
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Electronic system-level synthesis methodologies

Gerstlauer, A.; Haubelt, C.; Pimentel, A.D.; Stefanov, T.P.; Gajski, D.D.; Teich, J.
DOI
10.1109/TCAD.2009.2026356
Publication date
2009
Document Version
Final published version
Published in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

Link to publication

Citation for published version (APA):
Gerstlauer, A., Haubelt, C., Pimentel, A. D., Stefanov, T. P., Gajski, D. D., & Teich, J. (2009).
Electronic system-level synthesis methodologies. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 28(10), 1517-1530.
https://doi.org/10.1109/TCAD.2009.2026356

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:22 Aug 2022

https://doi.org/10.1109/TCAD.2009.2026356
https://dare.uva.nl/personal/pure/en/publications/electronic-systemlevel-synthesis-methodologies(9fc5163b-5452-47c0-9ce8-7cf74c75cea1).html
https://doi.org/10.1109/TCAD.2009.2026356

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009 1517

Electronic System-Level Synthesis Methodologies
Andreas Gerstlauer, Member, IEEE, Christian Haubelt, Member, IEEE, Andy D. Pimentel, Senior Member, IEEE,

Todor P. Stefanov, Member, IEEE, Daniel D. Gajski, Fellow, IEEE, and Jürgen Teich, Senior Member, IEEE

Abstract—With ever-increasing system complexities, all major
semiconductor roadmaps have identified the need for moving to
higher levels of abstraction in order to increase productivity in
electronic system design. Most recently, many approaches and
tools that claim to realize and support a design process at the
so-called electronic system level (ESL) have emerged. However,
faced with the vast complexity challenges, in most cases at best,
only partial solutions are available. In this paper, we develop and
propose a novel classification for ESL synthesis tools, and we will
present six different academic approaches in this context. Based
on these observations, we can identify such common principles and
needs as they are leading toward and are ultimately required for
a true ESL synthesis solution, covering the whole design process
from specification to implementation for complete systems across
hardware and software boundaries.

Index Terms—Electronic system level (ESL), methodology,
synthesis.

I. INTRODUCTION

IN ORDER to increase design productivity, raising the level

of abstraction to the electronic system level (ESL) seems

mandatory. Surely, this must be accompanied by new design

automation tools [1]. Many approaches exist today that claim

to provide ESL solutions. In [2], Densmore et al. define an

ESL classification framework that focuses on individual design

tasks by reviewing more than 90 different point tools. Many

of these tools are devoted to modeling purposes (functional

or platform) only. Other tools provide synthesis functionality

by either software code generation or C-to-RTL high-level

synthesis. However, true ESL synthesis tools show the ability to

combine design tasks under a complete flow that can generate

systems across hardware and software boundaries from an

algorithmic specification. In this paper, we therefore aim to

provide an extended classification focusing on such complete

ESL flows on top of individual point solutions.

Manuscript received February 24, 2009; revised June 6, 2009. Current
version published September 18, 2009. This paper was recommended by
Associate Editor P. Eles.

A. Gerstlauer is with the Department of Electrical and Computer En-
gineering, University of Texas at Austin, Austin, TX 78712 USA (e-mail:
gerstl@ece.utexas.edu).

C. Haubelt and J. Teich are with the Department of Computer Sci-
ence, University of Erlangen–Nuremberg, 91054 Erlangen, Germany (e-mail:
haubelt@cs.fau.de; teich@cs.fau.de).

A. D. Pimentel is with the Informatics Institute, University of Amsterdam,
1098 XG Amsterdam, The Netherlands (e-mail: a.d.pimentel@uva.nl).

T. P. Stefanov is with the Leiden Institute of Advanced Computer
Science, Leiden University, 2300 RA Leiden, The Netherlands (e-mail:
stefanov@liacs.nl).

D. D. Gajski is with the Center for Embedded Computer Systems, University
of California, Irvine, CA 92697 USA (e-mail: gajski@cecs.uci.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2026356

Typically, ESL synthesis tools are domain specific and rely

on powerful computational models [3] for description of de-

sired functional and nonfunctional requirements at the input

of the synthesis flow. Such well-defined rich input models

are a prerequisite for later analysis and optimization. Typical

computational models in digital system design are process

networks, dataflow models, or state machines. On the other

hand, implementation platforms for such systems are often

heterogeneous or homogeneous multiprocessor system-on-chip

(MPSoC) solutions [4]. The complexity introduced by both

input computational model and target implementation plat-

form results in a complex synthesis step, including hardware/

software partitioning, embedded software generation, and

hardware accelerator synthesis. Aside from this, at ESL, the

number of design decisions, particularly in communication

synthesis, is compelling in contrast to lower abstraction levels.

Even more so, due to the increasing number of processors

in MPSoCs, the impact of the quality in computation and

communication synthesis is ever increasing.

In this paper, we aim to provide an analysis and compar-

ative overview of the state-of-the-art current directions and

future needs in ESL synthesis methodologies and tools. After

identifying common principles based on our observations, we

develop and propose a general framework for classification

and, eventually, comparison of different tools in Section II. In

Section III, we then present, in detail, a representative selection

of three ESL approaches developed in our groups. To provide

a more complete overview, Section IV briefly discusses three

related academic approaches. After introducing all six tools,

we follow with a comparison and discussion of future research

directions based on our classification criteria in Section V.

Finally, this paper concludes with a summary in Section VI.

II. ELECTRONIC SYSTEM DESIGN

In this section, we will identify common principles in

existing ESL synthesis methodologies and develop a novel

classification for such approaches. Later, this will enable a

comparison of different methodologies. Furthermore, based on

such observations, synergies between different approaches can

be explored, and corresponding interfaces between different

tools can be defined and established in the future.

A. Design Flow

Before deriving a model for ESL synthesis, we start by

defining the system design process in general. As nearly all

ESL synthesis methodologies follow a top–down approach,

a definition of the design process should support this view.

0278-0070/$26.00 © 2009 IEEE

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

1518 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 1. Electronic system design flow.

Furthermore, it should show the concurrent design of hardware

and software and required synthesis steps. A visualization of

this is given by the double roof model [5] shown in Fig. 1.

The double roof model defines the ideal top–down design

process for embedded hardware/software systems. One side of

the roof corresponds to the software design process, whereas

the other side corresponds to the hardware design process.

Each side is organized in different abstraction levels, e.g., task

and instruction levels or component and logic levels for the

software or hardware design processes, respectively. There is

one common level of abstraction, the ESL, at which we cannot

distinguish between hardware and software. At each level, in

a synthesis step (vertical arrow), a specification is transformed

into an implementation. Horizontal arrows indicate the step of

passing models of individual elements in the implementation

directly to the next lower level of abstraction as specifications

at its input.

The double roof model can be seen as extending the

Y-chart [6] by an explicit separation of software and hardware

design. Furthermore, for simplicity, we do not include a third

layout roof representing a physical view of the design. Note,

however, that layout information, while traditionally being of

minor importance, is increasingly employed even at the system

level, e.g., through early floorplanning, to account for spatial

effects such as activity hot spots [7], wiring capacitances, or

distance-dependent latencies [8].

The design process represented by the double roof model

starts with an ESL specification given by a behavioral model

that is often some kind of network of processes communicating

via channels. In addition, a set of mapping constraints and

implementation constraints (maximum area, minimal through-

put, etc.) is given. The platform model at ESL is typically a

structural model consisting of architectural components such

as processors, busses, memories, and hardware accelerators.

The task of ESL synthesis is then the process of selecting an

appropriate platform architecture, determining a mapping of

the behavioral model onto that architecture, and generating a

corresponding implementation of the behavior running on the

platform. The result is a refined model containing all design

decisions and quality metrics, such as throughput, latency, or

area. If selected, components of this refined model are then used

as input to the design process at lower abstraction levels, where

each hardware or software processor in the system architecture

is further implemented separately.

Synthesis at lower levels is a similar process in which a

behavioral or functional specification is refined down into a

structural implementation. However, depending on the abstrac-

tion level, the granularity of objects handled during synthesis

differs, and some tasks might be more important than others.

For instance, at the task level on the software side, commu-

nicating processes/threads bound to the same processor must

be translated into the instruction-set architecture (ISA) of the

processor, targeted toward and running on top of an off-the-

shelf real-time operating system (RTOS) or a custom-generated

runtime environment. This software task synthesis step is typi-

cally performed using a (cross-)compiler and linker tool chain

for the selected processor and RTOS. At the instruction level,

the instruction set of programmable processors is then realized

in hardware by implementing the underlying microarchitecture.

This step results in a structural model of the processor’s data-

path organization, usually specified as a register-transfer level

(RTL) description.

