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A new con
guration of voltage-mode quadrature sinusoidal oscillator is proposed. 	e proposed oscillator employs two voltage
di�erencing current conveyors (VDCCs), two resistors, and two grounded capacitors. In this design, the use ofmultiple/dual output
terminal active building block is not required. 	e tuning of frequency of oscillation (FO) can be done electronically by adjusting
the bias current of active device without a�ecting condition of oscillation (CO).	e electronic tuning can be done by controlling the
bias current using a digital circuit.	e amplitude of two sinusoidal outputs is equal when the frequency of oscillation is tuned.	is
makes the sinusoidal output voltages meet good total harmonic distortions (THD). Moreover, the proposed circuit can provide the
sinusoidal output current with high impedance which is connected to external load or to another circuit without the use of bu�er
device. To con
rm that the oscillator can generate the quadrature sinusoidal output signal, the experimental results using VDCC
constructed from commercially available ICs are also included. 	e experimental results agree well with theoretical anticipation.

1. Introduction

Quadrature sinusoidal oscillators are very important circuits
in numerous applications such as communication, sound
system, instrumentation, control system. Especially in mod-
ulation system, the quadrature oscillator is used to gener-
ate the carrier signal for quadrature amplitude modulation
(QAM) and single-sideband modulation (SSB) [1, 2]. Most of
sinusoidal oscillator designs required the following features:
low THD of the quadrature sinusoidal output, independent
control of frequency of oscillation (FO) and condition of
oscillation (CO) [3], using minimum number of active and
passive element [4], electronic controllability [5] and so
on. However, the amplitude of quadrature sinusoidal output
should be considered too. To avoid the use of external ampli-

er, the expected amplitude of quadrature output should be
equal for all frequency or during tuning FO.

	e design of electronic circuit in analog signal process-
ing has been emphasized in the use of active building block
[6–8]. Particularly, the electronically tunable active building

blocks have attracted signi
cant research attention since
analog circuits using electronically tunable active building
block give more 
ne-tuning than adjusting the value of
passive device. 	e voltage di�erencing current conveyor
(VDCC) [9, 10] is a recently reported versatile active building
block used in the realization of analog signal processing
circuits. VDCC is also attractive due to its capability of
electronic controllability. 	e analog circuits using VDCC
as active element have been found in the literature, for
examples, universal 
lter [11–14], 
rst-order all-pass 
lter
[15], ladder 
lter [16], passive element simulator [10, 17–
21], and square and triangular wave generator [22]. 	e
VDCC-based sinusoidal oscillators have been proposed in
[19, 23–26]. In [19], the Colpitts oscillator using VDCC-
based capacitance multiplier was proposed. In this oscillator,
the FO and CO can be independently tuned. It can provide
quadrature output waveform but the amplitude of quadrature
output voltage is not equal during tuning the frequency.
Also it requires dual output terminal VDCC (�� and ��
terminal). 	e simple current-mode oscillator using single
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Figure 1: VDCC: (a) circuit symbol of VDCC; (b) equivalent circuit.

VDCC and grounded passive elements was presented in [23].
	e FO and CO can be orthogonally controlled.	e current-
mode quadrature sinusoidal waveform is obtained. However,
the FO cannot be electronically tuned without a�ecting CO.
Also the amplitude of quadrature output waveform is not
equal during tuning the frequency. 	e simple voltage-mode
quadrature oscillator using single VDCC, two grounded
resistors, and two grounded capacitors was implemented in
[24]. 	e FO and CO can be orthogonally controlled. 	e
FO can be electronically tuned without a�ecting the CO.
However, the amplitude of quadrature outputwaveform is not
equal during tuning the frequency. In [25], the quadrature
oscillator using two VDCC, two grounded resistors, and
two grounded capacitors was presented. 	e FO and CO
can be independently/electronically controlled. However, the
amplitude of quadrature output waveform is not equal during
tuning the frequency. In [26], the quadrature oscillator using
single controlled gainVDCC (CG-VDCC) and two grounded
capacitors was presented. 	e FO and CO can be indepen-
dently/electronically controlled. However, the amplitude of
quadrature output waveform is not equal during tuning the
frequency. Also the internal construction of CG-VDCCusing
the commercially available ICs is quite complicated.

	e idea behind this work is to present the quadrature
sinusoidal oscillator emphasized on the use of VDCC as
active element. 	e amplitude of quadrature output wave-
form is equal during tuning of frequency. Also, the frequency
of oscillation can be electronically tunedwithout a�ecting the
condition of oscillation.

