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We have developed a third-neighbor tight-binding model, with spin-orbit coupling included, to treat
the electronic properties of Bi and Sb. This model successfully reproduces the features near the Fermi
surface that will be most important in semimetal-semiconductor device structures, including (a) the small

overlap of valence and conduction bands, (b) the electron and hole efFective masses, and (c) the shapes of
the electron and hole Fermi surfaces. The present tight-binding model treats these semimetallic proper-
ties quantitatively, and it should, therefore, be useful for calculations of the electronic properties of pro-
posed semimetal-semiconductor systems, including superlattices and resonant-tunneling devices.

I. INTRQDUCTIQN

Recently, several groups have reported the successful
fabrication of semimetal-semiconductor superlattices, in-
cluding PbTe-Bi, ' CdTe-Bi, and GaSb-Sb. Bulk Bi and
Sb are group-V semimetals. They have a weak overlap
between the valence and conduction bands, which leads
to a small number of free electrons and holes. They also
exhibit small energy gaps in the vicinity of the Fermi en-
ergy. Connected with these properties are high carrier
mobilities, small effective masses, and a large characteris-
tic length, which makes Sb and Bi ideal for studying and
employing quantum confinement effects. The three above
semimetal-semiconductor superlattices are all grown in
the [111] direction, along which the electron efFective
masses of Bi and Sb are relatively small and the quantum
confinement length (scaling as m' ') consequently large.
Also, there is only a small lattice mismatch in each case
between the (111) planes of semimetal and semiconduc-
tor. ' These three systems are, therefore, particularly
promising for quantum transport studies and quantum
devices.

The semimetals Bi and Sb have an indirect negative
band gap, since the conduction-band minima (at the I.
points) lie (40 meV for Bi, 180 meV for Sb) lower than the
valence-band maxima (at the T point for Bi, and H points
for Sb). With decreasing thickness of confinement in Bi
and Sb, a semimetal-to-semiconductor (SMSC) transition
should occur when the energy shift becomes great enough
to raise the lowest electron subband to an energy higher
than that of the uppermost hole subband. Hoffman
et al. reported a SMSC transition in CdTe-Bi at a criti-
cal Bi-layer thickness of the order of 300 A.

These indirect narrow-gap semimetal-semiconductor
superlattices and heterostructures have been suggested
for many potential applications, because of their
unique transport and optical properties. Resonant tun-
neling and negative differential resistance have been ex-
perimentally observed.

There have been relatively few theoretical attempts to
study the electronic and optical properties of these het-
erostructures. Any model of the band structure faces
stringent requirements: (i) The weak overlap and small

energy gaps in the vicinity of the Fermi energy for Bi and
Sb make a multiband treatment necessary; (ii) the band
alignment of these semimetal-semiconductor superlattices
is indirect in momentum space, so a theoretical treatment
must represent a mixture of bulk states from different
symmetry points of the Brillouin zone '" (iii) the carrier
effective masses (particularly along the [111] growth
direction) will play an important role in transport proper-
ties (including resonant tunneling and the SMSC transi-
tion), so a theoretical calculation must treat the effective
masses correctly.

The envelope-function approximation uses the effective
masses, band gaps, and momentum matrix elements as in-
puts. It can, therefore, satisfy requirement (iii), and is
useful for a superlattice state whose energy is close to a
band edge of one of the bulk materials, when only one or
two bulk states in each material are of dominant impor-
tance. ' However, this method fails to satisfy require-
ment (i), because the boundary conditions are extremely
complicated when many bands are involved. " It is also
unsatisfactory with respect to requirement (ii), since it
cannot handle a superlattice state derived from two or
more bulk states with widely separated wave vectors. ' '"

The empirical tight-binding (TB) method provides a
better theoretical framework for this problem. It takes
the effect of the full band structure into account, and the
boundary conditions for connecting wave functions
across the interface are straightforward. Also, the quali-
tative behavior of the TB bands near and below the Fer-
mi level is usually in good agreement with experiment.
Requirement (iii) above can be approximately satisfied by
carefully adjusting the TB parameters to obtain the
correct effective masses of the bulk materials. There is a
tradeoff, of course: Some properties of the bands are
treated less accurately when one focuses on the effective
masses, but these are expected to be less important in the
superlattice calculations.

