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Abstract

Background: The Office of Naval Research (ONR) organized a STEM Challenge initiative to explore how intelligent

tutoring systems (ITSs) can be developed in a reasonable amount of time to help students learn STEM topics. This

competitive initiative sponsored four teams that separately developed systems that covered topics in mathematics,

electronics, and dynamical systems. After the teams shared their progress at the conclusion of an 18-month period,

the ONR decided to fund a joint applied project in the Navy that integrated those systems on the subject matter of

electronic circuits. The University of Memphis took the lead in integrating these systems in an intelligent tutoring

system called ElectronixTutor. This article describes the architecture of ElectronixTutor, the learning resources that

feed into it, and the empirical findings that support the effectiveness of its constituent ITS learning resources.

Results: A fully integrated ElectronixTutor was developed that included several intelligent learning resources

(AutoTutor, Dragoon, LearnForm, ASSISTments, BEETLE-II) as well as texts and videos. The architecture includes

a student model that has (a) a common set of knowledge components on electronic circuits to which individual learning

resources contribute and (b) a record of student performance on the knowledge components as well as a set

of cognitive and non-cognitive attributes. There is a recommender system that uses the student model to guide the

student on a small set of sensible next steps in their training. The individual components of ElectronixTutor have

shown learning gains in previous decades of research.

Conclusions: The ElectronixTutor system successfully combines multiple empirically based components into

one system to teach a STEM topic (electronics) to students. A prototype of this intelligent tutoring system

has been developed and is currently being tested. ElectronixTutor is unique in its assembling a group of

well-tested intelligent tutoring systems into a single integrated learning environment.
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Background
Intelligent tutoring systems have been developed for

nearly four decades on many STEM topics after the field

was christened with the edited volume, Intelligent Tutor-

ing Systems, by Sleeman and Brown (1982). Intelligent

tutoring systems (ITSs) are computer learning environ-

ments designed to help students master difficult know-

ledge and skills by implementing powerful intelligent

algorithms that adapt to the learner at a fine-grained

level and that instantiate complex principles of learning

(Graesser et al. in press). An ITS normally works with

one student at a time because learners have different

levels of mastery, specific deficits in knowledge, and

idiosyncratic profiles of cognitive and non-cognitive

attributes.

ITS environments incorporate learning mechanisms

that are a generation beyond conventional computer-

based training. Conventional training systems sometimes

adapt to individual learners, but they do so at a coarse-

grained level with limited options (e.g., two to five) at

each point in the student-system interaction. For ex-

ample, the student (a) studies material presented in a

lesson, (b) is tested with a multiple-choice test or an-

other objective test with a small number of options, (c)

receives feedback on the test performance, (d) re-studies

the material in “a” if the performance in “c” is below

threshold, and (e) progresses to a new topic if the per-

formance in “c” exceeds the specified threshold. An ITS

tracks the knowledge, skills, and other psychological

characteristics of students at a finer grain size and adap-

tively responds to the student by applying computational

mechanisms in artificial intelligence and cognitive sci-

ence (Sottilare et al. 2014; VanLehn 2006; Woolf 2009).

For an ITS, adaptivity is so fine-grained that most tutor-

ial interactions on a topic follow a unique sequence.

ITSs have been developed for a wide range of STEM

subject matters. Many have targeted mathematics and

other well-formed, quantitatively precise topics. In the

areas of algebra and geometry, for example, there are the

Cognitive Tutors (Aleven et al. 2009; Koedinger et al.

1997; Ritter et al. 2007) and ALEKS (Falmagne et al.

2013); one assessment compared these two systems on

learning gains and resulted in a virtual tie (Sabo et al.

2013). In the area of technology and engineering, there

are ITSs on electronics (SHERLOCK, Lesgold et al. 1992;

BEETLE-II, Dzikovska et al. 2014), digital information

technology (Digital Tutor, Fletcher and Morrison 2012),

and database retrieval (KERMIT, Mitrovic et al. 2007). In

the area of physics, VanLehn and his colleagues have de-

veloped Andes (VanLehn 2011).

Some ITSs focus on knowledge domains that have a

stronger verbal foundation as opposed to mathematics

and precise analytical reasoning (Johnson and Lester

2016). AutoTutor and its descendants (Graesser 2016;

Nye et al. 2014a, 2014b) help college students learn by

holding a conversation in natural language. Conversa-

tional agents (also known as interactive agents and

pedagogical agents) are a general class of learning envi-

ronments that are either scripted or intelligently adap-

tive (Atkinson 2002; Craig et al. 2002; Johnson et al.

2000; Graesser and McNamara 2010; Moreno et al.

2001). Conversational agents have talking heads that

speak, point, gesture, and exhibit facial expressions.

They can guide the interaction with the learner, instruct

the learner what to do, and interact with other agents to

model ideal behavior, strategies, reflections, and social

interactions (Craig et al. 2015; Graesser et al. 2014;

Johnson and Lester 2016; Kim et al. 2007). These agents

have been designed to represent different human in-

structional roles, such as experts (Johnson et al. 2000;

Kim and Baylor 2016), tutors (Nye et al. 2014a, 2014b),

mentors (Baylor and Kim 2005; Kim and Baylor 2016),

and learning companions (Chan and Baskin 1990;

Dillenbourg and Self 1992; Goodman et al. 1998). Re-

search supports the idea that conversational agents have

a positive effect on learning (Schroeder et al. 2013;

Schroeder and Gotch 2015).

Some conversational agents are not merely scripted

but attempt to understand the natural language of the

learner and adaptively respond with intelligent mecha-

nisms. Examples of these intelligent conversation-based

systems have covered STEM topics such as computer lit-

eracy (Graesser et al. 2004), physics (DeepTutor, Rus

et al. 2013; AutoTutor, VanLehn et al. 2007), biology

(GuruTutor, Olney et al. 2012), and scientific reasoning

(Operation ARIES/ARA, Halpern et al. 2012; Kopp et al.

2012; Millis et al. in press). Other examples of systems

with intelligent conversational agents that have suc-

cessfully improved student learning are MetaTutor

(Lintean et al. 2012), Betty’s Brain (Biswas et al.

2010), Coach Mike (Lane et al. 2011), iDRIVE (Craig

et al. 2012; Gholson et al. 2009), iSTART (Jackson

and McNamara 2013; McNamara et al. 2006), Crystal

Island (Rowe et al. 2011), My Science Tutor (Ward

et al. 2013), and Tactical Language and Culture Sys-

tem (Johnson and Valente 2009).

Reviews and meta-analyses confirm that ITS technolo-

gies frequently improve learning over classroom teach-

ing, reading texts, and/or other traditional learning

methods. These meta-analyses typically report effect

sizes (signified by d), which refer to the difference

between the ITS condition and a control condition,

calibrated in standard deviation units. The reported

meta-analyses show positive effect sizes that vary from

d = 0.05 (Dynarsky et al. 2007; Steenbergen-Hu and

Cooper 2014) to d = 1.08 (Dodds and Fletcher 2004), but

most hover between d = 0.40 and d = 0.80 (Kulik and

Fletcher 2015; Ma et al. 2014; Steenbergen-Hu and
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Cooper 2013; VanLehn 2011). A reasonable meta-meta

estimate from all of these meta-analyses is d = 0.60. This

performance is comparable to human tutoring, which

varies between d = 0.42 (Cohen et al. 1982) and d = .80

(VanLehn 2011), depending on the expertise of the tutor.

Human tutors have not varied greatly from ITSs in

direct comparisons between ITSs and trained human tu-

tors (Graesser 2016; Olney et al. 2012; VanLehn 2011;

VanLehn et al. 2007).

