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  Introduction

  Parkinson’s disease is a neurodegenerative movement 
disorder characterized by the progressive loss of dopami-
nergic neurons in substantia nigra pars compacta  [1] . The 
globus pallidus represents a key structure in the basal 
ganglia. There is evidence supporting the involvement of 
the globus pallidus in both normal motor function and 
movement disorders including Parkinson’s disease. For 
example, previous electrophysiological studies have 
shown that the firing rate of the globus pallidus neurons 
decreased in parkinsonian patients and non-human pri-
mates (macaque)  [2, 3] . Consistently, the average neuro-
nal discharge rate decreased in globus pallidus of 1-meth-
yl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated 
monkeys. In addition to the change of firing rate, MPTP 
treatment tended to induce pallidal neurons to discharge 
in oscillatory bursts  [4] . The conventional anatomical 
models  [5]  have been applied to explain the abnormal hy-
poactivity of globus pallidus neurons, through the indi-
rect pathway, leading to akinesia and hypokinetic symp-
toms of Parkinson’s disease  [6, 7] . Furthermore, the oscil-
latory bursts firing induced by the absence of normal 
dopaminergic innervation is related to the symptoms of 
parkinsonian tremor  [8–11] .

  Neurotensin, first isolated by Carraway and Leeman 
 [12] , is an endogenous tridecapeptide that behaves as a 
neurotransmitter or neuromodulator in the central ner-
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  Abstract

  The globus pallidus is a nucleus in the indirect pathway of 
the basal ganglia circuits. Neurotensin has been reported to 
play an important role in the central nervous system. Func-
tional study revealed that systemic administration of neuro-
tensin produced antiparkinsonian effects. The aim of the 
present study was to investigate the effects of neurotensin 
on the firing rate of globus pallidus neurons in 6-hydroxydo-
pamine-lesioned parkinsonian rats. Micropressure ejection 
of neurotensin increased the spontaneous firing rate of glo-
bus pallidus neurons on both lesioned and unlesioned sides. 
Furthermore, the neurotensin-induced increase in firing rate 
on the unlesioned side (95.9%) was stronger than that on the 
lesioned side (37.3%). The neurotensin receptor antagonist, 
SR48692, prevented neurotensin-induced increase in firing 
rate. Based on the excitatory effects of neurotensin in globus 
pallidus of parkinsonian rats, we hypothesize that the palli-
dal neurotensinergic system may be involved in its possible 
therapy in Parkinson’s disease.
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vous system  [13] . Three neurotensin receptors have been 
identified, neurotensin type-1, type-2 and type-3 recep-
tor (NTS3/sortilin)  [14–16] . Morphological studies have 
revealed that the globus pallidus expresses both neuro-
tensin type-1 and type-2 receptors  [17, 18] . Recently, 
Martorana et al.  [19]  reported that neurotensin type-1 
receptor is localized in both parvalbumin-positive and 
-negative globus pallidus neurons. The globus pallidus 
receives neurotensinergic innervation arising from the 
striatum  [20, 21] . Previous studies have indicated that 
the expression of neurotensin and neurotensin receptor 
in globus pallidus changed in Parkinson’s disease. In 6-
hydroxydopamine (6-OHDA)-treated rats and parkin-
sonian patients, an increase in neurotensin-immunore-
activity has been found in globus pallidus  [22, 23] . How-
ever, the expression of neurotensin receptors in globus 
pallidus decreased markedly in parkinsonian patients 
 [24, 25] . Recently, a functional study revealed that sys-
temic administration of a neurotensin analog, which 
can cross the blood-brain barrier, produced antiparkin-
sonian-like effects in 6-OHDA-treated rats  [26] . Our 
previous studies have described the electrophysiological 
effects of neurotensin on globus pallidus neurons of 
normal rat  [27, 28] . In the present study, single-unit re-
cordings were used to observe the effects of neurotensin 
on neuronal activity of globus pallidus neurons in 6-
OHDA-lesioned parkinsonian rats.

  Materials and Methods

  Animals
  Experiments were performed according to the university 

guidelines on animal ethics. All efforts were made to minimize 
animal suffering and to reduce the number of animals used. Adult 
male Wistar rats (200–250 g) were individually housed with free 
access to food and water in a light- (12:   12 h light/dark cycle) and 
temperature- (22  8  1   °   C) controlled room.