Tight-binding models have been widely used for semi-
conductors. ' ' There has been much less work on the
semimetals Bi and Sb, except for an early effort by Mase'
and more recent work by Xu et al. ' Mase' correctly
determined the locations and symmetries of the free car-
riers of Bi. However, his treatment was not sufhcient to
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and p states strongly mix to produce the valence and con-
duction bands of the solid. The basis functions are taken
to be orthogonal s and p Lowdin orbitals. The crystal
structure of Bi and Sb is rhombohedral, with three
nearest, three second-nearest, and six third-nearest neigh-
bors. The relative positions and distances of these neigh-
boring are shown in Fig. 2 and Table I. The first and
second neighbors are, respectively, above and below the
plane of the central atom.

A reasonable TB model must include second-neighbor
interactions for two reasons: (i) Only the combination of
nearest- and second-nearest neighbors is suficient to
satisfy all the symmetry requirements of the rhom-
bohedral structure [with the bonding between (111) bi-
layers eliminated if there are no second-neighbor interac-
tions]; (ii) the values of the distances d, and d2 are very
close, so second-neighbor interactions are expected to be
significant. Our experience in fitting the bands demon-
strates that they do indeed play an important role.

The peculiarity of the band structures of these semime-
tallic materials is the overlap between the highest valence
band and the lowest conduction band, which creates
small and equal numbers of free electrons at point I. and
free holes at point T (for Bi) or point H (for Sb). The
question of producing this indirect negative band gap is a
delicate one for a tight-binding model. For sp -bonded
materials with the diamond and zinc-blende structures,
Vogl, Hjalmarson, and Dow' added an excited s state to
the sp basis set for each atom and successfully repro-
duced the lowest conduction bands even in indirect-gap
semiconductors. This s* state repels the lower antibond-
ing p-like conduction band and presses the indirect
conduction-band minima down in energy. The difBculties
in extending a TB model to distant neighbors with many
adjustable parameters were avoided by introducing an s*
state instead. However, we have found in our calcula-
tions that the interaction between the s* and p states is
not adequately selective in the A7 structure. The sp s*
model fails to give the fine details of the band structure
near the Fermi surface in Bi and Sb.

Instead of adding an s* state, we developed an sp
model, which includes third-neighbor interactions, but
which treats details near the Fermi surface more careful-
ly than the model of Ref. 15. The semimetallicity of Bi
and Sb makes it reasonable that the interaction between
Lowdin orbitals (or Wannier functions) should extend
further than in more covalent systems (with band gaps),
like group-IV and III-V semiconductors.

The total Hamiltonian of Bi or Sb is'

H =Ho+H

H„=(A/4 mc )[VVXP] o..
Ho is the Hamiltonian without spin-orbit coupling, and
H„ the spin-orbit component, which couples p orbitals
on the same atom. V is the total crystal potential, and o.
represents the Pauli spin matrices.

We denote the s and p orbitals on the two atoms of the
primitive cell by ~sio), ~x.io ), ~yicr ), ~zio ). The site in-
dex i is either 1 or 2, and the spin index o either 1 or $.
In this basis, the matrix elements of Ho with the same
spin can be easily calculated by use of the two-center ap-
proximation given by Slater and Koster. ' The spin-orbit
component H„can be easily represented in the total an-
gular momentum basis: for example, '

(12)

where k is the spin-orbit coupling parameter. The trans-
formation ' between these two bases allows the total
Hamiltonian to be expressed in either basis. In the Ap-
pendix, we give the expression for the Hamiltonian ma-
trix elements in the ~sio ), ~xio ), ~yio ), ~zio ) basis.

Our TB model has 14 adjustable parameters: E„E,
rz' I I II Il

~sscr~ Vspo. ~ ppo. ~ Vppm~ " sso. ~ spo. ~ ppo. ~ ppvr~ sso. ~ spa ~

V", V" . E, and E are the on-site orbital energies.
The unprimed, primed, and double-primed parameters
are, respectively, for first, second, and third neighbors.
The spin-orbit coupling parameter k is taken to be ap-
proximately 0.6 eV for Sb and 1.5 eV for Bi.' '

IV. DETERMINATIC)N GF THE TB PARAMETERS

FIG. 2. Brillouin zone for the rhombohedral structure.

