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ABSTRACT 31 

 The past few years have seen an increase in the use of encoding models to explain neural 32 

responses to natural speech. The goal of these models is to characterize how the human brain 33 

converts acoustic speech energy into different linguistic representations that enable everyday 34 

speech comprehension. For example, researchers have shown that electroencephalography 35 

(EEG) data can be modeled in terms of acoustic features of speech, such as its amplitude 36 

envelope or spectrogram, linguistic features such as phonemes and phoneme probability, and 37 

higher-level linguistic features like context-based word predictability. However, it is unclear how 38 

reliably EEG indices of these different speech representations reflect speech comprehension in 39 

different listening conditions. To address this, we recorded EEG from neurotypical adults who 40 

listened to segments of an audiobook in different levels of background noise. We modeled how 41 

their EEG responses reflected different acoustic and linguistic speech features and how this 42 

varied with speech comprehension across noise levels. In line with our hypothesis, EEG 43 

signatures of context-based word predictability and phonetic features were more closely 44 

correlated with behavioral measures of speech comprehension and percentage of words heard 45 

than EEG measures based on low-level acoustic features. EEG markers of the influence of top-46 

down, context-based prediction on bottom-up acoustic processing also correlated with behavior. 47 

These findings help characterize the relationship between brain and behavior by comprehensively 48 

linking hierarchical indices of neural speech processing to language comprehension metrics.  49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.30.534927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.30.534927
http://creativecommons.org/licenses/by-nc-nd/4.0/


SIGNIFICANCE STATEMENT 57 

Acoustic and linguistic features of speech have been shown to be consistently tracked by 58 

neural activity even in noisy conditions. However, it is unclear how signatures of low- and high-59 

level features covary with one another and relate to behavior across these listening conditions. 60 

Here, we find that categorical phonetic feature processing is more affected by noise than acoustic 61 

and word probability-based speech features. We also find that phonetic features and word 62 

probability-based features better correlate with measures of intelligibility and comprehension. 63 

These results extend our understanding of how various speech features are comparatively 64 

reflected in electrical brain activity and how they relate to perception in challenging listening 65 

conditions. 66 
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INTRODUCTION 83 

Given the importance of speech communication in human life, tremendous amounts of 84 

research have focused on characterizing the neurophysiology of language comprehension 85 

(Hickok 2015). This research has revealed a network of brain areas that are functionally 86 

specialized for processing different hierarchical levels of speech and language (Hickok and 87 

Poeppel 2007). For example, work has shown that low level acoustic and spectrotemporal 88 

features of speech are chiefly processed in early auditory cortex (de Heer et al. 2017), with various 89 

phonological features being processed in secondary areas like the superior temporal gyrus 90 

(Hamilton, Edwards, and Chang 2018; Mesgarani et al. 2014) and some prefrontal areas (Burton 91 

2009; de Heer et al. 2017), and meaning being represented across large areas of cortex (Huth et 92 

al. 2016; Anderson et al. 2017; Pereira et al. 2018). 93 

While much of the above knowledge has been obtained from functional neuroimaging and 94 

invasive recordings in neurosurgical patients, parallel efforts have been made to obtain 95 

noninvasive magneto- and electrophysiological (MEG/EEG) markers reflecting hierarchical 96 

speech features. This includes modeling how EEG and MEG track the amplitude envelope of 97 

natural speech (Lalor and Foxe 2010a) and how neural responses reflect the spectrotemporal (Di 98 

Liberto, O’Sullivan, and Lalor 2015; Daube, Ince, and Gross 2019), phonetic (Di Liberto, 99 

O’Sullivan, and Lalor 2015), phoneme-level probability (Di Liberto et al. 2019; Gwilliams et al. 100 

2020; Brodbeck, Hong, and Simon 2018), lexical (Heilbron et al. 2022), prosodic (Teoh, 101 

Cappelloni, and Lalor 2019), and semantic (Heilbron et al. 2022; Broderick et al. 2018) features 102 

of natural speech.  103 

Some advantages of EEG are that it is significantly cheaper and easier to use in applied 104 

research in different cohorts (Peck et al. 2021; Salisbury et al. 2002). Consequently, there has 105 

been considerable interest in exploring how different EEG markers of speech processing reflect 106 

speech intelligibility (Verschueren, Vanthornhout, and Francart 2021) and language 107 

comprehension (Broderick et al. 2022; Ahissar et al. 2001). Many of these studies altered the 108 
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intelligibility or comprehensibility of speech by adding background noise (Iotzov and Parra 2019) 109 

or by degrading the speech signal itself (Viswanathan et al. 2021). For example, some work has 110 

shown that cortical tracking of the speech envelope decreases as noise levels increase (Etard 111 

and Reichenbach 2019; Lesenfants et al. 2019; Vanthornhout et al. 2018; Zou et al. 2019), 112 

although others have suggested such tracking remains robust until the background noise is more 113 

than twice as loud as the speech it masks (Ding and Simon 2013). Meanwhile, experiments that 114 

have explored EEG indices of semantic processing appear to show a strong correlation with 115 

speech intelligibility and/or understanding (Broderick et al. 2018). Very few studies, however, have 116 

systematically explored how EEG indices of both low- and high-level speech processing covary 117 

across different levels of speech comprehension (Strauß et al. 2022; Yasmin et al. 2023). This is 118 

the goal of the present study. 119 

We explore how EEG markers of speech envelope, spectrogram, acoustic onsets, 120 

phonetic features, and lexical surprisal processing vary with subjective measures of the 121 

percentage of words heard (as a proxy for intelligibility) and objective measures of comprehension 122 

across different background noise conditions. We hypothesize that EEG measures of higher-level 123 

processing (e.g., lexical surprisal and phonetic features) will more strongly correlate with behavior 124 

than lower-level measures (e.g., envelope tracking). We also test how listeners exploit linguistic 125 

context to process noisy speech and how that effect might manifest in EEG. Here, we leverage a 126 

recently introduced measure of predictive speech perception that quantifies how the tracking of 127 

low-level speech features varies as a function of the context-based semantic content of that 128 

speech (Broderick, Anderson, and Lalor 2019), but this time using lexical surprisal. We 129 

hypothesize that this measure strengthens for speech in moderate levels of noise (when speech 130 

is still intelligible) relative to speech in quiet, before falling off at high levels of background noise 131 

(when speech is no longer intelligible). With this study we seek to extend our understanding of 132 

the hierarchical processing of continuous speech under a range of realistic listening conditions. 133 

 134 
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METHODS 135 

Participants 136 

 28 healthy adults (9 males, 18-35 years old) participated in this study. One subject was 137 

excluded due to an insufficient amount of data and two were excluded due to technical issues, 138 

resulting in a dataset of 25 participants. Each participant provided written informed consent and 139 

reported having normal hearing, normal or corrected-to-normal vision, English as their first and 140 

main language, and no history of neurological disorders. Participants were also compensated for 141 

their participation. All procedures were approved by the University of Rochester Human Subjects 142 

Review Board. 143 

Stimuli and experimental procedure 144 

 Participants listened to 70 minutes of A Wrinkle in Time by Madeleine L’Engle which was 145 

read by an American female speaker. Each trial was one minute long and was presented at one 146 

of five noise levels: quiet (no noise) and +3 dB, -3 dB, -6 dB, and -9 dB signal-to-noise ratios 147 