On the other hand, at the component level on the hard-

ware side, processes selected to be implemented as hardware

accelerators are synthesized down to an RTL description in

the form of controller state machines that drive a datapath

consisting of functional units, register files, memories, and

interconnect. This refinement step is commonly referred to as

behavioral or high-level synthesis. Today, there are several tools

available to perform such a high-level synthesis automatically

[9], [10]. Finally, at the logic level, the granularity of the objects

considered during logic synthesis then corresponds to Boolean

formulas implemented by logic gates and flip-flops.

An important observation that can be made from Fig. 1 is

that, at the RT level, hardware and software worlds unite again,

both feeding into (traditional) logic design processes down

to the final manufacturing output. In addition, we note that

a top–down ESL design process relies on the availability of

design flows at the component or task (and eventually logic and

instruction) levels to feed into on the hardware and software

side, respectively. Lower level flows can be supplied either in

the form of corresponding synthesis tools or by providing pre-

designed intellectual property (IP) components to be plugged

into the system architecture.

B. Synthesis Process

Before identifying the main tasks in ESL synthesis, we

first develop a general synthesis framework applicable at all

levels. As discussed in the previous section, during synthesis, a

specification is generally transformed into an implementation.

This abstract view can be further refined into an X-chart as

shown in Fig. 2. With this refinement, we can start to define

terms that are essential in the context of synthesis.

A specification is composed of a behavioral model and

constraints. The behavioral model represents the intended func-

tionality of the system. Its expressibility and analyzability can

be declared by its underlying model of computation (MoC) [3].

The behavioral model is often written in some programming

language (e.g., C, C++, or JAVA), system-level description

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

GERSTLAUER et al.: ELECTRONIC SYSTEM-LEVEL SYNTHESIS METHODOLOGIES 1519

Fig. 2. Synthesis process.

language (SLDL) (e.g., SpecC or SystemC), or a hardware

description language (HDL) (such as Verilog or VHDL).

The constraints often include an implicit or explicit plat-

form model that describes an architecture template, e.g.,

available resources, their capabilities (or services), and their

interconnections. Analogous to the classification of behavioral

models into MoCs, specific ways of describing architecture

templates can be generalized into models of architecture

(MoAs) [11]. Similar to the concept of MoCs, an MoA de-

scribes the characteristics underlying a class of platform models

in order to evaluate the richness of supported target archi-

tectures at the input of a synthesis tool. ESL architecture

templates can be coarsely subdivided based on their processing,

memory, and communication hierarchy. On the processing side,

examples include single-processor systems, hardware/software

processor/coprocessor systems, and homogeneous, symmetric

or heterogeneous, asymmetric multiprocessor/multicore sys-

tems (MPSoCs) [4].1 Memorywise, we can distinguish shared

versus distributed memory architectures. Finally, communi-

cation architectures can be loosely grouped into shared bus-

based or network-on-chip (NoC) approaches. Aside from the

architecture template, constraints typically contain mapping re-

strictions and additional constraints on nonfunctional properties

like maximum response time or minimal throughput.

The synthesis step then transforms a specification into an

implementation. An implementation consists of a structural

model and quality numbers. The structural model is a re-

fined model from the behavioral model under the constraints

given in the specification. In addition to the implementation-

independent information contained in the behavioral model,

the structural model holds information about the realization of

design decisions from the previous synthesis step, i.e., mapping

of the behavioral model onto an architecture template. As

such, a structural model is a representation of the resulting

architecture as a composition of components that are internally

described in the form of behavioral models for input to the next

synthesis step. On top of a well-defined combination of MoCs

1While details of supported architecture features and restrictions, as defined,
e.g., by tool database formats, can differ significantly, we limit discussions and
comparisons to such high-level MoA classifications in this paper.

for component-internal behavior and functional semantics, we

can hence introduce the term model of structure (MoS) for

separate classification of such implementation representations

and their architectural or structural semantics. Again, a MoS

allows characterization of the underlying abstracted semantics

of a class of structural models independent of their syntax.

Hence, MoSs can be used to compare expressibility and ana-

lyzability of specific implementation representations as realized

by different tools. For example, at many levels, a netlist con-

cept is used with semantics limited to describing component

connectivity. At the system level, pin-accurate models combine

a netlist with bus-functional component models. Furthermore,

transaction-level modeling (TLM) concepts and techniques are

employed to abstract away from pins and wires.2 Similar to

behavioral models, structural models are often represented in

a programming language, SLDL, or HDL.

Quality numbers are estimated values for different imple-

mentation properties, e.g., throughput, latency, response time,

area, and power consumption. In order to get such estimates,

synthesis tools often use so-called performance models instead

of implementing each design option.3 Performance models

represent the contributions of individual elements to overall

design quality in a given implementation. Basic numbers are

composed based on specific semantics, e.g., in terms of an-

notation granularity or worst/average/best case assumptions,

such that the overall quality estimates can be obtained, e.g.,

through simulation or static analysis. To distinguish and classify

representations of quality numbers across different instances

and implementations of performance models, we introduce

the concept of an underlying model of performance (MoP).

A MoP thereby refers to the overall accuracy and granularity

in time and space. Generalizing from the detailed definitions

of specific performance models, such as timing, power, or

cost/area models, a MoP can be used to judge the accu-

racy of the quality numbers and the computational effort to

get them. Examples of simulation-based MoPs for different

classes of timing granularity are cycle-accurate performance

models (CAPMs), instruction-set-accurate performance models

(ISAPMs), or task-accurate performance models (TAPMs) [12].

Quality numbers are often used as objective values during

design-space exploration (DSE) when identifying the set of

optimal or near-optimal implementations.

Given a specification, the task of synthesis then generates

an implementation from the specification by decision making

and refinement (Fig. 2). At any level, synthesis is a process of

determining the order or mapping of elements in the behavioral

model in space and time, i.e., the where and when of their

realization. Decision making is hence the task of computing an

allocation of resources available in the platform model, a spatial

binding of objects in the behavioral model onto these allocated

resources, and a temporal scheduling to resolve resource con-

tention of objects in the behavioral model bound to the same

resource.

2Again, many definitions of specific TLM variants exist, but for simplicity,
we limit discussions in this paper to a general classification.

3We use the term “performance” in the general sense to refer to any measured
property.

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

1520 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Refinement is the task of incorporating the made decisions

into the behavioral model resulting in a structural model, as

discussed earlier. Moreover, with these decisions, a quality

assessment of the resulting implementation can be done. The

result of this assessment is the quality numbers.

Finally, in order to optimize an implementation, DSE should

be performed. As DSE is a multiobjective optimization prob-

lem, in general, we will identify a set of optimal implemen-

tations instead of a single optimal implementation. For this

purpose, the quality numbers provided by the MoP are used. In

this paper, we define DSE being the multiobjective optimization

problem of the synthesis task. In other words, decision making

is the task of calculating a single feasible allocation, binding,

and scheduling instance, whereas DSE is the process of finding

optimal design points.

In summary, the X-chart shown in Fig. 2 combines two

aspects: synthesis (left output) and quality assessment (right

output). For both aspects, corresponding so-called Y-charts

exist in the literature: The synthesis aspect was presented

and later refined into a first system design methodology by

Gajski et al. in [6] and [13], respectively, while the quality

assessment aspect was proposed by Kienhuis et al. in [14].

With the earlier discussion, first classification criteria for

synthesis tools can be derived.

1) Expressibility and analyzability of the specification.

a) The MoC of the behavioral model. As, in general,

expressibility can be traded against analyzability, the

MoC has a huge influence on the automation capabil-

ities of a synthesis tool.

b) The MoA of the platform model given in the con-

straints. The MoA, as used for refinement, determines

the classes of target implementations supported by a

particular tool.

2) Representations of the implementation.

a) The MoS of the structural model. As structural models

are often used for validation and virtual prototyping,

the MoS can have a large influence on issues such as

simulation performance, observability, and accuracy.

b) The MoP of the performance model given through the

quality numbers. Performance models are employed

for quality assessment, and thus, the MoP has large

impact on the synthesis quality and estimation accu-

racy.

As DSE can be performed manually or automatically, an ad-

ditional classification criterion to be considered is given in the

following.

3) Is DSE automated, i.e., does a methodology integrate

some multiobjective optimization strategy for decision

making?

C. ESL Synthesis

In general, both decision making and refinement can be

automated. However, ESL synthesis is a more complex task

compared to synthesis at lower levels of abstractions. At any

level, the tasks to be performed during decision making and

supported during refinement are computing and realizing an

allocation, binding, and scheduling. At ESL, however, these

three steps have to be performed for a design space which is

at its largest and are required for both computations and com-

munications in the behavioral model. Furthermore, compared

to lower levels where refinement is often reduced to producing

a simple netlist, generating an implementation of system-level

computation and communication decisions is a nontrivial task

that requires significant coding effort.