For the purpose of studying electronic transport and
SMSC transitions in semimetal-semiconductor superlat-
tices and heterostructures, we concentrate on features in
the energy bands near the Fermi surface instead of the
global band structures. We first set out to reproduce (i)
the overlap between the highest valence and lowest con-
duction bands, and (ii) the Fermi energy of the free car-
riers. These are the basic properties which determine the
semimetallicity of Bi and Sb. In our calculations, howev-
er, we found that the overlap and Fermi energy are in-
sensitive to the TB parameters, and can be obtained
correctly from different sets of parameters. Another im-
portant consideration is (iii) the efFective masses of the
free carriers, especially along the [111]direction. This is
the growth direction for the semimetal-semiconductor su-
perlattices in which we are interested. The effective mass
is important for determining the SMSC transition and the
transport properties, and must, therefore, be fitted care-
fully. Still another important factor is (iv) the shape of
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the Fermi surfaces for electrons and holes. The external
momenta and external areas are very sensitive to the TB
parameters. The density of free carriers (n or p with
n =p) is determined by the volume of the electron and
hole pockets. The final important feature is (v) the band
gaps near the Fermi level. In Bi, the I, point, where the
electron pocket is located, has a direct energy gap of 13.6
meV (Ref. 24) at low temperature. Nonparabolicity is ex-
pected to be important in this case. We also were con-
cerned with the band structure farther away from the
Fermi level, but this is the least important aspect for our
purposes, and was taken into account only when there
was no risk of inordinately compromising the first five
properties.

Several semiconductors with the diamond or zinc-
blende structure contain Sb or elements near to Sb and Bi
in the periodic table. These include a-Sn, InSb, and
GaSb, for which TB parameters have been determined by
several authors. ' ' To obtain the first and second-
neighbor-interaction parameters for Sb and Bi, we as-
sume that the parameters of e-Sn, InSb, and GaSb and
those of Sb and Bi are connected by a d scaling rule.
(The crystal symmetries are different, of course: a-Sn,
InSb, and GaSb are cubic, while Bi and Sb are rhom-
bohedral. ) The parameters obtained from this scaling are
then adjusted slightly to fit the theoretical curves to the
existing experimental data, with emphasis on properties
(i) —(v) discussed above. The third-neighbor interactions
are regarded as small perturbations, adjusted freely
without imposing the d rule (see Fig. 3).

For materials having the diamond or zinc-blende struc-
ture, with only nearest-neighbor interactions included, it
is a simple matter to relate the TB parameters to the en-
ergy bands at high-symmetry points in the Brillouin
zone. ' ' ' In this case, the TB parameters can be easily
adjusted to fit the experimental data. In our fits, howev-
er, we have to deal with (a) the lower-symmetry rhom-
bohedral structure, (b) third-neighbor interactions, and
(c) the spin-orbit coupling. The Hamiltonian matrices of
Bi and Sb are consequently much more complicated even

at high-symmetry points of the BZ.
Within the TB model described previously, the explicit

expressions for two of the bands along the I T(-[111])
direction are given by

E(145 —T45 )=A+3( Vpq + Vpp„)+1/3A.

+Qm +I +2ml cos(a, .k),
where k=(u, u, u) with 0 u 0.5, and

m =2 cos a V~ +(3—2cos a) V~~

1=2cos a'V' +(3—2cos a')V'

For the I Point, k=(0,0,0), Eq. (13) gives

(13)

(14)

(15)

6(T4~ —I 4~)=4cos a'V~~ +(6—4cos a')V' . (18)

Note that b.( T4~ —I 4~ ) is only determined by the
second-neighbor interaction parameters V' and V'

In Bi, the hole pocket is at the T point with symmetry
T~~. '4'8 From Eq. (13), we can derive an explicit expres-
sion for the effective mass of the hole at the maximum of
the band along the [111]direction:

(19)

Equation (19) is quite useful when we fit the effective
masses of the free carriers.

We find, to an excellent approximation, that V„and
V,', can be related to the energies of the two lowest-lying
valence bands at the I and T points. At I, the relations
are

E(l 6 )=E,+6V,", +A+B /[E, +6V,", E—
—6V~~„+( A+C)], (20)

E(l )=E +3(V + V,",.)+1/3~+lm+Il . (16)

For the T Point, k=(0.5, 0.5, 0.5), Eq. (13) gives

E(T45)=E~+3(Vp~ + V" )+1/3A+im —li .