(SNRs). The background noise was spectrally matched stationary noise, which was estimated 148 

from the clean speech using a 46th order forward linear predictive model. The prediction order 149 

was calculated based on the sampling rate of the audio clips (Crosse, Di Liberto, and Lalor 2016; 150 

Ding and Simon 2013). There were 14 minutes’ worth of audio for each of the five noise 151 

conditions. The storyline was preserved from trial to trial, but the conditions were 152 

pseudorandomized such that no noise level occurred consecutively. Participants rated how many 153 

words they heard (on a scale of 0-100%) and answered two multiple choice comprehension 154 

questions after each trial. The comprehension questions used here were the same questions 155 

used from a previous study (Maddox and Lee 2018), except we presented only two out of the four 156 

original questions created for each trial. The stimuli were presented through Sennheiser HD650 157 

headphones at a sampling rate of 44.1 kHz using Psychtoolbox (Kleiner, Brainard, and Pelli 2007) 158 

and custom MATLAB scripts (MATLAB 2019). 159 

 160 
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Data acquisition and preprocessing 161 

EEG data were recorded from 128 scalp electrodes (plus two mastoid channels that were 162 

not analyzed in this work). The data were acquired at a 1024 Hz sampling rate with the BioSemi 163 

Active Two system. The data were preprocessed using the PREP pipeline and its default 164 

parameters (Bigdely-Shamlo et al. 2015). This pipeline first used detrending to high pass filter the 165 

data at 1 Hz followed by 60 Hz line noise removal. Afterwards, robust re-referencing was applied 166 

which allows the data to be referenced to an average of all channels except those contaminated 167 

with noise. This function identifies and interpolates noisy channels in an iterative manner such 168 

that the re-referencing itself is not affected by the noise. The cleaned data was then low pass 169 

filtered at 8 Hz, using a filter with an 8.5 Hz cutoff frequency and 80 dB stopband attenuation. 170 

Next, the data were epoched and independent component analysis (ICA) was applied using 171 

EEGLAB’s picard function (Delorme and Makeig 2004; Pion-Tonachini, Kreutz-Delgado, and 172 

Makeig 2019) to remove muscle and eye artifacts. Lastly, the data were downsampled to 128 Hz.  173 

Speech stimulus characterization 174 

Speech is organized in a hierarchical manner where sounds can form syllables, syllables 175 

form words, words form sentences, and so on. To assess how our brains might concurrently 176 

process speech across levels of this hierarchy, we chose to model EEG responses to speech 177 

based on several different representations, all of which were computed on the clean versions of 178 

each trial. 179 

Envelope. We first calculated the speech envelope, a well-established feature shown to 180 

be robustly tracked by cortical activity (Aiken and Picton 2008; Destoky et al. 2019; Di Liberto, 181 

O'Sullivan, and Lalor 2015; Ding and Simon 2013; Etard and Reichenbach 2019; Lalor and Foxe 182 

2010b; Nourski et al. 2009; Pasley et al. 2012) and to be important for speech recognition and 183 

intelligibility (Ahissar et al. 2001; Drullman, Festen, and Plomp 1994; Shannon et al. 1995). The 184 

speech signal was first lowpass filtered at 20 kHz (22.05 kHz cutoff frequency, 1 dB passband 185 

attenuation, 60 dB stopband attenuation). The broadband speech envelope was calculated using 186 
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a gammachirp auditory filterbank to mimic the filtering properties of the cochlea (Irino and 187 

Patterson 2006). This filterbank was used to filter the speech into 16 bands from 250 Hz to 8 kHz 188 

with an equal loudness contour (essentially creating a spectrogram). Lastly, the frequency bands 189 

were averaged together. 190 

Acoustic onsets and spectrogram. We chose to model two additional acoustic features, 191 

acoustic onsets and spectrogram, which were shown to be reflected in cortical activity above and 192 

beyond the speech envelope (Brodbeck et al. 2020; Di Liberto, O'Sullivan, and Lalor 2015; 193 

Sohoglu and Davis 2020). Acoustic onsets were approximated by computing the first derivative 194 

of the speech envelope and then half-wave rectifying the result. A 16-band spectrogram was 195 

calculated using the same filterbank and parameters as the speech envelope, just without the 196 

final averaging step.  197 

Phonetic features. To calculate phonetic features, the Montreal Forced Aligner (McAuliffe 198 

et al. 2017) was first used to partition and time align each word in the story into phonemes 199 

according to the International Phonetic Alphabet for American English. Then, each phoneme was 200 

linearly mapped onto a set of 19 binary phonetic features based on the University of Iowa’s 201 

phonetics project (http://www.uiowa.edu/~acadtech/phonetics/english/english.html/).   202 

Lexical surprisal. Lastly, we calculated the surprisal of each word based on its preceding 203 

context using the Transformer-XL model (Dai et al., 2019). This model contains a recurrence 204 

mechanism that allows it to build and reuse memory from previous segments and learn longer-205 

term dependencies, while preserving the temporal information of previous word embeddings. This 206 

model was chosen because it can predict the probability of an upcoming word using the context 207 

from all preceding words. The softmax of the values from the output layer of the model were taken 208 

to estimate the probability of each word, and the negative log of a word’s probability was computed 209 

to estimate lexical surprisal (Dai et al. 2019). 210 

 211 
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Modeling the relationship between speech features and EEG responses 213 

One goal of the present study was to find how the encoding of individual speech features 214 

changes with SNR and find how those changes relate to comprehension and what participants 215 

reported hearing. To index the encoding of individual speech features, we used a forward model 216 

which acted as a filter or kernel that described the transformation from those features to the EEG 217 

responses recorded at each electrode. Here, we modeled acoustic onsets, the spectrogram, 218 

phonetic features, and lexical surprisal. An additional vector with impulses placed at each word’s 219 

onset was included to capture any acoustic related onset responses that the acoustic onset 220 

predictor may have missed. All five features were modeled together to control for variance 221 

explained by the competing features and to find which feature best explained certain EEG 222 

responses (Brodbeck, Presacco, and Simon 2018; Gillis et al. 2021; Brodbeck, Hong, and Simon 223 

2018). 224 

 The data from each of the five experimental (SNR) conditions were modeled separately 225 

using 14-fold leave-one-out cross-validation and ridge regression. Each feature was normalized 226 

between 0-1 and the EEG were z-scored. The features were then concatenated and partitioned 227 

into training and test sets. The stimuli were lagged from -100-700ms to capture both short and 228 

long latency responses to acoustic and linguistic features. Cross-validation was conducted on the 229 

clean condition to select the optimal regularization parameter, λ, which ranged from 10-1–108. We 230 

identified the regularization parameter that resulted in the highest prediction accuracy for each 231 

individual test fold. We then selected the parameter that produced the highest reconstruction 232 

accuracy most often (across all test folds) so that we could use one parameter to train the models 233 

for each condition. Using the same parameter for all folds and conditions (within a participant) 234 

allowed for a fairer comparison of model performance since each participant’s trials would be on 235 

the same scale and it minimized model overfitting. 236 

A temporal response function (TRF), w (τ, n), was trained using the selected regularization 237 

parameter and the training data to predict the neural responses, 𝑟𝑟(𝑡𝑡,𝑛𝑛), from the set of 238 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.30.534927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.30.534927
http://creativecommons.org/licenses/by-nc-nd/4.0/


concatenated speech features, s(t − τ). Then, we separated the model into the segments that 239 

corresponded to acoustic onsets, spectrogram, phonetic features, and surprisal. The forward 240 

