states for F e ^  with spins

combined.

I I I - 6. Cluster density of states for Feg.
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Figure

Figure

Figure

Figure

Figure

I I I - 7. Cluster density of states for F e ^  with m ajority and

minority spins separated. Solid line : present calcul

t io n , dashed l in e ,  bulk iron from Ref. 15.

I I 1-8. Cluster density of states for fe^5 with spoin states

combined.

111-9. Fe^C to ta l and m ajority  and minority spin density of

states.

A-l Figures arising from the p a rt it io n  of cubes by wedge

boundaries.

A-2 Two dimensional cross section of the doubling grid for

one shell BCC system. The cross hatched areas are 

regions of smaller divisions than those e x p l ic i t ly  

i l lu s tra te d .
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Appendix A 

The Doubling Grid

In our doubling grid , which is intended for cubic geometries, we 

divide space within the 1 /48-th  irreducib le  wedge in several d iv is ion .  

Space within each division is f i l l e d  with elementary cubes of the same 

size. The size of the elementary cubes are made s u ff ic ie n t ly  small near 

atomic centers where some o rb ita l basis functions vary rap id ly . The 

elementary cube size is increased as distances from atomic centers are 

increased. We could double the elementary cube length for most of the 

successive divisions except at one stage where "approximate doubling" 

was used to avoid unnecessary explosion in the number of elementary 

cubes due to the necessity of rap id ly  increasing number of sub

divisions.

The sampling points fo r integration are chosen to be at the center 

of each elementary cubes even in cases where only part of cube remains 

within the wedge. This choice of sampling point is obviously natural 

for cubes which are completely within the wedge and is also natural for  

cubes having only portions of th e ir  volume within the wedge although i t  

can be seen with simple reasoning that we are wasting sampling points by 

such a choice. Avoiding high symmetry planes may be desirable in plac

ing sampling points but we could not find any other choice of sampling 

points which could give a better re su lt .  For example, we tr ie d  sh fit ing  

our points to center of mass positions for fractiona l cubes ( in  the fu l l  

cube i t  remains at the same position) only to get worse resu lts .
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Another point of importance is the necessity of choosing comparable 

cube size for comparable regions of space. I f  one part of the space 

were given f in e r  grid due to some in terest in the p articu lar region, the 

integration resu lt became worse for those cases where proper cancella

tion  could not be obtained due to fa i lu re  to employ a f in e r  grid in 

other relevant regions.

The fact that we have a s ituation where we cannot f i l l  the region 

with cubes only i f  we go on with s t r ic t  doubling can be seen with simple 

reasoning. Consider a two dimensional grid: In the two sub-division

case, wehre each doubled length division is divided into two alogn the 

abscissa within i ts  own d iv is ion , we have found i t  acceptable to have 

basic length increasing by

a, 2a, 3a, 6a, 12a, 24a...........

for divisions I ,  I I ,  I I I ,  ___  respectively. I f  th is  procedure is not

followed awkwardly shaped f ra c t io n a lly  f i l l e d  regions re su lt .

The accuracy obtainable from a given grid was evaluated by using 

the grid to compute overlap in tegra ls . Analytic resu lts  for these are 

easy to obtain for comparison purposes. Since the exchange-correlation 

potential for which the grid is intended is slowly varying, the overlap 

integral tes t should be representative.

In the iron c luster system, we chose I I  basic doubling for a two 

sub-division case with a minimun cube length of a=0.00044 a .u . ,  giving a 

to ta l number of “ 1300 points in the Feg system and « 2100 points in the
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Fe-^ system. The errors in the overlap te s t  are about 3%. Choosing a 

four sub-division case gave better accuracy with 8 doublings and a 

minimum cube length of a=0.0Q15 a .u . This generating » 6300 points in 

Feg system and yielded about 1% accuracy additional. Four additional 

doubling regions were added to the above mentioned number of basic 

doubling regions to extend the integration region into the exterio r of 

the c lu s te r . The errors in our overlap tes t were almost always under

estimates of the magnitude of the in teg ra ls . This implies that we may 

underestimate s l ig h t ly  the magnitude of exchange correlation effects  in 

our calculation.