The bandwidth associated with (16) and (17)

where
A =3(V„+V,', ),
B =3(V,

&
cosy+ V,~ cosy'),

C=3(V cos y+ V~ sin y)

+3( V~ cos y'+ V„'~ sin y') .

(21)

(22)

(23)

FIG. 3. Positions of the first-, second-, and third-nearest
neighbors projected onto the plane perpendicular to the trigonal
axis. The three first- and three second-nearest neighbors are in
the planes above and below the plane in which the central atom
lies, while the six third-nearest neighbors are in the same plane
as the central atom. ( —central atom and third neighbors;
0—nearest neighbors; 6—second neighbors. )

E(l;)—E(r,+)=~6(V„.+V,',.)~ .

At T, the relations are

E(T6 )=E, +6V,", A'+B' /[E, +6V,", E—(24)

—6V"„+(A '+ C') ],
(25)

If ~A+C~, ~B~ ((~E, E~~ is well satisfied, w—e can ob-
tain a simple expression for the energy difference of the
I 6+ and I 6 states:
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0
TABLE II. Nearest-neighbor distance d

&
and second-nearest-neighbor distance d2 (in A) and TB pa-

rameters for Bi, Sb, a-Sn, InSb, and GaSb. Those of a-Sn, InSb, and GaSb are obtained from Ref. 12.
For the compounds, the upper value of E, or Ep corresponds to the anion, and the lower to the cation.
The upper (lower) V,p corresponds to the s orbital on the anion {cation), and a p orbital on its nearest
neighbor.

Bi
Sb
a-Sn
InSb

GaSb

3.062
2.902
2.81
2.81

2.64

d2

3.512
3.343

E,
—10.906
—10.068
—5.670
—8.016
—3.464
—7.321
—3.899

—0.486
—0.926

1.330
0.674
2.916
0.855
2.915

—0.608
—0.694
—1.417
—1.380

—1.539

Vspo

1.320
1.554
1.953
1.640
1.987
2.148
2.021

1.854
2.342
2.373
2.289

2.459

Vppm

—0.600
—0.582
—0.687
—0.619

—0.637

Bi
Sb

Vsscr

—0.384
—0.366

I
Vspo

0.433
0.478

1.396
1.418

I
Vppm

—0.344
—0.393

V,", II
Vsp cr

0.156
0.352

VII

a—Sn

+ InSb

~ GQSb

Bi(1)

Bi(2)

Sb(1)

sb(2)-

V =2.335 /md

X

Ol

E
O
0 0
O.

V =1.836 /md

where

A'= —3(V„—V,', ),
B'= —3( V, cosy —Vz cosy'),
C'= —3( V cos'y+ V»~in'y)

+3(V' cos2y'+ V'~ sin y') .

(26)

(27)

(28)

If
I
~'+&'I IB'I && IE, —E~l is well satisfied, it follows

that

E( T6+ )
—E ( T6 )= i 6( V„—V,', ) i

. (29)

For Bi and Sb, since the s levels lie about 9 eV lower than
the p levels, ' the above two inequalities are usually true.

Equations (24) and (29) are used to fit the two lowest
valence bands, while Eqs. (13), (16), and (17) are used for
the higher-lying valence and conduction bands. Equation
(19) gives the exact formula for the effective mass of the
hole at the maximum of the valence band along the [111]
direction.

The TB parameters, which give the best agreement
with experimental data, are presented in Table II, along
with the parameters for a-Sn, InSb, and GaSb. The
values of V„and V,', of Bi and Sb obtained from these
three cubic semiconductors by assuming d scaling fail
to produce the experimental results for the two lowest-
lying valence bands. The values in Table II are calculat-
ed from Eqs. (24) and (29), instead of the d scaling rule.
However, when the values of V, , V, V', and V' „
are plotted against the bond length in Fig. 4, d scaling
is found to be approximately satisfied. We mention that

x
V =-0.64fl /md TABLE III. Energy levels of Bi (in eV) at the symmetry

points T, I, L, andX.

0.08 0.10 0.1 2

d '(L')
0.14 0.16 0.18

FIG. 4. Interatomic TB parameters V» (Vpp ), V» (Vpp ),
and Vp multiplied by the square of the bond length, vs the
bond length d. V,p for the compounds InSb and GaSb is ob-
tained by averaging the two values in Table II.

