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Abstract. The logistic map is a paradigmatic dynamical system originally conceived to model the discrete-
time demographic growth of a population, which shockingly, shows that discrete chaos can emerge from
trivial low-dimensional non-linear dynamics. In this work, we design and characterize a simple, low-cost,
easy-to-handle, electronic implementation of the logistic map. In particular, our implementation allows for
straightforward circuit-modifications to behave as different one-dimensional discrete-time systems. Also,
we design a coupling block in order to address the behavior of two coupled maps, although, our design
is unrestricted to the discrete-time system implementation and it can be generalized to handle coupling
between many dynamical systems, as in a complex system. Our findings show that the isolated and coupled
maps’ behavior has a remarkable agreement between the experiments and the simulations, even when
fine-tuning the parameters with a resolution of ∼10−3. We support these conclusions by comparing the
Lyapunov exponents, periodicity of the orbits, and phase portraits of the numerical and experimental data
for a wide range of coupling strengths and map’s parameters.

1 Introduction

Nowadays, there is a growing scientific interest in ex-
plaining the collective behaviors that emerge in complex
systems [1–3], namely, systems composed of many non-
linearly interacting subsystems. However, the analysis of
complex systems is usually restricted to toy-models or nu-
merical experiments [4–8], discarding the intractable pa-
rameter heterogeneities and random fluctuations (caused
by intrinsic noise sources) found in real-world complex sys-
tems. Hence, the analysis of a synthetic complex system
from a versatile experiment is always well-posed.

A well-known paradigmatic model that is used to un-
derstand chaotic behavior emerging from a trivial non-
linear evolution is the logistic map [9–12]. It constitutes a
tractable mathematical benchmark to characterize chaotic
behavior (and other emerging phenomena) with a vast
number of applications. Examples range from noise gen-
erators [13,14], encryption machines for secure communi-
cations [15–17] to models for ecology and demographic’s
research [7,9,12,18]. Even more, the logistic map has been
extended to include more degrees of freedom [19–22]. Sim-
ilarly, the inclusion of coupling between maps [23–25], for
example, as in ecological models that address the effects
of diversity or spatial heterogeneity in competing popu-
lations [7,8], shows promising results and increases the
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degrees of freedom. Analogously, a recent experimental
study of coupled oscillators [26] shows the increase in com-
plexity due to the coupled dynamics. Nevertheless, the
interacting model of logistic maps still provides a solid
benchmark to address emerging behaviors in other com-
plex systems [6,12].

In this work, we design a versatile experimental imple-
mentation of a complex system composed of interacting lo-
gistic maps. Former attempts to electronically implement
a logistic map are scarce and lack in simplicity [27–29],
although manage to maintain control over all parameter
range. Our logistic map design is simple and in a block
form, has low-cost electronic components, it is easy-to-
handle (allowing to maintain control over parameters),
and also shows low power-consumption. Moreover, it al-
lows to modify the map’s block to include different be-
haviors, specifically, to become a different one-dimensional
discrete-time system or even a continuous-time version of
the system. The interaction between maps is designed as a
coupling block that addresses the behavior of two coupled
maps in the Kaneko style [24], however, this block is unre-
stricted to our case-study. In general, our coupling block
can handle couplings between continuous-time dynamical
systems and it also allows for straightforward extensions
to many interacting dynamical systems. Such extensions
make our model a versatile option to experimentally study
different complex systems’ behavior.

Our experimental findings show remarkable agreement
with all numerical experiments, which we corroborate by
exploring a wide range of parameters using high resolution
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(∼10−3). Specifically, we explore variations in the logistic
map’s parameter and coupling strength for the uncoupled
and coupled situations, respectively. Hence, we character-
ize the bifurcation cascades that the uncoupled and cou-
pled systems exhibit [10] in both, numerical and experi-
mental data, with high accuracy and signal-to-noise ratio.
The comparative analysis between experiments and simu-
lations shows that the level of performance and agreement
is excellent. Moreover, we support this by analyzing the
numerical and experimental data using Lyapunov expo-
nents [11], orbit’s periodicity [30], and phase portraits for
the uncoupled and coupled cases.