  6-OHDA Lesion
  Rats were deeply anesthetized with chloral hydrate (400 mg/

kg, i.p.) and gently placed in a stereotaxic frame (Narishige SN-3, 
Tokyo, Japan). The skull was then exposed and a burr hole was 
drilled. A cranial burr hole (1 mm) was drilled into the skull over 
the injection site, and a microsyringe was lowered into the me-
dial forebrain bundle: 3.2 mm posterior, 1.5 mm lateral to the 
bregma, 8.4 mm ventral to the skull surface  [29] . A total dose of 
14.5  � g 6-OHDA hydrochloride (H4381; Sigma, St. Louis, Mo., 
USA) in 4  � l sterile saline containing 0.01% ascorbic acid was then 
injected into the right medial forebrain bundle at a rate of 1.0  � l/
min. The microsyringe was allowed to rest for 10 min to prevent 
backflow of the toxin. Rats were pretreated 30 min before the 6-
OHDA infusion with 25 mg/kg desipramine to protect noradren-
ergic projections.

  Rotational Behavior Tests
  Behavioral testing was performed 14 days after the injection 

of 6-OHDA treatments, the rats were injected subcutaneously 
with 0.2 mg/kg apomorphine hydrochloride (A4393; Sigma) dis-
solved in 0.1% ascorbate saline solution. The numbers of contra-
lateral turns were counted from the videotape. The lesion was 
considered successful in those animals that made at least 210 net 
contralateral rotations in 30 min.

  Extracellular Single Unit Recordings
  On the day of electrophysiological recordings, rats were deep-

ly anesthetized with urethane (1 g/kg, i.p.) and placed in a stereo-
taxic apparatus (Narishige SN-3). An incision was made in the 
scalp, the skull exposed, and a burr hole drilled in the skull. Rec-
tal temperature was maintained at 36–38   °   C by a heated pad.

  Three-barrel microelectrodes were fastened at each end with 
metal tubing and prepared using a Stoelting pipette puller (Stoelt-
ing Co., Wood Dale, Ill., USA). The tips of microelectrodes were 
broken to 3–10  � m under a microscope. The resistance of micro-
electrodes ranged from 10–20 M � . The recording electrode was 
filled with 0.5  M  sodium acetate containing 2% pontamine sky 
blue dye. The other two micropressure ejection barrels connected 
to a 4-channel pressure ejector (PM2000B; Micro Data Instru-
ment, South Plainfield, N.J., USA). The two micropressure ejec-
tion barrels respectively contained neurotensin and vehicle (nor-
mal saline), SR48692 and vehicle (DMSO), SR48692 and SR48692 
with neurotensin or neurotensin and neurotensin with SR48692. 
The electrode was then placed into the globus pallidus with coor-
dinates of 0.8–1.2 mm posterior, 2.5–3.5 mm lateral from the breg-
ma, 5.5–7.2 mm vertical from the dura  [29] . Neurons were identi-
fied as pallidal on the basis of their location and electrophysiolog-
ical features. Drugs were ejected onto the surface of firing cells 
with short pulse gas pressure (1,500 ms, 5.0–15.0 psi).

  The recorded electrical signals were amplified by a microelec-
trode amplifier (MEZ-8201; Nihon Kohden, Tokyo, Japan) and 
displayed on a memory oscilloscope (VC-11; Nihon Kohden), 
while being fed to an audiomonitor. The amplified electrical sig-
nals were passed through low- and high-pass filters into a bioelec-
tricity signal analyzer and computer. Spike times were prepro-
cessed online and further analyzed offline using the program of 
Histogram Version 1.00 (Shanghai Medical University, Shanghai, 
China) for spike data analysis. The firing rates were recorded in 
1-s bins. Drug infusion was performed only once for each record-
ing and a period of 30 min at least was allowed to pass before an-
other recording in the same track.

  At least 5 min stable basal firing was collected from each neuron 
before drug ejection onto the globus pallidus. The frequency of 
basal firing was determined by the average frequency of 120-s base-
line data before drug administration. The maximal change of fre-
quency within 50 s following drug application was considered as 
drug effect. A change of at least 20% of basal firing rate during drug 
application was considered significant  [30] . Drug application was 
performed only once for each recording, and a period of 30 min 
was allowed to pass before another recording in the same track.