T6 —12.2442 I 6+

T+ —11.1331 I
T —1.1798 I +

—1.1196 r,
T 0.0111 I"+
T 0.3813 I
T6 0.9529 I 6

T4+5 1.4754 I 4g

—14.0000 L,—8.0870 L,—2.5364 L,—1.1289 L,—0 8238 L,
0.2430 L,
1.6893 L,
1.7878 L,

—11.9545 X,—11.5966 X,—1.7896 X,—1.6669 X,—0.0403 X
—0.0267 X,

0.8024 X,
0.9201 X,

—12.1649
—10.3162
—5.6525
—4.1632
—3.1047

2.3508
3.2956
4.4031
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TABLE IV. Comparison of characteristic energy levels (in eV) for Bi with other calculations and
with experimental data.

Band
Present

calculation
Golin

(Ref. 18)
XU

(Ref. 15)
Experiment'

Value Ref.

r,+(1)
r,-(1)

T6+ (1)-T6 (1)
L, (1)-L,(1)

X,(2)
r, (2)-r,+,(1)
I (2)-I +(3)
T6+ (3)-T45(1)

(3)-T45(1)
T6+ (2)-T4-, (1)
L, (3)-L,(3)
L, (2)-L,(3)
L.'(4)-L.'(3)
L, (4)-L,(3)
T ( 1)-L,(3)

—14.00
—8.09

1.11
0.36

—5.65
1.07
1.37
0.370
0.94

—1.13
—0.014
—1.64

0.84
0.83
0.038

—10.50
—6.55

1.78
0.58

—3.70
0.83
0.82
0.505
0.87

—1.60
—0.015
—1.82

1.13
1.12
0.039

—13.32
—7.53

2.39
0.74

1.61
1.97
0.756
0.99

—1.23
—0.874
—2.24

1.73
0.86
0.040

—14.0
—8.1

1.18+0.08

—5.2
0.65-0.71
0.72-0.81
0.18-0.41
0.80-0.88

—0.011-—0.015
—1.92- —2. 10

1.05-1.15

0.036-0.039

29
29
29

29
30,31
30,31
32-36

31

24, 33,37-39
30,31
30,31

32,33,39,40

'See the references for experimental conditions.

the difference in E, and E for Sb atoms in bulk Sb,
GaSb, and InSb can be interpreted as arising from the
different local environments in these three materials.

V. BAND STRUCTURE OF Bi

The calculated band structure of Bi is shown in Fig. 5,
with the zero of energy taken to be Fermi level. The en-
ergies at the symmetry points T, I, I, and X are given in

Table III. The ordering of energy levels is the same as
that of Rose and Schuchardt, but different from that of
Golin, ' with the I 6+(3) and I 45(1) interchanged. Table
IV presents a comparison with other theoretical results
and with experimental data.

For the two lowest-lying valence bands, our results are
in better agreement with experimental data than those
from the pseudopotential calculation of Golin. ' (Xu
et al. ' fitted their model to the calculation of Gonze,
Michenaud, and Vigneron' instead of the experimental
data. ) This demonstrates that a TB model can provide a
good representation of the lower-lying valence bands.

It can be seen that the Fermi level intersects the
valence band at the T point, and the conduction band at
L. The overlap between them, E[T~~(1)—L, (3)], is 38
rneV. There are many band energies near the Fermi lev-
el. The smallest band gap, at the I. point, is only about
14 meV. This is E[L,(3)—L, (3)]. The band gap at T is
about 370 meV [E[T6+(3)—T~~(1)]J. We can repro-

LA
(3
lZ
W
X
LLJ

C)
C)

Electron—

T W L AU I L U T

0
C
O

L

No
CO

I

C)
C)

I

Bisectrix

0.05

FICx. 5. Band structure of Bi along various symmetry lines.
The notation used here is the same as that of Golin (Ref. 18).

FICs. 6. Fermi surface of electrons in the trigonal-bisectrix
plane for Bi. The unit of reciprocal length is g = 1.386 A
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TABLE V. Theoretical and experimental parameters for Fermi surface and effective masses' of Bi.
The notation for direction is that used by Edel'man (Ref. 41).

Present
work

Rose and
Schuchardt

(Ref. 28) Values
Experiment"

Ref.