The subject matter being tutored limits the magnitude

of the learning gains from ITS. For example, it is difficult

to obtain high effect sizes for literacy and numeracy be-

cause these skills are ubiquitous in everyday life and

habits are automatized. In contrast, when the student

starts essentially from square one, effect sizes should be

more robust. As a notable example, the Digital Tutor

(Fletcher and Morrison 2012; Kulik and Fletcher 2015)

improved information technology knowledge by an ef-

fect size as high as d = 3.70 and d = 1.10 for skills. Such

large effect sizes would be unrealistic for basic literacy

and numeracy.

The US Department of Defense has historically played

a major role in funding efforts to develop ITS technolo-

gies (Chipman 2015). The DoD recognized the need to

develop training systems capable of promoting deeper

learning on STEM areas that could not be delivered reli-

ably within conventional learning environments. The Of-

fice of Naval Research (ONR) consistently supported

these research efforts for many decades. More recently,

the Army Research Laboratories spearheaded the

Generalized Intelligent Framework for Tutoring (Sot-

tilare et al. 2013; www.gifttutoring.org) to scale up

these systems for more widespread use. The Ad-

vanced Distributed Learning community (2016) has

promoted standards for developing and integrating

systems. The National Science Foundation (NSF) and

Institute for Education Sciences have supported ITSs

since the turn of the millennium, as exemplified by

the NSF-funded Pittsburgh Science of Learning Cen-

ter (Koedinger et al. 2012).

One of the persistent challenges with ITS is that it

takes a large amount of time and funding to develop

these systems and to tune their complex adaptive

models through iterative empirical testing. The field

has attempted, over many decades, to reduce the de-

velopment time and cost through authoring tools

(Murray et al. 2003; Sottilare et al. 2015). The ideal

vision is that an expert on a STEM topic, but without

advanced computer expertise, would be able to use

authoring tools to provide content on any particular

STEM topic and for the tools to generate a complete

and runnable ITS from the authored content alone.

Although progress in those efforts has resulted in

modest reductions in time and costs, the complex

intersection of content, pedagogical expertise, and

programming expertise that is needed to create an

ITS has continued to hinder major reductions in the

speed and costs of development.

With this context in mind, ONR launched the STEM

Challenge initiative for teams to develop and test an ITS

on any STEM topic in a limited amount of time

(18 months). From several dozen applications, four

teams were selected: The University of Memphis,

Arizona State University, BBN/Raytheon, and a collabor-

ation between the University of Massachusetts and

Worcester Polytechnic Institute. These teams reported

their findings and competed for another round of fund-

ing to focus on a Navy-relevant STEM area. The ONR

selected analog electronic circuits as the subject matter

for the second wave of funding. The University of

Memphis was selected to take the lead in developing an

ITS system on electronic circuits but with a view to de-

sign the system so that it would integrate electronics

content developed by the other teams. In essence, the

ITS would be an ensemble of ITSs developed by mul-

tiple teams on the same topic. Consequently, with The

University of Memphis serving as the lead, ElectronixTu-

tor was developed within 18 months, integrating intelli-

gent learning resources provided by all four teams—a

unique undertaking in the history of the ITS field.

We are currently collecting empirical data on Electro-

nixTutor, so empirical findings on learning gains and

usage patterns are not yet available. However, each of

the core components of ElectronixTutor has been em-

pirically validated across a number of studies, giving us

confidence in the efficacy of the system which encapsu-

lates them. There are two primary goals of this article.

First, we describe ElectronixTutor and the individual

ITS learning resources that form the system (i.e., those

developed by the four teams). Second, we review empir-

ical evidence for learning gains on STEM topics that

were developed by these teams and applied to the devel-

opment of ElectronixTutor.

Results

Overview of ElectronixTutor

ElectronixTutor focuses on Apprentice Technician

Training courses in electronics for Navy trainees

who have completed boot camp and are in the

process of A-school training conducted by the Navy

Educational Training Command. These individuals

have above-average scores in the Armed Services

Vocational Aptitude Battery, so they have the cognitive

capacity to learn electronics. They currently take courses

led by a human instructor in a traditional classroom

that includes lectures, reading materials, hands-on

exercises with circuit boards, and occasional access to

human tutors. An instructor typically teaches 25 sailors at
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a time for 8 h a day for 8 to 12 weeks. ElectronixTu-

tor aims to supplement the classroom instruction

with advanced learning environments (ITS and other

forms of adaptive learning technologies) that can help

the sailors achieve the instructional objectives more

efficiently.

Learning resources

ElectronixTutor integrates many learning resources

into one system. Some of the learning resources are

based on research in ITSs, whereas others are conven-

tional resources that are not adaptive to the learner’s

idiosyncratic profile of knowledge, skills, and abilities

but can be orchestrated by ElectronixTutor for a more

adaptive experience. We first discuss the ITS-based

learning resources, which are reviewed here in brief;

these are discussed in more detail in subsequent sec-

tions, including empirical evidence for their influence

on learning gains.

AutoTutor has the option for one or two conversa-

tional agents (i.e., computer-generated talking heads) to

promote verbal reasoning, question answering, concep-

tual understanding, and natural language interaction

(Graesser 2016; Graesser et al. 2014; Nye et al. 2014a,

2014b). Deep questions (e.g., “why?,” “how?,” and “what

if”; Graesser and Person 1994) are asked by a tutor

agent, followed by a multi-turn conversation that is

adaptive based on the quality of the student’s responses.

The main questions range from broad questions that re-

quire several ideas in the answer to more focused ques-

tions that address a specific idea. The University of

Memphis took the lead on developing AutoTutor.

Dragoon has a mental model construction and simula-

tion environment (VanLehn et al. 2016a, 2016b; Wetzel

et al. 2016). The Dragoon system provides instructional

support to help the student construct mental models of

circuits with nodes and relations. The student can click

on circuit elements and see how changing their values

affects the system as a whole. Arizona State University

took the lead in developing the Dragoon ITS.

LearnForm is a general learning platform that is

used for the creation and delivery of learning tasks

that require problem-solving. A problem (learning

task) consists of a student being presented with a

problem statement, multiple-choice questions, feed-

back, and finally a summary of a correct answer. The

student is free to select the problems to work on, so

the system allows self-regulated learning. However, in

ElectronixTutor, the problems are systematically

assigned under specific conditions that reflect intelli-

gent task selection. Raytheon/BBN took the lead on

developing the LearnForm problems.

ASSISTments is a platform for developing subject mat-

ter content, assessment materials, and other learning

technologies on the web (Heffernan and Heffernan

2014). ASSISTments played an early role in integrating

the learning resources because it had an organized learn-

ing management system for incorporating viewpoints

from teachers, students, and resource developers. The

major ITS component is “skill building” on the math-

ematics of Ohm’s and Kirchhoff ’s laws, which are fun-

damental to electronics reasoning. Worcester

Polytechnic Institute took the lead on ASSISTments

and skill building.

BEETLE-II is a conversation-based ITS that was previ-

ously funded by the ONR on basic electricity and elec-

tronics (Dzikovska et al. 2014). BEETLE-II was pitched

at a basic, lower-level understanding of circuits, such as

open and closed circuits, voltage, and using voltage to

find a circuit fault. BEETLE-II improved learning, but it

was at the macro-level of discourse and pedagogy rather

than the micro-level language adaptation. Therefore, the

curriculum and macro-discourse level was incorporated

into ElectronixTutor. The Naval Air Warfare Center

Training Systems Division provided this content.

A number of conventional learning resources were in-

cluded in ElectronixTutor in addition to these intelli-

gent, adaptive, and well-crafted ITS learning resources.

The conventional resources are not adaptive, but they

are under the complete control of the student when

studying the material. Thus, they can be especially help-

ful for students who prefer the free selection and study

of materials (i.e., self-regulated learning).

Reading documents

ElectronixTutor includes ample traditional, static doc-

uments, including 5000 pages of the Navy Electronics

and Electricity Training Series (U.S. Navy 1998), the

Apprentice Technical Training (ATT) PowerPoints

used by the instructors, and an overview of major

electronics concepts that was prepared by the ASU

team.