  Histology and Immunohistochemistry
  To verify the position of single unit recording, pontamine sky 

blue was ejected from the recording electrode tip by iontophoresis 
(10  � A, 20 min). The rats were then sacrificed by chloral hydrate 
(600 mg/kg, i.p.) and perfused with 4% paraformaldehyde solu-
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tion transcardially. The brains were dissected out and incubated 
in paraformaldehyde overnight. After that, the brains were frozen 
and sectioned to identify recording and microinjection sites un-
der light microscope.

  To determine the extent of nigral dopaminergic degeneration, 
rats receiving unilateral injection of 6-OHDA were examined for 
immunohistochemical staining of tyrosine hydroxylase. After 
perfusion, the brain containing the part of substantia nigra was 
removed from the cranium and fixed overnight. Tissues were 
fixed in 4% paraformaldehyde for 24 h and were dehydrated in a 
graded series of ethanol concentrations before paraffin embed-
ding. Coronal sections (5  � m) were made using a microtome and 
mounted on slides coated with 3-aminopropyltriethoxysilane 
and dried at 37   °   C for 24 h. The sections were deparaffinized and 
rehydrated. Endogenous peroxidase was quenched with 0.3% 
H 2 O 2  (30 min). After washing in distilled water (3  !  5 min), the 
sections were incubated with 5% normal goat serum for 1 h. This 
was followed by application of monoclonal anti-tyrosine hydrox-
ylase antibody (1:   5,000; Sigma) incubated overnight at 4   °   C. After 
washing in PBS (3  !  5 min), the sections were incubated with the 
biotinylated secondary antibody (1:   100) for 60 min, followed by 
washes with PBS (3  !  5 min). The immunoreactive sites were re-
vealed by incubation in 0.05% 3,3-diaminobenzidine tetrahydro-
chloride (DAB; Sigma) in 0.1  M  Tris buffer. The sections were then 
washed with tap water, dehydrated, cleared with xylene and cov-
erslipped using mountant. Quantification of cells under the mi-
croscope was done. The loss of tyrosine hydroxylase-positive neu-
rons on the lesioned side was more than 90% in the present study 
( fig. 1 ).

  Drugs and Statistics
  Neurotensin was obtained from Sigma. SR48692{2-[(1-(7-

chloro-4-quinolinyl)-5-2(2,6-dimethoxyphenyl)pyrazol-3-

yl)carbonylamino]-tricyclo(3.3.1.1.3.7)-decan-2-carboxylic acid} 
was kindly provided by Dr. Danielle Gully (Sanofi Recherche, 
Toulouse, France). 6-OHDA hydrochloride, apomorphine hydro-
chloride and monoclonal anti-tyrosine hydroxylase antibody 
were obtained from Sigma.

  The data are expressed as means  8  SDs. Paired t test was used 
to compare the difference of firing rate before and after treatment. 
Statistical comparisons between or among groups were deter-
mined with Student’s t test and one-way ANOVA. The level of 
significance was preset by using a p value of 0.05.

  Results

  All the neurons recorded in the present study showed 
a biphasic positive/negative waveform, which are charac-
terized as type II globus pallidus neurons  [31, 32] . In nor-
mal rats, the basal spontaneous firing rate of globus pal-
lidus neurons ranged from 3 to 40 Hz (13.6  8  7.2 Hz,
n = 21). Micropressure ejection of 0.1 m M  neurotensin 
significantly increased the spontaneous firing rate of pal-
lidal neurons in normal rats. In 11 out of 21 pallidal neu-
rons, 0.1 m M  neurotensin increased the firing rate from 
14.5  8  4.7 to 21.3  8  7.2 Hz (n = 11, p  !  0.001,  fig. 2 a). The 
average increase was 48.3  8  20.7%, which was signifi-
cantly different compared to that of vehicle (normal sa-
line) injection (basal: 14.8  8  4.4 Hz; vehicle: 15.1  8  4.2 
Hz; increase: 2.7  8  4.4%, n = 11, p  !  0.01 compared to 
neurotensin).