modeling procedure can be expressed as follows, including the residual response, ε(t, n), not 241 

explained by the model: 242 

𝑟𝑟(𝑡𝑡,𝑛𝑛) = �w (τ, n) s(t− τ) + ε(t, n)
τ

  243 

Each model segment was tested on the held-out data, and its performance was assessed 244 

by quantifying the correlation between the predicted EEG and the actual EEG. Forward model 245 

performance, or prediction accuracy, was averaged across all folds. The results from the acoustic 246 

onset, spectrogram, and phonetic feature model segments were then averaged across 12 well-247 

predicted frontotemporal electrodes (6 bilaterally symmetric pairs), and the results from the 248 

surprisal model were averaged across 12 well-predicted parieto-occipital channels. There may be 249 

some positive bias in the prediction accuracies (i.e., higher accuracies) since we have selected 250 

well predicted electrodes based on the current dataset, but we assumed that this bias is present 251 

in all conditions and does not vary systematically across conditions.  252 

Backward modeling, where EEG is used to reconstruct an estimate of the speech 253 

envelope was also employed to enable the current results to be directly referenced to other 254 

studies in which backward modeling is more common. The backward model or decoder, g(τ, n ), 255 

describes the transformation from lagged EEG responses at all electrodes, r(t +  τ, n), to an 256 

estimate of the speech envelope, �̂�𝑠(𝑡𝑡). As detailed elsewhere (Crosse et al. 2016), the modeling 257 

procedure can be expressed as: 258 

�̂�𝑠(𝑡𝑡) = �� r(t +  τ, n)g(τ, n )
τ𝑛𝑛

 259 

Similar to the forward models, this analysis was conducted separately for each 260 

experimental (SNR) condition using 14-fold leave-one-out cross-validation. First, the stimuli and 261 

responses were normalized and then partitioned into train and test sets. Here the EEG data were 262 
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lagged, τ, from -100–300ms since we were interested in short latency responses to the speech 263 

envelope, s(t). We employed the same method of cross-validation and regularization parameter 264 

(10-1–108) selection as before. A decoder was trained using the selected regularization parameter 265 

and the training data to reconstruct an estimate of the speech envelope. After testing the decoder 266 

on held-out data, we assessed model performance by computing the correlation between the 267 

actual speech envelope and the reconstructed speech envelope. This model performance, also 268 

known as reconstruction accuracy, was averaged across folds and participants (Figure 1).  269 

 270 

Figure 1. Methods. EEG data were recorded while participants listened to an audiobook in different levels 271 

of noise. Forward modeling was used to estimate EEG responses (R) from the clean representations of the 272 

acoustic onsets, spectrogram, phonetic features, and word surprisal (S being a concatenation of the 273 

features). Model performance (r) was assessed by calculating the correlation between the predicted EEG 274 

and the actual EEG and then averaged across the selected channels. Backward modeling was also used 275 

to reconstruct an estimate of the clean speech envelope. Model performance (reconstruction accuracy, ρw) 276 

was assessed by calculating the correlation between the original speech envelope and the reconstructed 277 
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speech envelope. A linear mixed-effects model (LME) was then used to determine the influence of word 278 

surprisal (surp) on envelope reconstruction accuracy. 279 

Assessing the role of context on acoustic encoding in different levels of background noise 280 

 Another major goal of the present study was to test how listeners might rely more on 281 

context to encode speech that is masked by moderate levels of background noise. To do this, we 282 

used a variant of a recently introduced approach that involves quantifying how the tracking of low-283 

level speech features varies as a function of the context-based semantic content of that speech 284 

(Broderick, Anderson, and Lalor 2019). Specifically, we used a linear mixed-effects (LME) model 285 

to explore the extent to which word predictability in the form of word surprisal influences how the 286 

envelope of that word was reflected in EEG and how that influence changes across SNRs. Using 287 

an LME in this way, one can measure the relationship between the main variable(s) of interest 288 

while controlling for variability caused by random factors. We used the lmerTest (version 3.1-3) 289 

and lme4 (version 1.1-30) packages in R to model the following equation:  290 

𝜌𝜌𝑤𝑤   ~  1 +  𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 +  𝑒𝑒𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑒𝑒 +  𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 +  𝑟𝑟𝑒𝑒𝑠𝑠 + 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑒𝑒𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑒𝑒 + 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑟𝑟𝑒𝑒𝑠𝑠 +  𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 ∗ 𝑒𝑒𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑒𝑒 291 

+  𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 ∗ 𝑟𝑟𝑒𝑒𝑠𝑠 +  𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 +  (1|𝑠𝑠𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑡𝑡)  +  (1|𝑤𝑤𝑤𝑤𝑟𝑟𝑒𝑒) 292 

The dependent variable is word reconstruction accuracy which was calculated as the 293 

Spearman’s correlation between the actual word envelope and the predicted word envelope for 294 

the first 100 ms of each word. The independent variables are SNR, lexical surprisal (surp), 295 

envelope variability (envStd), relative frequency (frel), resolvability (res), and various interactions 296 

such as the interaction between surprisal and SNR.  297 

 Envelope variability, relative pitch, and resolvability were selected as nuisance 298 

regressors. This was because these measures can correlate with surprisal, with one another, and 299 

with envelope tracking; so, they are included here to ensure that they aren’t inherently 300 

contaminating the lexical surprisal effects. Relative pitch is pitch normalized to the vocal range of 301 

the speaker (Tang, Hamilton, and Chang 2017) and resolvability measures whether a sound’s 302 

harmonics are processed between distinct (resolved) or within the same (unresolved) filters of the 303 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.30.534927doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.30.534927
http://creativecommons.org/licenses/by-nc-nd/4.0/


cochlea (Shackleton and Carlyon 1994). Prosodic cues such as relative pitch and resolvability 304 

can uniquely predict EEG activity even after accounting for other acoustic and phonetic features 305 

(Teoh, Cappelloni, and Lalor 2019).  306 

Relative pitch was extracted using Praat (Boersma and Weenink 2013). Once the software 307 

estimates absolute pitch, this result is then z-scored, resulting in relative pitch. Resolvability was 308 

extracted using custom scripts based on a model of the human auditory periphery (McDermott 309 

and Simoncelli 2011; Teoh, Cappelloni, and Lalor 2019). Envelope variability was shown to 310 

correlate with relative pitch and resolvability and all three features have been shown to influence 311 

envelope reconstruction accuracy, so we too included these features to control for acoustic 312 

related changes in the speaker’s voice (Broderick, Anderson, and Lalor 2019). Envelope 313 

variability is represented as the standard deviation of the speech envelope. 314 

The LME model also included by-word and by-participant random intercepts as some 315 

words may be easier to reconstruct than others and some participants may, on average, have 316 

higher reconstructions than other participants. No random slopes were included, as they caused 317 

the model to not converge even with the addition of an optimizer. Like Broderick et al. 2019, word 318 

reconstruction accuracy and the nuisance regressors were measured in the first 100ms following 319 

each word’s onset (Broderick, Anderson, and Lalor 2019).  320 

Statistical analyses 321 

 All statistical analyses were performed in R (version 4.2.0) and in MATLAB R2021b 322 

(MATLAB 2021). Due to the skewed distribution of the behavioral results, comparisons were 323 

calculated using a nonparametric Friedman’s test, followed by a Wilcoxon Rank Sum test. All 324 

corrections for multiple comparisons were performed using false discovery rate (FDR), specifically 325 

