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ABSTRACT 

An electronically controllable fully uncoupled explicit current-mode quadrature oscillator employing Voltage Differ- 
encing Transconductance Amplifiers (VDTAs) as active elements has been presented. The proposed configuration em- 
ploys two VDTAs along with grounded capacitors and offers the following advantageous features 1) fully and elec- 
tronically independent control of condition of oscillation (CO) and frequency of oscillation (FO); 2) explicit current- 
mode quadrature oscillations; and 3) low active and passive sensitivities. The workability of proposed configuration has 
been demonstrated by PSPICE simulations with TSMC CMOS 0.18 μm process parameters. 
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1. Introduction 

Among various kinds of oscillators, the quadrature oscil- 
lators (QO) are widely used because they can provide 
two sinusoids with π/2 phase difference, for example, in 
telecommunication systems, for quadrature mixtures and 
single-sideband generators or for measurement purposes 
in vector generators or selective voltmeters [1,2]. There- 
fore the QO play an important role in many communica- 
tion systems, instrumentation systems and signal process- 
ing see [3-11]. Recently, a CMOS realization of VDTA 
and its applications as 1) RF filter and 2) double tuned 
amplifier have been presented in [12]. In [13], an elec- 
tronically controllable explicit current-output sinusoidal 
oscillator has been reported. Another application as a sin- 
gle input five output voltage-mode universal filter using 
VDTAs has been presented in [14]. The purpose of this 
communication is to introduce a new electronically con- 
trollable fully uncoupled explicit current-mode quadra- 
ture oscillator using two VDTAs and two grounded ca- 
pacitors. The proposed configuration provides the advan- 
tageous features of: 1) completely and electronically in- 
dependent control of condition of oscillation (CO) and 

frequency of oscillation (FO); 2) explicit current-mode 
quadrature oscillations; and 3) low active and passive 
sensitivities. The workability of proposed configuration 
has been verified using SPICE simulation with TSMC 
CMOS 0.18 μm process parameters. 

2. The Proposed Configurations 

The symbolic notation of the VDTA is shown in Figure 
1, where VP and VN are input terminals and Z, X+ and X− 
are output terminals. All terminals of VDTA exhibit high 
impedance values [12]. The VDTA can be described by 
the following set of equations: 
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*Corresponding author. Figure 1. The symbolic notation of VDTA. 
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The proposed configuration is shown in Figure 2. 
Circuit analysis of Figure 2 gives the characteristic 

equation (CE) as: 
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From Equation (2), the CO and FO can be expressed as 
CO: 

             (3) 

and 
FO: 
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Therefore, it is seen from Equations (3) and (4) that 
the CO and FO are completely uncoupled and electroni- 
cally tunable as g  i = 1 − 4 are controlled by bias 
currents. 

The current transfer functions obtained from Figure 2 
are given by: 
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For sinusoidal steady state, Equations (5) becomes 

4

1 2

2 90

1 1

emo j

o m m

gI j

I j C g g


 

 °         (6) 

Thus, the phase difference  between (Io2 and Io1) is 
−90˚. Hence, the currents (Io2 and Io1) are in the quadra- 
ture form. 

3. Parasitic Effects and Sensitivity Analysis 

By considering the various VDTA non-ideal parameters 
like the finite P-terminal parasitic impedance consisting 
of a resistance RP in parallel with capacitance CP, the 
finite N-terminal parasitic impedance consisting of a re- 
sistance RN in parallel with capacitance CN, the finite 
X-terminal parasitic impedance consisting of a resistance 
RX in parallel with capacitance CX and the parasitic im- 
pedance at the Z-terminal consisting of a resistance RZ in 
parallel with capacitance CZ then the expression of CO 
and FO including the influence of parasitic are given by: 
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then the active and passive sensitivities of ω0 can be found as: 
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For C1 = C2 = 0.5 nF, Rp = Rz = ∞, Cp = Cx = Cz = 0.15 

pF, 
1mg  = 

2mg  = 
3mg  = 1.5913 mA/V and 

4mg  = 
1.7916 mA/V, the sensitivities are found to be 0, 0, 0, 0.5, 
0, 0, −0.899, −0.499, −2.9e−4, −2.9e−4, −1.64e−3 for 
Equation (9). Thus, all the active and passive sensitivities 
of ω0 with respect to each active and passive elements 
are low. 

4. Simulation Results 

To verify the theoretical analysis, the proposed ECMSO 
was simulated using CMOS VDTA from [12]. Power 
supply voltages were taken as VDD = −VSS = 0.9 V and IB1 
= IB2 = IB3 = IB4 = 2 mA (for VDTA1) and IB1 = IB2 = 2 
mA, IB3 = IB4 = 3.687 mA (for VDTA2) biasing currents 
are used. The transistor aspect ratios are same as in [12]. 
The passive elements of the configuration were selected 
as C1 = C2 = 0.5 nF. The transconductances of VDTA 
were controlled by bias currents. PSPICE generated out- 
put waveforms indicating transient and steady state re- 
sponses are shown in Figures 3(a) and (b) respectively. 
These results, thus, confirm the validity of the proposed 
configuration. The total harmonic distortion (THD) of 
the proposed oscillator is found to be 3.00% (Figure 4). 
From Figure 5 it is clear that the two currents are in 
quadrature. 

Figure 5 shows that the two currents are in quadrature 
and the measured value of phase shift between two wave- 
forms is = −89.98˚. 

5. Concluding Remarks 

In this paper, an explicit current-mode quadrature oscil- 
lator using VDTAs has been presented. The presented 
circuit employs two VDTAs and two grounded capaci- 
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Figure 2. The proposed configuration. 
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Figure 3. (a) Transient response waveform; (b) Steady state 
response of the quadrature outputs. 
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Figure 4. Simulation result of the output spectrum. 
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Figure 5. Steady state response of the quadrature outputs of 
Io2 and Io1. 

 
tors. The CO and FO of the proposed quadrature oscilla- 
tor has the advantage of fully and electronically inde- 
pendent controllability. The proposed explict current- 
mode quadrature oscillator also provides low active and 
passive sensitivities. The workability of proposed con- 
figuration has been verified using SPICE simulation. 
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