SNc
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  Fig. 1.  Immunostaining of tyrosine hy-
droxylase in rat substantia nigra pars com-
pacta in 6-OHDA-lesioned parkinsonian 
rats.  a  Low-magnification photomicro-
graph showing the immunostaining of ty-
rosine hydroxylase in substantia nigra 
pars compacta.  b ,  c  High-magnification 
photomicrograph of tyrosine hydroxylase 
in substantia nigra pars compacta of le-
sioned ( b ) and unlesioned ( c ) sides. Scale 
bars: ( a ) 0.5 mm, ( b ,  c ) 50  � m. 
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  Effects of Neurotensin on Spontaneous Firing of 
Globus Pallidus in 6-OHDA-Lesioned Rats
  To clarify the effects of neurotensin on globus pallidus 

neurons of 6-OHDA-lesioned parkinsonian rats, we 
monitored the spontaneous activity of 59 pallidal neu-
rons sampled from 15 parkinsonian rats. On the lesioned 
side, pallidal neurons discharged with a mean firing rate 
of 14.4  8  7.0 Hz (n = 30), which was not significantly dif-
ferent from that of normal rats (13.6  8  7.2 Hz, n = 21,
p  1  0.05). In 13 out of 30 pallidal neurons, 0.1 m M  neuro-
tensin increased the frequency of spontaneous firing 
from 11.1  8  6.7 to 15.1  8  8.7 Hz (p  !  0.001,  fig. 2 b). The 
average increase was 37.3  8  12.6%, which was significant-
ly different from that of vehicle (normal saline) in jection 

(basal: 11.1  8  6.6 Hz; vehicle: 11.5  8  7.0 Hz;  increase: 3.9 
 8  8.1%, n = 9, p  !  0.01 compared to neurotensin). There 
was no significant difference in neurotensin-induced ex-
citation of pallidal neurons between the lesioned side (37.3 
 8  12.6%, n = 13) of parkinsonian rats and that of normal 
rats (48.3  8  20.7%, n = 11, p  1  0.05). In another 17 neu-
rons, local administration of neurotensin had no signifi-
cant effect on the firing rate of pallidal neurons.

  On the unlesioned side, pallidal neurons discharged 
with a mean firing rate of 13.5  8  13.2 Hz (n = 29), which 
was not different from that of normal rats (13.6  8  7.2 Hz, 
n = 21, p  1  0.05). In 17 out of 29 pallidal neurons, 0.1 m M  
neurotensin increased the spontaneous firing from 11.3 
 8  9.4 to 20.2  8  14.7 Hz (p  !  0.001,  fig. 2 c). The average 
increase was 95.9  8  65.9%, which was significantly dif-
ferent compared to vehicle (normal saline) injection (bas-
al: 10.6  8  8.5 Hz; vehicle: 10.9  8  8.2 Hz, increase: 6.5  8  
9.2%, n = 10, p  !  0.001 compared to neurotensin). The 
increase in firing rate on the unlesioned side (95.9  8  
65.9%, n = 17) was much stronger than that on the le-
sioned side (37.3  8  12.6%, n = 13, p  !  0.01), as well as that 
in normal rats (48.3  8  20.7%, n = 11, p  !  0.05,  fig. 3 ). 
There was no correlation found between the rotational 
behavior in each rat, or the size of the lesion, and the ef-
fect of neurotensin on the unlesioned side of the brain.

  Consistent with the previous morphological study 
that neurotensin receptor was expressed in about 56% of 
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  Fig. 2.  Effects of intrapallidal micropressure ejection of neuroten-
sin on the spontaneous firing rate of globus pallidus neurons. 
Typical frequency histograms showing that neurotensin (0.1 m M ) 
increased the firing rate of pallidal neurons in normal rats ( a ), 
lesioned side ( b ) and unlesioned side ( c ) of 6-OHDA parkinsonian 
rats. NS = Normal saline. 
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  Fig. 3.  Comparison of neurotensin-induced increase in firing rate 
between 6-OHDA-lesioned rats and normal rats.  *  p  !  0.05,
 **  p  !  0.01, ns = not significant. 
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  Fig. 4.  Maps of recorded pallidal neurons 
with or without response to neurotensin.
 a  Maps of recorded neurons in normal rats 
with (black square, n = 11) or without 
(white circle, n = 10) response to neuroten-
sin.  b  Maps of recorded neurons in 6-
OHDA-lesioned rats with (black square, 
n = 30) or without response to neurotensin 
(white circle, n = 29). 
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globus pallidus neurons  [19] , the present data showed that 
neurotensin only increased the firing rate of a proportion 
of pallidal neurons.  Figure 4  showed the maps of record-
ed neurons with or without response to neurotensin in 
globus pallidus.