2. Proposed Circuit and Operation

2.1. Voltage Di�erencing Current Conveyor (VDCC). In this
design, the active building block (ABB) called voltage dif-
ferencing current conveyor (VDCC) is used as main active
device. 	e international construction of CMOS VDCC was
proposed by Kaçar et al. [10] in 2014. It is 
ve-port device,
namely, �,�,�,�, and� port.	e high impedance voltage
input ports are � and�. 	e high impedance current output
ports are � and � port. 	e low impedance voltage output
port is � port. In the original version of VDCC the output

current at � port provides the output current both positive
and negative direction called �� and �� ports. However, in
this purpose, only single� port is required. 	is can reduce
the current tracking error at � port and can reduce the
number of transistor in VDCC. 	e electrical symbol and
equivalent circuit of VDCC are shown in Figure 1. 	e ideal
electrical properties of VDCC are shown in
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where �	 is the transconductance gain. For CMOS VDCC,�	 is controlled by DC bias current I
 as follows:

�	 = √

���ox (�� ), (2)

where 

 is bias current, �� is mobility of the carrier for MOS
transistors, �ox is gate-oxide capacitance per unit area, �
is e�ective channel width, and � is e�ective channel length,
respectively. 	e internal construction of CMOS VDCC is
shown in Figure 2 [10]. 	e VDCC can be constructed from
commercially available ICs as shown in Figure 3. It consists
of LM13700 [27] and AD844 [28].	is construction contains
only single � terminal. �	 for this construction is given as

�	 = 

2�� , (3)

where �� is the thermal voltage.

2.2. Proposed Oscillator. 	e proposed oscillator consists of
two VDCCs, two resistors, and two grounded capacitors.
	e quadrature output voltages ��1 and ��2 are the voltage
dropped at � port of VDCC1 and VDCC2, respectively.
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Figure 3: VDCC (without dual � terminal) constructed from
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However, the output voltages are taken from the non-low-
impedance output nodes, so the voltage bu�ers are needed
for cascading. 	e output current 

 with high impedance
�ows from � port of VDCC2. Taking into consideration
the ideal port characteristics involved in VDCC as referred
above (2) and the relevant notations appearing in Figure 4,
the characteristic equation is as follows:

�2 + � (1 − �2�1)
�	1�1 + �2�	1�	2�1�1�2 = 0. (4)

From (4), the frequency of oscillation is given as

�0 = √�2�	1�	2�1�1�2 . (5)

Subsequently, the condition of oscillation is given as

�2 ≥ �1. (6)

It is evident from (5) and (6) that the frequency of oscillation
can be controlled by �	1 and �	2 without a�ecting the con-
dition of oscillation. Moreover, the frequency of oscillation

can be electronically tuned via �	1 and �	2. If �2 ≅ �1, the
frequency of oscillation is rewritten as

�0 = √�	1�	2�1�2 . (7)

From the circuit in Figure 4, the voltage ratio of ��1 and ��2
is as follows:

��2��1 =
�	2��2 . (8)

It is found from (8) that the output voltages ��2 and ��1 are
90-degree phase di�erence which is called quadrature signal.
	e phase of output voltage ��1 leads the phase of output
voltage��2 to 90 degrees. At frequency of oscillation (�0), the
magnitude of output voltage ratio in (8) becomes

��������
��2��1

�������� =
�	2�0�2 . (9)

Substituting (7) into (9), themagnitude of output voltage ratio
in (9) becomes

��������
��2��1

�������� = √�	2�1�	1�2 . (10)

If �1 = �2 and �	1 = �	2, the magnitude of output volt-
age ratio is equal to unity. 	erefore, the tune of frequency
of oscillation with electronic method can simultaneously
change �	1 and �	2 to keep the amplitude of output voltages��1 and ��2 equal. 	is makes the sinusoidal output voltages
meet low total harmonic distortions (THD). Moreover, if
VDCC is constructed from commercially available ICs as
illustrated in Figure 3 where its �	 is linearly tuned by
bias current, the frequency of oscillation can be linearly
controlled.
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Figure 4: Proposed quadrature oscillator.