Benjamini & Yekutieli (BY) correction, unless otherwise stated. FDR (BY) corrected pairwise t-326 

tests were used to determine differences in envelope reconstruction accuracy and EEG prediction 327 

accuracy between conditions. Permutation testing was performed to test the significance of the 328 

EEG-speech model predictions. A null model was created for each SNR by shuffling the stimulus 329 
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of interest between trials (except for the surprisal vectors which were shuffled within trial) and 330 

calculating a new model with each shuffle. This procedure, including regularization, was repeated 331 

30 times. The null prediction accuracies were averaged across folds, permutations, and 332 

electrodes to result in one value per person. Pairwise t-tests were performed between the actual 333 

and null prediction accuracies across participants. 334 

Unaggregated prediction accuracies (each accuracy for each trial per person) were used 335 

in an LME model (lmerTest version 3.1-3 and lme4 version 1.1-30 in R) to test how prediction 336 

accuracies changed across SNRs. This model included SNR, speech feature type, and the 337 

interaction between the two as fixed effects, and a by-participant random intercept. We then 338 

computed estimated marginal means (emmeans version 1.8.2 in R) with Tukey adjustment to 339 

perform multiple comparisons tests between each feature. Each LME model in this study was 340 

calculated using the default parameters which included fitting the models with restricted maximum 341 

likelihood (REML) and using Satterthwaite’s method for the t-tests. LME models were also used 342 

to model the relationship between behavior and reconstruction/prediction accuracy. Permutation 343 

tests were used to test the significance of the final LME analysis where we tested the relationship 344 

between lexical surprisal and envelope tracking. Surprisal values were shuffled 5000 times while 345 

all other variables remained fixed, and an LME model was calculated for each shuffle. We 346 

calculated the proportion of coefficients that were greater than the observed values. All data and 347 

scripts are available upon request. 348 

RESULTS 349 

Speech perception decreases as SNR decreases 350 

Behavioral scores were collected to show how participants’ perception of the story 351 

changed as listening conditions became more challenging. After each one-minute-long trial, 352 

participants rated an estimate of the number of words they were able to hear on a scale from 0-353 

100% and answered two multiple-choice comprehension questions, each of which had four 354 

possible answers. As expected, there was a significant reduction in percentage of words heard 355 
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(Χ2(4) = 98.894, p = 2.20 x 10-16) and comprehension scores (Χ2(4) = 83.44, p = 2.20 x 10-16, 356 

Freidman test followed by Wilcoxon rank sum test with FDR correction (BY), Figure 2, Table 1) 357 

with the addition of noise. After the experiment, participants reported hearing very few words in 358 

the -9 dB SNR condition but that they had attempted to use context clues from previous trials to 359 

answer the questions in the -9 dB SNR trials. To control for this potential confound in our measure 360 

of comprehension, we used a procedure similar to Orf and colleagues, where nine additional 361 

volunteers answered the comprehension questions for each trial without listening to the story (Orf 362 

et al. 2022). Based on the performance of those new participants, we determined a new empirical 363 

chance level of 28% rather than 25%. All participants performed above chance in the quiet, +3 364 

dB SNR, and -3 dB SNR conditions. Comprehension scores were not above chance for five 365 

participants in the -6 dB SNR condition (p = 0.066 and above) and 13 participants in the -9 dB 366 

SNR condition (p = 0.066 and above). Although participants reported hearing fewer words in the 367 

+3 dB SNR condition compared to speech in quiet, they performed similarly in terms of 368 

comprehension (p = 1.000).  369 

 370 

Figure 2. Behavioral results. A. Average percentage of words participants reported hearing in each 371 

condition. B. Average percentage of correctly answered comprehension questions for each condition. The 372 
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dotted gray line is the chance level at 28% which was calculated using a separate set of participants who 373 

answered the comprehension questions without listening to the audiobook. For both plots, significance is 374 

indicated by * if p < 0.05, ** if p < 0.01, and *** if p < 0.001 using pairwise Wilcoxon rank sum tests. The 375 

black points in each are individual participants. 376 

Table 1. Wilcoxon rank sum test results comparing behavioral scores between all conditions.  377 

 % Words Heard   Q&A Scores  
 quiet +3 dB -3 dB -6 dB  quiet +3 dB -3 dB -6 dB 
+3 dB 0.00093 - - - +3 dB 1.00000   - - - 
-3 dB 4.2e-05 4.2e-05 - - -3 dB 0.00020 0.00080 - - 
-6 dB 4.2e-05 4.2e-05 4.2e-05 - -6 dB 8.5e-05 8.5e-05 0.00014 - 
-9 dB 4.2e-05 4.2e-05 4.2e-05 4.2e-05 -9 dB 8.5e-05 8.5e-05 8.5e-05 0.00027 

 378 

Hierarchical feature encoding declines across SNRs 379 

Studies have typically modeled brain responses to isolated speech features. Recent work, 380 

however, is increasingly beginning to model acoustic and linguistic features simultaneously 381 

(Brodbeck, Hong, and Simon 2018; Brodbeck, Presacco, and Simon 2018; de Heer et al. 2017; 382 

Gillis et al. 2021; Heilbron et al. 2022) to find how the brain uniquely encodes a feature of interest 383 

when accounting for others, as some features may be correlated and explain similar neural activity 384 

(Daube, Ince, and Gross 2019). Since few studies have modeled the encoding of simultaneous 385 

features in challenging listening conditions (Brodbeck et al. 2020), we were interested in how a 386 

range of acoustic and linguistic features were encoded in noise.  387 

To test this, we first fit one complete model comprised of acoustic onsets, the speech 388 

spectrogram, phonetic features, and word surprisal. Word onset (not pictured in the subsequent 389 

figures) was also included to ensure the surprisal measure was not reflecting variance that would 390 

be better explained by onset responses to individual words. The full model was separated into its 391 

constituent model pieces (where, for example, constituent models may have one feature in the 392 

case of surprisal, or many features in the case of phonemes) and tested on left out data. The 393 

acoustic onset, spectrogram, and phonetic feature prediction accuracies were averaged across 394 
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12 well-predicted frontotemporal electrodes and the surprisal prediction accuracies were 395 

averaged across 12 well-predicted parieto-occipital electrodes (electrodes shown in Figure 1).  396 

Each model performed above chance for each SNR (p < 0.01, permutations followed by 397 

one-tailed, paired t-tests). As expected, the prediction accuracies for each constituent model 398 

decreased with increasing levels of noise (Figure 3A, paired t-tests with FDR [BY] correction). 399 

We then elected to run an LME model analysis exploring how the encoding of different speech 400 

features falls off with decreasing SNR. This helps account for the fact that EEG prediction 401 

accuracies can vary greatly between subjects (based on, for example, cortical folding or 402 

skull/scalp geometry). We fit the following LME model: 403 

𝑟𝑟  ~  𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐹𝐹𝑒𝑒𝑝𝑝𝑡𝑡𝑠𝑠𝑟𝑟𝑒𝑒 + 𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝐹𝐹𝑒𝑒𝑝𝑝𝑡𝑡𝑠𝑠𝑟𝑟𝑒𝑒 + (1|𝑠𝑠𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑡𝑡) 404 

Since we were interested in trends across noise levels, SNR was treated as a continuous 405 

variable rather than a categorical variable. EEG predictions based on the speech spectrogram 406 

had the shallowest slope across noise conditions (βsgram = -0.009 which is the difference between 407 