In computation synthesis, processing elements (PEs), e.g.,

processors, hardware accelerators, memories, and IP cores,

have to be allocated from the platform model. The resulting

allocation has to guarantee that at least each process from the

behavioral model can be bound to an allocated PE. A further

task in computation synthesis is process binding where each

process has to be bound to an allocated PE. A third task in

computation synthesis is process scheduling, i.e., a partial/total

order is imposed on the processes using a static or dynamic

scheduling strategy.

In communication synthesis, communication elements (CEs),

including busses, point-to-point connections, NoCs, bus

bridges, and transducers, have to be allocated. Here, the result-

ing topology must guarantee that each application communi-

cation channel can be bound to an ordered set of architectural

communication media and that channel accesses (transactions)

can be routed on the CEs. A second task is application chan-

nel binding to route application-level communication chan-

nels over the allocated architectural network topology. Finally,

transactions must be scheduled on the communication media

using static time-division access or dynamic, centralized, or

distributed arbitration. As is the case in process scheduling,

transaction scheduling can result in static, dynamic, or quasi-

static schedules.

It should be clearly stated that computation synthesis and

communication synthesis are, by no means, independent tasks.

Hence, an oversimplified synthesis method might result in

infeasible or suboptimal solutions only. Many approaches are

heavily biased toward either computation synthesis (e.g., [15]

and [16]) or communication synthesis (e.g., [17]–[19]), assum-

ing the counterpart to be done by a different tool. In order to

ensure feasibility and optimality, however, an ESL synthesis

methodology should support computation and communication

synthesis with all their respective subtasks.

As ESL synthesis with its subtasks can be automated in de-

cision making and/or refinement, we now can define additional

classification criteria for ESL synthesis tools.

4) Is decision making automated, and if yes, which tasks are

automated?

a) Are computation design decisions computed

automatically?

b) Are communication design decisions computed

automatically?

5) Is refinement automated, and if yes, which tasks are

performed automatically?

a) Is computation refinement automatic?

b) Is communication refinement automatic?

With all the mentioned criteria in this paper, we can classify

and compare ESL synthesis tools. In the following sections,

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

GERSTLAUER et al.: ELECTRONIC SYSTEM-LEVEL SYNTHESIS METHODOLOGIES 1521

Fig. 3. Daedalus ESL design flow.

we will discuss six ESL synthesis approaches. For all six

approaches, we will evaluate their methodologies with respect

to these classification criteria. In addition, three ESL synthesis

approaches developed in our own groups will be elaborated on

in some more detail.

III. THREESOME OF ESL METHODOLOGIES

In this section, we will present three synthesis approaches

out of the authors’ own research. In addition to classification

of underlying methodologies based on previously introduced

criteria, this includes details of design steps and experiences

resulting from our development and experimental work.

A. Daedalus

Daedalus provides an integrated and highly automated

framework for system-level architectural exploration, system-

level synthesis, programming, and prototyping of heteroge-

neous MPSoC platforms [20], [21]. The Daedalus design flow,

which is shown in Fig. 3, leads the designer in a number of steps

from a sequential application (i.e., behavioral specification) to

an MPSoC system implementation on a field-programmable

gate array (FPGA) with a parallelized version of the appli-

cation mapped onto it. This means that Daedalus includes or

interfaces with component- and task-level back-end synthesis

processes to produce an MPSoC implementation at the RTL and

ISA levels for hardware components and software processes,

respectively. Since the entire design trajectory can be traversed

in only a matter of hours, it offers great potentials for quickly

experimenting with different MPSoCs and exploring a variety

of design options during the early stages of design.

1) Scope of Methodology: A key assumption for the

Daedalus framework is that it considers only dataflow-

dominated applications in the realm of multimedia, imaging,

and signal processing that naturally contain tasks communi-

cating via streams of data. Such applications are conveniently

modeled by means of the Kahn Process Network (KPN)

MoC [22]. The KPN MoC we use is a dataflow network of

concurrent processes that communicate data in a point-to-point

fashion over bounded first-in–first-out (FIFO) channels, using

blocking read/write on an empty/full FIFO as synchroniza-

Fig. 4. Example of a Daedalus MPSoC platform. (a) Platform specification.
(b) Elaborate platform.

tion mechanism. The KPNs that Daedalus operates upon can

be manually derived or automatically generated. In the latter

case, behavioral input specifications are sequential C programs.

However, to allow for automatic translation into a KPN, these C

applications need to be specified as so-called static affine nested

loop programs (SANLPs) [23], which are an important class

of programs in, e.g., the scientific and multimedia application

domains.

In terms of target MoA, Daedalus considers MPSoC plat-

forms in which both programmable processors and dedicated

hardwired IP cores are used as processing components. They

communicate data only through distributed memory units. Each

memory unit can be organized as one or several FIFOs. The data

communication and synchronization between processors are

realized by blocking read and write primitives. Such platforms

match and support the KPN operational semantics very well,

thereby achieving high performance when KPNs are executed

on the platforms. In addition, directly supporting the opera-

tional semantics of a KPN, i.e., the blocking mechanism, in

the target platforms allows the processors to be self-scheduled.

This means that there is no need for a global scheduler in the

platforms.

Daedalus architectures are constructed from a library of

predefined and preverified IP components. These components

include a variety of programmable processors, dedicated hard-

wired IP cores, memories, and interconnects, thereby allowing

the implementation of a wide range of heterogeneous MPSoC

platforms. Thus, this means that Daedalus aims at composable

MPSoC design, in which MPSoCs are strictly composed of

IP library components. Fig. 4(b) shows a typical example of

a Daedalus MPSoC platform. Daedalus produces platforms in

the form of synthesizable VHDL (i.e., a netlist MoS) together

with the C code for KPN processes that are mapped onto

programmable processors. As a consequence, Daedalus designs

can be readily mapped on an FPGA for prototyping.

Daedalus supports the mapping of multiple KPN processes

onto a single processor. However, it tries to avoid using a

multithreading operating system (MTOS) to execute multiple

processes on a single processor in order to avoid execution

overheads due to context switching. If possible, Daedalus per-

forms compile-time scheduling of the processes that execute

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

1522 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

on a single processor and thus generates program code for a

given processor that does not require an MTOS. However, if

finding a compile-time schedule is not possible because of the

dynamic (data-dependent) nature of an application, Daedalus

uses a very lightweight MTOS to perform runtime scheduling

of the processes that execute on a single processor.

The aforementioned design process is guided by automated

DSE, which uses a MoP that combines a TAPM and an ISAPM

to evaluate design instances. Moreover, Daedalus’ computation

synthesis trajectory is fully automated, while its communication

synthesis is semiautomatic as it uses communication IP compo-

nents which may need to be customized by hand.

2) Daedalus’ Design Steps: As shown in Fig. 3, Daedalus’

design flow consists of three key steps, which are implemented

by the KPNgen, Sesame, and ESPAM tools, respectively.

KPNgen [23] allows for automatically converting a sequential

(SANLP) behavioral specification written in C into a concur-

rent KPN [22] specification. By means of automated source-

level transformations, KPNgen is also capable of producing

different input–output equivalent KPNs, in which, for example,

the amount of concurrence can be varied. Such transformations

enable behavioral-level DSE.

The generated or handcrafted KPNs are subsequently used by

the Sesame modeling and simulation environment [24] to per-

form system-level architectural DSE. To this end, Sesame uses

(high-level) architecture model components from Daedalus’

IP component library (see the left part of Fig. 3). Sesame

allows for quickly evaluating the performance of different

design decisions in terms of target platform architectures (i.e.,

resource allocation), binding of KPN processes to architecture

resources, and scheduling policies. Here, a balanced tradeoff

has been made between simulation accuracy and performance,

allowing for extremely fast TAPM-level simulations while still

yielding trustworthy estimations. However, on the other hand,

Sesame also supports a gradual refinement of its architecture

performance models to increase accuracy. This can, for ex-

ample, be realized by gradually incorporating (external) lower

level simulation models, such as cycle-accurate instruction-set

simulators, into Sesame’s high-level architecture performance

models.

Aside from exhaustive simulative DSE to study certain fo-

cused regions of a design space, Sesame also supports heuristic

search methods, such as genetic algorithms, to steer DSE

in larger design spaces. Moreover, it includes an additional

design-space pruning step, which is based on analytical models

and takes place before DSE to trim the design space that needs

to be studied using simulation.

Sesame’s DSE results in a set of promising candidate system

designs, each of which is described using a high-level XML-

based platform description [shown in Fig. 4(a)] and process

binding description. These high-level descriptions, together

with the (behavioral) KPN description, act as input to the

ESPAM tool [25]. This tool subsequently uses RTL versions of

the components from the IP library to automatically generate

synthesizable VHDL that implements the candidate MPSoC

platform architecture. In addition, it also generates the C code

for those KPN processes that are mapped onto programmable

cores. By using commercial synthesis tools and compilers,

this implementation can be readily mapped onto an FPGA for

prototyping. Such prototyping also allows for calibrating and

validating Sesame’s system-level models and thus improves the

trustworthiness of these models.