In the actual implementation of grid generation we f i l l e d  the space 

within each division by several typical blocks. Sub-programs were made 

fo r  each typical block in which a l l  grid points as well as weight 

factors are generated once the choice of sub-division number along the 

abscissa and the data for block dimension lengths elementary cube length 

are provided.

We have found that any elementary region within the wedge takes one 

of the four shapes shown in Fig. A - l .  There is no ambiguity in choosing 

the sampling points for these shapes which obviously are at the center 

of the cubes, though th is  w i l l  be on a high symmetry plane in some 

cases. This in e f fe c t ,  reduces the number of independent sampling 

points as a re s u lt .

A two dimensional cross section of a two sub-division case is 

sketched in Fig. A-2 ( th is  could be e ither the BCc or FCC f i r s t  neighbor 

s ituation .
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APPENDIX B.
c •
3 . THE FOLLOWING FUNCTIONAL FORMS HERE CONSTRUCTED USING THE
4 . PROJECTION TECHNIQUE OF GENERATING SYMMETRIZED NAVE FUNCTION
5 .
£

BASIS WHICH I S  DESCRIBED IN  DETAIL ELSKHERE(REF.50 AND 5 1 ) .
0 • 
7 . BASIS FUNCTIONS FOR THE CENTRAL SITE(LOCATED AT THE ORIGIN)
8 .
9 .

ANGULAR FUNCTIONS ARE GIVEN AS FOLLOWS; -

10. 1.A1G
11. S=S
12. 2 .T1U
13. P=X
14. P=Y
15. P=Z
16. 3 . EG
17. D=X*X-Y*Y
13. D = - ( 2 * Z * Z - X * X - Y * Y )
19. 4 . T 2 3
20 . D=XY
21 . D=YZ
22 .
2 3 .

D=ZX

24 . LEGEND;
25 . XXYY=X*X-Y*Y
26 . YYZZ=Y*Y-Z*Z
27 . ZZXX=Z*Z-X*X
23 . XX=2*X*X-Y*Y-Z*Z
29 . YY=2#Y#Y-Z*Z-X*X
30 .
31 .

Z Z=2*Z*Z -X*X-Y*Y

32. NOTE 1; NUMBERS WITHIN THE PARENTHESIS FOR EACH IRREDUCIBLE
33 . REPRESENTATION SYMBOL INDICATES THE ORDER)DEGENERACY) .
34 . NOTE 2 ;  FOR BREVITY, ONLY THE SIGNS ARE GIVEN FOR FOLLOWING TERNS
35 . WHICH HAVE IDENTICAL ANGULAR TERMS AS THE FIRST TERM.
36 .
37 .  
33 .

NOTE 3 ;  BLANK PARENTHESIS ( 0 ) MEANS NO FUNCTIONS FRESENT.

39 .
40 .
41 .

BASIS FOR THE SIHFLE CUBIC SYSTEM

42 . FCSITIONS ARE ASSIGNED AS
43 . 1 = ( A , 0 , 0  )
44 . 2 = ( - A , 0 , 0  )
45 . 3 = ( 0 , A , 0  )
46 . 4 = ( 0 , - A , 0  )
47 . 5 = ( 0 , 0 , A )
48 .
49 .

6 = ( 0 , 0 , - A )

50 .
51 .

AND COMBINATIONS ARE LISTED IN  THE ORDER OF

52 .
53 .

BASI3=+(1 2 ) M 3  4 ) + ( 5  6 )

54.
55 .

