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Electronic transport in extended systems: Application to carbon nanotubes
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We present an efficient approach to describe the electronic transport properties of extended systems. The
method is based on the surface Green’s function matching formalism and combines the iterative calculation of
transfer matrices with the Landauer formula for the coherent conductance. The scheme is applicable to any
general Hamiltonian that can be described within a localized orbital basis. As illustrative examples, we calcu-
late transport properties for various ideal and mechanically deformed carbon nanotubes using realistic orthogo-
nal and nonorthogonal tight-binding models. In particular, we observe that bent carbon nanotubes maintain
their basic electrical properties even in the presence of large mechanical deformations.
[S0163-182699)10935-4

[. INTRODUCTION with the diameter of the carbon nanotubes has been studied
by Tamura and Tsukadd They combined the Landauer for-

Recent years have witnessed a great amount of researchinimula with the explicit calculation of the scattering matrix
the field of quantum conductance in nanostructdréaese  and an effective-mass approximation to clarify the physical
have become the systems of choice for investigations of elemrigin of this scaling law. Most recently, the conductance of
trical conduction on a mesoscopic scale. The improvementsarbon nanotube wires in the presence of disorder has been
in nanostructured material production have stimulated develaddressed by Anantram and Govinddhey have devel-
opments in both experiment and theory. In particular, theoped an efficient numerical procedure to compute the elec-
formal relation between conduction and transmission, theronic transmission using a Green’s function formalism.
Landauer formul&,has enhanced the understanding of elec- All the previous calculations derive the electronic struc-
tronic transport in extended systems and has proven to bre of the carbon nanotube from a simpteorbital tight-
very useful in interpreting experiments involving the conduc-binding Hamiltonian that describes the bands of the graphitic
tance of nanostructures. Among all the possible nanostrugietwork of the carbon nanotube via a single nearest-neighbor
ture materials, carbon nanotubes have attracted much attehepping parameter. Since the electronic properties of carbon
tion since their discovery in 19%1because of their special nanotubes are basically determined bysipé 7 orbitals, the
geometrical and electronic properties. Their electronic andnodel gives a reasonably good qualitative description of
transmission  properties have been studied bothheir behavior and, given its simplicity, it has become the
experimentall§® and theoretically=** In particular, from  model of choice in a number of theoretical investigations.
the theoretical point of view, the sensitivity of their elec- However, although qualitatively useful to interpret experi-
tronic properties to their geometry makes them truly uniquemental results, this simple Hamiltonian lacks the accuracy
in offering the possibility of studying quantum transport in athat more sophisticated tight-bindiri@B) models orab ini-
very tunable environment. tio methods are able to provide. In the present paper we

The problem of calculating quantum conductance in carpresent an efficient scheme that is particularly suitable for
bon nanotubes has been addressed with a variety of techealistic calculations of electronic transport properties in ex-
niques that reflect the various approaches in the theory dended systems. The approach we have designed is inspired
quantum transport in ballistic systems. Tian and Dati@- by the one outlined in Ref. 11, differing from the latter in the
dicted an Aharonov-Bohm-type effect in graphitic tubules inuse of the generalized Landauer formula for the transmission
an axial magnetic field combining the Landauer formula withfunction proposed by Meir and WingreéhThis generaliza-
a semiclassical treatment of the transmission probabilitytion makes the present method extremely flexible and appli-
Saitoet al° studied the tunneling conductance of connectectable to any system described by a Hamiltonian with a lo-
carbon nanotubes via the direct calculation of the currentalized orbital basis. The present formulation allows us to
density. Chicoet al!! addressed the problem of quantum also fully consider the complete microscopic structure of the
conductance in carbon nanotubes with defects, efficientlgemi-infinite leadgin a lead-conductor-lead geometmyith
combining a surface Green’s-function appro4db describe  a very limited computational cost. Moreover, the only quan-
the interface between different tubes with a scatteringities that enter into the present formulation are the matrix
matrix-based calculation of the transmission function, thuslements of the Hamiltonian operator, with no need for the
obtaining the conductance via a multichannel generalizatioexplicit knowledge of the electron wave functions for the
of the Landauer formula. The variation of the conductancemultichannel expansion. The last fact makes the numerical
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fundamental result in the theory of electronic transport is that
L / R the conductance through a region of interacting electrons
(the C region in Fig. 1 is related to the scattering properties
FIG. 1. A conductor described by the Hamiltoniah., con- of the region itself via the Landauer forml_ﬁa:
nected to leadd and R, through the coupling matrices - and

her- 2¢e?

calculations particularly efficient also for systems described
by multiorbital localized-basis Hamiltonians.

