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1. Introduction Administration Heart Failure Trial) and other trials suggest
that death is disproportionately sudden in patients with

Over 2 million Americans suffer from heart failure and more modest myocardial dysfunction [8]. A major caveat
more than 200 000 die annually. The incidence is esti- is that the mechanism of sudden death is highly heteroge-
mated to be 400 000 per year with a prevalence of over 4.5 neous; even if one considers only those patients with death
million, numbers that will increase with the aging of the due to a tachyarrhythmia, several mechanisms may prevail.
US population [1]. Despite remarkable improvements in This review will consider the cellular electrophysiologi-
medical therapy the prognosis of patients with myocardial cal changes that have been observed in myocardial hy-
failure remains poor with over 15% of patients dying pertrophy and failure that predispose to cardiac arrhyth-
within 1 year of initial diagnosis and greater than 80% 6 mias.
year mortality [2]. Of the deaths in patients with heart
failure, up to 50% are sudden and unexpected.

The failing heart undergoes a complex series of changes 2. Cellular electrophysiology in hypertrophy and
in both myocyte and non-myocyte elements. In an attempt heart failure
to compensate for the reduction in cardiac function the
sympathetic nervous (SNS), renin–angiotensin–aldos- 2.1. Changes in the action potential profile and duration
terone (RAAS) systems and other neurohumoral mecha-
nisms are activated. The altered signal transduction in An elementary and distinctive signature of any excitable
heart failure initiates changes in gene expression that tissue is its action potential profile. Myocardial cells
produce myocyte hypertrophy. Ultimately the changes in possess a characteristically long action potential (Fig. 1):
gene expression that initially maintain tissue perfusion after an initial rapid upstroke, there is a plateau of
prove to be maladaptive, predisposing to further myocyte maintained depolarization before repolarization. The dura-
loss, ventricular chamber remodeling and interstitial hy- tion of the action potential is primarily responsible for the
perplasia resulting in a progressive reduction in force time course of repolarization of the heart; prolongation of
development and impairment of ventricular relaxation. the action potential produces delays in cardiac repolariza-

The intrinsic cardiac and peripheral responses to tion.
myocardial failure adversely alter the electrophysiology of Changes in the action potential duration and profile
the heart predisposing patients with heart failure to an result from alterations in the functional expression of
increase in arrhythmic death. With progression of heart depolarizing and repolarizing currents. Prolongation of the
failure there is an increase in the frequency and complexity action potential is characteristic of cells and tissues iso-
of ventricular ectopy [3,4]. Total mortality in heart failure lated from ventricles of animals with heart failure in-
patients correlates with LV function and the presence of dependent of the mechanism, which may include pressure
complex ventricular ectopy [5–7]. However, there is no and/or volume overload [9–23], genetic [24–26], metabol-
clear correlation between SCD and LV function or ven- ic [27], ischemia / infarction [28–31] and chronic pacing
tricular ectopy. In fact, data from VHeFT (Veteran’s tachycardia models [32–34]. Similarly, tissues [35–37]

and cells [38,39] from failing human ventricles exhibit
action potential prolongation.
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achieved primarily by the activity of potassium-selective
ionic currents, although the exact molecular composition
of these currents varies considerably from species to
species. Functional down-regulation of K currents is a
recurring theme in hypertrophied and failing ventricular
myocardium. Ventricular myocytes contain several distinct
classes of voltage-dependent K channels. The inward
rectifier K current, I , sets the resting membrane potentialK1

and contributes to the terminal phase of repolarization.
Another important K current is the calcium-independent

21 transient outward current, I . Unlike the inward rectifier,Fig. 1. Action potential and Ca transients recorded in canine ventricu- to

I is expressed in heart cells in a species- and celllar myocytes isolated from a normal heart (left) and failing heart (right). to
The action potentials are recorded at 378C, a stimulation frequency of 0.5 type-specific fashion. This current plays a crucial role in

