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Electronic transport in extended systems: Application to carbon nanotubes

Marco Buongiorno Nardelli
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

~Received 30 March 1999!

We present an efficient approach to describe the electronic transport properties of extended systems. The
method is based on the surface Green’s function matching formalism and combines the iterative calculation of
transfer matrices with the Landauer formula for the coherent conductance. The scheme is applicable to any
general Hamiltonian that can be described within a localized orbital basis. As illustrative examples, we calcu-
late transport properties for various ideal and mechanically deformed carbon nanotubes using realistic orthogo-
nal and nonorthogonal tight-binding models. In particular, we observe that bent carbon nanotubes maintain
their basic electrical properties even in the presence of large mechanical deformations.
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I. INTRODUCTION

Recent years have witnessed a great amount of resear
the field of quantum conductance in nanostructures.1 These
have become the systems of choice for investigations of e
trical conduction on a mesoscopic scale. The improveme
in nanostructured material production have stimulated de
opments in both experiment and theory. In particular,
formal relation between conduction and transmission,
Landauer formula,2 has enhanced the understanding of el
tronic transport in extended systems and has proven to
very useful in interpreting experiments involving the condu
tance of nanostructures. Among all the possible nanost
ture materials, carbon nanotubes have attracted much a
tion since their discovery in 1991,3 because of their specia
geometrical and electronic properties. Their electronic a
transmission properties have been studied b
experimentally4–8 and theoretically.9–13 In particular, from
the theoretical point of view, the sensitivity of their ele
tronic properties to their geometry makes them truly uniq
in offering the possibility of studying quantum transport in
very tunable environment.

The problem of calculating quantum conductance in c
bon nanotubes has been addressed with a variety of t
niques that reflect the various approaches in the theor
quantum transport in ballistic systems. Tian and Datta9 pre-
dicted an Aharonov-Bohm-type effect in graphitic tubules
an axial magnetic field combining the Landauer formula w
a semiclassical treatment of the transmission probabi
Saitoet al.10 studied the tunneling conductance of connec
carbon nanotubes via the direct calculation of the curr
density. Chicoet al.11 addressed the problem of quantu
conductance in carbon nanotubes with defects, efficie
combining a surface Green’s-function approach14 to describe
the interface between different tubes with a scatter
matrix-based calculation of the transmission function, th
obtaining the conductance via a multichannel generaliza
of the Landauer formula. The variation of the conductan
PRB 600163-1829/99/60~11!/7828~6!/$15.00
in

c-
ts
l-
e
e
-
be
-
c-
en-

d
h

e

r-
h-

of

y.
d
t

ly

g
s
n
e

with the diameter of the carbon nanotubes has been stu
by Tamura and Tsukada.12 They combined the Landauer for
mula with the explicit calculation of the scattering matr
and an effective-mass approximation to clarify the physi
origin of this scaling law. Most recently, the conductance
carbon nanotube wires in the presence of disorder has b
addressed by Anantram and Govindan.13 They have devel-
oped an efficient numerical procedure to compute the e
tronic transmission using a Green’s function formalism.

All the previous calculations derive the electronic stru
ture of the carbon nanotube from a simplep-orbital tight-
binding Hamiltonian that describes the bands of the graph
network of the carbon nanotube via a single nearest-neigh
hopping parameter. Since the electronic properties of car
nanotubes are basically determined by thesp2 p orbitals, the
model gives a reasonably good qualitative description
their behavior and, given its simplicity, it has become t
model of choice in a number of theoretical investigation
However, although qualitatively useful to interpret expe
mental results, this simple Hamiltonian lacks the accura
that more sophisticated tight-binding~TB! models orab ini-
tio methods are able to provide. In the present paper
present an efficient scheme that is particularly suitable
realistic calculations of electronic transport properties in
tended systems. The approach we have designed is ins
by the one outlined in Ref. 11, differing from the latter in th
use of the generalized Landauer formula for the transmiss
function proposed by Meir and Wingreen.15 This generaliza-
tion makes the present method extremely flexible and ap
cable to any system described by a Hamiltonian with a
calized orbital basis. The present formulation allows us
also fully consider the complete microscopic structure of
semi-infinite leads~in a lead-conductor-lead geometry! with
a very limited computational cost. Moreover, the only qua
tities that enter into the present formulation are the ma
elements of the Hamiltonian operator, with no need for
explicit knowledge of the electron wave functions for th
multichannel expansion. The last fact makes the numer
7828 ©1999 The American Physical Society
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PRB 60 7829ELECTRONIC TRANSPORT IN EXTENDED SYSTEMS . . .
calculations particularly efficient also for systems describ
by multiorbital localized-basis Hamiltonians.

