
Electronic-transport properties of parallel double-ring systems

Youyan Liu and Honglin Wang
Department of Physics, South China University of Technology, Guangzhou 510641, China

Zhao-Qing Zhang
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Xiujun Fu
China Center of Advanced Science and Technology (World Laboratory), P. O. Box 8730, Beijing 100080, China

and Department of Physics, South China University of Technology, Guangzhou 510641, China
~Received 14 August 1995; revised manuscript received 6 October 1995!

We have studied a mesoscopic double-ring system connected in parallel and coupled to two electron reser-
voirs. The system is composed of one-dimensional ordered chains, and the two rings are threaded by magnetic
fluxesF1 andF2 , respectively. In the framework of the tight-binding model, the analytical and numerical
calculations show that the transmission coefficientT is periodic in fluxesF1 and F2 with a period
2F0 ,F05hc/e. For the system there are resonant states (T51) and antiresonant states (T50), the distribu-
tion of which displays a very remarkable symmetry.

Quantum transport in the mesoscopic systems has been
extensively studied both experimentally and theoretically in
the last decade.1–12 In these mesoscopic systems electron
transport is governed by quantum mechanics rather than
classical mechanics. At very low temperatures, the scattering
of phonons~dephasing scattering! is significantly suppressed,
and the phase-coherence length of the electrons becomes
large compared to the system dimensions. The mesoscopic
system can thus be modeled as a phase-coherent elastic scat-
tering. Furthermore, if one considers the electron as a free
particle, the idealized sample becomes an electron wave-
guide.

For the mesoscopic systems, the theoretical study to date
has largely concentrated on the isolated ring and open rings
connected via leads to electron reservoirs, both of which are
threaded by a magnetic fluxF. For the isolated ring, the
persistent currents are the main subjects.3,4,12 As for open
ring systems the main interest is to study the relationship
between the transmission coefficientT and fluxF. In open
ring systems, the electron reservoirs act as a source of energy
dissipation or irreversibility, and all scattering processes in
the leads and rings are assumed to be elastic. In this line, up
to date the theoretical work has mostly been devoted to the
study of open single ring or multiring systems in series, and
in the framework of waveguide theory.13–16 To the best of
our knowledge, there is no work devoted to studying the
multiring system in parallel, especially in the framework of
the tight-binding model. In this Brief Report, we concentrate
on examining the electronic-transport properties of open
double-ring systems connected in parallel, which are
threaded by magnetic fluxesF1 andF2 as shown in Fig. 1.
In the framework of the tight-binding model, but not in the
waveguide approximation, we have calculated the transmis-
sion coefficientT and found thatT is periodic in fluxF
threaded by the loop with a period 2F0, F05hc/e being the
elementary flux quantum, but notF0 as in the case of
double-ring systems connected in series. At the same time,

we have found interesting symmetries of resonant (T51)
and antiresonant~full reflection, T50! states in the
T2F12F2 phase diagram. The whole diagram has a very
remarkable symmetric pattern.

In the following, we first give an explicit formula to cal-
culate the transmission coefficientT of the open double-ring
system connected in parallel and threaded by magnetic fluxes
F1 and F2 . As shown in Fig. 1, the studied mesoscopic
system can be reduced to a single ‘‘ring’’ with scatterers in
upper and lower arms separately, without magnetic flux
threading the ring. For an open single ring without magnetic
flux as shown in Fig. 2, if we assume that it and the leads are
composed of one-dimensional ordered chains with site en-
ergy« and transfer integralJ, andq being the electron wave
number in the wire, we have an unitary scattering matrix in
the tight-binding model for a junction~three-terminal split-
ter! located at siteN:7,10

FIG. 1. ~a! A parallel double-ring system threaded by magnetic
fluxesF1 andF2 , respectively, and connected to two electron res-
ervoirs via ideal leads.~b! Schematic representation for reducing
the double-ring system shown in~a! to a single ring with two scat-
terers in the arms.
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AKN bN aN
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where

aN5e22iqN@2iJ sinq/D 21#,

bN5e22iqN 2iJ sinq/D ,

cN5e2iqN@2iJ sinq/D 21#,

AKN5 2iJ sinq/D , D5E2«13Jeiq,

Q5arccos@2~E2«!/2J#.