The present work is organized as follows. We com-
mence in Section 2 by introducing the model of coupled
logistic maps and the methods used in the subsequent sec-
tions for the analysis of the experimental and numerical
data. The experimental setup is presented in Section 3,
starting with the electronic implementation of a single lo-
gistic map and the description of the coupling block and
ending with the explanation on how to obtain an experi-
mental discrete-time coupled system. The characterization
of the dynamics of a single and a pair of maps is analyzed
in Section 4 by means of bifurcations diagrams and sta-
bility charts displaying the periodicity (or chaoticity) as a
function of the parameters. We end in Section 5 by sum-
marizing our main conclusions.

2 Model and methods

2.1 Coupled logistic maps

The celebrated logistic map describes the discrete-time
evolution of a closed population [9–12],

xn+1 = f (r, xn) = r xn (1 − xn) , (1)

where xn represents the ratio of the population to a max-
imum value (xn ∈ [0, 1]) at time n (discrete) and r is the
control parameter, which is restricted to the interval (0, 4]
in order to keep the normalized population in the interval
[0, 1]. The nonlinear term in the right hand side of equa-
tion (1) accounts for the population growth by reproduc-
tion (e.g., when the population size is small, xn+1 ∼ r xn)
and for the starvation due to the limit imposed by the
carrying capacity of the environment (xn+1 ∼ r[1 − xn]).

In this work, aside from the experimental implemen-
tation and characterization of the isolated logistic map
(Eq. (1)), we analyze two coupled maps. Hence, for this

case the state variables are x
(1)
n and x

(2)
n , with control pa-

rameters r1 and r2, respectively. The evolution of these
coupled maps is determined from

⎧

⎨

⎩

x
(1)
n+1 = (1 − ǫ) f

(

r1, x
(1)
n

)

+ ǫf
(

r2, x
(2)
n

)

,

x
(2)
n+1 = (1 − ǫ) f

(

r2, x
(2)
n

)

+ ǫf
(

r1, x
(1)
n

)

,
(2)

where ǫ represents the coupling strength. This approach
can be generalized to a network of N maps [24] by:
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, (3)

where Aij is the ij entry of the adjacency matrix of the
network and di =

∑

j Aij is the ith node degree.

2.2 Dynamical behavior characterization

Lyapunov exponents provide a useful characterization of
a dynamical system in terms of how sensible the system is
to small changes in its initial conditions [11]. Specifically,
they quantify the average divergence of an infinitesimal
displacement from an unperturbed reference orbit and are
related to the factor by which the infinitesimal displace-
ment grows or shrinks. For a generic dynamical system,
the number of Lyapunov exponents is equal to the dimen-
sion of the system, i.e., the number of independent pertur-
bations. In many applications it is sufficient to calculate
only the largest Lyapunov exponent, λmax, since in gen-
eral, λmax > 0 (λmax < 0) implies the presence of chaotic
(periodic) behavior.

In the case of an isolated logistic map, namely, a one-
dimensional discrete-time dynamical system, there is a
single Lyapunov exponent, λ, to determine. This exponent
is directly obtained from [11]

λ (r) = lim
N→∞

1

N

N−1
∑

n=1

ln [r (1 − 2 xn)] , (4)

where r is the map’s parameter (Eq. (1)) and xn for n = 1
corresponds to the initial condition of the map. For finite-
size orbits, namely, when the limit is absent, λ is a finite-
time Lyapunov exponent (FLE), which we name in what
follows as Lyapunov exponent. However, for sufficiently
long time-series (N ≫ 1), the FLE converges asymptoti-
cally to the value of (Eq. (4)).

Another useful characterization for the coupled maps
behavior is done by quantifying the periodicity of their
orbits [30]. In other words, looking at the periodic prop-
erties of the resultant orbits for every dynamical regime.
Specifically, we measure the periodicity of an orbit as a
function of the parameters for the coupled system. In or-
der to measure this periodicity, we define the period of the
coupled system by building a data sequence that is defined
by concatenating the state variables at consecutive times.
For example, in our case-study, the coupled maps orbit
results in a concatenated time-series as

. . . x(1)
n , x(2)

n , x
(1)
n+1, x

(2)
n+1, . . . (5)

Consequently, the period of the system is identified by the
periodicity of the compound state sequence divided by the
number of units, which in this work is 2.