The paper is structured as follows: in Sec. Il we introducewhere 7 is the transmission function ar@is the conduc-
the relation between conductance and Green’s functions; itfance. The former represents the probability that an electron
Sec. |Il we introduce the Green’s function formalism to Com-injected at one end of the conductor will transmit to the other
pute bulk conductancéll A) and the transmission through €nd. The transmission function can be expressed in terms of
an interface(lll B). Section IV is devoted to the discussion the Green’s functions of the conductors and the coupling of
of the first results obtained with the present method. In parthe conductor to the lead§:**°
ticular, we computed the electronic transport in a bent carbon
nanotube using a fuls p® tight-binding Hamiltonifar'i‘.6 Our T=Tr(I GLTxGY),
calculations predict that bending does not drastically change
the conductivity of the system, and that carbon nanotubes ,
maintain their g;ectric pro}gerties even under severe deforma\’,yhere G{Cr'a} are the retarded and advanced Green's _func-
tions in the absence of topological defects. As an applicatioffonS ©Of the conductor, anbly, g are functions that describe
to the nonorthogonal orbital basis case, we compute the elef?€ co’uplmg of the conductor to the leads. To compute the
tronic and transport properties of various nanotubes using &'€€"'S funct|,on of the conductor we start from the equation
nonorthogonal tight-binding schefdebased onab initio 10" the Green's function of the whole system:
density-functional theory. We conclude with some final re-
marks in Sec. V. The appendixes are devoted to the exten- (e—H)G=I, (1)
sion of the present method to the general case of a system
described by a nonorthogonal Hamiltonian mo@gbpendix

—Etinwi L . . .
A) and to a truly three-dimensional systéfppendix B. wheree=E+in with % arbitrarily small and is the identity

matrix. In the hypothesis that the Hamiltonian of the system
can be expressed in a discrete real-space matrix representa-
tion, the previous equation corresponds to the inversion of an
infinite matrix for the open system, consisting of the conduc-
tor and the semi-infinite leads. The above Green’s function

Let us consider a system composed of a condu€toon-  can be partitioned into submatrices that correspond to the
nected to two semi-infinite lead® and L, as in Fig. 1. A individual subsystems,

II. ELECTRON TRANSMISSION
AND GREEN’S FUNCTIONS

GL Gic Gicr (e=H,) hic 0 -t
Ger Gc Ger | = hEc (e—Hc¢) her , (2
Gilrc Gre Gr 0 hér  (e—Hp)
|
where the matrix é—H¢) represents the finite isolated con- = i[EEL R}_z{aL rl

ductor, (€—Hg ;) represent the infinite leads, ahdg and

h, ¢ are the coupling matrices that will be nonzero only forwhere the advanced self-enerE}?,_'R is the Hermitian con-
adjacent points in the conductor and the leads, respectiveljygate of the retarded Self'enerQ)L,R}' The core of the
From this equation it is straightforward to obtain an explicit problem lies in the calculation of the Green’s functions of

expression foiG¢ : *® the semi-infinite leads. In what follows we will present an
B 1 efficient approach to compute the self-energy terms in the
Ge=(e~Hc=2-2p) ", 3 general case of an arbitrary localized-orbital Hamiltonian.
where we defin&, =h/.g h ¢ andSg=hgcgrhic as the
self-energy terms due to the semi-infinite leads apdg, Ill. GREEN'S FUNCTIONS AND CONDUCTIVITY
=(e— H{,_'R})‘1 are the leads’ Green’s functions. The self- FROM THE LAYER HAMILTONIAN

energy terms can be viewed as effective Hamiltonians that
arise from the coupling of the conductor with the leads. Once
the Green’s functions are known, the coupling functions It is well known that any solidor surfacé can be viewed
I’y ry can be easily obtained Qs as an infinite(semi-infinite in the case of surfagestack of

A. Transmission through a bulk system
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principal layers with nearest-neighbor interactiéhsThis

corresponds to transforming the original system into a linear A B
chain of principal layers. Within this approach, the matrix P E——
elements of Eq(1) between layer orbitals will yield a set of |

equations for the Green'’s functions: . . ,
FIG. 2. Sketch of a system containing an interfateas the

(e—Hpo)Goo=!+Hp:G1o0, interface region for which we need to compute the Green’s function
G| .