The paper is structured as follows: in Sec. II we introdu
the relation between conductance and Green’s functions
Sec. III we introduce the Green’s function formalism to co
pute bulk conductance~III A ! and the transmission throug
an interface~III B !. Section IV is devoted to the discussio
of the first results obtained with the present method. In p
ticular, we computed the electronic transport in a bent car
nanotube using a fullsp3 tight-binding Hamiltonian.16 Our
calculations predict that bending does not drastically cha
the conductivity of the system, and that carbon nanotu
maintain their electric properties even under severe defor
tions in the absence of topological defects. As an applica
to the nonorthogonal orbital basis case, we compute the e
tronic and transport properties of various nanotubes usin
nonorthogonal tight-binding scheme17 based onab initio
density-functional theory. We conclude with some final
marks in Sec. V. The appendixes are devoted to the ex
sion of the present method to the general case of a sys
described by a nonorthogonal Hamiltonian model~Appendix
A! and to a truly three-dimensional system~Appendix B!.

II. ELECTRON TRANSMISSION
AND GREEN’S FUNCTIONS

Let us consider a system composed of a conductorC con-
nected to two semi-infinite leads,R and L, as in Fig. 1. A

FIG. 1. A conductor described by the HamiltonianHC , con-
nected to leadsL and R, through the coupling matriceshLC and
hCR .
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fundamental result in the theory of electronic transport is t
the conductance through a region of interacting electr
~theC region in Fig. 1! is related to the scattering propertie
of the region itself via the Landauer formula:2

C5
2e2

h
T,

whereT is the transmission function andC is the conduc-
tance. The former represents the probability that an elec
injected at one end of the conductor will transmit to the oth
end. The transmission function can be expressed in term
the Green’s functions of the conductors and the coupling
the conductor to the leads:18,19,15

T5Tr~GLGC
r GRGC

a !,

where GC
$r ,a% are the retarded and advanced Green’s fu

tions of the conductor, andG$L,R% are functions that describ
the coupling of the conductor to the leads. To compute
Green’s function of the conductor we start from the equat
for the Green’s function of the whole system:

~e2H !G5I , ~1!

wheree5E1 ih with h arbitrarily small andI is the identity
matrix. In the hypothesis that the Hamiltonian of the syst
can be expressed in a discrete real-space matrix repres
tion, the previous equation corresponds to the inversion o
infinite matrix for the open system, consisting of the condu
tor and the semi-infinite leads. The above Green’s funct
can be partitioned into submatrices that correspond to
individual subsystems,
S GL GLC GLCR

GCL GC GCR

GLRC GRC GR

D 5S ~e2HL! hLC 0

hLC
† ~e2HC! hCR

0 hCR
† ~e2HR!

D 21

, ~2!
of
n
the
.

where the matrix (e2HC) represents the finite isolated co
ductor, (e2H $R,L%) represent the infinite leads, andhCR and
hLC are the coupling matrices that will be nonzero only f
adjacent points in the conductor and the leads, respectiv
From this equation it is straightforward to obtain an expli
expression forGC :18

GC5~e2HC2SL2SR!21, ~3!

where we defineSL5hLC
† gLhLC andSR5hRCgRhRC

† as the
self-energy terms due to the semi-infinite leads andg$L,R%
5(e2H $L,R%)

21 are the leads’ Green’s functions. The se
energy terms can be viewed as effective Hamiltonians
arise from the coupling of the conductor with the leads. On
the Green’s functions are known, the coupling functio
G$L,R% can be easily obtained as18
ly.
t

at
e
s

G$L,R%5 i@S$L,R%
r 2S$L,R%

a #,

where the advanced self-energyS$L,R%
a is the Hermitian con-

jugate of the retarded self-energyS$L,R%
r . The core of the

problem lies in the calculation of the Green’s functions
the semi-infinite leads. In what follows we will present a
efficient approach to compute the self-energy terms in
general case of an arbitrary localized-orbital Hamiltonian