SNR and SNR:Sgram, Table 2)—suggesting that the spectrogram was relatively well reflected in 408 

the EEG even as noise levels increased. This trend in prediction accuracy, however, was similar 409 

to both the acoustic onset (p = 0.708) and surprisal trends (p = 0.395). The spectrogram trend 410 

was significantly greater than the phonetic feature trend (p = 4 x 10-4), suggesting that phonetic 411 

feature representations are more sensitive to noise. Altogether, high- and low-level features, with 412 

the exception of phonetic features in some cases, declined similarly across SNRs. 413 

 Another way to examine the effect of SNR on speech feature encoding is to visualize the 414 

TRF models themselves. In fact, recent work has shown that the amplitude and latency of acoustic 415 

onset and semantic TRFs are influenced by speech SNR (Yasmin et al. 2023). Given that the 416 

encoding of specific frequency bands or phonetic properties may decrease differentially with 417 

noise, we examined the change in the spectrogram and phonetic feature TRF weights at each 418 

SNR. In quiet, we saw the strongest TRF weights in the lower frequency bands, suggesting the 419 

importance of low frequency spectral tracking when no noise is present. Overall, we found a 420 
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decrease and narrowing in time of the TRF weights across a broad range of frequencies as SNR 421 

decreased. Notably, model weights below 1,800 Hz seem to completely diminish in the -9 dB SNR 422 

condition (Figure 3B top). Altogether, these results support the importance of low frequency 423 

speech signals in speech encoding which is reasonable given that others have shown that this 424 

range is important for speech intelligibility in noise (Chang, Bai, and Zeng 2006; Turner et al. 425 

2004) and given that the type of noise used in the present study matches the speech spectrum.  426 

Table 2. LME model results showing how prediction accuracies changed across SNRs and post-hoc 427 

contrasts between each feature 428 

Marginal R2 = 0.204, Conditional R2 = 0.457 
Fixed effects Estimate  Std. Error   t value   p-value  
Onsets (intercept)  8.488 x 10-2 4.513 x 10-3  18.809  < 2 x 10-16 *** 
SNR -1.013 x 10-2 5.171 x 10-4 -19.581 < 2 x 10-16 *** 
Sgram 2.875 x 10-3 2.426 x 10-3 1.185 0.236   
Fea -1.112 x 10-2 2.426 x 10-3 -4.585 4.62 x 10-6  *** 
Surp -2.035 x 10-2 2.426 x 10-3 -8.391 < 2 x 10-16  *** 
SNR:Sgram  7.829 x 10-4 7.313 x 10-4  1.070 0.284   
SNR:Fea -2.113 x 10-3 7.313 x 10-4  -2.889 0.004  *** 
SNR:Surp -3.668 x 10-4 7.313 x 10-4 -0.501 0.616   
      
Contrasts Estimate Std. Error  z ratio p-value   
Ons – Sgram  -7.830 x 10-4 7.310 x 10-4 -1.070 0.708   
Ons – Fea  2.113 x 10-3 7.310 x 10-4 2.889 0.020  * 
Ons – Surp 3.670 x 10-4 7.310 x 10-4 0.501 0.958  
Sgram – Fea 2.896 x 10-3 7.310 x 10-4 3.960 4 x 10-4 *** 
Sgram – Surp  1.150 x 10-3 7.310 x 10-4 1.572 0.395   
Fea – Surp  -1.746 x 10-3 7.310 x 10-4 -2.388 0.079   

 429 

In the phonetic features case, although there is a decrease across practically all features 430 

around 100 ms in the +3 dB SNR condition, voicing and some manner of articulation (plosive and 431 

fricative) and vowel backness features (front, back, and diphthong) remained largely intact in this 432 

condition (Figure 3B bottom). As noise levels continued to increase, we saw even more of a 433 

decrease in each feature. In the -6 dB SNR condition, only some plosive, fricative, and vowel 434 

backness feature weights remained whereas all other features here and in the -9 dB SNR 435 

condition diminished. Although TRF weights for individual features decreased in the +3 dB SNR, 436 

we began to see larger reductions in TRF weight amplitudes in the -6 dB SNR similar to 437 
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Swaminathan and Heinz who found their greatest lapse in phonetic feature reception around -5 438 

dB SNR (Swaminathan and Heinz 2012). 439 

 440 

Figure 3. Forward modeling results. A. Prediction accuracies which were calculated using acoustic onsets, 441 

spectrogram, phonetic feature, and surprisal from left to right. Significance is indicated by * if p < 0.05, ** if 442 

p < 0.01, and *** if p < 0.001 using pairwise t-tests with FDR (BY) correction. Spectrogram (B top) and 443 

phonetic feature (B bottom) TRF model weights across the experimental conditions. The model weights 444 

were averaged across 12 frontotemporal electrodes and originated from a model that included acoustic 445 

onsets, spectrogram, phonetic features, and surprisal.  446 

 447 
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Linguistic features are highly predictive of behavior 448 

One of the main hypotheses we had in this study was that, across SNRs, EEG signatures 449 

of linguistic processing would be more closely correlated with behavior than EEG measures of 450 

low-level acoustic processing. To test this, we modeled the relationship between each speech 451 

feature’s model prediction accuracy with the percentage of words heard and comprehension 452 

scores using LME models. We used this method so that we could pool data across SNRs which 453 

would result in 5 data points per participant. As such, we included fixed effects that corresponded 454 

to the model accuracies for each feature and a random effect for participant. We modeled both 455 

behavioral metrics separately. 456 

 457 

Figure 4. The relationship between forward model performance (prediction accuracy) and behavior. LME 458 

models were used to relate the model performance for each speech feature to the percentage of words 459 

heard (A) and comprehension scores (B). The marginal and conditional R2s are 0.444 and 0.583 for A and 460 

0.429 and 0.701 for B. 461 

In line with our hypothesis, these analyses show that lexical surprisal is highly predictive 462 

of both the percentage of words heard (β = 580.101, p = 4.640 x 10-4, Figure 4A) and 463 

comprehension scores (β = 394.314, p = 3.100 x 10-4, Figure 4B). Phonetic feature performance 464 

was significantly predictive of percentage of words heard (β = 401.892, p = 0.038), but not 465 

comprehension (β = 166.587, p = 0.164). The model did not produce any significant effects for 466 
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the acoustic onset (β = 345.738, p = 0.159 for % words heard; β = 107.556, p = 0.497 for 467 

comprehension) or spectrogram (β = -424.404, p = 0.078 for % words heard; β = -11.802, p = 468 

0.940 for comprehension) fixed effects. The spectrogram fixed effect may have negative trends 469 

because the spectrogram and acoustic onset model performances are highly (yet negatively) 470 

correlated; the percentage of words heard LME model reported a correlation of -0.623 and the 471 

comprehension LME model reported a correlation of -0.602. The spectrogram fixed effect may be 472 

fitting to the noise that remains after the acoustic onsets have explained all it can behavior-wise. 473 

Nevertheless, these results support that linguistic features are more predictive of subjective and 474 

objective measures of speech perception than acoustic features.  475 

Envelope reconstruction accuracy maps well to behavior  476 

Numerous studies have shown that cortical activity tracks the temporal modulations of the 477 

speech envelope (Aiken and Picton 2008; Destoky et al. 2019; Di Liberto, O'Sullivan, and Lalor 478 