1 . A 1 3 M )

56. S=+(+S+S)+(+S+S)+(+S+S)
57 . P=+ ( +X - X ) + ( +Y -Y) + ( + Z - Z )

t

59 .
D=+(+XX-XX)+C +YY-YY) + ( +ZZ -ZZ )
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60. 2 . T 1 u r 3 }
61 .
62 . S=* (+S-S) *<  0 )+( 0 )
63 . S=+< 0 ) + ( +S-S)+(  0 )
64 . S=+( 0 )+( 0 ) + ( +S-S)
65 .
66 . P=+(+X+X)+(  0 )+( 0 )
67 . P=*( 0 ) + U Y + Y ) + (  0 )
62 . P=+( 0 )+(  0 ) + ( +Z+Z)
69 .
70 . P=+( 0 )+C+X+X)+(+X+X)
71 . P=+(+Y+Y)+(  0 )+(+Y+Y)
72 . P=+(+Z+Z)+(+Z+Z)+(  0 )
73 .
74 . D=+( 0 ) * ( +XY-XY) + ( +ZX-2X)
75 . D=+(+XY-XY)+(  0 ) + ( +YZ-YZ)
76 . D=+(+ZX-ZXHC +YZ-YZ)+(  0 )
77 .
78 . D=+(+XX-XX)+C 0 )+( 0 )
79 . D=+( 0 ) + ( +YY-YY)+(  0 )
8 0 . D=+( 0 )+t 0 )+ (+ZZ-ZZ)
81 .
82 . 3.T1SC3)
8 3 .
8 4 . P=+( 0 ) + ( - Z + Z ) + ( + Y - Y )
85 . P= +(+Z-Z )+ (  0 )+ ( -X +X)
85 . P=+( -Y+ Y) + ( +X-X)+(  0 )
87 .
88 . D=+( 0 ) + ( +YZ+YZ) + ( - Y Z - Y Z )
8 9 . D= +( -ZX-Z X)+ (  0 J+t+ZX+ZX)
90. D=+( +XY+X YH ( - XY- XY)+( 0 )
51.
92 . 4 .T2U13)
93 .
94 . P= + l+ Z+Z )+ t - Z -Z )+ <  0 )
95 . P=+( 0 )+ <+X+X)+ ( -X -X )
56 . P= +( - Y - Y ) + (  0 )+(+Y+Y)
97 .
98 . D=+(+ZX-ZX)+( -YZ+YZ)+(  0 )
99 . C=»( 0 ) + ( +XY-XY) + ( -ZX+2X)

1CC. D=+(-XY+XY)+(  0 )+ (+YZ-YZ)
101.
102. D=+( 0 )+( 0 ) + ( +XXYY-XXYY)
103. D=+(+YYZZ-YYZZ)+(  0 )+(  0 )
104. D=+( 0 )+(+ZZXX-ZZXX)+(  0 )
105.
106. 5 .T 2G ( 3 )
107.
108. p=+ (+Y -Y )+ (+ X- X) + (  0 )
109. P=+( 0 ) + ( +Z - Z ) + ( + Y - Y )
110. P=+(+Z-Z )+ (  0 ) + ( +X- X)
111.
112. D=+( 0 )+( 0 ) + ( +XY+XY)
113. D=t (+YZ+YZ)+(  0 M  0 )
114. D=+( 0 )+(+ZX+ZX)+(  0 )
115.
116. D^+l+XY+XY)+(+XY+XY)+(  0 )
117. 0=+( 0 ) + ( +YZ+YZ) ■* ( +YZ+YZ)
118. D=*(+ZX+ZX)+C 0 )+(+ZX+ZX)
119.