3) Daedalus Experiences: Typically, Daedalus can be de-

ployed in situations where rapid quantitative insight is needed

into a variety of different design options during the very early

stages of design. For example, Daedalus has recently been

used in a case study, together with the Dutch SME Chess B.V.

[21], for studying different MPSoC implementations for image

compression of very high resolution (medical) images. Hence,

Daedalus was used for DSE, both at the level of simulations

and prototypes, in order to rapidly gain detailed insight on the

system performance. The studied MPSoCs exploit concurrence

at three levels: Multiple encoders are operating on different

image tiles in parallel, each encoder exploits task parallelism

in a pipelined fashion (i.e., streaming), and each encoder ex-

ploits data parallelism at the granularity of macroblocks. The

complete design space that has been considered in this case

study consists of around 2.5 · 1013 design alternatives, of which

only a few hundreds have actually been simulated during the

DSE process. By using the DSE results, we selected 25 MPSoC

design instances for implementation as FPGA prototypes. The

number of PEs in these MPSoC implementations ranges from 1

to 24 processors, where a speedup of 19.7 was obtained for the

24-processor implementation. The encoder application in this

case study consists of 2000 lines of C code, while the VHDL for

the synthesized MPSoC prototypes ranges from 17 K to 161 K

lines of code, dependent on the number of processing cores.

Due to the highly automated design flow of Daedalus, all DSE

and prototyping work was performed in only a short amount of

time, five days in total. Around 70% of this time was taken by

the low-level commercial synthesis and place-and-route FPGA

tools. The prototype implementations also demonstrated that

our DSE phase is not only fast (approximately one entire

system-level MPSoC simulation per second) but also capable

of accurately predicting the overall system performance: All

measured errors were found to be below the 5%, with an

average of about 3%.

Daedalus still has a number of restrictions, which will be

addressed in the (near) future. For example, the SANLP input

requirement for our KPNgen tool needs to be relaxed to allow

for automatic parallelization of a wider range of behavioral

specifications. Regarding Sesame-based DSE, high-level power

models need to be included as well. Furthermore, the plat-

forms studied by Sesame and generated by ESPAM do not

include runtime reconfigurable components and do not allow

runtime resource management and process binding. This limi-

tation should be relaxed to allow for system-level synthesis of

adaptive/reconfigurable MPSoCs that run multiple applications

simultaneously with adaptable quality of service.

B. SCE

The system-on-chip environment (SCE) realizes an in-

teractive and automated design flow with a consistent and

seamless tool chain all the way from specification down to

hardware/software implementation (Fig. 5) [26]. Starting from

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

GERSTLAUER et al.: ELECTRONIC SYSTEM-LEVEL SYNTHESIS METHODOLOGIES 1523

Fig. 5. SCE design flow.

an abstract behavioral specification of the desired system func-

tionality, the SCE ESL synthesis front end allows for interac-

tive user-driven exploration of the system-level design space.

Given the design decisions and database components, SCE

will automatically implement the specification on the given

target platform and, in the process, generate structural TLMs

of the system architecture at various levels of abstraction. In

a component- and task-level back-end process, hardware and

software processors in the TLMs are then individually synthe-

sized further down to their final RTL and ISA implementations,

respectively.

SCE is based on the SpecC SLDL and methodology [27].

SpecC technology is standardized and was chosen, for example,

by the Japanese Aerospace Exploration Agency (JAXA) as the

basis for development of a complete ESL design solution called

ELEGANT.4 ELEGANT is a joint project involving several

partners to assemble a common design environment for all of

JAXA’s suppliers. It includes a derivative of the SCE front end

as the core system-level design component [28].

1) Scope of Methodology: At the input of the SCE or

ELEGANT design flow, the behavioral system-level specifica-

tion provides the designer with an abstract high-level model

for parallel programming of the platform across hardware and

software processors. Computation is specified in a hierarchical

and concurrent fashion following a program state machine

MoC [13]. SpecC behaviors at the leaves of the hierarchy en-

capsulate basic algorithms in the form of ANSI C code. Behav-

iors can be composed hierarchically in arbitrary serial–parallel

fashion. At each level, a sequential, parallel, pipelined, or

state-machine composition is supported. Behaviors communi-

cate through shared variables or abstract channels. A standard

library of communication channels provides a rich set of high-

level communication primitives, such as synchronous or asyn-

chronous message passing, queues, events, or semaphores.

ESL refinement tools will then take an input specification and

automatically implement it on a given target platform based on

a given mapping. Through its PE, CE, and bus databases, SCE

supports a system-level MoA that allows for heterogeneous

bus-based MPSoCs consisting of PEs, such as custom hardware

4Electronic Design Guidance Tool for Space Use.

and programmable software processors, IP blocks, and memo-

ries, connected through complex networks of busses and CEs,

such as bridges and transducers.

At the output of the ESL design front end, intermediate

TLMs represent a system-level MoS that serves as a virtual

prototype of the application computation and communication

running on the platform processors, memories, and busses.

System TLMs automatically generated by SCE integrate high-

level task-accurate MoPs (TAPMs) with back-annotated task

code running on top of abstract OS and processor models

to provide fast, yet accurate, analysis and design validation

without the need for slow instruction-set simulation.

At the output of the back end, behavioral hardware and

software processor models in the TLM are synthesized down

to their component- and task-level implementations ready for

further synthesis and manufacturing. On the hardware side,

both application algorithms and bus interfaces are refined into

synthesizable VHDL or Verilog RTL models. On the software

side, the code for application tasks, middleware, and bus drivers

is automatically synthesized into final target binaries ready for

download into the processors.

In addition to VHDL or Verilog descriptions and binary

images for each hardware or software processor, respectively,

an implementation model of the system is generated that al-

lows for cosimulation of hardware RTL models with software

instruction-set simulators running final target binaries. As a re-

sult, the pin- and cycle-accurate implementation model realizes

a netlist MoS and a MoP that is based on a CAPM.

2) SCE Design Steps: SCE follows a Specify-Explore-

Refine methodology [13]. The design process starts from a

model specifying the desired functionality (Specify). In each

following design step, the designer first makes necessary design

decisions by exploring the design space (Explore). SCE then

automatically generates a new model at the next lower level

of abstraction by integrating decisions and database component

models into the design (Refine). As such, through a grad-

ual stepwise refinement process, SCE automatically generates

models successively at lower levels of abstraction and with an

increasing amount of implementation detail.

SCE integrates all design steps under a common graphical

user interface (GUI). The GUI provides interactive and visual

design model and database browsing, decision entry, and design

analysis. In the exploration phase of each step, users can enter

design decisions through the GUI or a command-line scripting

interface. To aid the user in the exploration process, SCE

includes retargetable profiling and estimation tools that provide

a feedback about specification characteristics and effects of

decisions on design quality metrics. In addition, SCE supports a

plug-in mechanism for inclusion of optimizing algorithms that

perform automated decision making.

As shown in Fig. 5, the SCE system design front end inter-

nally consists of four design steps: architecture and scheduling

exploration for design of system computation, followed by

network exploration and communication synthesis for design

of system communication.

During architecture exploration, the processing platform

(PEs and memories) is defined, and the computational as-

pects of the specification (behaviors and variables) are mapped

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

1524 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Fig. 6. SCE cellphone design example.

onto that platform. During scheduling exploration, the order

of execution on the inherently sequential PEs is determined.

Behaviors can be statically scheduled and grouped into se-

quential tasks, and remaining concurrent tasks are dynamically

scheduled on top of an RTOS.

During network exploration, the system communication

topology (busses, CEs, and their connectivity) is defined, and

the given end-to-end communication channels are mapped and

routed over that network. During communication synthesis,

point-to-point links in each network segment are implemented

over the actual bus medium, and pin- and bit-accurate parame-

ters, such as bus addresses and interrupts, are selected.

Finally, in the back end, the hardware and software syn-

thesis of each synthesizable or programmable PE and CE

is performed. Hardware synthesis follows an interactive and

automated high-level synthesis process to take behavioral hard-

ware models down to structural RTL descriptions. For software

synthesis, SpecC code for application software, middleware,

drivers, and interrupt handlers is generated, cross-compiled,

and targeted toward and linked against RTOS to create final

target binaries.

3) SCE Experiences: SCE has been applied to a large suite

of industrial-size design examples. Fig. 6 shows an example

design of a cellphone baseband MPSoC that combines an MP3

decoder and JPEG encoder running on an ARM subsystem

with a GSM voice encoder/decoder running on a Motorola

DSP. Subsystems include memories and I/O peripherals and are

assisted by custom hardware PEs for DCT and codebook search

acceleration. The complete cellphone specification consists of

about 16 000 lines of SpecC code and is refined down to

30 000 lines in the final TLM.