Viewing videos

ElectronixTutor automatically presents specific video

lessons under various conditions or alternatively permits

the student to voluntarily access the material. Some of

these videos instruct the students on subject matter con-

tent but others train the students on using the learning

resources.

Asking questions and receiving answers through Point &

Query

In the AutoTutor system, each main question is accom-

panied by a figure, and each figure may contain one or

more “hot spots.” When the trainee clicks on a hot spot,

a menu of questions appears, the trainee selects a ques-

tion from the menu, and the answer is presented.
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Although students tend to ask few questions in the

classroom and tutoring environments (Graesser and Per-

son 1994; Graesser et al. 2005), the nature of the ques-

tions being asked is diagnostic of student understanding

(Graesser and Olde 2003). Point & Query has been

shown to increase the frequency and diversity of ques-

tions (Graesser et al. 2005).

The above learning resources are designed to accom-

modate particular learner profiles. The broad AutoTutor

questions and mental model constructions of Dragoon

are ideal for students at higher levels of mastery. The

skill builders, BEETLE, Point & Query, readings, and

videos target students at lower levels of mastery. The

focused AutoTutor questions and LearnForm multiple-

choice questions are ideal for intermediate states of

mastery. These particular learning resources are or-

chestrated and recommended by ElectronixTutor on

the basis of the student’s performance on tasks during

learning—not through any pretest. We further exam-

ine these recommendations later when we discuss the

Recommender System.

Topics and knowledge components

The ElectronixTutor team followed the Topic + Know-

ledge Component framework proposed by researchers at

the Pittsburgh Science of Learning Center (Koedinger

et al. 2012). This framework is a principled approach to

guiding recommendations on topics to be covered.

Sometimes, the course curriculum guides the recom-

mended topics, as reflected in a syllabus or day-by-day

outline of content covered. At the other end of the con-

tinuum, self-regulated learning is available, wherein the

students select the topics they want to cover in whatever

order they wish. In between, topics can be recom-

mended by an intelligent Recommender System that con-

siders the history of a student’s performance and

psychological attributes. For all of these approaches, an

organized set of subject matter topics and knowledge

components needs to be considered in the representa-

tion of the domain knowledge.

VanLehn at ASU prepared a document that covers the

following scope and sequence of topics based on the Navy

curriculum at A-school: circuit analysis, Ohm’s law, series

circuits, parallel circuits, PN junctions, diode limiters,

diode clampers, transistors, CE amplifiers, CC amplifiers,

CB amplifiers, multistage amplifiers, and push-pull ampli-

fiers. That being said, the Navy and individual instructors

may have different visions on the selection of topics and

the order of topics in the course. Such changes can be

made in the Course Calendar facility of ElectronixTutor.

A more fine-grained specification of electronic circuit

knowledge in ElectronixTutor consists of knowledge

components. A topic has an associated set of these

knowledge components (KCs). Each topic included at

least three KCs to cover the structure of the circuit (or

its physics, if the component is a primitive), its behavior,

and its function (i.e., what it is typically used for).

Example knowledge components for a transistor are CE

transistor behavior, CC transistor function, and CE

push-pull amplifier structure. The system is not strictly

hierarchical because one KC can be linked to multiple

topics. Mastery of each KC is assessed by the various

learning resources. A particular learning resource may

or may not address a particular KC so there is only par-

tial overlap among learning resources in covering the

KCs. To the extent that learning resources overlap, we

are able to reconstruct, through data mining procedures,

which learning resource (LR) is best tailored to par-

ticular KCs for particular categories of learners (L).

This is essential for determining the right content to

present to the right learner at the right time, which is

one of the mantras of learning technologies. Conse-

quently, the KC × LR × L matrix was part of the task

analysis of ElectronixTutor.

As students work on problems, their performance

on topics and KCs is tracked and retained in a Learn-

ing Record Store. In essence, the Student Model (i.e.,

the cognitive and other psychological attributes con-

sidered by the ITS) consists of the data stored in the

Learning Record Store. Some of the content addresses

subject matter knowledge (i.e., topics and KCs), but

other content addresses generic characteristics that

range from verbal fluency to grit (i.e., persistence on

difficult tasks). Each of the intelligent learning re-

sources therefore needs to assess the student’s per-

formance on the relevant KCs associated with the

topics. Students attempt tasks and the performance

scores on each KC are recorded.

ElectronixTutor software architecture

The integration of the learning resources and Recom-

mender System experienced some changes throughout

the project when we leveraged an ongoing companion

project between USC, ASU, and Memphis called the

Personal Assistant for Life-Long Learning: PAL3

(Swartout et al. 2016). The design process for the

ElectronixTutor architecture required generalizable so-

lutions for integrating multiple pre-existing ITSs and

conventional learning resources into a coherent user

experience. In particular, this effort integrated learning

resources from AutoTutor, Dragoon, LearnForm, BEE-

TLE, ASSISTments, Point & Query, readings, and vid-

eos. Performance needed to be updated in the Student

Model and associated Learning Record Store. Recom-

mendations on the next learning resource and topic to

cover needed to be addressed, based on local and glo-

bal recommendations by ElectronixTutor. Integrating
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multiple asynchronous intelligent systems presented

serious challenges: (1) the system control is distributed

rather than governed by a single ITS, (2) different

learning resources provide and require different kinds

of information, and (3) data from different learning re-

sources need to influence actionable representations

for a Student Model and Recommender System.

Distributed system control: using SuperGLU for real-time

coordination

We leveraged the SuperGLU (Generalized Learning

Utilities) open-source framework as one approach to hand-

ling the problem of integrating and coordinating distributed

web-based systems in real time (Nye 2016). This framework

was designed with the purpose of integrating intelligent sys-

tems for real-time coordination, with the first application

integrating a commercial mathematics adaptive learning

system with AutoTutor (Nye et al. 2014a, 2014b). It is

beyond the scope of this article to cover the technical im-

plementation of SuperGLU in detail. However, one major

piece of functionality consisted of building a recommender

service that could call particular learning resources by ana-

lyzing features from the KC × LR × L matrix and the stu-

dent’s profile in the Learning Record Store. Moreover, the

framework accommodated a single page in a web browser

that communicated simultaneously with an average of four

different web servers when ElectronixTutor was running.

This configuration works as long as the communication is

stable among constituent parts.

Figure 1 shows a screenshot of ElectronixTutor dur-

ing an interaction with AutoTutor. It is the layout of

information on the screen that is important for the

present purposes rather than details of the content.

The left part of the window shows a list of topics to

be covered. The topic at the top is Today’s Topic that

is generated by the instructor’s Course Schedule.

Three Recommended Problems are next presented

based on tracking the long-term performance of the

individual student and also upcoming topics in the

curriculum. Finally, the total set of Course Topics is

listed that self-regulated learners can pursue.

The information in the main center-right area of the

display depends on the tab which is active on the ribbon

above it. Four different types of information can be dis-

played, depending on which tab is selected. The order of

tabs, from left to right is The initial welcome screen

(“Welcome Page”), a calendar of topics and resources

(“My Calendar”), performance scores that the learner

can view (“My Scores”), and a problem being worked on

(in this cause an AutoTutor problem). The My Calendar

tab displays a curriculum schedule for the topics and re-

sources; it serves as an alternate view for seeing how the

content on the left panel aligns with a course or personal

curriculum. In Fig. 1, the two AutoTutor conversational

agents appear in the context of a problem to be solved.

These two agents hold a conversation with the student

during the course of solving the problem, as will be de-

scribed in the "AutoTutor" section. When an activity is

completed, it reports a summary score and, optionally,

Fig. 1 ElectronixTutor user interface snapshot
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more fine-grained performance data such as hints, feed-

back, and other events.