Referring to Fig. 2, by the definition of scattering matrix,
we have the following equation which relatesSN to the am-
plitudes of traveling waves:
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From the above equation, we can obtain
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For the mirror image fork on the right-hand side of the
ring, situated at siteL, the scattering matrix can be obtained
by making the following exchanges:2L→N, B18→A1 ,

A18→B1 , C28→C1 , C18→C2 , D18→D2 , and D28→D1 . In
this way, the left-hand side of the ring is described by the
analogous equation

S D28

C28 D 5S2L
0 S C18

D18D 1B18V2L ,

A185S C2L2
k2L

b2L
D B181U2LS C28

D28D . ~3!

A18 can be expressed byA1 andB18 as

A185B18FC2L2
K2L

b2L
1U2LS 0 1

1 0D t1PS 0 1

1 0D t2
21V2LG

2A1U2LS 0 1

1 0D t1PVN , ~4!

where

P5FSN02S 0 1

1 0D t2
21S2L

0 S 0 1

1 0D t1G21

.

From Eq. ~4!, we obtain the transmission amplitude of the
double-ring system as

t52U2LS 0 1

1 0D t1PVN . ~5!

In the above equations,t1 , andt2 are the transfer matri-
ces of upper and lower scatterers, respectively. As we have
mentioned in the present studied system the scatterers repre-
sent the upper and lower rings threaded by magnetic fluxes
F1 andF2 , respectively. By definition,t1 andt2 satisfy the
following relations:10

SD18

C18
D 5t1S C1

D1
D , SD28

C28
D 5t2S C2

D2
D ,

~6!

t i5
1

t i
S t i22r i

2 r i

2r i 1 D , i51 and 2.

For a single ring threaded by fluxF, and connected via leads
to electron reservoirs, the reflection and transmission ampli-
tudes can be given as follows:10

r i5e2iqNi HC2
2K

di
@bcosf i1a2eic~b22a2!~b2a!#J ,

~7!

t i52K @~cosf i /2!/di # @~b2a!22e2 ic#, ~8!

where

f i52pF i /F0 ,

di52b2cosf i2e2 ic2~b22a2!2eic12a2,

c52q~L2N!5qS,

andS is the circumference length of the ring.

FIG. 2. The relationship of the amplitudes of traveling waves for
an open single ring is shown schematically.
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What we are mostly interested in is the periodicity of the
transmission coefficientT. In the following, we denote the
parameters of upper and lower rings by indexes 1 and 2,
respectively. We now prove thatT is periodic in fluxes
F1(F2), if we fix F2(F1) unchanged, with a period 2F0 ,
F05hc/e. Because the calculation is very tedious and
straightforward, here we present only some key results. The
formula to calculate the transmission amplitudet is formula
~5!. From Eq.~4!, we can obtain that

P5
bt1t2
F S ~b22a2!t1t22M12 M112at1t2

at1t21M22 t1t22M21 D ,
where
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22a2!t1t22M12#
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2!r 2 ,
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M215r 1r 2e
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22r 1
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22r 2
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In this way, we have

t52 ~bt2/F ! ~e22iqLm21m1!, ~9!

where

m15@M111M122~3a11!t1t2#~ t1
22t2

2!

1r 1@~12a!t1t22M212M22#,

m252r 1@M111M122t1t2~3a11!#

1@~12a!t1t22M212M22#.

From the above results, we can see that the transmission
coefficientT5utu2 has a very heavy and complicated expres-
sion. Because what we are mostly interested in is the rela-
tionship amongT and the fluxesF1 andF2 , so we draw out
the factors containing fluxesF1 andF2 from the formula
and set the rest of the parameters in other factors by a func-
tion form. We have noticed that the total transmission ampli-
tude t is a polynomial expression of the amplitudest1 , t2 ,
r 1 , and r 2 corresponding to the upper and lower rings. By
formulas ~7! and ~8!, the explicit relations betweent i , r i ,
andf i should be as follows:

r i5Ai1Bicosf i , t i5Cicos~f i /2!/~Di1Eicosf i ! ,

whereAi , Bi , Ci , Di , andEi are the function factors con-
taining other parameters except fluxesF i . If we fix the flux
F1 of the upper ring to show how theT would vary follow-
ing the change of fluxF2 , we have

T5utu2;uA cosf21B cos~f2/2!u2, ~10!

wheref252pF2 /F0 , andA and B are the functions of
other parameters including cosf2[cos(2pF2 /F0), which is
periodic in fluxF2 with a periodF0 , the elementary flux
quantum. From expression~10!, evidently, T is a period
function with period 2F0 .