120.  6.EGC2)
121.
122.  S=+(+S+S)+ ( -S -S3+(  0 3
123.  S=+(+S+S3+<+S+S)+<-23(+S+S)
124.
125.  P=+(+X-X)+ ( -Y+Y3+(  0 3
126.  P = + ( + X - X ) + ( + Y - Y ) + ( - 2 ) ( + Z - Z 3
127.
12S. D=+(+XX+XX)+( -YY-YY)+(  C )
129.  D=+(+XX+XX3+(+YY+YY3+1- 2 ) I+ZZ+ZZ3
130.
131.  D= + ( +YYZZ+YYZZ) + ( +ZZXX+ZZXX3+C- 2  3 (+XXYY-XXYY)
132.  D=■»• ( -  YYZZ-Y YZZ 3+(+ZZXX+ZZXX)
133.
134.  7.ELH2)
135.
136.  D=+( +YZ-YZ) * ( -ZX+ZX)+C 0 )
137.  D=+(+YZ-YZ3 + C +ZX-ZX 3 + ( -2  3 C +XY-XY 3
138.
139.  8.A2UC13
140.
141.  D=+(+YYZZ+YYZZ3+(+ZZXX+ZZXX 3+(+XXYY+XXYY3
142.
143.  9.A2SC13
144.
145.  D= + ( +YZ-YZ 3+(+ZX-ZX 3+(+XY-XY 3
146.
147.  = = = = = = = = = = = = = = = =
148.
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♦ ( + - )  ♦ ( + - ) - ( + + ) - ( + + )

D=+(+XX+ + + J + ( - X X — )
D= + ( +Y Y+- - )  + {+YY+— )
D = + (+ 2 Z - + - ) + ( + Z Z - + - )

4 . T 1 U I 3 )

P = + ( + Y - Z ) - ( + + ) * ( + ♦ ) - ( + - )  
+ ( + - )  - ( + + ) + ( + ♦ ) - ( + - )  

P= +( + Z- X) + ( + + ) + ( + - ) + ( + + )
-( + +) -(+-)-(++)-(+-) 

P=+(+X~Y)+ (+ - ) - ( + + ) - ( + + )  
+ ( + + )  + { + + ) - ( + - ) - ( + - )

D=+(+ZX-XY) + ( + + ) - ( + * ) - ( + - )  
-(+-) -(*+)+(+*)+(+-)

D=+(+XY-YZ) - ( + + ) - ( + - ) + ( + + )  
♦ ( + »•) -(+-)-(++)+(+-)

D = + ( + Y Z - 2 X ) - ( + - ) + ( + + ) - ( * + )  
- ( + + )  + ( + + ) - ( + - ) + ( + - )

D=+(+YYZZ— + ) + ( +YYZZ— +)  
D=+(+ZZXX+— ) + ( -ZZXX-++) 
D=+(+XXYY+-— ) + ( -XXYY-+ + )

5 . T 2 U ( 3 )

P = + ( * X - Y ) - (  + - )  + (+ *) - • (  + +)  
- ( + + )  + ( + + ) - ( + - ) + ( + - )  

P= +( + Y -Z ) + (+ + ) - ( + + ) - ( + - )  
- ( + - )  - ( + + ) + ( + + ) + ( + - )  

P=+(+Z-X ) - (  + « • ) - ( + - )  + (++ )  
+<++)  - ( + - ) - ( + + ) + ( + - )  .

D=+ (+YZ -ZX)+ (+ - ) - ( + + ) - ( + + )  
+ ( + + )  + ( + + ) - ( + - ) - ( + - )

D=+ (+Z X- XY) - ( + + ) + ( + + ) - ( + - )  
+ ( + - )  - < + + )  + (+.+ ) - ( + - )

D= + (+ X Y - Y Z ) + ( 4 * ) + ( + - ) + ( + + )  
-<++)

D=+(+XXYY-+ - ) + ( +XXYY- * - ) 
D=+(+ YYZ 2+ - - ) + ( +YY2Z+— )
D= + ( +ZZXX+ —  M  +ZZXX+—  )

6 . T 2G (3 )

S = + H 5 - ' - - )  + ( - S - + + )  
S = t ( + S - - + } + ( + S - - + )  
S = + ( + S - + - ) + ( - S + - + )