In the My Scores tab, the student receives feedback

on how he or she is doing. A list of knowledge com-

ponents (KCs) and horizontal bars are presented that

indicate the student’s progress on each KC (ranging

from 0 to 1). These scores reflect performance on the

learning resources that contributed to the particular

KC. To accomplish this computation, each learning

resource needs to contribute a score (0 to 1) when-

ever a resource is recruited and involves the KC. The

current version of ElectronixTutor assigns an equal

weight to each KC and also each learning resource

(i.e., AutoTutor, Dragoon, LearnForm, ASSISTments)

that assesses the student’s performance on a particu-

lar KC. However, as data are collected from students,

the weights will be adjusted to fit outcome measures

that assess learning of the particular KCs. Eventually,

the overall KC score will be weighted average of op-

portunities for measurement and the learning re-

sources that contributed to the measurement;

alternatively, only the recent performance on a KC

will be scored to get an updated performance meas-

ure. Since our learning resources are of very different

types (conversation, simulation, multiple choice, etc.),

we cannot assume that all resources contribute to the

assessment equally. The Recommender System exam-

ines these performance scores and opportunity history

to suggest topics that have lower mastery or have not

been visited recently.

Each of the main topics has a topic “bundle,” which is a

conditional branching structure composed of various learn-

ing resources that cover that specific topic (along with the

associated KCs). In the initial prototype, ElectronixTutor

used ASSISTments to govern selection of learning re-

sources within a topic bundle. That is, ASSISTments pro-

vided “If-Then” functionality within a bundle to sequence

learning resources and tasks within a topic, based on per-

formance of the student on the specific topic and also pre-

vious measures in the Learning Record Store. The

conditional branching between different learning resources

within a topic is sensitive to the scores while tracking stu-

dent knowledge at the KC level and governs what learning

resources are presented at the local bundle level (as op-

posed to a more global level).

Below is an example local bundle template that illus-

trates conditional branching for a particular topic. Once

again, this local branching structure for one topic is

different from the global recommendations that are

delivered by the Recommender System (which is not

governed by a single topic).

(0)Read a succinct summary of a topic for as long as

the student wishes.

(1)Present a broad AutoTutor question that targets

multiple knowledge components (KCs) associated

with a topic.

(2)If the performance in #1 meets or exceeds a high

threshold, then assign a Dragoon problem.

(3)If the performance in #1 is below the high threshold,

then assign an AutoTutor knowledge check question

that targets a single KC.

(4)If the performance of #1 and #3 is above the

medium threshold, then assign the LearnForm

problems.

(5)If the performance of #1 and #3 is below the

medium threshold, then assign either the readings,

BEETLE, or the skill builder depending on the

psychological characteristics in the Learning Record

Store, such as verbal fluency, electronics knowledge,

and/or numeracy.

The above decision rules serve as an example of how

decisions are made within a bundle, but there are other

alternative models of local decision-making that will be

explored in the future.

An example illustrates the experience of a student

learning with ElectronixTutor. When the student is

assigned a topic (such as rectifiers), the student is

assigned a rectifier bundle of learning resources that be-

gins with a succinct summary description to be read.

After this initial reading about the topic, an AutoTutor

“Deep Reasoning” question is presented that assesses the

student on relevant KCs associated with the summary

description and topic bundle. This student may have a

strong understanding of several KCs within the topic but

lack comprehension on one of them. AutoTutor would

recognize this deficiency and respond accordingly, sug-

gesting that the student engage in an AutoTutor “Know-

ledge Component” problem that specifically targets that

missing KC. For example, one AutoTutor Knowledge

Component problem could ask the student “What is the

main function of a rectifier circuit?” and the student is

expected to provide the answer “It converts an AC signal

into a DC signal.” The AutoTutor conversation includes

hints and other questions to encourage the student to

express particular ideas, phrases, and words, as will be

discussed later.

Suppose the student fails to demonstrate proficiency

in answering the AutoTutor questions, the conditional

branching would suggest a different, low-level type of

learning resource, such as BEETLE-II or the NEETS

readings. This would hopefully help the student learn

the basic information. The student would subsequently

receive additional AutoTutor questions and branch to

the intermediate-level LearnForm questions, or ultim-

ately to the very challenging Dragoon problems.

Altogether, this single topic bundle could take an hour
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or even longer to the extent that the student struggles

with multiple KCs associated with the topic.

Recommender System

The Recommender System is a separate mechanism for

generating recommendations to the student on what to

do next. The Recommender System recommends topics

and learning resources based on the student’s past long-

term performance and psychological profile. The

Recommender provides three main functions: stu-

dent model estimates of learning, personalized rec-

ommendations for learning tasks to complete, and

the ability to store, retrieve, and modify a calendar

that schedules both topics and individual learning

tasks. In total, these capabilities give three ways for

a learner to consider a learning task: the overview

panel that lists all available tasks, the currently rec-

ommended resources, and the calendar of resources.

This redundancy was intentionally designed to serve

different pedagogical use cases. In a typical strictly

paced classroom environment, the overview and cal-

endar are expected to be central elements; the rec-

ommendations are expected to be used either during

designated class time or to support students who are

significantly ahead or behind the rest of the class.

On the converse, for self-regulated study, the recom-

mendations serve a more central role in helping

learners move through the material efficiently but

under their own control. In between these two ex-

tremes is the intelligent set of recommendations,

wherein the student can choose and thereby allow

some semblance of agency.

The high-level information flow for these capabil-

ities is shown in Fig. 2. Due to user data not yet

being available, each of these functions was imple-

mented based on heuristic metrics, but it will be

straightforward to substitute these models with more

complex models in the future. The student model

currently considers three types of features: perform-

ance scores reported by tasks, scaffolding support re-

ported by tasks, and time required to complete a

task. All of these features are derived from task ses-

sions that are constructed dynamically from the

learning records logged from the messages described

in the Appendix. Performance scores consider two

types of messages: Completed and KnowledgeCompo-

nentScore (i.e., a KC score). The Completed message

reports an overall performance on a task or topic,

which the student model by default assumes is the

performance on all KCs known to apply. The ITS

may modify raw KC scores for a task by the level of

support provided to the learner (more hints and

negative feedback reduce the score) and the amount

of time spent to achieve that score (time after a cer-

tain threshold incurs a small penalty). If the ITS

sends a KnowledgeComponentScore during the same

session for that task, it will update any previous

scores for that task and relevant resource. Across

different sessions of tasks, student model estimates

for each KC are currently calculated using a simple

exponential moving average of scores that weights

recent experiences higher than earlier experiences.

The Recommender System ranks learning tasks

that the student should attempt based on the Stu-

dent Model and a novelty calculation. From the Rec-

ommender’s standpoint, the student model provides

scores for each KC between 0 and 1, representing

mastery of the student’s knowledge of that skill or

information. At present, because the model is antici-

pated to help remediate weaknesses in learner know-

ledge, resources are scored based on their potential

average learning gain (e.g., the amount their KCs

could improve if they performed perfectly on that

resource). Novelty is determined by an exponential

Fig. 2 Integrating student model estimates and learning task recommendations
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decay function of the number of attempts on each

resource, so that the Recommender prefers suggest-

ing new resources more than re-attempting others.

Finally, some functionality was designed for the Rec-

ommender to consider the curriculum calendar and

current topics the student was recently studying.

However, this functionality is shown in italics be-

cause it is not used in the current prototype that

generates recommendations.

Intelligent tutoring system learning resources

This section describes each of the learning resources

in greater detail, including available evidence that the

ITS mechanisms promote learning gains. The empir-

ical findings refer to previously developed systems

that have been tested on various STEM subject mat-

ters (as opposed to the content of ElectronixTutor).

However, learning gains are expected in ElectronixTu-

tor, given the successes of these ITSs on previous

STEM subject matters.