For all investigated examples, several different design al-

ternatives were explored. Given design decisions, final system

TLMs are automatically refined by SCE within seconds, trans-

lating into productivity gains of several orders of magnitude

compared to a tedious and error-prone manual model writing

process. Furthermore, generated simulation models provide fast

and accurate feedback. Complete MPSoC TLMs simulate at

a speed of about 600 MIPS sustained and up to 2000 MIPS

peak. Depending on back annotation of profiling or trace-based

estimates, timing errors range from 12.5% down to an average

of 3%. In all cases, however, models exhibit 100% fidelity.

Together, automatic model generation paired with fast and

Fig. 7. ESL design flow using SystemCoDesigner.

accurate simulation enables rapid early DSE. For example, in

a case study of a stand-alone MP3 decoder on a Xilinx platform

(MicroBlaze CPU plus OPB bus), interactive exploration of

more than ten alternatives led to an optimal architecture in less

than an hour, including generation and simulation of all models

at a rate of two to four models per minute.

As part of the ELEGANT project, JAXA initiated a variety

of evaluations of the resulting tool environment in several

of JAXA’s suppliers and other independent investigators. For

example, with SCE at its core, a single SpaceWire5 specifi-

cation could be automatically realized as both a pure hard-

ware solution and a mixed hardware/software implementation.

Both variants were successfully synthesized and validated to

conform to protocol specifications. In another evaluation, an

MPEG4 decoder was implemented on a MIPS-based platform

with varying levels of hardware acceleration. Good quality

of results could be observed for all automatically synthesized

hardware, achieving a 30-frames/s decoding rate on an 80-MHz

three-processor architecture.

With automatic refinement from specification down to im-

plementation, the development of the initial specification model

becomes the major bottleneck. Even though a C-based design

allows the reuse of a large body of existing legacy code, the

conversion of often unstructured C code into a parallelized

specification remains a challenge. As such, further research

into tool support for automation of specification capture or

conversion from other high-level models, such as Matlab or

UML, is needed in the future.

C. SystemCoDesigner

The goal of the SystemCoDesigner project is to automati-

cally map applications written in SystemC to a heterogeneous

MPSoC platform. By automating as many design steps as

possible, an early evaluation of different design options is

permitted [29]. The overall design flow is shown in Fig. 7.

In a first step, the designer writes an actor-oriented applica-

tion model using SystemC. In a second step, different hard-

ware accelerators are automatically generated for actors and

stored in a component library. This library also contains other

5A standard for high-speed and highly reliable networks in space and satellite
applications.

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

GERSTLAUER et al.: ELECTRONIC SYSTEM-LEVEL SYNTHESIS METHODOLOGIES 1525

synthesizable IP cores like processors, busses, or memories.

The designer defines an MPSoC platform model from re-

sources in the component library as well as mapping constraints

for the actors, resulting in a system-level specification. An

automatic DSE trades off several, often conflicting, design

objectives. From the set of optimized solutions, the designer

selects promising implementations for rapid prototyping. For

this purpose, design decision leading to the optimized solution

is represented as structural TLM. For rapid prototyping, hard-

ware accelerators are synthesized to the RTL, and software is

compiled to match the ISA of selected processors.

1) Scope of Methodology: Currently, SystemCoDesigner

supports the design of streaming applications. These applica-

tions are typically modeled by the help of dataflow graphs

where vertices represent actors and edges represent data de-

pendences. Due to the complexity of many streaming applica-

tions, they often cannot be modeled as static dataflow graphs

[30], [31], where consumption and production rates are known

at compile time. Rather, they are described as a combination of

static and dynamic dataflow (DDF) models, e.g., KPNs [22].

On the other hand, SystemC [32] is becoming a new de-

facto standard in industrial system-level design flows. Hence,

SystemCoDesigner assumes that the application model is

written in SystemC and represents a dataflow model, i.e.,

SystemC modules (actors) only communicate via SystemC

FIFO channels and their functionality is implemented in a sin-

gle SystemC thread. Such input descriptions can be transformed

into a special subset of SystemC called SysteMoC [29]. An

application modeled in SysteMoC resembles the FunState MoC

(functions driven by state machines) [33] that allows one to

express nondeterministic DDF models.

A SysteMoC model is composed of SysteMoC actors that

communicate via queues with FIFO semantics. Each SysteMoC

actor is defined by a finite state machine (FSM), specifying the

communication behavior and methods controlled by the FSM.

If activated by the FSM, these methods are executed atomically,

and data consumption and production is only performed after

computing a method.

As an example, Fig. 8(a) shows a Motion-JPEG decoder

in SysteMoC. It consists of several actors interconnected by

communication channels (edges) processing a stream of data.

Fig. 8(b) exemplarily shows the SystemC definition of the PPM

sink actor. The corresponding representation as SysteMoC actor

is shown in Fig. 8(c). The FSM controlling the communication

behavior of the SysteMoC actor checks for available input data

(e.g., #i1 ≥ 1) and available space on the output channels

(e.g., #o1 ≥ 1) to store results. Furthermore, constant methods

called guards (e.g., check) can be used to test values of

internal variables and data in the input channels. If predicates

annotated to a state transition evaluate to true, this transition can

be taken, and annotated action methods (e.g., transform)

will be processed atomically.

SysteMoC actors can be transformed into both hardware

accelerators and software modules [29]. The latter one is

achieved by straightforward code transformations, whereas the

hardware accelerators are built by the help of Forte Cynthesizer

[9]. This allows for quick extraction of important performance

parameters like the achieved throughput and the required area

Fig. 8. (a) Block diagram of a Motion-JPEG decoder. (b) SystemC code of an
actor that can be transformed into a SysteMoC actor given in (c).

which are used to calibrate the system-level specification.

The generated hardware accelerators (synthesizable RTL code)

are stored in the component library. This component library

contains further synthesizable IP cores, including processors,

busses, memories, etc. The MoA is a heterogeneous MPSoC

platform which is specified by instantiating and connecting

cores from the component library. Furthermore, the designer

has to specify mapping constraints for each SysteMoC actor.

Later, DSE is performed to find sets of optimized solutions.

From the set of optimized solutions, the designer selects

any MPSoC implementation best suited for his needs. Once

this selection has been made, the last step of the proposed

ESL design flow is the rapid prototyping of the corresponding

FPGA-based implementation in terms of model refinement. For

this purpose, the resulting platform is assembled. Moreover, the

program code for each processor is generated according to the

binding of the actors. This results in a TLM, which is the MoS

used as implementation representation by SystemCoDesigner.

In order to generate high-quality software schedules, System-

CoDesigner supports the automatic classification of actors into

synchronous or cyclo-static dataflow [34] and clustering static

actors bound to the same processor into a single dynamic

actor [35]. Finally, the implementation is compiled into an

FPGA bit stream using the Xilinx Embedded Development Kit

[36]. Thereby, connecting SystemCoDesigner to lower abstrac-

tion levels in the double roof model.

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

1526 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

2) SystemCoDesigner Design Steps: All manual work in the

SystemCoDesigner design flow has been performed after set-

ting up the MPSoC platform model together with the mapping

constraints. Starting with this input model, SystemCoDesigner

automatically explores the design space. For this purpose,

it optimizes the implementation of the streaming application

while considering several objectives simultaneously, e.g., la-

tency, throughput, area, and power consumption. While area

consumption is assumed to be a linear cost function, timing

and power estimation requires a simulation-based performance

evaluation during exploration.

SystemCoDesigner generates task-accurate MoPs (TAPM)

automatically from the SysteMoC model, and the performance

values were annotated in the input model [29]. For this purpose,

the MPSoC platform model is translated into a so-called virtual

architecture using again SystemC. The performance evaluation

is done by linking the SysteMoC model to the virtual architec-

ture. Each invocation of an action of an actor is then relayed

to the virtual component the actor is bound to. The virtual

component then blocks the actor’s execution until the estimated

execution time of the action and possible other preemption

times are expired.

Aside from evaluating a single design point, DSE is responsi-

ble for covering the search space. In order to perform decision

making automatically, SystemCoDesigner translates the input

model into a pseudo-Boolean (PB) formula. The variables of

this formula encode the resource allocation, the actor binding,

the queue mapping, and the routing of transactions on the

communication structure. Each variable assignment satisfying

this formula corresponds to a feasible implementation of the

application. A PB solver is used to identify these solutions [29].

The optimization is performed using a multiobjective evolution-

ary algorithm.

3) SystemCoDesigner Experiences: For the experimental

evaluation of the SystemCoDesigner design flow, a Motion-

JPEG decoder, as shown in Fig. 8(a), has been imple-

mented. The Motion-JPEG decoder case study consists of

8000 SysteMoC lines of code, supporting interleaved and

noninterleaved baseline profiles without subsampling. The

complete specification results in about 5 · 1033 possible im-

plementation alternatives. Owing to the integration of Forte

Cynthesizer, the hardware accelerators for the different actors

could be obtained directly from the SysteMoC specification.