III. GREEN’S FUNCTIONS AND CONDUCTIVITY
FROM THE LAYER HAMILTONIAN

A. Transmission through a bulk system

It is well known that any solid~or surface! can be viewed
as an infinite~semi-infinite in the case of surfaces! stack of



ea
rix
f

l-
al

tio
e
-

ly
it

n

a
k
uc

n

ol
i

-
c-
s:

the
n in-
de-
the

M
f

iate
rent

lk

y

ary
he
hat

cu-

a-

tion

7830 PRB 60MARCO BUONGIORNO NARDELLI
principal layers with nearest-neighbor interactions.20 This
corresponds to transforming the original system into a lin
chain of principal layers. Within this approach, the mat
elements of Eq.~1! between layer orbitals will yield a set o
equations for the Green’s functions:

~e2H00!G005I 1H01G10,

~e2H00!G105H01
† G001H01G20,

~4!
. . . ,

~e2H00!Gn05H01
† Gn21,01H01Gn11,0,

whereHnm and Gnm are the matrix elements of the Hami
tonian and the Green’s function between the layer orbit
and we assume that in a bulk systemH005H115 . . . and
H015H125 . . . . Following Lopez-Sanchoet al.,21 this chain
can be transformed in order to express the Green’s func
of an individual layer in terms of the Green’s function of th
preceding~or following! one. This is done via the introduc
tion of the transfer matricesT and T̄, defined such thatG10

5TG00 and G005T̄G10. The transfer matrix can be easi
computed from the Hamiltonian matrix elements via an
erative procedure, as outlined in Ref. 21. In particularT and
T̄ can be written as

T5t01 t̃ 0t11 t̃ 0 t̃ 1t21 . . . 1 t̃ 0 t̃ 1 t̃ 2•••tn ,

T̄5 t̃ 01t0 t̃ 11t0t1 t̃ 21 . . . 1t0t1t2••• t̃ n ,

wheret i and t̃ i are defined via the recursion formulas:

t i5~ I 2t i 21 t̃ i 212 t̃ i 21t i 21!21t i 21
2 ,

t̃ i5~ I 2t i 21 t̃ i 212 t̃ i 21t i 21!21 t̃ i 21
2

and

t05~e2H00!
21H01

† ,

t̃ 05~e2H00!
21H01.

The process is repeated untiltn , t̃ n<d with d arbitrarily
small.22

With this proviso, we can write the bulk Green’s functio
as

G~E!5~e2H002H01T2H01
† T̄!21.

If we compare the previous expression with Eq.~2! in the
hypothesis of leads and conductors being of the same m
rial ~bulk conductivity!,23 we can identify the present bul
system, or rather one of its principal layers, with the cond
tor C, so thatH00[HC , H01[hCR , andH01

† [hLC
† . In par-

ticular, by comparing with Eq.~3!, we obtain the expressio
of the self-energies of the conductor-leads system:

SL5H01
† T̄, SR5H01T.

The coupling functions are then obtained from the s
knowledge of the transfer matrices and the coupling Ham
r

s,

n

-

te-

-

e
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tonian matrix elements: GL52Im(H01
† T̄) and GR5

2Im(H01T̄). N.B. The knowledge of the bulk Green’s func
tion G gives also direct informations on the electronic spe
trum via the spectral density of bulk electronic state
N(E)52(1/p)Im@TrG(E)#.

B. Transmission through an interface

The procedure outlined above can also be applied in
case where electron transmission takes place through a
terface between two different media, as in the system
picted in Fig. 2. To study this case we make use of
surface Green’s function matching~SGFM! theory, pio-
neered by Garcia-Moliner and Velasco.14

We have to solve Eq. 1 forH5HI andG5GI , where the
subscriptI refers to the interface region. Using the SGF
method,GI is calculated from the bulk Green’s function o
the isolated systemsGA andGB , and the coupling between
the two sides of the interface,HAB andHBA . In the language
of Ref. 14, all these quantities can be expressed using 232
supermatrices, defined via the introduction of the appropr
projection operators that map the subspaces of the diffe
materials. In particular we can defineP5PA1PB whereP is
the projector in the space of the existing orbitals, andI I

5I A1I B is the projector of the interface region. The bu
Hamiltonian H $A,B% is meaningful only if related with the
corresponding part ofP and I I . For example, the interface
part of the bulk Green’s function for material A is given b

GA5I AGAI A5S GA 0

0 0D , G A
215S GA

21 0

0 0
D ,

andG A
21GA5I A .