Overlap Eo (meV)
Fermi energy Ef (meV)

Tilt angle 8

P, (10 ' gcm/s)
P2
P3

37.8
26.7

6.0'

8.615
0.589
0.714

24.0
16.0

Electrons
8.2

6.60
0.599
0.675

36.0-38.5
25.0-29.7

6'23'+1'

7.88+0.2 %
0.559+0.2 /o

0.740+0.2 %

32,33,39,40
32,33,39,40,42

41

I) (m, )

m2
Pl 3

0.198
0.001 47
0.002 15

0.235
0 00194
O.OO246'

0.261
0.001 13
0.002 59

40

Tilt angle 0

P, (10 ' gcm/s)
P2
P3

00

1.543
1.534
4.547

Holes
oo

1.56
1.56
5.89

00

1.47
1.47
4.88

41

41

m& (m, )

m2
m3

0.0675
0.0675
0.612

0 097
0.096
137

Carrier density (cm )

0.064
0.064

0.690-0.702
33,40,41,43

n' 3.09 X 10'
3. 12 X 10' (2.75-3.O2) X 1O" 33,40,41,43

n/p 0.99

'Effective masses for the principal axes.
See the references for experimental conditions.

'Effective masses at the bottom of the band.
Obtained from Lax model. See Ref. 28.

'Obtained by assuming that the electron and hole pockets are ellipsoids.

Hole

O
C: o

C)

CO

C)
I I

—0.05

Bisectrix

I I

I
I I

FIG. 7. Fermi surface of holes in the trigonal-bisectrix plane
for Bi. The unit of reciprocal length is g = l.386 A

TABLE VI. Energy levels of Sb (in eV) at the symmetry
points T, I, L, and X.

T6 —12.022 I 6
T+ —10 378 I
T6 —1.252 I 6+

T4s —0.814 I
T6+ —O.332 r4+,

T6 0732 I 6

T6 1.125 r6
T4+, 1.474 I 45

—13.446
—7.150
—2.684
—1.759
—1.454

1.076
1.836
2.114

L,
L,
L,
L,
L,
L,
L,
L,

—11.659
—11.156
—2.421
—2.145
—0.786
—0.0899

0.166
0.991

X,
X,
X,
X,
X,
X,
X,
X,

—11.607
—9.916
—6.571
—4.730
—4.217

2.579
3.229
4.135

duce these three characteristic energy values in good
agreement with both the experimental data and the pseu-
dopotential calculations, ' and as shown in Table IV.

The small direct band gap at L, which is only about
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C3
C)

U
C0

C)
D

Electron

)

—0.2

Bisectrix

0.2

LA
C3

LLJ

W

FIG. 9. Fermi surface of electrons in the trigonal-bisectrix
plane for Sb. The unit of reciprocal length is g =1.461 A

T W L L U TH

FIG. 8. Band structure of Sb along various symmetry lines.
The notation used here is the same as that of Falicov and Lin
(Ref. 17)~

suits with other theoretical and experimental values for
the Fermi surface and carrier effective masses is summa-
rized in Table V. Figures 6 and 7 show the calculated
electron and hole pockets. It is clear that there is excel-
lent agreement.

The previous TB calculation of Xu et al. ' gave a large
value for the band gap at I. (874 meV). The related elec-
tron effective masses are expected to be far away from the
experimental data. This casts doubt on the reliability of
their model for treating transport and other properties in
semimetal-semiconductor quantum structures.

VI. BAND STRUCTURE OF Sb

one-third of the overlap energy, has an important
inhuence on the transport properties of Bi. The strong
coupling between the conduction and valence bands, and
the resulting nonparabolic band dispersion, should be
taken into account when calculating superlattice states.
Also note that the small effective masses are usually asso-
ciated with small energy gaps. For bismuth, the electron
effective mass along the trigonal axis at the I. point is
smaller than 3X10 m„which means that large quan-
tum confinement is expected for Bi (Sec. I). In fact, our
calculated effective masses are in very good agreement
with the experimental data. The comparison of our re-

The calculated band structure of Sb is shown in Fig. 8.
The zero of energy is taken to be the Fermi level. The en-
ergies at the symmetry points T, I, I., and X are listed in
Table VI. The ordering of energy levels is essentially the
same as that of Rose and Schuchardt; only T6 (3) and
T~~(1) are interchanged. A comparison with other
theoretical results and with experimental data is present-
ed in Table VII.