21Hz with indo-1 in the pipet for determination of the intracellular Ca the early phase of repolarization. The delayed rectifier K
concentration. The transient of the failing cell is smaller with a slowly

current (I ), composed of molecularly distinct rapid (I )K Krrising phase during the action potential plateau and delayed decay after
and slow (I ) components, is important in phase 3 ofrepolarization. Ks

repolarization. I density varies regionally in the hearts ofK

The pathophysiological significance of action potential some species [49,50] and I is the target of severalKr

prolongation in cells isolated from hypertrophied and antiarrhythmic drugs with Vaughan–Williams class III
failing hearts has been questioned on several grounds. action.
First, most action potential recordings from ventricular A reduction in the current density of I is arguably theto

myocytes are made at unphysiologically slow rates and most consistent ionic current change in cardiac hyper-
indeed the difference in duration between cells from failing trophy and failure (Table 1). Several notable exceptions
and control ventricles converges at high stimulation fre- are studies of compensated pressure overload hypertrophy
quency [34,37]. However, slow heart rates and pauses after which were associated with either no change [11] or an
premature contractions are common in heart failure, and increase in I density [17,51]. Down-regulation of I ,to to

the post-pause prolongation of the action potential duration without a significant change in the voltage dependence or
may be highly significant. Second, isolated myocytes are kinetics of the current has also been observed in cells
no longer electrically coupled to other cells in the cardiac isolated from terminally failing human hearts [39,52,53].
syncytium; however, intact muscle preparations from I is a transient current and as such down-regulation itselfto

failing hearts (e.g. [36]) and monophasic action potential may not produce large effects on the action potential
recordings in whole hearts [40] also exhibit action po- duration, particularly in larger mammals with long action
tential prolongation. Finally, the duration of the action potential durations such as dog and man. Nevertheless, Ito

potential is quite sensitive to mechanical load and increas- does profoundly influence phase 1 and the level of the
ing the load tends to shorten action potential duration and plateau (Figs. 1 and 2), thereby affecting all of the currents
refractoriness more in failing than in normal hearts [41]. that are active later in the action potential.

An important and understudied question is the effect of The density of I varies regionally and transmurally into

hypertrophy and failure on the regional differences in the heart, and there is some evidence that the density of Ito

action potential duration. Action potential durations vary may be reduced differentially in heart failure [52,53]. The
across the myocardial wall [42–45] and in different mechanism underlying regional and transmural differences
regions [46] of the mammalian heart. Data from ex- in I current density in the heart is not clear. Some datato

perimental animal models of hypertrophy suggest regional suggest that there are differences in the level of expression
inhomogeneity in action potential prolongation [12,15]. of the same K channel gene; alternatively, distinct gene
The finding of enhanced spatial and temporal dispersion products may underlie I in different regions of the heartto

and of monophasic action potential duration, refractoriness and at various stages of development [54,55]. In humans
and electrocardiographic QT intervals in humans [47,48] [56] it has been hypothesized that the K channel, Kv1.4 is
and animals with heart failure [40] is consistent with an the predominant gene that encodes endocardial I , whileto

exaggerated dispersion of action potential duration that Kv4.3 underlies mid-myocardial and epicardial I . Inter-to

may predispose to ventricular arrhythmias. estingly, these two K channels (Kv1.4 and [Kv4.3 or
Kv4.2]) exhibit distinct kinetic behavior when hetero-

2.2. Down-regulation of potassium currents logously expressed, with Kv1.4 having much slower
inactivation recovery kinetics than Kv4.x [57–60]. Prefer-

The duration and shape of the action potential is the ential expression of Kv1.4 in the endocardium may
result of a delicate balance between the depolarizing and underlie the different electrophysiological behavior of Ito

repolarizing currents that are active during the plateau in human cells isolated from the subendocardium and
phase (Fig. 2). Repolarization in the mammalian heart is subepicardium [52,53].
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Fig. 2. Schematic of the depolarizing and repolarizing currents that underlie the action potential in the mammalian ventricle. A control (solid line) and
failing (dotted line) action potential profile are shown in the center. The phases of the action potential are labeled. A schematic of the time course of each of
the currents is shown as well as the gene product that underlies the current.

The molecular mechanism of I down-regulation in that I can influence overall action potential durationto to

heart failure is likely to be multifactorial. I is regulated [32,33,39]. Nevertheless, it is not clear whether thisto

by neurohumoral mechanisms, specifically a -adrenergic conclusion would also apply under more physiological1

stimulation reduces the current size [61–63]. In animal conditions. Winslow et al. have simulated the role of I into

models [31] and human heart failure [64] a reduction in the setting the action potential duration in a novel canine
steady-state level of Kv4 mRNA has been associated with ventricular action potential model [66]. They find that Ito