2015; Ding and Simon 2013; Etard and Reichenbach 2019; Lalor and Foxe 2010b; Nourski et al. 479 

2009; Pasley et al. 2012). Speech envelope reconstruction is a powerful method of indexing 480 

speech tracking given its overall advantage of using all scalp data to provide a better SNR. It is 481 

unknown, however, exactly what information envelope reconstruction indexes because the 482 

envelope has been shown to capture syllabic boundaries (Hertrich et al. 2012; Oganian and 483 

Chang 2019), phonetic feature information (Rosen 1992), and prosodic cues (Myers, Lense, and 484 

Gordon 2019). Nevertheless, due to its common usage in speech research and its improved SNR, 485 

we were interested in how speech envelope tracking would compare to our acoustic onset, 486 

spectrogram, phonetic feature, and surprisal encoding results and how it would relate to behavior.  487 

The first step in this analysis was to use a backward modeling procedure to find how 488 

speech envelope tracking is affected by different levels of background noise. Speech in quiet and 489 

the +3 dB SNR condition shared similar reconstruction accuracies (p = 0.497, paired t-test with 490 

FDR [BY] correction) and were reconstructed more reliably than all other SNRs (p < 0.05). The -491 

3 dB SNR and -6 dB SNR accuracies were not significantly different from each other (p = 0.547) 492 
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but were both higher than the -9 dB SNR condition (p = 2.2 x 10-7 and p = 2.5 x 10-6, Figure 5A). 493 

We compared the changes in reconstruction accuracy across SNRs to the other features by 494 

including it in the original LME model. Interestingly, the speech envelope feature had the steepest 495 

slope in model performance across SNRs compared to all other features (marginal/conditional R2 496 

= 0.521/0.644, β = -0.017, p < 0.0001). In other words, the speech envelope caused the greatest 497 

change in prediction accuracy across SNRs when all other features were fixed. 498 

Next, we tested if the fidelity of envelope tracking was indicative of how well participants 499 

could hear and understand the story in comparison to the forward modeled features. This was 500 

tested using an LME model that contained fixed effects for envelope reconstruction accuracy and 501 

prediction accuracies for models trained on acoustic onsets, spectrograms, phonetic features, 502 

and lexical surprisal (and word onset). As expected, envelope reconstruction scores were highly 503 

predictive of percent words heard (marginal/conditional R2 = 0.512/0.695, β = 264.240, p = 6.730 504 

x 10-4) and comprehension (marginal/conditional R2 = 0.476/0.705, β = 149.070, p = 3.570 x 10-505 

3, Figure 5B). Surprisal was still highly predictive of both measures (β = 431.332, p = 8.342 x 10-506 

3 for % words heard; β = 326.367, p = 2.450 x 10-3 for comprehension). Even though the phonetic 507 

feature predictors had greater or similar slopes to the envelope predictor, the LME models did not 508 

report these results as significant (β = 130.305, p = 0.089 for % words heard; β = 147.956, p = 509 

0.206 for comprehension). To our surprise, the spectrogram model performance now significantly 510 

(negatively) predicted percentage of words heard in this model as well (β = -587.122, p = 0.014). 511 

Furthermore, we calculated EEG prediction accuracy based on a full model trained on the 512 

concatenation of acoustic onsets, spectrogram, phonetic features, surprisal, and word onset. We 513 

then related the full model accuracy and envelope reconstruction accuracies to behavior. This full 514 

model was more predictive of behavior (% words heard, marginal/conditional R2 = 0.497/0.731, β 515 

= 486.279, p = 5.900 x 10-5; comprehension, marginal/conditional R2 = 0.470/0.729, β = 311.894, 516 

p = 3.180 x 10-5) than envelope reconstruction accuracy (% words heard, β = 296.395, p = 2.500 517 

x 10-4; comprehension, β = 167.173, p = 1.190 x 10-3). 518 
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The main caveat of the results above is that we’re comparing two different modeling 519 

methods. Backward models have the ability to take advantage of all EEG channels and up-weigh 520 

more informative channels, resulting in higher model performance compared to forward models. 521 

As such, we reperformed the analysis with a forward model that included acoustic onsets, 522 

spectrograms, phonetic features, word surprisal, and the speech envelope (and word onsets). In 523 

this case, we found that the change in the envelope encoding across SNRs is similar to all other 524 

features modeled except the phonetic features (marginal/conditional R2 = 0.199/0.491, p = 525 

0.0485, LME model).  526 

 527 

Figure 5. Envelope modeling results. A. The colored boxplots are the envelope reconstruction accuracies 528 

for each condition, and the black points represent each participant. The gray boxplots represent mean 529 

reconstruction accuracies (per person) based on shuffled permutations. Significance is indicated by * if p < 530 

0.05, ** if p < 0.01, and *** if p < 0.001 using pairwise t-tests with FDR (BY) correction. B. We then used 531 

LME models to determine the relationship between envelope decoder performance and behavior 532 

(percentage of words heard on top and comprehension scores on the bottom). Each circle represents a 533 
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participant, so there are 125 circles (5 conditions x 25 participants).  C. Same as B, except using results 534 

from a forward model trained on all features including the envelope.  535 

This reanalysis also showed that higher-level linguistic features are most correlated with 536 

behavior (surprisal vs. % words heard, β = 570.767, p = 4.610 x 10-4; surprisal vs. comprehension, 537 

β = 405.383, p = 1.810 x 10-4; phonetic features vs. % words heard, β = 442.387, p = 0.031). The 538 

envelope (% words heard, β = 171.309, p = 0.753; comprehension, β = 37.104, p = 0.913), 539 

acoustic onset (% words heard, β = 307.682, p = 0.248; comprehension, β = 102.556, p = 0.553), 540 

and spectrogram (% words heard, β = -587.997, p = 0.278; comprehension, β = -53.038, p = 541 

0.874) model effects were not significant in addition to phonetic features in the comprehension 542 

model (β = 167.955, p = 0.180, Figure 5C). The marginal and conditional R2 are 0.445 and 0.568 543 

for the % words heard model and 0.434 and 0.697 for the comprehension model.  In short, when 544 

modeling the envelope in the forward direction, its encoding decreases at a similar rate to other 545 

low-level acoustic features and it predicts behavior similar to them as well. Conversely, when 546 

using stimulus reconstruction, envelope models perform best across SNRs and predict 547 

comprehension scores similar to higher level features.  548 

Lexical surprisal’s influence on early auditory encoding decreases at high noise levels 549 

Recent work by Broderick and colleagues has shown that the cortical tracking of an 550 

individual word’s acoustic and phonetic representations was enhanced the more semantically 551 

similar it was to its preceding context (Broderick, Anderson, and Lalor 2019). Since higher-level 552 

representations can bias perception when incoming stimuli are noisy (de Lange, Heilbron, and 553 

Kok 2018), perhaps in the present study, participants relied more on a higher-level feature (i.e., 554 

next word probability/surprisal) when noise levels slightly increased—thereby strengthening the 555 

relationship between word surprisal and lower-level feature encoding. This influence of lexical 556 

surprisal would then decrease the noisier the speech became, i.e., as people begin to fail to 557 

understand the speech. We aimed to test these hypotheses using a two-stage regression analysis 558 

that consists of stimulus reconstruction followed by LME modeling. 559 
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Stimulus reconstruction was used (due to its increased SNR) to reconstruct an estimate 560 

of the speech envelope for each individual word. We then compared the predicted and actual 561 

envelopes using Spearman’s correlation. All words in the story were also scored on their lexical 562 

surprisal, which was calculated as the negative logarithm of a word’s probability given the words 563 

that came before it. Envelope variability, relative pitch, and resolvability (the nuisance regressors) 564 

were also calculated to control for acoustic related properties of the stimuli, many of which could 565 

correlate with word surprisal and word reconstruction accuracy. Surprisal, SNR, and the nuisance 566 

regressors were included in an LME model to predict word reconstruction accuracy for the first 567 