AutoTutor

AutoTutor helps students learn through conversa-

tional agents that communicate with the students in

natural language and thereby co-constructs answers

to questions or solutions to problems. These con-

structive and interactive activities in natural language

encourage deeper comprehension according to par-

ticular principles of learning. Empirical evidence sup-

ports the claim that AutoTutor and similar computer

tutors with natural language dialog yield learning

gains comparable to trained human tutors on STEM

subject matters, with effect sizes averaging d = 0.8,

ranging from of 0.3 to 2.0 (Graesser 2016; Kopp et al.

2012; Nye et al. 2014a, 2014b; Olney et al. 2012; Rus

et al. 2013; VanLehn 2011; VanLehn et al. 2007).

Sometimes it is better to have two conversational

agents, namely a tutor agent and a peer agent, in what is

called a trialogue (Graesser et al. 2014). The student can

observe the tutor agent and peer agent interact to model

good behavior, which is sometimes helpful for students

with low knowledge and skills. The more advanced stu-

dent can attempt to teach the peer agent, with the tutor

agent stepping in as needed. The two agents can dis-

agree with each other and thereby stimulate cognitive

disequilibrium, productive confusion, and deeper learn-

ing (D’Mello et al. 2014). Trialogues were implemented

in the original STEM Challenge grant in the area of alge-

bra with an ITS called ALEKS (Falmagne et al. 2013).

Trialogues are also used in ElectronixTutor.

AutoTutor presents problems to solve and difficult

questions to answer that require reasoning and that

cover one to seven sentence-like conceptual expressions

(e.g., semantic propositions, claims, main clauses) in an

ideal response. The human and agents co-construct a

solution or answer by multiple conversational turns. It

may take a dozen to a hundred conversational turns

back and forth to solve a problem or answer a difficult

question. AutoTutor also has a talking head that speaks,

gestures, and exhibits facial expressions.

It is beyond the scope of this article to describe the

mechanisms of AutoTutor in detail (see Graesser 2016;

Nye et al. 2014a, 2014b). However, an important feature

is a systematic conversational mechanism called expect-

ation and misconception-tailored (EMT) dialog (or tria-

logue). A list of expectations (anticipated good answers,

steps in a procedure) and a list of anticipated misconcep-

tions (bad answers, incorrect beliefs, errors, bugs) are as-

sociated with each task. As the students articulate their

answers over multiple conversational turns, the contents

of their contributions are compared with the expecta-

tions and misconceptions. Students rarely articulate a

complete answer in the first conversational turn, but ra-

ther, their answers are spread out over many turns as

the tutor generates hints and other conversational moves

to enable the students to express what they know. The

students’ answers within each turn are typically short

(one to two speech acts on average), vague, ungrammat-

ical, and not semantically well-formed. AutoTutor com-

pares the students’ content to expectations and

misconceptions through pattern-matching processes

with semantic evaluation mechanisms motivated by re-

search in computational linguistics (Rus et al. 2012).

Rather than simply lecturing to the student, the

tutor provides scaffolding for the student to articulate

the expectations through a number of dialog moves.

A pump is a generic expression to get the student to

provide more information, such as “What else?” or

“Tell me more.” Hints and prompts are selected by

the tutor to get the student to articulate missing con-

tent words, phrases, and propositions. A hint tries to

get the student to express a lengthy constituent (e.g.,

proposition, clause, sentence), whereas a prompt is a

question that tries to get the student to express a sin-

gle word or phrase. The tutor generates an assertion

if the student fails to express the expectation after

multiple hints and prompts. AutoTutor provides a

cycle of pump → hint → prompt → assertion for

each expectation until the expectation is covered. As

the student and tutor express information over many

turns, the list of expectations is eventually covered

and the main task is completed.

The student sometimes articulates misconceptions dur-

ing the multi-turn tutorial dialog. When the student con-

tent has a high match to a misconception, AutoTutor

acknowledges the error and provides correct information.

Figure 3 shows a screenshot of the main parts of the

AutoTutor ITS within ElectronixTutor. The tutor and
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peer agent appear in the upper right. The main question

asked by the tutor agent is printed in the upper left in

addition to the tutor agent asking the question: “How

does a common-base transistor attenuate current rather

than amplify it?” A picture of a circuit is displayed in the

lower left and the chat interaction is shown in the lower

right of the screenshot. The chat facility shows the tria-

logue history plus an area where the human types in text

(“Enter text here.”).

The trialogue attempts to get the student to

express a number of expectations when the main

question is asked. Below are some of the expecta-

tions and misconceptions for this question “How

does a common-base transistor attenuate current ra-

ther than amplify it?”

E1: The emitter current is greater than any other

current in a common-base transistor.

E2: The current gain of a common-base transistor is

less than one.

M1: The emitter current is lower than any other

current in a common-base transistor.

M2: The current gain of a common-base amplifier is

greater than one.

As the trialogue conversation proceeds, AutoTutor

matches the student contributions to these expectations

and misconceptions. This is possible because of ad-

vances in computational linguistics (Jurafsky and Martin

2008; McCarthy and Boonthum-Denecke 2012) and stat-

istical representations of world knowledge and discourse

meaning, such as latent semantic analysis (Landauer

et al. 2007). Indeed, the accuracy of these matches in

AutoTutor is almost as reliable as trained human anno-

tators (Cai et al. 2011). In order to handle misspellings

and the scruffiness of natural language, the content of

the expectations are represented as regular expressions

as well as vector representations. For example, the fol-

lowing regular expression attempts to capture the phrase

“less than one” in E2:

\b(less|bott?[ou]m|decrea\w*|drop\w*|almos\w*|dip\w*|

end\w*|low\w*|near\w*|small\w*|few\w*)\b, \b(on\w*?|1

|unity)\b

Synonyms are provided for words and the first few let-

ters of a word are sufficient for determining a match.

As discussed, AutoTutor attempts to get the student

to articulate the expectations. Students are notoriously

incomplete in articulating answers so AutoTutor agents

provide pumps, hints, and prompts to encourage the

student to articulate the content. For example, some of

the hints and prompts for expectation E2 would be

“What is the current gain of the transistor?”, “The

current gain of the common-base transistor is less than

what?”, and “What is less than one in the common-base

transistor?” The selection of the hints and prompts

attempts to elicit missing words and phrases in the ex-

pectation and thereby achieve pattern completion.

The primary pedagogical goal of AutoTutor is to en-

courage the student to verbally articulate content and

steps in reasoning during the course of answering

Fig. 3 AutoTutor screenshot in ElectronixTutor
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challenging questions or solving challenging problems.

The desired content is captured in expectations. These

expectations in turn are mapped onto the knowledge

components (KCs) discussed earlier (Koedinger et al.

2012). There is also a non-hierarchical mapping (many-

to-many) between the KCs and the main topics. The

KCs and topics unite the curriculum and all of the learn-

ing resources in ElectronixTutor. Although AutoTutor

measures mastery of KCs and topics through natural lan-

guage in ElectronixTutor, AutoTutor also has the capacity

to accommodate student actions that involve clicking,

dragging, dropping, toggling, and even interactions in

virtual worlds (Cai et al. 2015; Zapata-Rivera et al.

2015). In fact, simple clicks were emphasized in a

project that helps struggling adult readers who have

minimal abilities to type in written responses (Graesser

et al. 2016).

Dragoon

Dragoon is based on the hypothesis that a good way to

understand a system is to construct a model of it, a hy-

pothesis with considerable empirical support (VanLehn

2013). Moreover, constructing a model is not only a

means to an end, namely understanding a system thor-

oughly, but also an end in itself, namely a cognitive skill

that STEM learners should acquire. Modeling is one of

only eight focal practices endorsed by the Next Gener-

ation Science Standards (NGSS 2013). Although “model”

can refer to many things (Collins and Ferguson 1993),

models consisting of equations are especially common

and useful in science and engineering. Thus, Dragoon

focuses on such mathematical models.