21down-regulation of I . In the rat reduction in the steady- has a sizable effect when intracellular Ca is buffered, butto
21state level of mRNA is associated with a commensurate not when Ca cycling occurs unimpeded. More experi-

decrease in the level of immunoreactive Kv4 protein [31]. ments will be required to resolve the physiological impor-
The reduction in mRNA level results from a change in the tance of I down-regulation in heart failure.to

balance between transcription and mRNA degradation, the Changes in other K currents in hypertrophy and heart
precise molecular mechanism of which is unknown. It is failure have been reported, but not with the consistency of
interesting to note that regulated expression of I and Kv4 down-regulation of I (Table 1). The inward rectifier Kto to

mRNA and protein occurs during development [54] and current (Kir2 family of genes) maintains the resting
exposure to thyroid hormone [55,65]. membrane potential and contributes to the terminal phase

Because I is brief, its role in setting the action potential of repolarization in the ventricular myocyte. The importantto

duration in larger animals and humans remains contro- component of I for action potential repolarization is theK1

versial. Most of the studies examining I in heart failure outward current at voltages positive to the equilibriumto
21 1have used Ca -buffered internal solutions, thus eliminat- potential for K (E ). In mild ventricular hypertrophyK

ing any possible role of calcium-dependent processes. increased [16], decreased (but no change at voltages
Under these conditions, several lines of evidence suggest positive to E ) [11] and unchanged [13,20] I density hasK K1
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Table 1
K currents in hypertrophy and heart failure

Model APD I I I Commentto K1 K

Pressure /volume overload
Kleiman and Houser, 1989 [16] Cat /RVH ↑ ↓ I slowed activation, faster deactK

Benitah et al., 1993 [10] Rat /Ao ↓ I density LVFW.apex.septumto

Brooksby et al., 1993 [11] SHR ↑ ↔ ↓ ↔
Furukawa et al., 1993 [68] Cat /Ao ↑ ↓ Slowed act and faster deact of IK

Ryder et al., 1993 [20] gp/Ao ↑ ↔ ↔
Cerbai et al., 1994 [13] SHR ↑ ↓ ↔
Coulombe et al., 1994 [14] DOCA/salt ↑ ↓ Small negative shift gating
Li and Keung, 1994 [17] RVHTN rat ↑ ↑ Slowed I decayto

Tomita et al., 1994 [21] Rat /Ao ↑ ↓ No change in I gating /kineticsto

Potreau et al., 1995 [22] Ferret /RVH ↓ Slowed TTP, decay and recovery
Takimoto et al., 1997 [23] RVHTN rat ↓ Kv4.2 /4.3 mRNA

No change Kv1.2, 1.4, 1.5, 2.1,LQT1

Pacing-tachycardia
¨ ¨Kaab et al., 1996 [32] Dog ↑ ↓ ↓ No change in I gating /kineticsto

Rozanski et al., 1997 [33] Rabbit ↑ ↓ ↔ No change in I recoveryto

Ischemia /infarction
Lue and Boyden, 1992 [28] Dog ↓ ↓ Infarct vs non-infarct zone
Qin et al., 1996 [29] Rat ↑ ↓ No change: RMP, I kinetics /gatingto

Gidh-Jain et al., 1996 [31] Rat ↓ Kv1.4, 2.1, 4.2 mRNA
↓ Kv2.1, 4.2 protein

Genetic /misc
Thuringer et al., 1996 [25] Hamster ↑ ↓ Slowed I recoveryto

Xu and Best, 1991 [27] Rat /GH ↑ ↓ No change I gating /kineticsto

Human
Beuckelmann et al., 1993 [39] ↑ ↓ ↓ ↔
Wettwer et al., 1994 [52] ↓Subendo

¨Nabauer et al., 1996 [53] ↓Subepi Slow recovery of I in subendoto

¨ ¨Kaab et al., 1998 [64] ↓Kv4.3, : Kv1.4, Kvb1, Kir2.1, herg

RVH5right ventricular hypertrophy; Ao5aortic constriction; gp5guinea pig; SHR5spontaneously hypertensive rat; DOCA5

deoxycorticosteroneacetate; RVHTN5renovascular hypertension; GH5growth hormone.