100 ms of each word. 568 

 569 

Figure 6. The relationship between lexical surprisal and envelope tracking in different levels of noise. A. 570 

Surprisal coefficient in quiet and the interaction between surprisal and SNR using a 100 ms word window. 571 

The error bars are the standard errors of each measure, calculated using the LME model. Significance is 572 

indicated by * if p < 0.05, ** if p < 0.01, and *** if p < 0.001 using R’s “emtrends” function to compare 573 

estimated marginal means of linear trends. B. The relationship between the surprisal coefficients across 574 

SNRs and behavior. Percentage of words heard are in black, and the comprehension scores are in red. 575 

There are 125 circles (5 SNRs x 25 participants). 576 
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There was a significantly positive relationship between lexical surprisal and word 577 

reconstruction accuracy in quiet (marginal/conditional R2 = 0.017/0.030, β = 2.850 x 10-2, t = 578 

10.519, p < 2.00 x 10-16, Table 3). In other words, the more surprising a word (or the less probable 579 

that word was given its preceding context), the greater that word’s envelope was reflected in the 580 

EEG. The interaction between surprisal and SNR shows how this coefficient changes in the other 581 

noise levels (Figure 6A). The influence of lexical surprisal on word reconstruction accuracy in 582 

quiet was similar to the +3 dB (β = -2.172x 10-4, t = -0.062, p = 0.951) and -3 dB (β = -4.767x 10-583 

3, t = -1.363, p = 0.173) SNR conditions and greater than the -6 dB (β = -9.900 x 10-3, t = -2.817, 584 

p = 0.005) and -9 dB (β = -1.600 x 10-2, t = -4.570, p = 4.890 x 10-6) SNR conditions. This shows 585 

that lexical surprisal impacts envelope tracking in low levels of background noise (+3 dB and -3 586 

dB SNRs) similar to when speech is in quiet, but this influence significantly decreases with 587 

moderate to high levels of noise. It is also important to note that the nuisance regressors and 588 

additional interactions we’ve included also significantly influenced word reconstruction accuracy, 589 

reinforcing the value of controlling for those variables and ensuring our results were not 590 

confounded by other acoustic related measures.  591 

Table 3. LME model showing the relationship between lexical surprisal and envelope tracking in each 592 

SNR. 593 

 Estimate  Std. Error   t value   Pr(>|t|)  
Quiet (Intercept)  8.992 x 10-2 5.451 x 10-3  16.496  < 2 x 10-16 *** 
SNR +3 -4.703 x 10-3 3.514 x 10-3 -1.338 0.18077  
SNR -3 -1.671 x 10-2 3.524 x 10-3 -4.724 2.12 x 10-6  *** 
SNR -6 -3.196 x 10-2 3.496 x 10-3 -9.141 < 2 x 10-16  *** 
SNR -9 -5.822 x 10-2 3.511 x 10-3 -16.586 < 2 x 10-16  *** 
surp  2.850 x 10-2 2.709 x 10-3  10.519 < 2 x 10-16  *** 
surp:SNR +3 -2.172 x 10-4 3.528 x 10-3 -0.062 0.95091  
surp:SNR -3 -4.767 x 10-3 3.497 x 10-3 -1.363 0.17287  
surp:SNR -6 -9.900 x 10-3 3.514 x 10-3 -2.817 0.00484  ** 
surp:SNR -9 -1.600 x 10-2 3.501 x 10-3 -4.570 4.89 x 10-6  *** 
envStd  6.042 x 10-2 1.430 x 10-3  42.251 < 2 x 10-16  *** 
frel  8.697 x 10-3 1.576 x 10-3  5.519 3.42 x 10-8  *** 
res -1.605 x 10-2 1.453 x 10-3 -11.051 < 2 x 10-16  *** 
envStd:frel 6.692 x 10-3 1.148 x 10-3 5.832 5.49 x 10-9  *** 
frel:res  -6.327 x 10-3 1.450 x 10-3  -4.363 1.28 x 10-5  *** 
surp:envStd  1.624 x 10-2 1.305 x 10-3  12.448 < 2 x 10-16  *** 
surp:res -6.872 x 10-3 1.325 x 10-3 -5.186 2.17 x 10-7  *** 

 594 
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Permutation tests were conducted to test if each surprisal estimate was significantly 595 

different from chance. The surprisal values were shuffled 5000 times while keeping all other 596 

variables intact, and a new LME model was computed with each shuffle. This procedure resulted 597 

in none of the null coefficients being greater than the observed values. Despite studies showing 598 

that low SNRs benefit from the utilization of context (Mayo, Florentine, and Buus 1997), we found 599 

the permutation results for the -6 dB and -9 dB conditions to be surprising. Participants reported 600 

hearing either no words or very few words in, for instance, the -9 dB SNR condition, yet we still 601 

see a significant influence of lexical surprisal on envelope tracking. We did not control for any 602 

other features (including surprisal) in our envelope reconstruction model, so these unaccounted-603 

for features may have contributed to the significantly positive interaction coefficients in the -6 dB 604 

and -9 dB SNR conditions. Or the fact that participants were able to hear any words in both 605 

conditions may have been enough to cause this significant effect. Lastly, we found that single 606 

subject surprisal coefficients also predicted their self-reported percentage of words heard 607 

(marginal/conditional R2 = 0.124/NA, β = 691.434, p = 5.290 x 10-5) and comprehension scores 608 

(marginal/conditional R2 = 0.138, 0.177, β = 488.401, p = 2.140 x 10-5) across SNRs (Figure 6B). 609 

That is to say, the stronger the influence of surprisal on envelope tracking, the better the 610 

participants were able to hear and comprehend the story. 611 

DISCUSSION 612 

This study sought to establish how well indices of hierarchical neural speech processing 613 

reflect language comprehension—advancing on prior work that has typically tested specific 614 

hierarchical levels without controlling for the others. We first characterized how the encoding of a 615 

range of hierarchical speech features diminished in noise and if those changes in encoding were 616 

predictive of behavior. We found that the encoding of acoustic and surprisal features declined 617 

similarly as noise levels increased, and that phonetic feature encoding was more affected by noise 618 

than the acoustic features. In addition, lexical surprisal and phonetic feature encoding were the 619 

most predictive of participants’ behavioral scores across SNRs. Speech envelope models were 620 
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predictive of behavior, but only when employing decoding models. Lastly, we investigated how 621 

lexical surprisal influenced the neural tracking of the speech envelope. In general, we found that 622 

the envelopes of more unexpected words were better reflected in the EEG. This was true in quiet 623 

and in low levels of background noise, but this relationship weakened as noise levels increased.  624 

We hypothesized that acoustic features would be the most invariant to noise, but this was 625 

only partially supported by our results. The degree to which envelope and spectrogram features 626 

were reflected in EEG decreased at a slower rate only in comparison to phonetic features. 627 