3 Electronic implementation

Our logistic map design is divided into two main parts. A
logistic-map block (LMB), which makes an analog logis-
tic function (as in the right-hand side of Eq. (1)), and a
sample-and-hold block (SHB), which samples the voltage

http://www.epj.org


Eur. Phys. J. B (2016) 89: 81 Page 3 of 8

Fig. 1. Diagram of the electronic circuit that reproduces the
logistic function. Namely, the output voltage is a quadratic
function of the input voltage.

of the continuously varying analog-signal of the LMB and
holds its value at a constant level for a specified period
of time. Hence, the output is an analog time-series that
varies its values step-wise, modeling the discrete evolution
of a map. This electronic implementation provides great
flexibility since it allows to design other maps by modi-
fying the LMB or to implement time-delayed models (as
in Refs. [31,32]) by modifying the SHB. Furthermore, this
design is chosen for scalability, meaning that its imple-
mentation allows for the direct introduction of coupling
between several individual units and with arbitrary con-
nections among them. In other words, our implementa-
tion in blocks allows to set different networks of coupled
maps without the commonly found limitation of an in-
creasing complexity in the electronic setup. In particular,
the coupling between two logistic maps as in equation (2)
is designed in a similar block form, which we name the
coupling block (CB). Hence, we retain the scalability of
the system allowing for a possible extension of the design
to contemplate a coupled N -maps dynamic (Eq. (3)).

3.1 The logistic-map block

The LMB is designed to reproduce the logistic function of
the right-hand side of equation (1) and is shown in Fig-
ure 1. The present implementation uses an analog mul-
tiplier AD633, whose input range is ±10 V and output
range ±11 V. The output voltage, Vout, is obtained using
the information provided by the manufacturer, namely,

Vout(t) =
[V1(t) − V2(t)] [V3(t) − V4(t)]

Vs

+ V6(t), (6)

Vi(t) (i = 1, . . . , 6) being the voltage at the terminals indi-
cated in Figure 1 and Vs = 10 V being the saturation volt-
age of the AD633. For this circuit, assuming ideal behavior
of the components and applying Kirchhoff’s laws [27], we
find from equation (6) that

Vout(t) =

(

1 +
Rvar

R

)

Vin(t) (Vs − Vin(t))

Vs

, (7)

where R = 1 kΩ and Rvar can be set between 0 Ω and
3 kΩ. The different values of Rvar are obtained using a

Fig. 2. Schematic diagram of the sample-and-hold block. This
block is implemented to produce a step-wise evolution of the
electronic circuit, hence, a discrete-time evolution is achieved.

step-by-step motor attached to a multi-turn potentiometer
and controlled by a National Instrument Data Acquisition
(NIDAQ).

The voltages of the electronic circuitry are identified
with the state-variables of equation (1) by xn �→ Vin/Vs

and xn+1 �→ Vout/Vs, and the control parameter with

r ≡

(

1 +
Rvar

R

)

. (8)

Our analysis of the LMB takes into account solely the
variation of r in the interval (1, 4). The reason is that,
since R = 1 kΩ under our implementation, the interval
r ∈ (0, 1) where the dynamics of the map corresponds to
a stable fixed-point is unreachable. Also note that, when
r ≃ 4, the electronic noise can take the voltage to values
higher than Vs, hence, saturating the analog multiplier.
Consequently, in the analysis to characterize the system
we set r < 4 such that we always avoid this problem.

3.2 The sample-and-hold block

In Figure 2 we schematically show the SHB based on two
LF398 circuits (the two left-most buffers) and an op-amp
circuit (the right-most buffer) [28]. It samples the voltage
from the input terminal at an instant of time, keeps its
value in the hold capacitor, and then releases its value
from the output terminal one clock-period later. Every two
clock periods, the roles of both LF398 are interchanged.
This switching results in a discontinuous evolution of the
whole circuit (LMB plus SHB), where at each instant of
time a value of xn is obtained.

The optimal clock’s frequency, which sets the time
lapse between consecutive values of the output voltage,
must be chosen taking into account several experimental
constrains. On the one hand, there is a limit given by
the time it takes for the SHB to charge the capacitors.
On the other hand, the existence of parasitic capacitance,
bias currents in the operational amplifiers or other compo-
nents, and leakage currents in the capacitors, also sets lim-
its to the clock’s frequency. Moreover, the response time
for the rest of the circuit to stabilize after any change, i.e.,
the time needed by the LMB and the coupling to stabilize
the output, constitutes an upper bound for the clock’s
frequency. However, from a practical point of view, the
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Fig. 3. Diagram of the coupling circuit. The output voltage
from this circuit linearly relates both input voltages, V1 and
V2, with a coupling intensity given by Vc.

clock’s frequency should be as high as possible to reduce
the time necessary to perform the experiments and obtain
long time-series. Consequently, we have chosen the clock’s
frequency to be in the range between 10 kHz to 20 kHz.