Dragoon supports modeling of both dynamic and

static systems. A system is dynamic if it changes over

time and static if it does not. For instance, a circuit

with a battery and a light bulb is a static system

because the voltage and current do not change. Con-

versely, a circuit with a resistor and a charged capaci-

tor in series is a dynamic system because the current

starts high and gradually decreases as the capacitor

discharges through the resistor.

Mathematical models of dynamic systems are often

expressed as sets of differential equations, whereas

mathematical models of static system are expressed as

sets of algebraic equations. A model of the battery-bulb

circuit is V = I × R, where V is the battery voltage, I is

the current around the circuit, and R is the resistance of

the bulb. A model of the resistor-capacitor circuit is dV/

dt = − 1 × V/RC, where V is the voltage across the cap-

acitor, C is the capacitance of the capacitor, and R is the

resistance of the resistor.

In university courses on electrical engineering, stu-

dents gradually become skilled at constructing mathem-

atical models of circuits as they work through hundreds

of problems. This skill serves them well when they need

to understand or design new circuits. However, most

other people who need to understand circuits, including

the students to be taught by ElectronixTutor, lack such

skills in mathematical model construction. Indeed, many

people are frustrated even by algebra word problems

that can be solved by constructing a mathematical

model. In general, it seems doubtful that everyday

people, with weak model construction skills, could use

mathematical model construction as a method for un-

derstanding natural and engineered systems.

The challenge for Dragoon is to make it easy for or-

dinary people to construct mathematical models that

they can use as a way to understand natural and engi-

neered systems. In particular, Dragoon’s role in Electro-

nixTutor is to help Navy personnel understand analog

electronic circuits.

Figure 4 shows a Dragoon screen. On the left is a

problem, which is to construct a model of a simple but

realistic resistor-capacitor circuit. On the right are nodes

and links that comprise a model of the circuit. Instead of

equations, Dragoon has a graphical notation similar to

the stock-and-flow notation used by Stella (Doerr 1996),

Vensim (VentanaSystems 2015), Powersim (PowerSim

2015), and other dynamic systems modeling environ-

ments. In Dragoon, circular nodes represent simple

mathematical functions (e.g., the “I thru resistor” is

“voltage across resistor” divided by “R of resistor”).

Diamond-shaped nodes represent parameters, which are

constants whose values can be changed by the user.

Square nodes represent accumulators, which integrate

(sum up) their inputs over time (e.g., “voltage across

capacitor” starts at zero volts and adds in the value

of “change in voltage across capacitor” at each milli-

second). Dragoon has an editor for creating nodes,

entering their mathematical definitions, and describ-

ing them in natural language.

When the user clicks on a Graph button, Dragoon dis-

plays graphs of the nodes’ values over time (see Fig. 5).

Every parameter has a slider for changing its value

(shown in the right panel), and the changes are reflected

instantly in the graphs of the values of the non-

parameters (shown in the left panel).

What has been described so far is just the typical

model construction system: an editor for constructing a

model and displaying its predictions. When Dragoon is

in author mode, those are its main functions. When in

student mode, Dragoon can provide four kinds of feed-

back as students construct a model:

1. Immediate feedback mode. Dragoon colors an

entry in the node editor green if its value

matches the corresponding value in the author’s

model and red otherwise. When too many
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mismatches have been made on an entry,

Dragoon provides the correct entry but colors

the node yellow. The yellow persists, which

discourages guessing.

2. Coached mode. Same as immediate feedback mode,

except that the students are required to follow a

problem-solving strategy that is known to enhance

learning (Chi and VanLehn 2010; Wetzel et al. 2016;

Zhang et al. 2014).

3. Delayed feedback mode. After students have

constructed a model, they receive feedback on

its predictions, which is presented by drawing

the students’ model predictions and the author’s

model prediction on the same graph.

Fig. 5 Graphs drawn by Dragoon

Fig. 4 The Dragoon model editor
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4. No feedback mode. Students receive no feedback.

However, Dragoon still compares their model to the

author’s model and updates its assessment of the

student’s competence.

Wetzel et al. (2016) provides more detail on how

Dragoon instructs students and how it works.

In addition to helping students construct a model,

Dragoon has three activities that help students under-

stand a model that has already been constructed by

“executing” it in different ways. These activities were

developed specifically for use in the ElectronixTutor and

have not yet been generalized to other task domains.

Figure 6 shows a numerical execution activity. The

student “executes” the model by selecting values for the

non-parameter nodes. This helps students practice recal-

ling the formulae inside the nodes.

Figure 7 shows an incremental execution activity. It

helps students obtain a qualitative understanding of the

circuit by propagating an upward or downward incre-

ment in a parameter’s value through the circuit. This

particular problem states that the “V across battery” is

constant and “R of the resistor” goes up. The student

should say that “V across the resistor” stays the same by

choosing “=” from a menu, but the student has instead

claimed that the voltage goes down, so Dragoon has

given immediate negative (red) feedback.

There is also a waveform activity. From a menu of

possible waveforms, the student selects the curve

that best approximates the behavior of a node’s value

over time.

Dragoon does not have a user manual nor does it re-

quire user interface training. Instead, when a feature be-

comes relevant for the first time, Dragoon pops up a

callout that explains the feature. It pops up such expla-

nations several times, with different wording each time,

and then stops. Thus, user interface training is embed-

ded in the users’ normal workflow.

Dragoon has been evaluated in several studies, but not

yet as part of the ElectronixTutor. In a college class on

system dynamics modeling (focused on teaching skill in

model construction), one half of the students were ran-

domly assigned to Dragoon and the other half used an

ordinary system dynamics editor to complete their

homework. Of the students who completed their home-

work, those who used Dragoon scored significantly

higher on the post-test than those in the control condi-

tion (VanLehn et al. 2016a, 2016b).

In contrast, a second set of studies focused on

using model construction to help students more

deeply understand specific naturally occurring systems

(VanLehn et al. 2016a, 2016b). All of the studies were

experiments, in that they compared high school clas-

ses using Dragoon to classes learning the same mater-

ial without Dragoon. The classes were taught by the

regular teachers. However, as small-scale studies that

randomly assigned classes instead of students, they

could not tightly control all sources of variation. The

first study produced null results, but it compared

learning across just one class period. The second

study in four high school science classes showed that

instruction based on an earlier version of Dragoon

cost only one extra class period (about 50 min) out

of four class periods and was more effective than the

same content taught without Dragoon. Dragoon was

more effective than the same content taught without

Dragoon in a third study in three more high school

science classes, where two Dragoon classes and one

non-Dragoon class met for the same number of class

periods. The effect sizes were moderately large on

both an open response test (d = 1.00) and a concept

mapping task (d = 0.49). These high school studies

suggest that Dragoon has at least partially succeeded

in its challenge, which is to make model construction

so easy that it can be used to help students more

deeply understand natural and engineered systems.

Dragoon is expected to help students learn analog

circuits by offering both practice and embedded

(“stealth”) assessment that enables the ElectronixTutor

to optimize the students’ practice time. Dragoon’s em-

bedded assessment (student modeling) for electronics

is based on fundamental schemas. Each schema pairs a

portion of a circuit with a portion of a Dragoon model.

For instance, the Ohm’s law schema pairs the resistor

with three nodes that implement Ohm’s law (“I thru

resistor,” “voltage across resistor,” and “R of resistor”).

Fig. 6 A Dragoon numerical execution activity
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When an author constructs a problem, the author in-

dicates which nodes go with which schema. When a

student is constructing a model or executing a model

incrementally, numerically, or as waveforms, Dragoon

keeps track of which nodes the student got right on

the first attempt. It converts that binary per-node

scoring into scores for the schemas and reports these

scores to the ElectronixTutor when the problem solv-

ing is finished. ElectronixTutor updates its profile of

the student and chooses a problem that addresses defi-

cits—schemas that the student has not yet mastered.