  Effects of SR48692 on Neurotensin-Induced Excitation
  The neurotensin receptor antagonist SR48692, which 

has a higher affinity for neurotensin type-1 receptor com-
pared to neurotensin type-2 receptor, was used in the 
present study. On the lesioned side, in 19 pallidal neu-
rons, 1 m M  SR48692 alone had no effect on firing rate 
(basal: 13.2  8  9.6 Hz; SR48692: 13.7  8  9.2 Hz; increase: 
6.1  8  12.2%, n = 19, p  1  0.05). In 12 neurons that then 
received SR48692 with neurotensin, the firing rate did 
not change significantly (basal: 13.1  8  10.5 Hz; neuro -
 tensin+SR48692: 14.3  8  12.0 Hz, p  1  0.05,  fig. 5 a). The 
average change of firing rate was 6.6  8  9.7%, which was 
significantly decreased compared to that of neurotensin 
alone (p  !  0.001). In a separate set of rats, administration 
of vehicle (DMSO) did not alter the spontaneous firing 
rate of pallidal neurons (basal: 16.6  8  8.9 Hz; vehicle: 
17.9  8  10.3 Hz; increase: 6.2  8  6.7%, n = 8, p  1  0.05).
On the unlesioned side, however, the effects of SR48692 
were different from those on the lesioned side. In 5 out
of 19 pallidal neurons, SR48692 decreased the spontane-
ous firing rate from 13.6  8  8.9 to 7.2  8  7.6 Hz. The aver-
age decrease was 48.3  8  26.8%. In 10 neurons, co-ejec-
tion of SR48692 with neurotensin did not alter the fir  -
 ing rate of pallidal neurons (basal: 13.7  8  8.6 Hz; 
neurotensin+SR48692: 14.5  8  9.3 Hz, p  1  0.05,  fig. 6 a). 
The average change was 5.1  8  8.5%, which was signifi-
cantly decreased compared to that of neurotensin alone 
(p  !  0.001). In the control group, administration of ve-
hicle (DMSO) did not alter the spontaneous firing rate of 
pallidal neurons (basal: 16.8  8  11.9 Hz; vehicle: 17.6  8  
12.7 Hz; increase: 4.6  8  5.1%, n = 6, p  1  0.05).

  Considering that only a proportion of pallidal neurons 
responded to neurotensin, we further performed another 
group of experiments to apply neurotensin first and then 
SR48692 with neurotensin. On the lesioned side, in 7 pal-
lidal neurons with response to micropressure ejection of 
0.1 m M  neurotensin (basal: 11.8  8  3.3 Hz; neurotensin: 
15.6  8  3.9 Hz; increase: 33.6  8  9.1%), co-ejection of neu-
rotensin with SR48692 did not change the firing rate sig-
nificantly (basal: 11.3  8  3.0 Hz; neurotensin+SR48692: 
12.0  8  3.3 Hz, p  1  0.05). The average change was 6.3  8  
7.3%, which was significantly decreased compared to that 
of neurotensin alone (33.6  8  9.1%, p  !  0.001,  fig. 5 b). On 
the unlesioned side, in 7 pallidal neurons with response to 

neurotensin (basal: 9.6  8  5.7 Hz; neurotensin: 17.3  8  11.2 
Hz; increase: 86.3  8  34.2%), co-ejection of neurotensin 
with SR48692 did not change the firing rate significantly 
(basal: 10.9  8  7.2 Hz; neurotensin+SR48692: 10.8  8  6.4 
Hz, p  1  0.05). The average change was 1.7  8  5.1%, which 
was significantly decreased compared to that of neuroten-
sin alone (86.3  8  34.2%, p  !  0.001,  fig. 6 b). In control ex-
periments, neurotensin was applied twice to another 
group of pallidal neurons. On the lesioned side, in 10 neu-
rons with response to neurotensin, neurotensin increased 
the firing rate by 40.0  8  11.8% (basal: 12.4  8  6.7 Hz; neu-
rotensin: 17.0  8  8.6 Hz, p  !  0.001) on the first time, and 
36.1  8  11.5% (basal: 13.1  8  6.9 Hz; neurotensin: 17.7  8  
9.0 Hz, p  !  0.001) on the second time (n = 10, p = 0.16 com-
pared to that on the first time,  fig. 5 c). On the unlesioned 
side, in 8 neurons with response to neurotensin, neuroten-
sin increased the firing rate by 98.0  8  63.3% (basal: 12.2 
 8  8.7 Hz; neurotensin: 22.0  8  14.4 Hz, p  !  0.001) on the 
first time, and 70.0  8  42.7% (basal: 12.4  8  8.0 Hz; 
 neurotensin: 20.3  8  13.1 Hz, p  !  0.001) on the second 
time (n = 8, p = 0.098 compared to that on the first time, 
 fig. 6 c).