Figure 3 shows our numerical results which confirm the
above analysis, where we have plotted the transmission co-
efficientT versus fluxesF1 andF2 for electrons with energy
E51.0, and we have set«50 andJ521. From the picture
we can see that for a fixedF1(F2), T is periodic in flux
F2(F1) with a periodic 2F0 . For the sake of clear visual-
ization we plotted only a quarter of the whole periodic pic-
ture, i.e., aF1 andF2 range from 0 toF0 , but not 2F0 .
From Fig. 3 we also can see that theT is symmetric for
fluxesF1 andF2 . Because if we denote the flux coordinates
of point i by F1

( i ) andF2
( i ) , then for two points symmetric to

the ~00,11! line we haveF1
(1)5F2

(2) and F2
(1)5F1

(2) ~see
Fig. 4!, which gives rise toT(1)5T(2), since the upper and
lower arms are symmetric for the studied system. The nu-
merical calculation shows that the antiresonant states~full
reflection,T50 with accuracy 10214) appears exactly in the
lines F1 /F01F2 /F051, F1 /F02F2 /F051, F1 /F0
1F2 /F053, andF2 /F02F1 /F051, and that the reso-
nant states (T51) form a sinuous curve; the data show that
it is very closed to a sinusoid. These results are schematically
shown in Fig. 4, where we can see a symmetric centerO for
a 2F0 period spectrum, which locates at the point
F1 /F05F2 /F051. The four lines, which intersect in point
O and are denoted by dashed lines, are symmetric axes ofT.
Furthermore, we have noticed that the full reflection lines
(T50) are also symmetric axes. This means that two points
locating symmetrically at two sides of the full reflection line
have the sameT. We prove this interesting conclusion as
follows. Assume that two points are symmetric to each other
by full reflection lineF1 /F01F2 /F051, and that the cor-

FIG. 3. Transmission coefficientT vs magnetic fluxesF1 and
F2 for the parallel double-ring system shown in Fig. 1. The param-
eters of the system are as follows: the electron energyE51.0,
«50, andJ521.0, the lengthsN82N5L2L852, and the cir-
cumference of the upper and lower rings is 4.T is periodic in flux
F1(F2) for fixedF2(F1) with period 2F0 . Here only a quarter of
whole period is shown~see Fig. 4!.
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responding parameters areF1
(1) ,F2

(1) and F1
(2) ,F2

(2) ; it is
easy to prove thatF1

(1)/F01F2
(2)/F05F2

(1)/F01F1
(2)/

F051. This is because in the formula to calculateT, the flux
parameters appear only in the cosine functions, and we have

cos~2pF2
~2!/F0!5cos@2p~12F1

~1!/F0!#

5cos~2pF1
~1!/F0!,

cos~2pF1
~2!/F0!5cos@2p~12F2

~1!/F0!#

5cos~2pF2
~1!/F0!.

The above results show that these two states have the same
T, because the upper and lower arms are symmetric for the
studied system, as we have mentioned for the~00,11! line
symmetry. Figure 4 displays a remarkable symmetric pattern
where we have drawn a picture with four whole periods. In
Fig. 4 the thick lines are antiresonant lines~full reflection!
with T50, and the thin curves are resonant lines with
T51. All of the dashed and thick lines are symmetric lines.
In the horizontal and vertical directions,T has a 2F0 peri-
odicity, but from ~00! to ~11!, T also experiences a period

because of the symmetry of antiresonant line~01,10!. In the
picture there exist other periodicities; for example, in the
direction from~0,1! to ~3,2!, T also experiences a period, in
which F1 increases byF0 andF2 by 3F0 . In some sense,
the picture has a periodic-lattice-like periodicity. Here we
would like to emphasize that these results forE51.0 are
typical; for other energies our calculation shows quite the
same structure. Finally, as a comparison, in Fig. 5 we plot the
T versusF picture for double-ring systems in series and the
same electron energyE51.0 is chosen. We can see thatT is
periodic in fluxesF1 andF2 with periodF0 different from
the present systems, where in any case even the fluxF2 ~or
F1) is set zero, the period ofT in flux F2 ~or F1) is always
2F0 .
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FIG. 4. The symmetrization and periodicity of the transmission
coefficientT shown in Fig. 3 are presented schematically. The pic-
ture shows four whole periods. The thick lines are antiresonant
states withT50, the thin curves are resonant states. All of the
dashed lines and thick lines are symmetric axes, which determine
variant periodicities ofT. FIG. 5. Transmission coefficientT vs fluxesF1 and F2 for

double-ring systems in series for comparison with Fig. 3. The pa-
rameters of the system are same as those of Fig. 3. Evidently, theT
is periodic in fluxesF1 andF2 , with periodF0 .
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