P= + ( +Z— J-) K  -Z++-  )
P = + ( + X - - + ) + ( - X + + - ) 
p = + ( + Y - - O H - Y  ++ - )

P=< ( +X+Y) + ( + + ) - ( + - ) - ( + - )  
+ ( + - )  + ( + - ) - ( ♦ + ) - ( + + )  

P = + ( + Y + Z ) - ( + - ) + ( + - J - C + + J  
+ ( + + )  - ( + - )  + ( + - ) - ( ■ *  + )
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P= + ( +Z+X) + ( + - ) + ( + ♦ ) + ( + - )
- ( + - )  - ( + » ) - ( + - ) - ( + + )

D - + ( +XY+++) * ( +XY + + +)
D=+(+YZ+t + ) + ( +YZ+++ )
D= + ( +ZX+ ►+ ) f(  ^ZX+ n  )

D=+ (+7 Z+ - -  ) + ! -2 Z -+  * )
D= + ( + YY -+ -  ) * ( - Y Y + - + )
D = + ( + Y Y - * - ) + ( - Y Y + - + )

D= + ( + Y Z + 2 X ) - ( + + m * - M + - )
-(+-) + (+-)-(♦+) + ( + »■)

o=+( + z :<+xy  ) + ( + - ) - ( + - ) - ( + + )
-(++) -(♦-)+(+-)+(++)

D=+(+XY+YZ) - ( + - ) - ( + + ) + ( + - )
+ ( + - )  - ( + + ) - ( + - ) + ( + + )

7 . E G ' 2 )

P=<( + X - Y ) v ( + - ) + ( + + ) + ( + + )

P = - ( + 2 Z - X - Y ) + ( + + + ) - ( + - + ) + ( + + - )  
-(+*-) +(+-+)-( + + +JK+ + -)

D = * ( + Y Z - Z X ) - ( ♦ - ) - ( + + ) + ( + + )
* < + + )  - ( + + ) - ( + - ) + ( + - )

D = - ( 2 X Y - Y Z - Z X ) - < + + + ) + ( + - + ) + ( + + - )  
+ ( * + - )  ♦ ( + - + ) - ( + + + ) - ( + - - )

D=+ ( +XXYY++*) * ( +XXYY+++)
D=+( - Z 2 ----- ) + ( - 2 Z ------- )

S . E U f 2 )

P = - ( 2 Z - X - Y M + * * ) M + - + ) * { + + - )
+ (++-) + (+-t)-(+ + +)-(+--)

P=+( + X - Y ) - (  + - ) - (  + *■) + (+ +)
+ ( + + )  - ( + + ) - ( + - ) + ( + - )

D=- (2XY-Y2-2X  ) * ( +  + + ) - ( + - +  ) + H + - )  
- ( + + - )  ♦ ( + - + ) - ( + + ♦ )  + ( + — )

D=+ (+YZ -ZX)+ (+ - ) + ( + + ) + ( + + )
- ( + + )

D = + ( - 2 2 + + - ) + ( + Z Z - - + )
D=+[+XXYY— +)+ ( -XX YY+ +- )



APPENDIX D.

BASIS FOR THE FACE-CENTERED CUBIC SYSTEM.

POSITIONS ARE ASSUMED AS
1=( A, A, 0 )
2=1 A , - A ,  0 )
3=( -A ,  A, 0 )
4=( - A , - A ,  0 )
5=( 0,  A, A)
6=( 0 ,  A , - A )
7=( 0 , - A ,  A)
8=( G , - A i - A )
9=( A 0 ,  A)

10=( -A ,  0,  A)
11 = ( A, 0 , - A )
12=1 -A ,  0 , - A )

BASIS FUNCTIONS ARE GIVEN IN THE ORDER OF 
BASIS=( 1 2 3 4 )  + C5 6 7 S M 9  10 11 12)

1 .A1G(1)