Furthermore, as SysteMoC offers a higher level of abstraction

compared to RTL, the designer can progress more quickly.

Taking the number of lines of code as a measure for complexity,

the RTL design would have been eight to ten times more costly.

With the specification, the design space has been explored

using SystemCoDesigner. The objectives taken into account

during DSE have been the following: 1) throughput; 2) latency;

3) number of required flip-flops; 4) lookup tables (LUTs); and

5) block random access memories (BRAMs). During explo-

ration, 7600 different solutions have been evaluated in two days,

17 h, and 46 min. The simulation time per solution is about 30 s

for Motion-JPEG streams consisting of four QCIF frames. As a

result, 366 nondominated solutions were found, each of them

representing an arbitrary hardware/software implementation.

Hardware-only implementations show real-time performance

(≥ 25 frames/s) for QCIF streams while occupying about

40 000 four-input LUTs and 14 500 flip-flops.

Finally, many of these solutions have been automatically pro-

totyped onto a Xilinx Virtex II FPGA. However, a discrepancy

of up to 30% can be identified when comparing the FPGA

implementations with the performance estimations during DSE.

The differences in the required hardware sizes (≤ 15%) oc-

curring between the predicted values and those measured in

hardware can be explained by postsynthesis optimization like

elimination of useless BRAMs. The discrepancy between the

performance estimations for latency and throughput and those

measured for hardware–software solutions is due to schedule

overhead.

IV. OTHER ESL SYNTHESIS METHODOLOGIES

In the following, we will present three more related academic

approaches. Note that in contrast to our own work for which

we have additional details available, discussion of other related

work is limited to a classification of their underlying method-

ologies based on the criteria introduced in Section II.

A. Metropolis

Metropolis [37] is a modeling and simulation environment

based on the platform-based design (PBD) paradigm [38]. PBD

is an attempt at simplifying the system-level design problem

by removing one degree of freedom: In PBD, the allocation

of the target system platform consisting of computation and

communication components is assumed to be given or at least

significantly constrained. As such, the constraints at the input

of the design process contain a fixed architecture template with

no or little flexibility. Such a predefined and predetermined

platform facilitates the reuse of common design patterns across

different design instances. Therefore, PDB follows a meet-in-

the-middle approach, and the system design problem is reduced

to the mapping of a desired function onto the given target

platform to create a specific design instance.

Metropolis provides a general proprietary metamodel lan-

guage that is used to capture separate models for “functionality”

(behavioral model), “architecture” (platform model), and their

“mapping” (binding and scheduling). The metamodel employs

a fundamental event-based execution model with concepts of

concurrent processes communicating through channels (called

media), including associated constraints and quantities. In a

similar manner to other system-level languages, functionality

is described in the form of event-driven process networks that

are general in the sense that many classes of MoCs can be

represented. In addition, functionality can be annotated with

nonfunctional constraints. The architecture is defined following

an MoA that uses processes and media to describe available

resources (e.g., tasks) and services (e.g., CPUs, memories, or

busses), respectively. Quantities can be associated with the

architecture to define a MoP at the level of tasks (TAPM).

Finally, given a specification in the form of functionality and

architecture, synthesis or refinement is performed by defining a

MoS as a mapping between the two through a set of additional

constraints synchronizing their event execution.

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

GERSTLAUER et al.: ELECTRONIC SYSTEM-LEVEL SYNTHESIS METHODOLOGIES 1527

Metropolis itself does not define any specific design tools

but rather a general framework and language for modeling

with support for simulation, validation, and analysis of models.

Metropolis includes a front end for parsing of metamodels and

a back end for translation of metamodels into C++/SystemC

simulation code. In addition, several back-end point tools have

emerged for scheduling, communication design, verification,

and hardware synthesis [39].

B. Koski

The Koski design flow [40] provides a single infrastructure

for modeling of applications; automatic architectural DSE; and

automatic ESL synthesis, programming and prototyping of

selected MPSoCs. Koski’s design flow starts with the capturing

of requirements for an application and architecture, including

design constraints, such as the overall maximum cost. Sub-

sequently, the functionality of the system is described with

an application model in a UML design environment (using

the Statecharts MoC to describe the actual functionality) and

verified with functional simulations. The architecture model

consists of components which are taken from a platform library,

targeting the construction of heterogeneous bus-based MPSoCs

(MoA). The relationship between application and architecture

models is described with a mapping model.

The UML interface handles the transformation of applica-

tion and architecture models to an abstracted model for fast

architecture exploration. Particularly, the application model is

transformed to an abstract process network model. In addition,

the UML interface can back-annotate the UML design with per-

formance information obtained from lower level simulations.

Finding a good application-to-architecture mapping is carried

out during a two-phase automatic architecture exploration step

consisting of static and dynamic (i.e., simulative) exploration

methods using a TAPM MoP. For controlling the architecture

exploration, the designer constrains the design space by defin-

ing the platform parts that can be used as well as the allowed

mapping combinations. In addition, the designer specifies the

constraints for performance, area, and power.

In the last step, the parts of the UML description that were

mapped to processors during the architecture exploration are

passed to the automatic code generation. The generated low-

level software code and the RTL descriptions (i.e., a netlist

MoS) of the component instances from the platform (derived

from Koski’s platform library) are then combined for physical

implementation. This stage also handles the RTOS integration,

software executable generation, and hardware synthesis.

C. PeaCE/HOPES

PeaCE (Ptolemy extension as a Codesign Environment) [41]

is an ESL synthesis framework for multimedia applications.

Starting from a Ptolemy II application model, it provides a

seamless codesign flow from functional simulation to system

synthesis and prototyping. Although Ptolemy supports the hier-

archical combination of many different MoCs, PeaCE restricts

the input model to extension of synchronous dataflow and

extended FSMs. In PeaCE, the application is modeled by a

task graph where tasks are either signal processing tasks or

control tasks. Signal processing tasks are modeled through

synchronous piggybacked dataflow, a dataflow model with

control token. Control tasks are modeled by flexible FSMs

(hierarchical state machines without state transitions crossing

hierarchy boundaries).

For functional simulation of the application model, PeaCE

provides an automatic C code generation. For system synthesis,

the architecture platform is specified by a list of processors and

synthesizable IP cores, resulting in a heterogeneous MPSoC

MoA. The DSE is two-phased: In a first step, the resource

allocation and task binding are performed. During this step,

communication overhead is assumed to be proportional to the

amount of consumed and produced data. The objective of this

step is to minimize system cost under timing constraints. In

the second step, the communication architecture exploration,

which is bus and memory allocation, is performed. For this

purpose, communication and memory traces are generated for

those solutions fulfilling the timing constraints in the first step.

DSE in PeaCE can be performed automatically or manually

and is guided by an ISAPM. After DSE, optimized MPSoC

implementations can be prototyped either using a cosimulation

environment or FPGAs. In both cases, the MoS is a Netlist

representing the design decisions.

Recently, a new framework called HOPES has been proposed

as an enhancement to PeaCE [42]. The main focus is on

generating MPSoC software and overcoming the limitations of

OpenMP and MPI. Its input model is called common inter-

mediate code (CIC). A CIC model consists of two parts: The

task code defines each task by the three methods init(), go(),

and wrapup(). Intertask communication or communication to

the environment is established by the help of several APIs.

The second part is the architecture information, including the

platform definition and additional constraints. The task code of

a CIC model can be either written manually or automatically

generated from PeaCE models.

A CIC translator transforms a CIC model into an optimized

software for the processors in the MPSoC platform. For this

purpose, the API calls must be replaced by a platform-specific

code, interface code for hardware accelerators has to be gener-

ated, and scheduling of tasks bound to the same processor has

to be performed. Optionally, an OpenMP compiler can be used

for optimization.

V. DISCUSSION

A summary of all six presented tools based on the classifi-

cation criteria introduced in Section II is given in Table I. In

this table, a full circle implies that a certain synthesis aspect

(DSE, decision making, or refinement) is taken care of in a

fully automated fashion by an ESL synthesis approach, while

an open circle means partial support/automation.

As can be seen, tools share many common characteristics.

For example, all discussed tools target heterogeneous bus-based

MPSoCs and almost uniformly support task-based performance

models. On the other hand, each tool has its particular strengths

and weaknesses, specifically in the level of automation for

different design tasks. All together, this provides a tremendous

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

1528 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

TABLE I
CLASSIFICATION OF DIFFERENT ESL SYNTHESIS APPROACHES

opportunity to exploit tool synergies. By merging automation

capabilities of different tools, a complete ESL synthesis solu-

tion should be achievable. We are currently in the process of

exploring such integration of our own tools, e.g., by combining

DSE and decision-making algorithms of SystemCoDesigner

with SCE’s refinement engine.

One of the biggest hurdles for tool interoperability will

always remain the definition of proper standardized interfaces.