(€= Hoo) G10=H{yGoot Ho1G2o,
(4 tonian matrix elements: r=- Im(Hgf) and I'g=
—Im(HgT). N.B. The knowledge of the bulk Green’s func-

(e=Ho0)Gro=H:Gn_ 10t HoiGn 1 10, tion G gives also direct informations on the electronic spec-

] _trum via the spectral density of bulk electronic states:
whereH,,, and G, are the matrix elements of the Hamil- N(E) = — (1/m) Im[ TrG(E)].

tonian and the Green’s function between the layer orbitals,
and we assume that in a bulk systétgo=H,.;=... and
Ho;=H1,= ... .Following Lopez-Sanchet al.** this chain B. Transmission through an interface

can be transformed in order to express the Green’s function ] o
of an individual layer in terms of the Green’s function of the ~ The procedure outlined above can also be applied in the

preceding(or following) one. This is done via the introduc- €ase where electron transmission takes place through an in-
tion of the transfer matrices and T, defined such tha®,, terface between two different media, as in the system de-

. = . . picted in Fig. 2. To study this case we make use of the
=TGgo and Goy="TGyo. The transfer matrix can be easily surface Green's function matchingSGFM) theory, pio-
computed from the Hamiltonian matrix elements via an it-

- - . : neered by Garcia-Moliner and Velasto.
erative procedure, as outlined in Ref. 21. In partictlaand
- P , P We have to solve Eq. 1 fdi=H, andG=G,, where the
T can be written as

subscriptl refers to the interface region. Using the SGFM
method,G, is calculated from the bulk Green’s function of
the isolated systemG, and Gg, and the coupling between
the two sides of the interfackl,g andHg, . In the language
of Ref. 14, all these quantities can be expressed usixng 2
wheret; andt; are defined via the recursion formulas: supermatrices, defined via the introduction of the appropriate
projection operators that map the subspaces of the different
ti=(—t_ it —T_qti_q) 2, materials. In particular we can defife= P+ Pg whereP is
the projector in the space of the existing orbitals, dpd
G=(-t 1t~ Tty T, =|,+1g is the projector of the interface region. The bulk
Hamiltonian Hya g, is meaningful only if related with the
and corresponding part o andl,. For example, the interface
B 1.t part of the bulk Green’s function for material A is given by
to=(e—Hoo "Ho,

T=to+tot;+Tolstot ... +Totstp - t,,

?:To‘}'to'fl‘f'totl’fz‘l‘ P +t0tlt2' . "En,

to=(e—Hop) 'Hos. (GA 0) i (6;1 0
The process is repeated untj|,t,<& with & arbitrarily Ga=1aGala=| o s 9a 0 0
small??
With this proviso, we can write the bulk Green’s function
as andG,Ga=1,.
Let us now consider the propagation of an elementary
G(E)=(e—Hgyy—HgT— Hgf)‘l_ electronic excitation in the system. Via the calculation of the

transmitted and reflected amplitudes of an excitation that
If we compare the previous expression with E2).in the  propagates from mediumA to mediumB, it can be shown
hypothesis of leads and conductors being of the same materat the interface Green’s function obeys the following secu-
rial (bulk conductivity,”® we can identify the present bulk lar equation**
system, or rather one of its principal layers, with the conduc-
tor C, so thatHo;=Hc, Hy;=hcgr, andH{,=h[.. In par-
ticular, by comparing with Eq(3), we obtain the expression G, '=(l €l \— 1 \AHAPAGAG A M p) + (I gel g
of the self-energies of the conductor-leads system:
B ~1gHgPEGeGg 1g) — (IaH 1 +1gH 1 A).
EL:H(TJJ_T, ER:HOJ_T.