S=+(+S+ + + ) + ( +S+++) + ( +S+++)
P=«-(+(X+Y ) + (+ - ) - ( + - ) - (  + *•)) 

+ ( + ( Y + z ) + ( + - ) - ( + - M  + m  
+ ( + ( Z + X ) + ( + - ) - ( + - ) - ( + + ) )

0= + ( + X Y - - H  + ( +YZ- -  + ) + ( + Z X - - < )
D = t-(+2Z+++ )+(+XX+++ )+ ( *YY*++)

2 . A1U(1)

D = + ( - ( Y Z - Z X ) - ( + + ) + ( + + ) + ( + - ) )  
+ < - ( Z X - X Y ) - ( + ) )  + H  + ) + ( + - ) )
+ ( - ( X Y - Y Z ) - ( + + ) + ( + + ) + ( + - ) )

3 . A2G(1)

P = + ( + ( X - Y ) + l * + ) - ( + + ) - ( + - ) )
+ ( + ( Y - Z ) * ( » + ) - ( + + ) - { + - n  
+ l + ( Z - X 5 * ( + + ) - ( + + ) - ( * - ) )

D= + ( +XXYY+++ )•'<■( +YYZZ+++ ) + ( +ZZXX+ + + )

4.A2LK 1)

P= + ( * Z — + ) + ( +X- -+  ) + ( +Y- -+  )
D=+( + (YZ^ ZX) + ( ♦ - ) - ( + - ) - ( + + ) )  

+<+(zxvxn+(+- ) - (+- ) - (++) )  
+ ( + < X Y + Y Z ) + ( + - ) - ( ♦ - ) - ( + * ) )

5.T1UC 3)

S = * ( + S + ~ )  + ( C W + S - + - )
S= + (+S-  + - )  + U S + - - )  + ( 0 )
S=+( 0 ) + ( + S- + - ) + ( + S + - - )

P= + ( C ) + ( +X+++ ) * (  0 )
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CO 

CO
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P- + ( 0 ) + ( 0 M + Y +  + +)
P - + ( + Z + + t H (  0 ) + ( 0 )

p=+(+>:+++)K o )+(+x+++)
P = + (+ Y r + + )+ (4Y+++)+f  0 )
P=+( 0 ) + (+Z» + > ) + ( + Z + * + )

P= + ( + Y - ~ H * <  0 ) + (+ 2 —  + ) 
p =+( +X - - +  ) + ( + 2 - - + ) M  0 )
P= + ( 0 ) + ( i-Y— +) + (+X— +)

D = K * X Y - + - )  + l C ) + ( + Z X + - - )
D = + (+ X Y + - - ) + ( +YZ- t - ) + C 0 )
D=K 0 ) + ( tY Z + - - ) + ( + Z X - + - )

D = * (  0 ) + ( * ( Z X + X Y M + - )  + C+ - ) - ( +4 ) ) - » {  0 ) 
D- + ( 0 ) + ( 0 ) + (+ (XY+YZ ) - ( + - )  + (+ - ) - (  + !■)) 
D= + ( + ( Y Z * Z X ) - ( + - ) K + - ) - ( + + ) )  + < 0 ) + ( 0 )

c - + ( + z z : o : + - - )  + ( o )+ c -x xy y+ -+ )
D - + ( - Y Y Z Z + - + ) > ( +XXYY+- - )+( 0 )
D= + t 0 ) + ( - Z Z X X + ~ n * ( + Y Y Z Z + ~ )

D=t (+XXYY>- - )+ (  0 ) + ( - Z 2XX +- + )
D;- + ( -XXYY*-+ ) + ( +YYZZ+— ) * (  0 )
D=+( 0 ) + ( -YYZ Z+-+ ) + ( +ZZXX+— )

6 . T ’.G(3)

S= + (-Zf---i-) + ( 0 ) + ( +Y+—  )
S = + ( + Z + ~  ) - (  -X+ -+  ) + C 0 )
S-+< 0 ) r (  i-X+— ) + ( -Y + -+ ) .