Let us now consider the propagation of an element
electronic excitation in the system. Via the calculation of t
transmitted and reflected amplitudes of an excitation t
propagates from mediumA to mediumB, it can be shown
that the interface Green’s function obeys the following se
lar equation:14

GI
215~ I AeI A2I AHAPAGAG A

21I A!1~ I BeI B

2I BHBPBGBG B
21I B!2~ I AHII B1I BHII A!.

In the language of layer Hamiltonians and block superm
trices, the previous equation reads

FIG. 2. Sketch of a system containing an interface.I is the
interface region for which we need to compute the Green’s func
GI .
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GI5S GAA GAB

GBA GBBD
5S e2H00

A 2~H01
A !†T̄ 2HAB

2HBA e2H00
B 2H01

B TD 21

. ~5!

Once the interface Green’s function is known, we c
compute the transmission function in terms of block sup
matrices making use of the interface projection operators

T~E!5Tr~GLGI
rGRGI

a!, GL5I AGAI A , GR5I BGBI B .

Using Eq.~5! we can write, after some matrix multiplica
tions:

T~E!5Tr~GAGAB
r GBGBA

a !

and GBA
a 5(GAB

r )†. Within the SGFM framework, the sam
approach can be extended to the case of multiple interfa
superlattices, and the general lead-conductor-lead geome14

with little complication. In the previous treatment we ha
assumed to have a Hamiltonian representation in term
orthogonal orbitals. The extension to the general case
nonorthogonal base is described in Appendix A. We ha
also assumed a truly one-dimensional chain of principal l
ers, which is physical only for systems like nanotubes
quantum wires that have a definite quasi-one-dimensio
character. The straightforward extension to a truly thr
dimensional case is described in Appendix B.N.B. As in the
bulk case, we can calculate the local density of states lo
ized at the interface asNI(E)52(1/p)Im@TrGI(E)#.

IV. EXAMPLES

As a first application of the above methodology we stu
ied the quantum conductance of carbon nanotubes with
nearest-neighborp-orbital tight-binding Hamiltonian as in
Chico et al.11 In this model, thep-orbital bands are de
scribed via a single parameterVppp5g0522.75 eV. As
shown in Fig. 3, we were able to completely reproduce
results for the conduction of a~12,0!/~6,6! matched nanotube

FIG. 3. LDOS and transmission function for the~12,0!/~6,6!
matched tube as in Chicoet al. ~Ref. 11!. The peak in the LDOS
just below the Fermi energy~taken as reference! was not shown in
Fig. 4 of Ref. 11 due to a coarser sampling of the energy~see Ref.
31!. Besides this, the two calculations are in complete agreeme
n
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obtained in Ref. 11. Although this simple model can give
reasonable qualitative description of the electronic and tra
port properties of an ideal carbon nanotube, more soph
cated models have to be used for a more general study
particular, geometric relaxations are ineffective in t
p-orbital tight-binding model, where only the connectivi
of a given atom plays a role. In order to study the effect
atomic relaxations on the conductance of carbon nanotu
we employed a fullsp3 tight-binding model already used i
the studies of electronic properties of such systems.16 One of
the advantages of the present method to compute quan
conductance is that it does not require periodic bound
conditions along the direction of the principal layer expa
sion. In quasi-one-dimensional systems such as nanot
and nanowires, this implies that very distorted geometr
can be analyzed with a complete convergence in the~one-
dimensional! k'-point expansion~see Appendix B!.

In the following we present our investigations of the e
fect that bending has in the transport properties of a sm
diameter ~4,4! carbon nanotube. It has recently be
observed7 that individual carbon nanotubes deposited on
series of electrodes behave as a chain of quantum wires
nected in series. The individual nanotube is broken up int
chain of weakly coupled one-dimensional conductors se
rated by local barriers. It has been argued that the local
riers arise from the bending of the tube near the edge of
electrodes, but no theoretical evidence has been produce
yet. In the upper part of Fig. 4 we show the system that
have studied: an initially straight tube that has been ben
different anglesu50°,3°,6° @Figs. 4 ~a!–4~c!#, where u
measures the inclination of the two ends of the tubes w
respect to the unbent axis. The geometrical structure
been optimized using an empirical many-body potential
carbon.24 For u56° we observe the formation of a kink
Since the formation of kinks in bent carbon nanotubes
been thoroughly described both experimentally a
theoretically,25 we do not discuss it here. In the lower part
Fig. 4 we present our predictions for electronic conducta
and density of states of the bent tube. The presence of
kink does not alter drastically the local density of sta
~LDOS! at the interface nor the conductance of the system
a substantial manner. This observation rules out the poss
ity that the formation of local barriers for electric transpo
can be attributed solely to the microscopic deformation
the tube wall, with no defect involved. The effect of defec
that will naturally form in the bent tube due to the stra
imposed on the system26 has not been taken into accoun
and it will be the subject of future work.27