As part of our integration work, we expect to obtain insights

into requirements for such interfaces, e.g., for a canonical de-

sign decision description format between decision making and

refinement. Another open question is the choice of MoC at the

specification level. While restricted MoCs show the potential

to perform domain-specific optimizations, other more general

MoCs should be used for expressing implementation details

and even conducting platform-dependent optimization steps. As

both aspects are important ingredients for ESL synthesis tools,

a well-defined MoC hierarchy and MoC interoperability might

help to improve future design methodologies at the system

level.

On the modeling side, language and MoS standardization

efforts such as SpecC or SystemC consortia, TLM standards,

and the IP-XACT netlist format are only a first step into this

direction. As exemplified by the various tools presented in this

paper, standardized languages can provide a common basis for

exchange of design models between different point tools and

design steps, even across different vendors as demonstrated by

the SCE/ELEGANT project. However, experiences from these

projects also showed that synthesis nevertheless requires tight

integration for exchange of semantic metainformation on top of

basic inherently ambiguous simulation languages.

In general, interoperability issues will require an industry-

wide approach. In this sense, it may be worthwhile to con-

sider the definition and development of a common design

flow infrastructure (CDFI) which facilitates the development

of system-level design flows and fosters the reuse of design

tools. Such a CDFI would be a kind of metatool for developing

system-level design flows, having design flow steps as plug-ins,

i.e., similar to the goals of the Metropolis project. This requires

the definition (and broad adoption) of standardized tool, model,

and data descriptions and file formats to allow the interchange

of information between the CDFI framework and external tools

(i.e., plug-ins). Moreover, the framework could also allow for

explicitly defining design flows, which would make it possible

to build prepackaged standardized or customized design flows.

Finally, the synergy between the various ESL synthesis ef-

forts also necessitates the development of standard case stud-

ies and benchmarks for ESL design. This would invigorate

ESL synthesis research as it enables the direct comparison of

research results. Currently, such a comparison between ESL

synthesis research efforts in terms of their qualitative charac-

teristics remains difficult. We also believe that the flow of ideas

from academia to industry will benefit from good standardized

benchmarks and case studies, as research results can always be

demonstrated on industrially relevant examples.

VI. SUMMARY AND CONCLUSION

Being an active research topic at its relative infancy, the ESL

space is, as of yet, characterized by fragmentation and partial

or wrongly positioned solutions. In this paper, we have devel-

oped and proposed a classification framework for evaluation

of different ESL synthesis approaches. Within the context of

this framework, we presented a comparison and analysis of six

different state-of-the art ESL tools. These observations show

that recent approaches are converging toward largely similar

design principles and flows. Nevertheless, no single approach

currently provides a complete solution, and further research in

many areas is required. On the other hand, based on the com-

mon concepts and principles identified in this classification, it

should be possible to define interfaces such that different point

tools can be combined into an overall ESL design environment.

In the future, we plan to investigate such interoperability issues

using combinations of different tools presented in this paper.

ACKNOWLEDGMENT

Aside from the authors, a large number of people are re-

sponsible for, or have contributed to, the work described in

Section III of this paper. The main cocontributors of the

Daedalus framework are H. Nikolov, M. Thompson, C. Erbas,

S. Polstra, and E. Deprettere. For SCE, the authors would

like to thank the main developers, namely, R. Dömer, J. Peng,

D. Shin, and Q.-V. Dang. The main cocontributors to

the SystemCoDesigner framework are J. Falk, J. Gladigau,

M. Glaß, J. Keinert, M. Lukasiewycz, T. Schlichter,

M. Streubühr, and C. Zebelein. Last, but not least, the au-

thors would like to thank the reviewers for their helpful com-

ments and suggestions in making this paper a much stronger

contribution.

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

GERSTLAUER et al.: ELECTRONIC SYSTEM-LEVEL SYNTHESIS METHODOLOGIES 1529

REFERENCES

[1] G. Martin, “Overview of the MPSoC design challenge,” in Proc. DAC,
San Francisco, CA, Jul. 2006, pp. 274–279.

[2] D. Densmore, R. Passerone, and A. Sangiovanni-Vincentelli, “A platform-
based taxonomy for ESL design,” IEEE Des. Test Comput., vol. 23, no. 5,
pp. 359–374, Sep./Oct. 2006.

[3] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for compar-
ing models of computation,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 17, no. 12, pp. 1217–1229, Dec. 1998.
[4] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-

chip (MPSoC) technology,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 27, no. 10, pp. 1701–1713, Oct. 2008.
[5] J. Teich, “Embedded system synthesis and optimization,” in Proc. Work-

shop SDA, Rathen, Germany, Mar. 2000, pp. 9–22.
[6] D. D. Gajski and R. H. Kuhn, “New VLSI tools,” Computer, vol. 16,

no. 12, pp. 11–14, Dec. 1983.
[7] C. Zhu, Z. P. Gu, R. P. Dick, and L. Shang, “Reliable multiprocessor

system-on-chip synthesis,” in Proc. CODES+ISSS, 2007, pp. 239–244.
[8] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane, “Fabsyn:

Floorplan-aware bus architecture synthesis,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 14, no. 3, pp. 241–253, Mar. 2006.
[9] [Online]. Available: http://www.forteds.com

[10] NEC System Technologies, Ltd., CyberWorkBench. [Online]. Available:
http://www.necst.co.jp/product/cwb

[11] B. Kienhuis, E. Deprettere, P. van der Wolf, and K. Vissers, “A methodol-
ogy to design programmable embedded systems,” in Embedded Processor

Design Challenges: Systems, Architectures, Modeling, and Simulation

(SAMOS), vol. 2268. New York: Springer-Verlag, 2002, pp. 18–37.
[12] M. Gries, “Methods for evaluating and covering the design space during

early design development,” Integr. VLSI J., vol. 38, no. 2, pp. 131–183,
Dec. 2004.

[13] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design

of Embedded Systems. Englewood Cliffs, NJ: Prentice–Hall, 1994.
[14] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf, “An approach

for quantitative analysis of application-specific dataflow architectures,”
in Proc. IEEE Int. Conf. Appl.-Specific Syst., Architectures Processors,
Zurich, Switzerland, Jul. 1997, pp. 338–349.

[15] K. Huang, S. Han, K. Popovici, L. Brisolara, X. Guerin, L. Li, X. Yan,
S. Chae, L. Carro, and A. A. Jerraya, “Simulink-based MPSoC design
flow: Case study of Motion-JPEG and H.264,” in Proc. DAC, 2007,
pp. 39–42.

[16] G. Stitt and F. Vahid, “Binary synthesis,” ACM Trans. Des. Autom.

Electron. Syst., vol. 12, no. 3, pp. 1–30, Aug. 2007.
[17] K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration for

optimizing on-chip communication architectures,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 23, no. 6, pp. 952–961, Jun. 2004.
[18] F. Dumitrascu, I. Bacivarov, L. Pieralisi, M. Bonaciu, and A. A. Jerraya,

“Flexible MPSoC platform with fast interconnect exploration for optimal
system performance for a specific application,” in Proc. DATE Designers’

Forum, 2006, pp. 166–171.
[19] S. Pasricha and N. Dutt, “A framework for co-synthesis of memory and

communication architectures for MPSoC,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 26, no. 3, pp. 408–420, Mar. 2007.
[20] M. Thompson, T. Stefanov, H. Nikolov, A. D. Pimentel, C. Erbas,

S. Polstra, and E. F. Deprettere, “A framework for rapid system-level
exploration, synthesis, and programming of multimedia MP-SoCs,” in
Proc. CODES+ISSS, 2007, pp. 9–14.

[21] H. Nikolov, M. Thompson, T. Stefanov, A. D. Pimentel, S. Polstra,
R. Bose, C. Zissulescu, and E. F. Deprettere, “Daedalus: Toward compos-
able multimedia MP-SoC design,” in Proc. DAC, Jun. 2008, pp. 574–579.

[22] G. Kahn, “The semantics of a simple language for parallel programming,”
in Proc. IFIP Congr., 1974, pp. 471–475.

[23] S. Verdoolaege, H. Nikolov, and T. Stefanov, “PN: A tool for improved
derivation of process networks,” EURASIP J. Embed. Syst., vol. 2007,
no. 1, p. 19, Jan. 2007. Article ID 75947.

[24] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Trans. Comput., vol. 55, no. 2, pp. 99–112, Feb. 2006.

[25] H. Nikolov, T. Stefanov, and E. F. Deprettere, “Systematic and auto-
mated multi-processor system design, programming, and implementa-
tion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27,
no. 3, pp. 542–555, Mar. 2008.

[26] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and
D. D. Gajski, “System-on-chip environment: A SpecC-based framework
for heterogeneous MPSoC design,” EURASIP J. Embed. Syst., vol. 2008,
no. 3, pp. 1–13, Jan. 2008.