P= + ( 0 ) + (+ ( Y-Z ) - l ++) + ( + v ) - ( + - ) )  + ( 0 )
P-  + ( 0 ) + ( 0 ) + ( + C Z - X ) - ( + * ) K + + ) - (■» - ) )  
P = + t + ( X - Y ) - ( : + ) + ( + + ) - ( + - ) ) + (  0 )+( 0 )

D= + ( - Y Z  ) + ( 0 ) + ( +YZ+ + * )
D= + ( + Z X h + +) + ( - Z X — ) + ( 0 )
D=+( 0 ) + ( +XY+t + ) + ( -XY )

D= K+ ZX— +) + ( 0 ) + C-XY++- )
D = + ( - Y Z + + - ) + ( +XY— +)+(  0 )
D=+( 0 ) + ( -Z X+ + - )  + C + Y Z - - + )

D=+( 0 ) + ( +YYZZ— +)+(  0 )
D- + ( 0 ) + ( 0 ) + (+ZZXX— r )
D = + (+ X X Y Y - - t ) t (  0 )+( 0 )

7 . T 2 U ( 3 )

= *(  0 ) + ( - 3 + - i - )  + ( * 3 + - - )
= + 5+S+— H (  0 ) + ( - S * -  + )
= + ( -S+ -+ ) > ( +S+- -  ) + ( 0 )

p= k c )+;+z+++)+(-z— ) 
p=n-z— ) n  o ) + ( + x + + + )
P= + ( i-Y :- + + ) + ( - Y ------ ) + ( 0 )

P= + ( 0 )-t(+Y— + ) + ( -X+ + -  )
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P= + ( - Y t + - ) H  0 ) + (+Z— +) 
P = + ( + X - - + ) + ( - Z * + - ) + (  0 )

D= + ( - ( Y Z - Z X ) H * 0 - C + + )  + ( + - ) )  + ( 0 ) + ( 0 ) 
D=+( 0 ) + ( - ( ZX-XY) + ( + + ) - ( + + ) + ( + - ) ) + (  0 ) 
D-+(  0 )+( 0 ) + ( -  (XY-YZ ) + (+ + ) - ( + + ) + ( + - ) )

D=+( 0 ) + ( +YYZZ-+ - ) + ( +ZZ XX+ - - )
D=+(+XXYY+— )+( 0 )+ (+Z ZXX -+ - )
D=+(+XXYY-+- ) + ( +YYZZ+- - )+( 0 )

D=+( 0 ) t ( +ZZXX- + -  } (  +YYZZ+--  )
D- + (+ZZXX+— ) + ( 0 ) + ( +XXYY- + -  )

+YYZ2 -+ - ) + ( +XXYY*— )+( 0 )

D=+( 0 ) + ( +YZ+— ) + ( - Z X + - + )
D= + ( - X Y + - + ) + ( 0 ) + ( +ZX+- -  )
D=+(+XY+— ) + ( - Y Z + - + )+( 0 )

8 . T 2 3 ( 3)

S= +( + S- -+ )+ (  0 J+C 0 )
S= + ( 0 ) + ( +S— + ) + ( 0 )
S=+( 0 ) + ( 0 ) + ( +S— + )

P= + ( + ( X + Y ) - ( + - )  + ( + - ) - ( + + ) ) + (  0 ) + ( 0 )
P= + ( 0 ) + C + ( Y+Z) - ( + - )  + ( + - ) - ( + + ) )  + ( 0 )
P=+C 0 )+( 0 ) + ( + ( 2+ X) - ( + - ) ♦ { * - ) - ( + + ) )

P=+( 0 )+(+X+— J-VC+Y- + - )
P=+(+Z-  + - )  + ( 0 ) + ( +Y+— )
P=+C +2*— ) + C + X - + - ) + ( 0 )