3.3 The coupling block

The experimental setup for the coupling circuit is depicted
in Figure 3. In order to couple two logistic maps, we re-
quire a coupling circuit for each map. Moreover, to retain
the possibility of extending our design to implement net-
works of maps, we design a coupling block (CB) as in
Figure 4. Hence, the LMB is connected to the SHB to de-
fine the discrete-time evolution of the system and it is also
connected to the CB to implement the coupled evolution
according to equation (2). Specifically, after taking into
account the AD633 in Figure 3, we obtain Vout as:

Vout(t) =

(

1 −
Vc

Vs

)

V1(t) +
Vc

Vs

V2(t), (9)

where Vc is the control voltage for our CB, namely, the
coupling strength between the maps; ǫ ≡ Vc/Vs. In partic-
ular, when Vc changes between 0 and Vs (the saturation
voltage), ǫ changes between 0 and 1. Thus,

xout(t) =
Vout(t)

Vs

= (1 − ǫ) x1(t) + ǫ x2(t), (10)

where we have identified the voltages V1(t) and V2(t) with
the corresponding logistic states x(1)(t) = V1(t)/Vs and
x(2)(t) = V2(t)/Vs, respectively.

In order to have high accuracy and control over the
changes in Vc we use the analog output of the NIDAQ,
which allows to set Vc with a precision of ±20 mV (ac-
cording to the data-sheet). This precision is even lower
than the 30 mV noise level we observe experimentally in
our time-series data. Moreover, we tested the excellent
performance of the CB by critically comparing the exper-
imental time-series with numerically generated time-series
of equation (2).

3.4 Electronic map

The discrete time-evolution of the experimental system is
obtained after processing the continuous step-wise evolu-
tion of the LMB plus SHB output. The conversion from
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Fig. 4. Block diagram of two coupled logistic maps. SHB
stands for the sample-and-hold block of Figure 2.

the combined circuit’s output signal to the discrete-time
state variable of the logistic map, namely, xn, consists in
taking the mean value for each plateau. Specifically, xn is
found by the hold value of the sampling of the LMB volt-
age every four clock-periods. A working example of this
process is shown in Figure 5, where the continuous sig-
nal registered from the LMB plus SHB is represented by
the dashed line and the corresponding discrete evolution
is represented by the signaled square points. As a result,
the storage space that is needed to save the output signal
is reduced and we obtain a discrete-time evolution of the
system, i.e., the logistic map’s evolution.

In particular, our findings show that there is a re-
markable agreement between the experimental values of
r, which are found from equation (8), and the r we found
from fitting this time-series output to a quadratic func-
tion. For example, the output of the LMB using an ex-
perimental control parameter of r = 3.5 ± 0.1 (Eq. (8)),
results in a time-series with a fitted value of r = 3.5005
and regression coefficient of 0.9999.

4 Results and analysis

4.1 Isolated logistic map

To corroborate that our electronic model reproduces cor-
rectly the logistic map’s behavior, the experimental results
are compared with the numerical simulations of equa-
tion (1). All comparisons are performed by neglecting a
transient of 104 iterations, which eliminates the orbit’s
dependency on the initial condition.
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Fig. 5. Experimental output voltage obtained from our
logistic-map block (LMB) implementation with its sample-and-
hold block (SHB). The analog output signal is represented by
the dashed line and the discrete map evolution that is obtained
from this output is represented by the filled squares. The data
corresponds to a single LMB plus SHB for the case where there
is coupling between two of these circuits with a strength ǫ = 0.5
and the circuit’s parameters are in the chaotic regime (r = 3.8).

Fig. 6. Bifurcation diagram for the output voltages of our
logistic map’s electronic implementation. The diagram is con-
structed discarding 104 initial time-iterations and taking the
next 256 values of the discrete-time voltages (xn) as a func-
tion of 1024 different control parameter (r) values. It shows
the distinctive traces of the logistic map’s route to chaos. The
correlation function (CC(x, y) = 〈xy〉 /σxσy) between the ex-
perimental data and the numerical simulation for each r are
shown in the inset, where small (<30%) deviations are found
for parameter values close to the chaotic region (r > 3.5).