The coupling functions are then obtained from the sole In the language of layer Hamiltonians and block superma-
knowledge of the transfer matrices and the coupling Hamiltrices, the previous equation reads
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obtained in Ref. 11. Although this simple model can give a
reasonable qualitative description of the electronic and trans-
port properties of an ideal carbon nanotube, more sophisti-
cated models have to be used for a more general study. In
particular, geometric relaxations are ineffective in the
sr-orbital tight-binding model, where only the connectivity
of a given atom plays a role. In order to study the effect of
atomic relaxations on the conductance of carbon nanotubes,
we employed a fulkp® tight-binding model already used in
the studies of electronic properties of such syst&h@ne of

e U the advantages of the present method to compute quantum
1.0 2.0 3.0 conductance is that it does not require periodic boundary
conditions along the direction of the principal layer expan-
sion. In quasi-one-dimensional systems such as nanotubes
and nanowires, this implies that very distorted geometries
can be analyzed with a complete convergence in(tme-

-3.0 -2.0 -1.0 0.0

E (eV)
FIG. 3. LDOS and transmission function for tt#2,0/(6,6)

matched tube as in Chicet al. (Ref. 11). The peak in the LDOS

just below the Fermi energftaken as referengevas not shown in c ] v ! g

Fig. 4 of Ref. 11 due to a coarser sampling of the endsge Ref.  dimensional k, -point expansiorisee Appendix B

31). Besides this, the two calculations are in complete agreement.  In the following we present our investigations of the ef-

fect that bending has in the transport properties of a small

G G diameter (4,4 carbon nanotube. It has recently been

AA AB . .. .

G=|g G observed that individual carbon nanotubes deposited on a
BA BB series of electrodes behave as a chain of quantum wires con-

nected in series. The individual nanotube is broken up into a
chain of weakly coupled one-dimensional conductors sepa-
rated by local barriers. It has been argued that the local bar-
riers arise from the bending of the tube near the edge of the
electrodes, but no theoretical evidence has been produced as
Once the interface Green’s function is known, we canyet. In the upper part of Fig. 4 we show the system that we
compute the transmission function in terms of block superhave studied: an initially straight tube that has been bent at
matrices making use of the interface projection operators: different anglesf=0°,3°,6° [Figs. 4 (a)—4(c)], where ¢
measures the inclination of the two ends of the tubes with
respect to the unbent axis. The geometrical structure has
been optimized using an empirical many-body potential for
carbon?* For #=6° we observe the formation of a kink.
Since the formation of kinks in bent carbon nanotubes has
_ r a been thoroughly described both experimentally and
7(E)=Tr(I'aGpgl'eCaa) theoretically?> we do not discuss it here. In the lower part of
and GgAz(GVAB)T_ Within the SGFM framework, the same Fig. 4 we present our predictions for electronic conductance
approach can be extended to the case of multiple interfacegnd density of states of the bent tube. The presence of the
superlattices, and the general lead-conductor-lead geothetrykink does not alter drastically the local density of states
with little complication. In the previous treatment we have (LDOS) at the interface nor the conductance of the system in
assumed to have a Hamiltonian representation in terms ¢ substantial manner. This observation rules out the possibil-
orthogonal orbitals. The extension to the general case of By that the formation of local barriers for electric transport
nonorthogonal base is described in Appendix A. We haveé&an be attributed solely to the microscopic deformation of
also assumed a truly one-dimensional chain of principal |athe tube wall, with no defect involved. The effect of defects
ers, which is physica| 0n|y for systems like nanotubes orthat will naturally form in the bent tube due to the strain
quantum wires that have a definite quasi-one-dimensiondmposed on the systéfhhas not been taken into account,
character. The straightforward extension to a truly threeand it will be the subject of future worK.
dimensional case is described in AppendiX\BB. As in the In Fig. 5 we show the LDOS and transmission function
bulk case, we can calculate the local density of states locafor @ semiconducting10,0 and metallic(9,0) nanotubes cal-
ized at the interface a,(E) = — (1/a)Im[ TrG,(E)]. culated using an orthogonal and a nonorthogonal TB model.
Both models reproduce the general features of the electronic
structure, in particular the opening of a pseudogap at the
Fermi energy produced by the curvature of the graphitic
As a first application of the above methodology we stud-walls in the(9,0) nanotub&®2° The values of the gap calcu-
ied the quantum conductance of carbon nanotubes within kted with the orthogonal0.07 e\j) and nonorthogonal TB
nearest-neighbotr-orbital tight-binding Hamiltonian as in (0.16 e\j are in very good agreement with previous
Chico et al!! In this model, thew-orbital bands are de- calculations’®?® and the nonorthogonal model reproduces
scribed via a single paramet&f,,.=v,=—2.75 eV. As  quite accurately thab initio value?® The extension of the
shown in Fig. 3, we were able to completely reproduce thepresent method to nonorthogonal Hamiltonians opens a way
results for the conduction of @2,0/(6,6) matched nanotube to calculations of conductance usirap initio real-space