Our earlier studies have already shown that Dragoon

is sufficiently easy for high school and college students

to use so that they can both rapidly acquire skill in

model construction and more deeply understand specific

natural and engineered systems. When combined with

the intelligent task selection of the ElectronixTutor, it is

expected to help Navy ATT students learn electronics.

LearnForm

LearnForm is a learning platform developed by the

Raytheon/BBN team. It is a domain-independent on-

line learning platform that is used for the creation

and delivery of problem-solving-based learning tasks.

Students learn by solving problems such as the one

shown in Fig. 8. A problem starts out with the pres-

entation of the problem statement, shown on the left-

hand side of Fig. 8. Although the learning platform

supports other forms of responses, all problem state-

ments authored for our Electronics course use a

multiple-choice question format.

Fig. 7 A Dragoon incremental execution activity

Fig. 8 A problem-solving task on LearnForm
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Students are allowed to solve a given problem without

assistance or they can click on the help button, which

presents an expert’s decomposition of the problem into

a sequence of steps. The problem-solving interface al-

lows free navigation through the steps, i.e., the students

are not required to strictly follow the steps. They can

choose to skip the current step or revisit previous steps

as they find it necessary to help them solve the problem.

We consider this as a form of scaffolding achieved

through intuitive user interface design. Furthermore,

students are not forced to work through every element

of every step. Rather, they are allowed free explor-

ation of the problem’s solution to the extent allowed

by the pre-designed steps. Feedback is provided for

every problem-solving action, and help in the form of

hints is available upon request. The learning task con-

cludes when the student inputs the correct answer on

the problem statement.

The LearnForm problems available for ElectronixTutor

are organized in two different sections: basic circuits

and advanced circuits. The basic circuits section in-

cludes 46 problems. These were developed by two

teachers along with problems in other topics in a high

school-level physics course (e.g., electrostatics) that are

not part of the target curriculum of ElectronixTutor.

The basic circuit problems cover three types of resistor

circuits (series, parallel, and complex). An additional 16

problems included in the advanced circuits section were

developed by one electronics subject matter expert.

These problems introduce transistor- and diode-based

circuits, including diode limiters, diode clampers, and

five configurations of transistor-based amplifiers (com-

mon emitter, common collector, common base, push-

pull, and multi-stage).

The teachers as well as the subject matter expert used

the LearnForm workbench to author these problems.

The workbench comprises a WYSIWYG (What You

See is What You Get) editor that is used to compose

the problem statement and solution steps. From an

author’s perspective, statements and steps are fixed-

sized tiles. In a manner akin to presentation editing

software like PowerPoint and Keynote, these tiles are

blank canvases that can be populated with elements

like labels, images, text fields, combo-boxes, and op-

tion boxes that are available from a palette. The tiles

corresponding to solution steps are carefully de-

signed to guide the students through an ideal solu-

tion to the problem. The iterative authoring process

followed in the development of these problems em-

phasizes that the ideal sequence of steps is not the

one that offers the shortest or fastest solution but

one that exercises all of the necessary conceptual

knowledge and procedural skills along the way. The work-

bench also includes a tutor development tool that allows

authors to employ a programming-by-demonstration

technique without requiring a computer science or cogni-

tive science background. The authors can manually enrich

the tutors with text-based feedback and hint prompts.

ASSISTments

As discussed earlier, ASSISTments has played a system

integration role in coordinating learning resources

within topic bundles. However, ASSISTments also

played an important role in skill building for Ohm’s law

and Kirchhoff ’s law, which have a mathematical founda-

tion. It is difficult to reason about a circuit if one lacks

skill in rudimentary quantitative computations that in-

volve voltage, resistance, current, etc. The ASSISTments

research team at WPI took the lead on developing these

quantitative skill building modules.

ASSISTments (Heffernan and Heffernan 2014, https://

www.assistments.org/) allows teachers to create mate-

rials for mathematics (as well as other topics) to see how

well students perform and to interact with researchers

on possible improvements based on the science of learn-

ing. Authoring tools are available to guide the instruc-

tors in creating the materials. The Builder guides the

curriculum designer or teacher in creating lessons,

whereas the Teacher view shows performance of particu-

lar students on particular lessons, and the Student view

guides the students in completing tasks and viewing

feedback on their performance. These three perspectives

are extremely important for scaling up a system because

it accommodates the points of view of curriculum de-

signers, instructors, and students.

In 2015, ASSISTments was used by over 600 teachers

in 43 states and 12 countries, with students completing

over 10 million mathematics problems. Learning gains

are well-documented and explain the success in the sys-

tem being scaled up for widespread use. Rochelle et al.

(2016) reported that ASSISTments improved mathemat-

ics scores reliably with an effect size of d = 0.18, which

was larger than normal expectations of growth by 75%.

The Heffernans were invited by the White House in

December, 2016, to present their results (Heffernan and

Heffernan 2016).

BEETLE-II

BEETLE-II is an ITS funded by the Office of Naval Re-

search on basic electricity, electronics, and the funda-

mentals of circuits (Dzikovska et al. 2014). BEETLE-II

had a natural language dialog component, but its

strength was its macro-level discourse, which was tied to

pedagogical instruction strategies. That is, learning gains

were primarily explained by the selection of problems

and the discourse/pedagogy that guided the interaction

at the macro-level. For example, the major predictors of

learning gains consisted of the student predicting the
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behavior of a circuit, explaining why, observing what hap-

pens, and explaining discrepancies between prediction

and observation. ElectronixTutor included these curricu-

lar components and implemented them with ASSIST-

ments. The BEETLE-II materials were appropriate for

beginners who needed to understand series versus parallel

circuits, voltage, resistance, and other fundamental princi-

ples of simple circuits.

Point & Query

The Point & Query facility was used in conjunction

with the diagrams in the AutoTutor ITS. In this P&Q

facility, when the student clicks on a hot spot in the

diagram, a menu of questions appears, the student

selects a question from the menu, and the answer is

presented. For example, when the student clicks on a

common-base transistor icon, the questions would

include “What is a common-base transistor?” and “What

is the difference between a common-base and an emitter?”

The student selects a question and a short answer is pro-

vided. Computers cannot answer every question a student

voluntarily asks so this is an option for curious learners,

much like a frequently asked question facility.

The Point & Query component has been shown to

increase the frequency and depth of student question

asking when suitably engineered. Students ask a re-

markably small number of questions and a narrow

distribution of questions in most learning environ-

ments (Graesser and Person 1994) yet the nature of

the questions asked are diagnostic of student under-

standing (Graesser and Olde 2003; Person et al.

1994). Point & Query increases the frequency of

student questions in hypermedia environments by

one to two orders of magnitude compared to a

classroom. It increases the depth of questions (e.g.,

why, how, and what-if rather than who, what, when,

and where) when given suitable learning objectives

to create mental models of the subject matter

(Graesser et al. 1993).

Readings and videos

ElectronixTutor has a simplified summary version of

each of the topics for trainees to read at their own

pace. More in-depth technical material can be accessed

and read from the Navy Electricity and Electronics

Training Series (U.S. Navy 1998). PowerPoint presenta-

tions from ATT training and videos on how to use

Dragoon are also available. These learning resources

are either suggested as options by the Recommender

System or are available when a self-regulated learner

wishes to view them.

According to Chi’s interactive-constructive-active-

passive (ICAP) framework (Chi 2009; Chi and Wylie

2014), there are four modes of cognitive engagement

based on students’ overt behaviors. Learners engage

passively when they receive information without dem-

onstrating obvious behavior related to learning. They

engage actively when there is behavior that does not

go beyond the information presented (e.g., writing ver-

batim notes, underlining). They engage constructively

when behaviors involve generating ideas that go be-

yond the to-be-learned information, such as reasoning

and generating explanations. They engage interactively

through dialog with a person or digital system that

involves constructive activities, such as asking and

answering questions with a peer and defending a

position in an argument. Sometimes, it is necessary

for the student to read documents or view videos,

which are normally associated with passive learning

rather than active, constructive, and interactive learn-

ing resources. However, these learning resources can

be accompanied by more active forms of learning, as

in the case of note taking and drawing diagrams

(Chi and Wylie 2014).