The experimental bifurcation diagram as a function
of the control parameter is shown in Figure 6. As it is
seen, it reproduces the essential characteristics of the lo-
gistic map’s Feigenbaum diagram [10,11]. The agreement
is quantified by the high value that the correlation func-
tion, CC, between the experimental and the simulated sig-
nal have, which is shown in the inset of Figure 6, specially
for the periodic regions. In particular, the slight depar-

Fig. 7. Experimentally (black online) and numerically (red
online) obtained Lyapunov exponents (λ) for a logistic map.
Both exponents are found from 104 iterations for 1024 differ-
ent control parameter (r) values. The differences between these
exponents for each value of r are quantified in the inset by the
error function, Γ ≡ |λsim − λexp|, where λexp(λsim) is the ex-
perimental (numerical) Lyapunov exponent for the particular
time-series.

tures of CC from unity for r > 3.5 are a consequence of
chaos and small shifts in the experimental control param-
eter value. However, as it is seen from the figure, these
shifts leave the diagram virtually unaffected with respect
to the Feigenbaum diagram of the logistic map [10,11].

In order to further analyze the dynamical behavior
of our electronically implemented map, we compare the
Lyapunov exponents of the experimentally and numeri-
cally obtained time-series. In particular, the experimental
Lyapunov exponents are calculated from N = 104 data
points, instead of the N = 256 data points that are used to
construct the experimental diagram of Figure 6. Similarly,
the numerical simulations are iterated N = 104 times. The
resultant Lyapunov exponents for both cases are shown
in Figure 7. The Pearson’s correlation coefficient between
the experimental and the simulated Lyapunov exponents
we find is R = 0.9816. Moreover, we calculate the error
between the exponents, Γ ≡ |λexp − λsim|, for each pa-
rameter r value, which is shown in the inset of Figure 7.
Γ shows, as the bifurcation diagram does, that there is a
remarkable agreement between the experimental and the
numerical data in the regions displaying periodic behav-
ior. The discrepancies that are found in the chaotic region
correspond to a small shift in the experimental control
parameter, r, which looks as a rigid body translation of
the experimental system with respect to the simulation.
Nevertheless, these analysis reveals that our electronic im-
plementation reproduces the behavior of the logistic map
with high accuracy, specially for r < 3.

4.2 Two coupled maps

Here we present the experimental and numerical results
for the coupled dynamics of two logistic-maps.

http://www.epj.org
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(a)

(b)

Fig. 8. Experimental bifurcation diagrams. Panel (a) is ob-
tained from increasing the coupling strength between two iden-
tical maps, where both logistic maps are in the chaotic region
(r = 3.8) and the increments in ǫ are set to 0.01. Panel (b)
is obtained by decreasing the heterogeneity between the maps,
namely, r1 = 3.8, ǫ = 0.1, and we increase r2. The light (red
online) and dark (black online) dots on both panels correspond

to the time-series from the maps x
(1)
n and x

(2)
n , respectively.

The bifurcation diagrams for identical maps as a func-
tion of the coupling strength, ǫ, are displayed in Fig-
ure 8a, where the map’s parameters are set equally to
r1 = r2 = r = 3.8. Due to the presence of coupling be-
tween the maps, namely, ǫ > 0, the resultant dynamics
shows both chaotic (regions where points spread vertically
in Fig. 8a) and periodic (thin lines of points in Fig. 8a that
stay narrow over a range of ǫ values) behavior. These be-
haviors contrast the exclusively chaotic behavior that the
maps show for this parameter value (r = 3.8) in the ab-
sence of coupling, as it is seen on the left of Figure 8a
for ǫ = 0. Two videos for the bifurcation development
are presented on the Supplementary Material⋆ (SM) cor-
responding to the weak (Fig. 8a left) and strong (Fig. 8a
right) coupling scenarios. These videos show the phase
space portraits as coupling ǫ is increased from 0 to 0.12
(0.82 to 1), hence, changing the chaotic (periodic) behav-
ior and shifting it to a periodic (chaotic) state. Also, the
videos show how quasi-periodic behavior emerges before
periodic or chaotic behavior does.