D=+(+XY+++)+( 0 )+( 0 )
0= + ( 0 )+ (+ Y Z >+ 0  + ( 0 )
D=+( 0 )+( 0 )+(+ZX+++)

D=+( 0 ) + ( +ZX— + ) + ( + Y Z - - + )
D= + (+ZX— +) + ( 0 ) + C + X Y - - + )
D=+(+YZ— +) + ( *XY— +)+(  0 )

D=+( 0 )+(+XY+++)+(+XY++*)
D=+(+YZ+++) * (  0 ) + ( +YZ+++)
D=+(+ZX+++1+C+ZX+++)+( 0 )

D= + ( - Z Z + + - )+( 0 ) + ( 0 )
D=+( 0 ) + ( -X X + + - )+( 0 )
D=+( 0 )+( 0 ) + ( - Y Y + + - )

9 . E 6 ! 2 )

S=+( 0 ) + ( - S — )+l+S+++)
S^+t +2 )( +S+v+ ) :•{ - S  ) + ( - S  )

P=+( 0 ) + (+ ( Y + Z H ( + - ) - t + - ) - ( + + ) )  + ( -  ( Z +X ) 
P= +(+ 2H +( X+ Y)  + ( + - ) - (  + - m * + n + ( - ( Y * Z ) - (

+ ( - ( Z + X ) - ( +

( + - ) + ( + - ) + ( * + ) )
- ) • > ( * - ) + ( + + ) )
) + ( + - ) + ( + + ) )

P= + ( - 2 ) ( + ( X - Y ) + ( + + ) - (  + + ) - ( + + ) )  + ( * ( Y - Z ) + ( + + ) - ( + + ) - ( + - ) )
■*■( + ( Z -X )  + ( + + ) - ( + + ) - ( + - ) )



p=+( o ) + ( + ( Y - z m + + j - ( * + ) - ( + - ) ) + ( - ( z - x ) - ( + + ) + ( + + ) + ( + - n

D= + ( 0 ) + ( -YZ++-  ) + ( +zx—+)
D = + ( + 2 ) ( + X Y - - + ) + ( - Y Z + + - ) + ( - Z X + + - )

D=+( 0 ) + ( +XX+++) + ( -YY )
D=+( - 2 ) (  +ZZ+ + + ) + ( +XX+++) + ( + YY+++ )

D= + ( + 2H  +XXYY++ + ) + ( -YYZZ ) + ( -ZZXX )
D=+( 0 ) + ( +YYZZ+++) + ( -ZZXX )

10.ELH2)

P= + ( +2) (  -Z+ + -  ) + ( +X- -+  ) + ( + Y— +)
P= + ( 0 ) + ( +X— +)  + ( -Y+ + -  )

D= + ( 0 ) + (+ (ZX-XY)  + ( + + ) - (  + + ) - ( + - ) ) * ( - ( XY-YZ) - ( + + )  + ( + + ) + ( + - ) )  
D=+( + 2 H + ( YZ-ZX) + ( + + } - ( + - ) - ( + - ) ) + ( - ( ZX-XY) - ( + + ) + ( + + ) + ( + - ) )

+ ( - ( XY-YZ) - ( + + ) + ( + + ) + ( + - ) )

D=+(+ 2 ) ( + ( YZ+ZX) + ( + - ) - ( + - ) - ( + + ) ) + ( - (Z X+X Y) - ( + - ) + ( + - ) + ( + + ) )
+ ( - ( XY-YZ) - ( + - ) + ( + - ) + ( + + ) )

D= + ( 0 ) + ( -  (ZX+XY) - ( + - ) + ( + - ) + ( + + ) ) + ( + ( XY+YZ) + ( + - ) - ( + - ) - ( + + ) )
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â j

a/ ■ __________

Date of Examination:

March 12, 1984


	Electronic Structure of Small Iron Clusters.
	Recommended Citation

	00001.tif