[27] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, SpecC: Spec-

ification Language and Design Methodology. Norwell, MA: Kluwer,
2000.

[28] A. Gerstlauer, J. Peng, D. Shin, D. Gajski, A. Nakamura, D. Araki, and
Y. Nishihara, “Specify-explore-refine (SER): From specification to imple-
mentation,” in Proc. DAC, Anaheim, CA, Jun. 2008, pp. 586–591.

[29] J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt,
J. Teich, and M. Meredith, “SystemCoDesigner—An automatic ESL syn-
thesis approach by design space exploration and behavioral synthesis for
streaming applications,” ACM Trans. Des. Autom. Electron. Syst., vol. 14,
no. 1, pp. 1–23, Jan. 2009.

[30] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc. IEEE,
vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[31] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static
dataflow,” IEEE Trans. Signal Process., vol. 44, no. 2, pp. 397–408,
Feb. 1996.

[32] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design With SystemC.
Norwell, MA: Kluwer, 2002.

[33] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and
J. Teich, “FunState—An internal design representation for codesign,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 4, pp. 524–
544, Aug. 2001.

[34] C. Zebelein, J. Falk, C. Haubelt, and J. Teich, “Classification of general
data flow actors into known models of computation,” in Proc. MEM-

OCODE, Anaheim, CA, Jun. 2008, pp. 119–128.
[35] J. Falk, J. Keinert, C. Haubelt, J. Teich, and S. Bhattacharyya, “A gen-

eralized static data flow clustering algorithm for MPSoC scheduling of
multimedia applications,” in Proc. EMSOFT, Atlanta, GA, Oct. 2008,
pp. 189–198.

[36] Embedded SystemTools Reference Manual—Embedded Development Kit

EDK 8.1ia, XILINX, San Jose, CA, Oct. 2005. [Online]. Available:
http://www.xilinx.com/ise/embedded/est_rm.pdf

[37] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic system
design environment,” Computer, vol. 36, no. 4, pp. 45–52, Apr. 2003.

[38] A. Sangiovanni-Vincentelli, “Quo vadis SLD: Reasoning about the
trends and challenges of system level design,” Proc. IEEE, vol. 95,
no. 3, pp. 467–506, Mar. 2007. [Online]. Available: http://chess.eecs.
berkeley.edu/pubs/263.html

[39] Gigascale Systems Research Center (GSRC), Core Design Technology

for Complex Heterogeneous Systems. [Online]. Available: http://www.
gigascale.org/theme/core/

[40] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen,
T. D. Hämäläinen, J. Riihimäki, and K. Kuusilinna, “UML-based multi-
processor SoC design framework,” ACM Trans. Embed. Comput. Syst.,
vol. 5, no. 2, pp. 281–320, May 2006.

[41] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo, “PeaCE: A hardware-
software codesign environment of multimedia embedded systems,” ACM

Trans. Des. Autom. Electron. Syst., vol. 12, no. 3, pp. 1–25, Aug. 2007.
[42] S. Kwon, Y. Kim, W.-C. Jeun, S. Ha, and Y. Paek, “A retargetable parallel

programming framework for MPSoC,” ACM Trans. Des. Autom. Electron.

Syst., vol. 13, no. 3, pp. 1–18, Jul. 2008.

Andreas Gerstlauer (S’97–M’04) received the
Dipl.-Ing. degree in electrical engineering from the
University of Stuttgart, Stuttgart, Germany, in 1997,
and the M.S. and Ph.D. degrees in information and
computer science from the University of California,
Irvine (UCI), in 1998 and 2004, respectively.

Since 2008, he has been with the University of
Texas, Austin, where he is currently an Assistant
Professor in electrical and computer engineering.
Prior to joining the University of Texas, he was an
Assistant Researcher with the Center for Embedded

Computer Systems, UCI, leading a research group to develop electronic system-
level design tools. His research interests include system-level design automa-
tion, system modeling, design languages and methodologies, and embedded
hardware and software synthesis.

Dr. Gerstlauer serves on the program committee of major conferences such
as DATE and CODES+ISSS.

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

1530 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 10, OCTOBER 2009

Christian Haubelt (M’02) received the Diploma
degree in electrical engineering from the University
of Paderborn, Paderborn, Germany, in 2001 and the
Ph.D. degree in computer science from the Friedrich-
Alexander-University of Erlangen–Nuremberg,
Erlangen, Germany, in 2005.

He currently leads the System-Level Design Au-
tomation Group, Department of Hardware-Software-
Co-Design, University of Erlangen–Nuremberg. He
serves as a Reviewer for several well-known interna-
tional conferences and journals. His special research

interests focus on electronic system-level design, design-space exploration, and
multiobjective evolutionary algorithms.

Andy D. Pimentel (M’05–SM’06) received the
M.Sc. and Ph.D. degrees in computer science from
the University of Amsterdam, Amsterdam, The
Netherlands.

He is currently an Associate Professor with the
Computer Systems Architecture Group, Informatics
Institute, University of Amsterdam. His research
interests include computer architecture, computer
architecture modeling and simulation, system-level
design, design-space exploration, performance and
power analysis, embedded systems, and parallel

computing.
Dr. Pimentel is a member of the European Network of Excellence on High-

Performance Embedded Architecture and Compilation and a Cofounder of
the International Symposium on embedded computer Systems: Architectures,
Modeling, and Simulation (SAMOS). He serves on the editorial boards of
Elsevier’s Simulation Modelling Practice and Theory as well as Springer’s
Journal of Signal Processing Systems. Moreover, he has also served on the
organizational committees for a range of leading conferences and workshops,
such as DATE, IEEE ICCD, FPL, SAMOS, and IEEE ESTIMedia.

Todor P. Stefanov (S’01–M’05) received the
Dipl.Ing. and M.S. degrees in computer engineer-
ing from the Technical University of Sofia, Sofia,
Bulgaria, in 1998 and the Ph.D. degree in com-
puter science from Leiden University, Leiden, The
Netherlands, in 2004.

From 1998 to May 2000, he was a Research
and Development Engineer with Innovative Micro
Systems, Ltd., Sofia. From June 2000 to August
2007, he was with the Leiden Institute of Advanced
Computer Science, Leiden University, where he was

a Research Assistant (Ph.D. student) and a Postdoc Researcher with the Leiden
Embedded Research Center. From September 2007 to August 2008, he was a
Senior Researcher with the Computer Engineering Laboratory, Delft University
of Technology, Delft, The Netherlands. Since September 1, 2008, he has
been an Assistant Professor with the Leiden Institute of Advanced Computer
Science, where he performs research at the Leiden Embedded Research Center.
His research interests include several aspects of embedded systems design,
with particular emphasis on system-level design automation, multiprocessor
systems-on-chip design, and hardware/software codesign.

Daniel D. Gajski (M’77–SM’83–F’94) received
the Dipl.Ing. and M.S. degrees in electrical en-
gineering from the University of Zagreb, Zagreb,
Croatia, and the Ph.D. degree in computer and infor-
mation sciences from the University of Pennsylvania,
Philadelphia.

After ten years as a Professor with the Univer-
sity of Illinois, Urbana–Champaign, he joined the
University of California, Irvine (UCI), where he
currently holds the Henry Samueli Endowed Chair in
Computer System Design. He also currently directs

the Center for Embedded Computer Systems, UCI, with a research mission to
incorporate embedded systems into automotive, communications, and medical
applications. He has authored over 300 papers and numerous textbooks, includ-
ing Principles of Digital Design (Prentice Hall, 1997) that has been translated
into several languages.

Jürgen Teich (M’93–SM’07) received the Dipl.-
Ing. degree (with honors) from the University of
Kaiserslautern, Kaiserslautern, Germany, in 1989
and the Ph.D. degree (summa cum laude) from
the University of Saarland, Saarbrücken, Germany,
in 1993.

In 1994, he joined the DSP Design Group Uni-
versity of California, Berkeley, where worked in the
Ptolemy project (Postdoc). From 1995 to 1998, he
held a position with the Institute of Computer Engi-
neering and Communications Networks Laboratory

(TIK), ETH Zurich, Switzerland, finishing his habilitation in 1996. From
1998 to 2002, he was a full Professor with the Department of Electrical
Engineering and Information Technology, University of Paderborn, Paderborn,
Germany, holding a chair in computer engineering. Since 2003, he has been
a Full Professor with the Computer Science Institute, Friedrich-Alexander-
University of Erlangen–Nuremberg, Erlangen, Germany, holding a chair in
hardware–software codesign.

Dr. Teich has been a member of multiple program committees of well-known
conferences and a Program Chair for CODES+ISSS 2007 and FPL 2008. In
2004, he was elected a Reviewer for the German Science Foundation (DFG)
for the area of computer architecture and embedded systems.

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on February 8, 2010 at 10:09 from IEEE Xplore. Restrictions apply.