Fig. 9. Orbit’s periodicity for the parameter space of two
coupled logistic-maps. The top (bottom) panel shows the ex-
perimental (numerical) periodicity of the orbits in color scale.
The parameter space is constructed by fixing r1 = 3.8 and
changing, r2, and the coupling strength, ǫ. Experimental (nu-
merical) resolution: 512× 512 (2048× 2048) parameter points.

A non-symmetrical situation is depicted in the bifurca-
tion diagram of Figure 8b. We are fixing one map’s param-
eter (r1 = 3.8) and the coupling strength (ǫ = 0.1) but we
are changing the other map’s parameter (r2). Hence, this
diagram is the quantification of how the decrease in het-
erogeneity between the maps (namely, the increase of r2

from 1.0 to 3.8) causes bifurcations to emerge [23–25].
Hence, we shift from the periodic region (left side of
Fig. 8b) to the chaotic region (right side of Fig. 8b). How-
ever, although r2 = 1 in the periodic region, corresponding
to a fixed-point state, due to the weak coupling between
the maps (ǫ = 0.1) it shows a period-2 behavior. This
is also supported by a phase space portrait video we are
presenting in the SM.

In order to continue the quantitative comparison be-
tween the experimentally implemented maps and the nu-
merical simulations, we show in Figure 9 the periods that
the orbits have as a function of the coupling strength
(ǫ, horizontal axes) and the map’s control parameter (r2,
vertical axes), namely, the map’s heterogeneity. Specifi-
cally, we fix r1 = 3.8 and vary ǫ and r2. These results,
experimental (Fig. 9a) and numerical (Fig. 9b), show a
remarkable concordance, even though we are using an
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Fig. 10. Phase space comparison between coupled logistic maps. Panels (a) and (b) show the attractors that are found by
fixing r1 = 3.22, r2 = 3.79, and ǫ = 0.937, on the experimental and on the numerical coupled system, respectively. Similarly,
panels (c) and (d) show the experimental and numerical attractor for r1 = 2.60, r2 = 3.79, and ǫ = 0.963. The experimental
time-series length to construct these portraits is of ∼50 × 106, with an even larger numerical time-series length.

outstanding resolution for both axis (10−3). We highlight
the richness of the several coexisting motions in Figure 9
that are obtained from this method. The different dynam-
ical behaviors are revealed explicitly in these diagrams, in
contrast with the unresolved cases when using other indi-
cators, as the Lyapunov exponents.

As a qualitative comparison, we show in Figure 10
two phase-space portraits for the strongly coupled sys-
tem (ǫ ∼ 1) on two particular scenarios. The resulting
attractors show remarkable complexity, nevertheless, the
experimental (Figs. 10a and 10c) and numerical (Figs. 10b
and 10d) attractors still remain remarkably close. This
conclusion holds for a wide range of parameters and other
phase-space portraits, which we are omitted here.

5 Conclusion

In this paper, we showed that our simple implementation
represents correctly the behavior of the logistic map, and
brings more possibilities for the study of chaos dynamics
than previous implementations. We also implemented a
Kaneko coupling, which we use to show that our logistic-
map design allows us to couple several maps. In particu-
lar, we made a thorough analysis of the coupled dynam-
ics of two logistic-maps by critically comparing numerical
and experimental data using Lyapunov exponents, orbit’s
periodicity, and phase-space portraits. Instead of logistic
maps, different functions could be equally implemented
using our approach.

We can easily expand the system by adding extra cou-
plings and maps since the coupling between two maps per-
formed faultlessly. In particular, when studying the dy-
namics of two coupled maps, we observed that chaotic
synchronization was possible in a wide range of coupling
strengths, thus showing the robustness of the synchronous
behavior and opening the question of how will a large set
of coupled oscillators behave in an experimental system.
The increase in size of our electronic design by the inclu-
sion of more maps would allow us to make a full working

network and study its behaviors, which are widely studied
theoretically and numerically but generally lack experi-
mental study. In a field dominated by numerical simula-
tions, our electronic design allows us to have a flexible
system for future studies. Also, the implementation of a
working network of many interacting chaotic oscillators
could result in a system (if well calibrated) presenting
high-dimensional chaotic dynamics, useful in a wide va-
riety of applications [6].
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