Data analyses through LearnSphere

The data collected from ElectronixTutor is sizeable be-

cause it includes diverse learning resources, knowledge

components, and learners. The student model data and

history of the tutorial experiences are stored in the

Learning Record Repository. These data need to be an-

alyzed with statistical, mathematical, and computational

modeling that is performed by researchers at many in-

stitutions. To coordinate these data analyses, develop-

ment and efficacy data for the ElectronixTutor project

will be stored, shared, and analyzed with LearnSphere

(Stamper et al. 2016).

LearnSphere builds on the Pittsburgh Science of

Learning Center’s DataShop (Koedinger et al. 2010),

the world’s largest open repository of learning transac-

tion data, and MOOCdb (Veeramachaneni et al. 2013),

a database design and supporting framework created

to harness the vast amounts of data being generated

by Massively Open On-line Courses (MOOCs). Learn-

Sphere integrates existing and new educational data

infrastructures to offer a world-class repository of

education data. LearnSphere will enable new oppor-

tunities for learning scientists, course developers, and

instructors to better evaluate claims and perform data

mining. A standard set of analysis tools allows re-

searchers to readily perform quantitative analyses and

to observe workflows of fellow researchers. By using a

community-based tool repository, researchers will be

able to quickly build new models, create derivative

works, improve existing tools, and share their work

with their team and other teams.
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Conclusions
Next steps in assessing ElectronixTutor

Now that we have successfully integrated all of the dis-

tinct ITSs into a fully functional ElectronixTutor proto-

type, the teams are in the process of testing and revising

the system. Pilot testing has begun with engineering stu-

dents to provide user feedback. Numerous lay and pro-

fessional electrical engineering educators have examined

the system and provided extensive feedback. Plans are

underway for testing ElectronixTutor on engineering

students at the University of Memphis and Florida Insti-

tute of Technology to assess its impact on learning

gains, based on a test that assesses the learning of

approximately 80 knowledge components. ElectronixTu-

tor will be a supplement to the normal university

courses and possibly become part of the curriculum. We

plan on having ElectronixTutor available to sailors for

training in their classes by fall of 2018.

At this point, we have made principled decisions

on what learning resources to recommend to stu-

dents at the right time. These begin with a topic of

the day, guided by the curriculum calendar. Also

available are a small number of recommended topics

for consideration by the student, based on the global

history of the student’s performance on knowledge

components as well as other cognitive and non-

cognitive characteristics. For each topic, the learning

resources are locally organized by topic bundles that

assign learning resources adaptively based on the

student’s immediate performance on that topic. Elec-

tronixTutor also allows access to all of the topics

and learning resources for consideration for those

students who are self-regulated learners.

The above organization on ElectronixTutor will no

doubt need to be revised as data are collected on

performance and aptitude-treatment interactions. We

expect the more knowledgeable students to benefit

from the broad deep-reasoning questions of AutoTu-

tor and the mental model constructions of Dragoon.

Clearly, it would be beyond the beginning student’s

zone of proximal development to attempt these diffi-

cult problems. At the other end of the performance

distribution, the low-knowledge students will presum-

ably benefit from reading, the skill building tests of

ASSISTments, and the basic lessons on simple cir-

cuits provided by BEETLE-II. The knowledge check

questions of AutoTutor and the LearnForm problems

are suited to trainees with an intermediate level of

knowledge. These are principled assignments of learn-

ing resources that are based on student performance,

but it remains to be seen whether these principles are

confirmed by empirical data.

At this point, we are uncertain whether a given trainee

might benefit from one type of learning resource over

others and also whether some knowledge components

are best acquired by a particular learning resource. For

example, perhaps one trainee benefits most from the

verbal reasoning of AutoTutor but another trainee bene-

fits most from the visualizations of Dragoon. Although

evidence of learning styles is empirically questionable

(Pashler et al. 2008; Rohrer and Pashler 2012), perhaps

such tailored learning resources may pan out. Alterna-

tively, a mixture of learning principles may make sense,

following the principles of cognitive flexibility (Spiro

et al. 1992) and encoding variability (Bjork and Allen

1970). We plan to explore and discover such relation-

ships through data mining methodologies (Baker 2015),

followed by controlled experiments to test promising

trends.

The role of motivation and emotions is also ex-

pected to play an important role in the long-term

evolution of ElectronixTutor (see the micro-level

metrics in the Appendix). These motivational and

affective states can to some extent be identified by

the patterns and timing of conversation and human-

computer interaction in addition to facial expressions,

body posture, and other sensory channels that are

available to the ITS (D’Mello et al. 2009; D’Mello and

Graesser 2012). Algorithms are available for tracking

the extent to which the student has perseverance or

grit, which we consider a predominantly positive attri-

bute, but also incurs a potential cost of wheel spin-

ning (Beck and Gong 2013). Confusion is known to

have positive benefits when there is productive

thought (D’Mello et al. 2014), but protracted confu-

sion is undesirable. Boredom and disengagement are

of course incompatible with learning and should

prompt the ITS to change gears and present a differ-

ent topic or a different difficulty level. Frustration is

generally undesirable but might fuel sustained con-

centration by the most accomplished students. When

these various affective states are recognized by Elec-

tronixTutor, there needs to be principled ways for the

tutor to respond. Previous studies with AutoTutor

have indeed confirmed that learning can improve

when the system responds to the affective states of

the learner (D’Mello and Graesser 2012). However,

the field is in its infancy in discovering and testing

such interactions between affective states, mastery

levels, and tutoring strategies.

In closing, we consider it a milestone to integrate

multiple ITS learning resources in a single ElectronixTu-

tor system. It permits an eclectic strategic approach to

training students with idiosyncratic histories and psy-

chological characteristics. If one ITS module does not

work well, there are many others to try out. This is a

substantively different approach than forcing a single

ITS mechanism on everyone.
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Table 1 Inventory of ITS messages aggregated from ITS design teams

Learner performance messages
Completed User completed a learning task was completed

and a certain score (0–1) was returned.

KnowledgeComponentScore User demonstrated mastery of a specific
knowledge component on a task (0–1)

CompletedAllSteps User completed a certain percentage of all steps
of a task (0–1)

CompletedStep User completed a specific step of a task (0–1 for
quality of step)

AnswerSemanticMatch User’s answer matched the ideal to a certain
quality level (0–1)

Misconception User demonstrated a known misconception

Help messages

TaskSupport User received a certain overall level of help on a task (0–1)

TaskHelp User received some kind of help on a certain task step

TaskHint User received a hint on a certain task step

TaskFeedback User received feedback (positive, negative, or neutral) on a certain
step

TaskDecomposition User decomposed a task into subparts to complete (used only by
the LearnForm ITS)

TaskHelpCount Number of times user requested help in a session (summary, for
systems that cannot report individual events)

User interface communication messages

Presented Information was presented to the user by the system

SelectedOption User selected a given option in the system

SubmittedAnswer User submitted a certain answer (e.g., text, option choice)

System control messages

Loaded The task loaded successfully and is running

Heartbeat The task is still running and has not frozen or otherwise stopped

Micro-level metrics messages

WordsPerSecond System estimated user input text as a given words per second

ActionsPerSecond System estimated user input actions per second

Persistence System estimated persistence on a given task

Impetuousness System estimated impetuousness (e.g., guessing) on a task

GamingTheSystem System estimated gaming the system on a task

WheelSpinning System estimated wheel spinning on a given task

Confusion System estimated user confusion on a given task

Disengagement System estimated user disengagement on a given task

Appendix
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