As in the case of Bi, our results for the two lowest-
lying valence bands are in better agreement with experi-
mental data than those of a pseud opotential
calculation —for Sb, that of Falicov and Lin. '

In our calculation, the maximum of the fifth band

TABLE VII. Comparison of characteristic energy levels (in eV) for Sb with other calculations and
with experimental data.

Band

r,+(1)
r;(1)

T6+(1)-T6 (1)
L, (1)-L,(1)
X,(1)-X,(1)

'X, (2)
T6 (2)-T4s(1)
T (3)-T+ (2)
L,(3)-L.'(3)
L'. (2)-L', (3)

Present
calculation

—13.45
—7.15

1.64
0.50
1.69

—6.57
0.48
1.06

—0.70
—1.36

Falicov and Lin
(Ref. 17)

—12.10
—6.15

1.71
0.54
1.90

—4.79
0.63
0.98

—0.24
—1.11

Xu et al.
(Ref. 15)

—12.87
—5 ~ 17

2.9
0.94

0.64
1.32

—0.34
—1.31

Experiment'
Values

—13.3
—7.0

1.67+0.06

—5.5
0.143

—0. 101+0.003

Ref.

29
29
29

44-46

'See the references for experimental conditions.
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TABLE VIII. Theoretical and experimental parameters of Fermi surface and effective masses of Sb.
The notation for directions is that used by Issi (Ref. 4).

Overlap Eo (meV)
Fermi energy Ef (meV)

Present
work

17.40
89.9

Rose and
Schuchardt

(Ref. 28)

234
115

Experiment'
Values

177.5
93.1

Ref.

Tilt angle L9,„ —8.5'
Electrons

60 40 70 47-49

P& ( 10 '
g cm/s)

P2
P3

4.30
30.82
4.62

5.2
32.3
3.6

3.95
31.30
4.22

m[]]]] (m, ) 0.073 0 093 4,47

Tilt angle 0;„ 24'
Holes

56' 53 48,49

P& (10 ' gcm/s)
P2
P3

5.11
19.41
3.00

20.2
44

4.22
18.45
4.43

m[»1] (me ) 0.12 0 091" 4,47

n'
p

Carrier density (cm ')
5.32 X 10'
5.17X 10' (3.74-5.50) X 10' 48,50,51

n/p 1.03

'See the references for experimental conditions.
Calculated from the formula 1/m =(1,, /m&)+(A, 2/m2) +(A,3/m3). Here m&, m2, and m3 are the

efFective masses along the principal axes, and A, &, A,&, and A, 3 are the direction cosines of the trigonal axis
in the principal-axis coordinates.
'Calculated by assuming the electron and hole pockets are ellipsoids.

occurs at the point H, which is near the point T. (H is on
the mirror plane, with trigonal coordinates [0.4543,
0.3722, 0.3722].) The minimum of the sixth band occurs
at points near or at I.. The overlap of these bands is 174
meV.

The cross sections of the electron pockets and hole
pockets on the mirror plane are shown in Figs. 9 and 10,

respectively. The Fermi surface results are given in Table
VIII, and are compared with other theoretical and exper-
imental data.

For the hole pocket, our calculated tilt angle is 24,
which is the only feature significantly different from ex-
periment data. The shapes of the hole pocket and elec-
tron pocket are generally in agreement with those given

TABLE IX. The matrix elements of H».

slT sip ylT zlT xi) ylg z1$

s1T E +g2e V,
", 0

sly E, +g2e V,",

xlT

ylT

II
g27 Vspcr

0
Ep+g29 Vpp

+g3o Vpp.

tl
g28 Vspo

0
—i—'A,

3

+g31( Vpp Vpp

Ep+g 3o Vppcr

+g29 Vpp

0
tt

g27 Vspo.

0

0
II

gz8 Vspcr

0

0
0

—i—'A,
3

zlT
x1$

y1$
y1$
z1$

Ep+g2e Vpp i—'X
3 3

p g29 pp 3 g3& pp pp

+g3o Vpp

Ep+g3o Vpp

g29 ppm

Ep+g2e Vpp~
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O
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O + O
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O O
I b bo+ I I

b W+ b b b

bO bO bO bO bO+ +

FIG. 10. Fermi surface of holes in the trigonal-bisectrix
plane for Sb. The unit of reciprocal length is g = 1.461 A

by experiment. Since we cannot quantitatively reproduce
the carrier effective masses along all three principal axes,
we focus on those along the trigonal axis —i.e., the
growth [111]direction for CdTe-Bi, PbTe-Bi, and GaSb-
Sb superlattices. Our calculated effective masses along
the [lllj direction, listed in Table VIII, are in good
agreement with the experimental measurements.