However, when we analyzed envelope reconstruction accuracies, rather than EEG predictions 628 

based on the speech envelope, decoding accuracies decreased at a faster rate than all other 629 

features. This was surprising, first, due to a previous finding that the synchronization between 630 

neural activity and the speech envelope remained unaffected until the speech signal had an SNR 631 

of -9 dB (Ding and Simon 2013). These stark differences may have been due to a combination of 632 

factors: neural recording modality, data preprocessing, model training and testing procedures 633 

between conditions, or the regularization method used (e.g., boosting versus ridge regression). 634 

Instead, our results show a gradual decrease in envelope tracking across SNRs similar to 635 

Vanthornhout and colleagues (Vanthornhout et al. 2018).  636 

Although the rate at which our acoustic and linguistic model accuracies declined did not 637 

completely support our hypothesis, these results may not be surprising given recent work. Kell 638 

and McDermott measured primary and non-primary auditory cortices' invariance to background 639 

noise using fMRI. Invariance was measured by correlating voxel responses to natural sounds in 640 

quiet with the voxel response to those same sounds in noise. They found that primary and non-641 

primary auditory cortices were similarly invariant to natural sounds in spectrally matched 642 

background noise tested at a 0 dB SNR. However, non-primary areas became more robust to 643 

noise than primary areas when sounds were presented in real-world noise (Kell and McDermott 644 

2019). So, our model performances may result from how the brain represents speech in the type 645 

of synthetic noise we used. Models in the present study could have also been affected by 646 
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attention. Participants may have allocated less attention to the -9 dB SNR trials due to the large 647 

amount of noise, in turn skewing the encoding/decoding of the different speech features.  648 

 Our findings also showed that phonetic features and lexical surprisal were most predictive 649 

of subjective behavioral metrics (percentage of words heard) and lexical surprisal was most 650 

predictive of objective metrics (comprehension). Previously published work has shown that neural 651 

measures of lexical surprisal is highly predictive of behavior (Mesik, Ray, and Wojtczak 2021). 652 

Many studies have also shown that the speech envelope (using stimulus reconstruction or cross-653 

correlation) contributes and relates to speech intelligibility and comprehension (Ahissar et al. 654 

2001; Decruy et al. 2020; Iotzov and Parra 2019; Lesenfants et al. 2019; Muncke, Kuruvila, and 655 

Hoppe 2022; Vanthornhout et al. 2018). Once we included envelope reconstructions in our 656 

analysis, it also proved to be an accurate predictor of behavior. However, backward modeling 657 

greatly improves overall model performance due to its ability to utilize all recorded neural 658 

channels, thereby increasing neural signal-to-noise ratio. Spectrogram and phonetic features 659 

have previously been shown to better predict EEG than the speech envelope (Di Liberto, 660 

O'Sullivan, and Lalor 2015), so we believe that our behavior-prediction accuracy correlations were 661 

due to how the envelope was modeled, rather than the information the speech envelope itself 662 

carries or how well it is reflected in the brain. 663 

 Interestingly, we found that phonetic features uniquely predicted neural activity even when 664 

controlling for the speech spectrogram and acoustic onsets. This is in line with previous studies 665 

showing that the addition of phonetic features to spectrotemporal representations improve EEG 666 

prediction (Di Liberto, O'Sullivan, and Lalor 2015; Sohoglu and Davis 2020) and its correlation 667 

with speech intelligibility (Lesenfants et al. 2019) and that phonetic features uniquely predict EEG 668 

responses even when attending to a specific talker (Teoh, Ahmed, and Lalor 2022). However, the 669 

present phonetic feature results contrast with previous work which suggested that responses to 670 

articulations could be explained by simpler acoustic features (Daube, Ince, and Gross 2019). 671 

Nevertheless, our findings that phonetic feature encoding declines at a different rate and better 672 
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predicts behavior compared to the spectrogram, provides further evidence that the two features 673 

are dissociable. 674 

Another one of our key hypotheses was that participants would use lexical context to 675 

predict and encode the acoustic features of each word. This was found to be true: our LME 676 

analysis (stage two of the two-stage regression) revealed that the more unexpected a word, the 677 

better we were able to reconstruct that word’s envelope. However, we had also hypothesized that 678 

participants would rely more on these predictions for speech in moderate levels of noise (when 679 

speech is still intelligible) relative to speech in quiet, before falling off at high levels of background 680 

noise (when speech is no longer intelligible). This result was only partially borne out. Specifically, 681 

the use of lexical context in processing the speech acoustics did decrease as the speech became 682 

noisier, but there was no evidence to support a stronger reliance on context in moderate levels of 683 

noise. In particular, while there was no difference in comprehension scores between the quiet and 684 

+3 dB SNR conditions, there was no increase in the influence of surprisal on envelope tracking 685 

for the latter condition compared to speech in quiet. We did notice a larger spread of the 686 

percentage of words heard scores across subjects in the +3 dB SNR condition. So, we explored 687 

the possibility that the subjects who were starting to struggle might put forth more effort to 688 

understand and process the story by relying more on context (and thus might have a higher 689 

surprisal weight in Figure 6) than those who remained at ceiling. But we found no significant 690 

difference. This was a little surprising given that context has be known to affect behavior 691 

(Golestani et al. 2013) and neural activity (Boulenger et al. 2011; Koskinen et al. 2020; Strauß et 692 

al. 2022) in challenging listening conditions. Future work with larger subject numbers and perhaps 693 

even lower levels of background noise (e.g., + 6 dB SNR) might reveal such an effect.  694 

Our LME model analysis based on word surprisal seems on face value to be at odds with 695 

Broderick and colleagues who found that the envelopes of words that were more semantically 696 

similar to their context were better reflected in the EEG. That is to say, envelope tracking is 697 

enhanced for words that share a similar meaning with their context (Broderick, Anderson, and 698 
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Lalor 2019). However, semantic similarity and lexical surprisal tend to share a moderate, and 699 

sometimes weak negative correlation (Frank and Willems 2017). Indeed, a re-analysis of 700 

Broderick et al.’s original EEG data has revealed that both semantic similarity and lexical surprisal 701 

play complementary (positive) roles in estimating when envelope tracking is enhanced (Broderick 702 

and Lalor 2020). Nevertheless, the nature of this duality remains mysterious, and we hope it will 703 

provide the grounds for an exciting body of future work. We anticipate it will take a substantial 704 

battery of future experiments to shape a unifying explanation, with stimuli that can disentangle 705 

correlations between semantic similarity, lexical surprisal, and other linguistic factors that could 706 

come into play (e.g., semantic content, next-word entropy, phonetic surprisal, next-phoneme 707 

entropy). In any case, what seems clear in the present results is that lexical context influences 708 

the neural tracking of speech acoustics on a word-by-word basis, and this influence drops as 709 

speech becomes unintelligible.  710 

In summary, the current results show that phonetic features are more susceptible to noise 711 

than acoustic speech features. While linguistic features are more predictive of behavior than 712 

acoustic features, envelope decoding models can be used to improve this relationship. We have 713 

also found that the encoding of certain phonetic features decreases in even low levels of noise, 714 

and that the encoding of frequencies below 1.3k essentially disappears in high noise levels. 715 

Lastly, we show support that context influences a word’s acoustic encoding. This influence 716 

lessens in high background noise levels. Future work will aim to further characterize how people 717 

might rely more or less on top-down context to process bottom-up speech input as a function of 718 

stimulus type, task, and listening conditions. 719 
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