  Discussion

  The present findings revealed that the spontaneous 
firing rate of globus pallidus neurons in 6-OHDA-le-
sioned rats did not change significantly compared to that 
in normal rats, which is in line with the previous studies 
that there was no significant difference in pallidal firing 
between nigral 6-OHDA-induced parkinsonian rats and 
normal rats  [33] . However, Chang et al.  [34]  have shown 
that unilateral 6-OHDA lesion decreased the spontane-
ous firing of globus pallidus neurons. Consistently, a de-
creased discharge rate of globus pallidus neurons was re-
ported in parkinsonian monkey  [4] . The anesthesia may 
play a potential role in this discrepancy on firing rate un-
der parkinsonian state. The decreased firing of globus 
pallidus neurons was performed in freely-moving rats or 
monkey  [4, 34] , while unchanged firing of globus pallidus 
neurons was collected in anesthetized animals  [33]  in-
cluding the present recording.

  Previous morphological evidence indicated a de-
creased neurotensin binding in the globus pallidus of 
parkinsonian patients  [25] . However, the present electro-
physiological recordings showed that neurotensin-induced 
excitation on the lesioned side was slightly, but not signifi-
cantly, decreased compared to that in normal rats, suggest-
ing no significantly functional loss of neurotensin receptor 
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in the globus pallidus of 6-OHDA parkinsonian rats. Fur-
thermore, the present study also showed that neurotensin 
exerted stronger excitatory effects in globus pallidus of the 
6-OHDA unlesioned side, which may suggest the compen-
sation in the globus pallidus of unlesioned side. The find-
ing was supported by some morphological evidence. For 
example, unilateral striatal lesions which destroyed a cer-
tain proportion of dopaminergic terminals in the lesioned 
striatum led to slight, but significant, increase of neuroten-
sin-binding site densities in the contralateral striatum  [35] . 
Furthermore, in bilateral 6-OHDA-lesioned rats, the num-

ber of neurotensin-binding sites was increased in the lat-
eral part of the prefrontal cortex  [36] . However, Masuo et 
al.  [37]  reported that there was no significant change of 
neurotensin receptors in the contralateral striatum and 
substantia nigra of 6-OHDA-lesioned rats, although the 
expression on contralateral striatum and substantia nigra 
was much higher than that on the lesioned side.

  Another finding of the present experiments was that 
SR48692 inhibited the spontaneous firing in some of
the pallidal neurons on the unlesioned side, which indi-
cated that endogenous neurotensinergic system may mod-
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  Fig. 5.  Effects of SR48692 on neurotensin-induced increase in fir-
ing rate of pallidal neurons of 6-OHDA-lesioned side.  a  In this 
cell, SR48692 alone had no effect on the spontaneous firing rate. 
Co-ejection of SR48692 with neurotensin did not alter the firing 
rate.  b  In this cell which was activated by neurotensin, co-ejection 
of SR48692 with neurotensin prevented neurotensin-induced ex-
citation.  c  In this cell, neurotensin was applied twice to the globus 
pallidus neuron with the same application interval as for the ex-
periments  a  and  b . 
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  Fig. 6.  Effects of SR48692 on neurotensin-induced excitation of 
pallidal neurons of 6-OHDA unlesioned side.  a  In this cell, 
SR48692 alone had no effect on the spontaneous firing rate. Co-
ejection of SR48692 with neurotensin did not alter the firing 
rate.  b  In this cell which was activated by neurotensin, co-ejec-
tion of SR48692 with neurotensin did not change the firing rate. 
 c  In this cell, neurotensin was applied twice to the globus palli-
dus neuron with the same application interval as for the experi-
ments  a  and  b . 
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