VII. CONCLUSIQNS

The electronic band structures of bismuth and an-
timony have been successfully represented with a tight-
binding model. The orbital interaction parameters were
determined by fitting the experimental data, which in-
clude the following: (1) the overlap between the highest
valence band and the lowest conduction band; (2) the Fer-
mi energy; (3) the effective masses of the carriers at the
minima of the conduction band and at the maxima of the
valence band; (4) the shapes of the Fermi surfaces for
both electrons and holes; and (5) the small band gaps.
Particular attention was given to the behavior of the
bands in the vicinity of the Fermi surface, since it is this
behavior that will dominantly inhuence the electronic
properties important for device applications.

Qh

~ W

c5

E

b

bO
O + O

b

00

bO
bO ++ b

b
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+

IO

Ct)

I I
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O
bO++ b O

+
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bO

+ O
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APPENDIX

This Appendix gives the explicit expressions for the
Hamiltonian matrix elements in the representation ~si o ),
~xio), ~yio ), a.nd ~zio). The si.te index i =1,2 distin-
guishes which represents the two atoms in the primitive
cell.

H)( H)2
H=

H2( H~2

The diagonal matrix H&& =H22 and the off-diagonal ma-
trix H, 2=H2& are presented in Tables IX and X, respec-
tively.

b

bOO+ O
b

C&

bO

b

+ ObO

hp
I

O O

bO

I

b

bO

b

bO

I O

bO

O O

b b b

I I I

b b b

bO bO bO

I I I
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In these tables, gp, g, , . . . , g3, are functions of the
reciprocal-lattice vector k =k1b1+k2b2+ k 3b3, with b1,
12, and b3 the primitive reciprocal-lattice vectors defined
in Sec. II. Among them, gp-g12 involve the first-neighbor
interactions g13-g25 the second neighbors and g26 g31
the third neighbors. The expressions for gp-g12 are

ik (a) —d) ik. (a2 —d) ik-{s3—d)

ik (a2 —d) ik (a& d)
g, =(e ' —e ' )cosa,

ik (a&
—d) ik (a2 —d) ik (a3 —d)

g3 =gpcosp
ik.(a —d) ik (a2 —d)g4=(e ' +e ' )cos a,

ing a„a2, a3, cosa, cosP, and cosy in the expressions for
gp g)2 by a2+a3, a)+ a3, a2+a), cosa', cosP', and cosy',
respectively, where cosa', cosp', and cosy' are the direc-
tion cosines for the vector a1+a3 —d, from the central
atom to one of the second-neighbor atoms. Finally,
g26 g 3 1 are given by

ik (a1 a2 ik (a2 ~1 'k. 82 3

ik (a3 —a2 ik (al 3 k 3 1+e '+e +e
ik (a2 . a&—) ik. (a&

—a2)27= e —e

ik a2 a.3) ik. (a3 a2+ —,
' e e

ik (a3 —a&) ik. (a&
—a3)+ —,

' e —e

gs=gp

g6 =g, cosy,
ik (a&

—d) ik (a2 —.d) ik (a3 —.d)g7=(e ' +e ' +4e ' cos

gs =go

g9 =gpcoS f2

g10 gOS1n p
2

g11 —g2COSQ

g)2 =g1cosp,

with a„a2, a3, and d defined in Sec. II. Here cosa, cosp,
and cosy are the direction cosines for the vector a2 —d,
from the central atom to one of the nearest-neighbor
atoms. The functions g13

—
g25 can be obtained by replac-

ik. (a3 —
a& ) ik.(a& —a3)

ig2()
——&3 e e

ik (a& —a3) ik. (a3 —a&)
g29=4 e +e

ik a2 a3 ik. (a3 a2+—'e
4 +e

ik (a2 a&) —ik.(a& —a2)

ik. (a) —a3) ik. (a3 —
a& )

gso= —,
' e +e

ik. (a2 —a3) ik. (a3 —a2)
)4

ik (a3 —a&) ik. (a&
—a3)

ik(a —a ) ik(a —a )3 2 e 2 3
)
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