— -1
e—Hoo— (He)'T

_HBA

TE)=Tr(I' \GITRGY), T =IalaAla, Tgr=Iglgls.

Using Eq.(5) we can write, after some matrix multiplica-
tions:

IV. EXAMPLES
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-3.0 -2.0 -1.0 0.0 1.0 2.0
E (eV) FIG. 5. Upper panel: LDOS and transmission function for a

) (10,0 carbon nanotube using the nonorthogonal tight-binding of
. FIG. 4. Upper panel: geometry of the bet4) “a”_O“%be used_ Porezaget al. (Ref. 17 compared with the orthogonal model of
in the calculations. Lower panel: LDOS and transmission function

harli l. (Ref. 16 L I: f
for the different geometriega) 6=0°, (b) 3°, (c) 6°. LDOS'’s for Charlier et al. (Ref. 1§ Lower panel: same as above for(3,0

. . . . ; . __tube. The Fermi energy is taken as reference.
different bending angles are shifted in the picture. The Fermi en- 4
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In this paper we presented an efficient approach to com-

pute the electronic transport properties of extended systems APPENDIX A
and some applications to carbon nanotubes. The essence of_l_h ion for the G , dt ission functi
the approach relies on the iterative calculation of transfer € expression for the ->Teéen s and transmission tunctions

of a bulk system described by a general nonorthogonal

matrices and Green’s functions coupled with the I“';anI‘sme.}rocalized-orbital Hamiltonian follows directly from the pro-

formula for the coherent conductance. This method is applizequre outlined in Sec. 1l A. All the quantities can be ob-
cable to any general Hamiltonian that can be describeghined making the substitutions:e€ H o) — (€S0~ Hoo)
W|t_h|_n a localized-orbital bas_|s and thus can be used as aﬁndH&)—»—(eS&)—Hng)). Here, we introduce the matrices
efficient and general theoretical scheme for the analysis ok that represent the overlap between the localized orbitals.
the electrical properties of nanostructures. The applicabilityyith this recipe, the equation chais) now reads

of the method to general orthogonal and nonorthogonal tight-

binding models has been illustrated. In particular, we have (€800~ Hoo) Goo= — (€51~ Ho1) G1o,

obtained a theoretical analysis of quantum conductance in N +

bent carbon nanotubes. Our calculations show that carbon (€So0—Ho0)G10= — (€801~ Hg1) Goo
nanotubes maintain their basic electrical characteristics even —(eSg;—Ho)) G

in the presence of large distortions and mechanical deforma- oL Tror=20:
tions. Ce

V. CONCLUSIONS
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APPENDIX B

The extension of the present scheme to a truly three-
dimensional case is very simple. The introduction of the
principal layer concept implies that along the direction of the

From here, via the same series of algebraic manipulationayer expansion the system is described by an infinite set of

as in the orthogonal case, we obtain the Green’s function:

G=[(€Soo—Hoo) +(€So1—Ho) T+ (eS5—HINTI 2,

and from the latter we can identify the self-energies,

2= _(5581_ Hgl)?v S r= (€S0~ Ho)T.

k, while k; is still a good quantum number for the problem.
The above procedure effectively reduces the three-
dimensional system to a set of noninteracting linear chains,
one for eachk;.”® We can then use the usuiepoint sum-
mation techniques to evaluate, for instance, the quantum
conductance,

T(E)=2 wy T (E),
[

The extension to the case of the transmission through awherew, are the relative weights of the differekits in the

interface follows exactly the same lines.
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