3. Analysis of Frequency Stability

	e analysis of frequency stability of the proposed circuit is
done by using the de
nition of the frequency stability factor
( �) given in [29, 30]

 � = !" (#)!#
���������=1 , (11)

where # = �/�0 is normalized frequency and "(#) is the
phase expression of the open loop transfer function of circuit
in Figure 4 and its transfer function is expressed as follows:

$ (�) = � (�2�	1/�1�1)�2 + � (�	1/�1) + �2�	1�	2/�1�1�2 . (12)

With the above de
nition, the frequency stability factor of the
proposed oscillator is given as

 � = 2√*, (13)

where�1 = �2 = �,�1 = �2 = �, �	1 = 1/�, and �	2 = */�.
4. Effect of Nonideal Current/Voltage Gains

and Parasitic Elements

Practically, the in�uence of nonideal current/voltage gain
and parasitic element in VDCC will a�ect the performances
of the proposed oscillator. Considering the these gains, the
electrical properties of VDCC are given as 
� = �	(�� −��),�� = -��, and 
� = 3
�, where - and 3 represent the voltage
and current gain error, respectively. At high impedance ports��, ��, �, and �, a parallel parasitic combination of a
resistance and a capacitance appears and they are denoted

as ��, ��, ��, ��, ��, ��, ��, and ��, respectively. At
low impedance port 4, a series parasitic resistance appears
and it is denoted as ��. 	ese parasitic impedances a�ect
the performance of the proposed oscillator. Taking them into
account, the characteristic equation of the circuit in Figure 4
is obtained as

5152 + 52�	1 (1 − 31-1�∗1 [1/�2 + 53])
+ 31-2�	1�	2�∗1 (1/�2 + 53) = 0,

(14)

where 51 = �(�1 + ��1 + ��1 + ��2) + :�1 + :�1 + :�2,52 = �(�2 + ��2) + :�2, 53 = �(��1 + ��1) + :�1 + :�1,
and �∗1 = �1 + ��1 + ��2. If the operational frequency ;op ≪1/[(��1 + ��1)(��1 ‖ ��1)], the characteristic equation in
(13) becomes

�2�∗1�∗2
+ � [�∗1:�2 + �∗2:∗1 + �∗2�	1 (1 − 31-1�2�∗1 )]
+ :∗1:�2 + :�2 (1 − 31-1�2�∗1 )
+ 31-2�2�	1�	2�∗1 = 0,

(15)

where �∗1 = �1 + ��1 + ��1 + ��2, :∗2 = :�1 + :�1 + :�2,
and �∗2 = �2 + ��2. From (14), the frequency of oscillation is
obtained as

�∗0
= √ 1(�1 + ��1 + ��1 + ��2) (�2 + ��2) [(

1��1 +
1��1 +

1��2)
1��2 +

1��2 (1 −
31-1�2�1 + ��1 + ��2) + 31-2�2�	1�	2�1 + ��1 + ��2 ].

(16)
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Subsequently, the condition of oscillation is given as

[ 1�	1��2 (
�1 + ��1 + ��1 + ��2�2 + ��2 )

+ 1�	1 (
1��1 +

1��1 +
1��2) + 1]

≤ 31-1�2�1 + ��1 + ��2 .
(17)

From the circuit in Figure 4, the nonideal voltage ratio of ��1
and ��2 is as follows:

��������
��2��1

��������
∗ = �	2

√[�∗0 (�2 + ��2)]2 + [:�2]2
. (18)

Substituting (16) into (18), the magnitude of output voltage
ratio in (18) becomes

��������
��2��1

��������
∗

= �	2
√((�2 + ��2) / (�1 + ��1 + ��1 + ��2)) [(1/��1 + 1/��1 + 1/��2) (1/��2) + (1/��2) (1 − 31-1�2/ (�1 + ��1 + ��2)) + 31-2�2�	1�	2/ (�1 + ��1 + ��2)] + [1/��2]2

. (19)

It is found in (19) that although �1 = �2, �1 = �2, and�	1 = �	2, the magnitude of output voltage ratio is not equal
to unity. According to (19), the phase response of ��2 to ��1
becomes

C∗��2/��1 = −tan−1�∗0 (�2 + ��2):�2 . (20)

5. Experimental Results

In order to verify the performances of the proposed oscillator
in Figure 4, the experiment was performed by using VDCC
constructed from commercially available ICs, LM13700 from
Texas Instruments Incorporated and AD844 from Analog
Devices, Inc. as illustrated in Figure 3. 	e power supply
voltages of experiment were ±5V.	e oscillator was designed
to obtain the frequency of oscillation, ;0 = 50 kHz. From (7),
an experimental setup was made by taking �1 = �2 = 10 nF,�1 = 7.23 kΩ, �2 = 7.52 kΩ, and 

1 = 

2 = 163 �A. With
the above component values, the experimented frequency of
oscillation becomes;0 = 47 kHz.	e deviation of theoretical
and experimental frequency of oscillation is about 6%. 	e
deviation of theoretical and experimental value stems from
the parasitic resistances and capacitances as shown in (16).
However, ;0 = 50 kHz was obtained when 