In Fig. 5 we show the LDOS and transmission functi
for a semiconducting~10,0! and metallic~9,0! nanotubes cal-
culated using an orthogonal and a nonorthogonal TB mo
Both models reproduce the general features of the electr
structure, in particular the opening of a pseudogap at
Fermi energy produced by the curvature of the graph
walls in the~9,0! nanotube.28,29 The values of the gap calcu
lated with the orthogonal~0.07 eV! and nonorthogonal TB
~0.16 eV! are in very good agreement with previou
calculations,28,29 and the nonorthogonal model reproduc
quite accurately theab initio value.29 The extension of the
present method to nonorthogonal Hamiltonians opens a
to calculations of conductance usingab initio real-space

t.
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7832 PRB 60MARCO BUONGIORNO NARDELLI
methods with nonorthogonal localized-orbital bases. Work
this direction is in progress and will be the subject of a futu
publication.30

V. CONCLUSIONS

In this paper we presented an efficient approach to c
pute the electronic transport properties of extended syst
and some applications to carbon nanotubes. The essen
the approach relies on the iterative calculation of trans
matrices and Green’s functions coupled with the Landa
formula for the coherent conductance. This method is ap
cable to any general Hamiltonian that can be descri
within a localized-orbital basis and thus can be used as
efficient and general theoretical scheme for the analysi
the electrical properties of nanostructures. The applicab
of the method to general orthogonal and nonorthogonal tig
binding models has been illustrated. In particular, we h
obtained a theoretical analysis of quantum conductanc
bent carbon nanotubes. Our calculations show that car
nanotubes maintain their basic electrical characteristics e
in the presence of large distortions and mechanical defor
tions.

FIG. 4. Upper panel: geometry of the bent~4,4! nanotube used
in the calculations. Lower panel: LDOS and transmission funct
for the different geometries:~a! u50°, ~b! 3°, ~c! 6°. LDOS’s for
different bending angles are shifted in the picture. The Fermi
ergy is always taken as a reference.
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APPENDIX A

The expression for the Green’s and transmission functi
of a bulk system described by a general nonorthogo
localized-orbital Hamiltonian follows directly from the pro
cedure outlined in Sec. III A. All the quantities can be o
tained making the substitutions: (e2H00)→(eS002H00)
andH01

(†)→2(eS 01
(†)2H01

(†)). Here, we introduce the matrice
S’s that represent the overlap between the localized orbit
With this recipe, the equation chain~4! now reads

~eS002H00!G005I 2~eS012H01!G10,

~eS002H00!G1052~eS 01
† 2H01

† !G00

2~eS012H01!G20,

. . . ,

n

-

FIG. 5. Upper panel: LDOS and transmission function for
~10,0! carbon nanotube using the nonorthogonal tight-binding
Porezaget al. ~Ref. 17! compared with the orthogonal model o
Charlier et al. ~Ref. 16! Lower panel: same as above for a~9,0!
tube. The Fermi energy is taken as reference.
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~eS002H00!Gn052~eS 01
† 2H01

† !Gn21,0

2~eS012H01!Gn11,0.

From here, via the same series of algebraic manipulat
as in the orthogonal case, we obtain the Green’s functio

G5@~eS002H00!1~eS012H01!T1~eS 01
† 2H01

† !T̄#21,

and from the latter we can identify the self-energies,

SL52~eS 01
† 2H01

† !T̄, SR52~eS012H01!T.

The extension to the case of the transmission through
interface follows exactly the same lines.
t
H

hy

C
ate
,
nc

.J

e

B

v

ys
s

ns

n

APPENDIX B

The extension of the present scheme to a truly thr
dimensional case is very simple. The introduction of t
principal layer concept implies that along the direction of t
layer expansion the system is described by an infinite se
k' while ki is still a good quantum number for the problem
The above procedure effectively reduces the thr
dimensional system to a set of noninteracting linear cha
one for eachki .20 We can then use the usualk-point sum-
mation techniques to evaluate, for instance, the quan
conductance,

T~E!5(
ki

wki
Tki

~E!,

wherewki
are the relative weights of the differentki’s in the

irreducible wedge of the surface Brillouin zone.
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