1 and 

2 were
set as 180 �A.	emeasured sinusoidal quadraturewaveforms��1, ��2 and their frequency spectrums are illustrated in
Figure 5. 	e output current waveform and its spectrum
which is measured from the voltage dropped on load resistor
10 kΩ are depicted in Figure 6. To obtain the frequency of
oscillation ;0 = 100 kHz, the bias currents 

1 and 

2 were
set to 370 �A. Figure 7 represents the output waveforms ��1
and ��2 and their frequency spectrums. 	e output current
waveform and its spectrum at ;0 = 100 kHz is depicted in
Figure 8. Tuning of experimental and theoretical FO is shown
in Figure 9, where 

1 and 

2 are equal and were adjusted
from 100 �A to 500�A. 	e range of FO controlled from
27 kHz–131 kHz was obtained. Figure 10 shows simulated
dependence of output amplitudes �
1 and �
2 on FO. It
can be clearly seen that the ratio of amplitudes �
1 and�
2 is quite constant on the tuning of FO if 

1 and 

2 are

simultaneously tuned as predicted in (10). As stated above,
VDCC consists of operational transconductance ampli
er
(OTA) where it is well known that the BJT OTA gives the
linear range if input voltage is lower than 2�� (≅52mV).
With the result in Figure 10, it is found that the amplitude
of output voltages which dropped on input voltage of OTA
is close to linear range of OTA. 	is implies that sinusoidal
output waveforms provide goodTHD.However, at high value
of bias current, the deviation of amplitude ratio of ��1 and��2 obviously appears.	is phenomenon results from the fact
that the increment of bias current will decrease the value of
parasitic resistance. 	erefore, the amplitude of ��1 and ��2
is slightly di�erent as analyzed in (19). 	e measured phase
di�erence between the two outputs,��1 and��2, is illustrated
in Figure 11.

6. Comparison with Recent
Quadrature Oscillators

A comparison between the proposed quadrature oscillator
and recent quadrature oscillator published in scienti
c jour-
nals is shown in Table 1. 	e terms that will be taken into
account are as follows: the used active building block (ABB),
number of active and passive element, the way to tune FO and
CO, amplitude of the quadrature output waveforms during
tuning process, the used ABB without multiple or extra
terminals, additional current output with high impedance,
the connection of capacitors, and the way to test the circuit.

7. Conclusion

In this contribution, the quadrature sinusoidal oscillator
using voltage di�erencing current conveyor as active element
is presented. 	e proposed circuit comprises two VDCCs,
two resistors, and two grounded capacitors. 	e proposed
oscillator provides quadrature voltage output and a high
impedance current output. 	e frequency of oscillation can
be electronically tuned without a�ecting the condition of
oscillation. During tuning of the frequency of oscillation,
the amplitude of the quadrature output voltages ��1 and ��2
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Table 1: Comparison results of this work and recent works.

Ref ABB
Number of

ABB
Number
of R + C

Electronic
tune of
FO

without
a�ecting

CO

Equal
ampli-
tudes
during

frequency
tuning

No need of
multiple

output ABB

Providing
additional

sinusoidal current
output with high

impedance

Grounded C
only

Experimental
results

[23] VDCC 1 2 + 2 No No No Yes Yes No
[24] VDCC 1 2 + 2 Yes No No No Yes Yes
[25] VDCC 2 2 + 2 Yes No No Yes Yes No
[26] CG-VDCC 1 0 + 2 Yes Yes No No Yes No
[31] CCCCTA 1 2 + 2 Yes No No Yes Yes No
[32] CCCCTA 2 2 + 2 Yes No No Yes Yes No
[33] CCII & BF 3 4 + 2 No No Yes No Yes Yes
[34] CCII 3 2 + 2 Yes No Yes No Yes No
[35] CDTA 2 0 + 3 Yes No No Yes Yes No
[36] CFOA 2 2 + 2 No No Yes No Yes Yes
[37] CFOA 2 3 + 2 No No Yes No Yes Yes
[38] DD-DXCCII 1 3 + 2 No No No No Yes No
[39] MDVCC 1 2 + 2 No No Yes No Yes No
[40] DVCCTA 1 3 + 2 Yes No No Yes Yes No
[41] FBVDBA 1 1 + 2 No No No No Yes Yes
[42] OTRA 2 3 + 3 No No Yes No No Yes
[43] MVDVTA 1 1 + 2 No No No No Yes No
	is work VDCC 2 2 + 2 Yes Yes Yes Yes Yes Yes

is almost constant with slight di�erences due to the e�ect
of the parasitic resistances and capacitances of the VDCC.
	e experimental results using VDCC constructed from
commercially available ICs con
rm the performance of the
theoretical analysis.
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