been reported. Similar inconsistencies have been observed and failing hearts are sparse. Myocytes isolated from
in pacing tachycardia models: reduced I density has been hypertrophied right [16] and left ventricles [68,69] of theK1

demonstrated in the dog [32] and both decreased [Rose et cat have reduced I current density with slowed activationK

al. unpublished] and unchanged current density have been and faster deactivation. The reduction in the outward
found in the rabbit [33]. In human heart failure, ventricular current over the plateau voltage range in cells from the
myocytes exhibit significantly reduced current density at hypertrophied feline left ventricle exhibit a greater pre-
negative voltages. The underlying basis of the down- disposition to developing potentially arrhythmogenic early
regulation of I in human heart failure is uncertain, but afterdepolarizations (EADs) [68]. In contrast, studies ofK1

¨ ¨Kaab et al. reported no change in the steady-state level of cells isolated from pressure-overload guinea pig [20] or
Kir2.1 mRNA in failing compared to control hearts [64]. spontaneously hypertensive rat [11] ventricles demonstrate
In studies of human ventricular I , a differential reduction no change in I . There are no studies comparing I inK1 K K

in the current was noted between cells isolated from failing control and failing human hearts. The rapid component of
hearts with dilated versus ischemic cardiomyopathy. The the delayed rectifier current is encoded by the HERG
whole-cell slope conductance at the reversal potential for (human ether a go-go related gene), we found no change in

1K was significantly smaller in cells from hearts with the steady state level of HERG mRNA [64] but others
dilated cardiomyopathy; these cells also had longer action have reported a decrease in failing compared to control
potential durations with slower terminal (phase 3) repolari- hearts [70].
zation [67]. Ventricular myocytes isolated from controls The ATP-gated potassium channel (I ) is the princi-K-ATP

and hearts with ischemic myopathy exhibited voltage pal mediator of action potential shortening in response to
dependence of the open probability of I , a response that ischemia in the heart. Differences in the behavior of IK1 K-ATP

was absent in cells from hearts of patients with dilated in hypertrophied or failing hearts may have profound
cardiomyopathy [67]. implications for susceptibility to arrhythmias induced by

Studies of the delayed rectifier K current in hypertrophic myocardial ischemia. Human ventricular I in cellsK-ATP
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isolated from failing ventricles is fundamentally similar to would tend to prolong the action potential duration.
that observed in myocytes from control ventricles but less Prolongation of the decay of the Ca current is curious
sensitive to ATP inhibition [71]. Action potential short- particularly in view of the common association of eleva-

21ening that occurs in response to ischemia or metabolic tion of the intracellular [Ca ] in cardiac hypertrophy and
inhibition is exaggerated in cells from hypertrophied failure, a change that should promote calcium-induced
compared to normal ventricles [69]. The differential sen- inactivation of the current [102,103]. However, the slowed
sitivity of the action potential duration to ischemic stress decay of the L-type current may reflect deficiencies in

21may be a result of altered I sensitivity to intracellular Ca handling as exemplified by the reduction in the peakK-ATP
21 21[ATP]; however, the L-type Ca current in myocytes from of the Ca transient causing less Ca -induced inactiva-

hypertrophied hearts is also more profoundly suppressed tion of the Ca current. The underlying mechanism of the
by metabolic inhibition than the current in cells from prolonged whole-cell current decay is unknown; however,
control hearts [69]. a recent single-channel comparison of Ca current in human

ventricular myocytes has suggested an increase in open
212.3. Alterations in Ca homeostasis probability of channels consistent with a dephosphoryla-

tion defect in the cells isolated from failing hearts [104].
Heart failure is characterized by depression of developed The molecular basis of changes in the density of the

force, prolongation of relaxation and blunting of the L-type Ca current is unknown. In failing human hearts the
frequency-dependent facilitation of contraction. The fun- steady state level of the a mRNA has been reported to1C

21damental changes in Ca handling that attend ventricular decrease by Northern blot [99,104] but was unchanged by
failure are thought to account for the abnormalities in ribonuclease protection assay [64]. It is not known whether
excitation–contraction coupling; however, the cellular and there is a change in the level of immunoreactive protein,

21molecular basis of the Ca handling deficits in ventricular although a reduction in the number of DHP binding sites
hypertrophy and failure remain controversial. Intracellular has been reported in various studies (Table 2). Hyper-

21Ca and the action potential are intricately linked through trophy after myocardial infarction in the rat is associated
21Ca -modulated cell surface channels and transporters with re-emergence of expression of the fetal isoform of the

1 21such as the L-type Ca current, I and the Na –Ca a gene [85]. Two reports of changes in human CaK 1C

exchanger (NCX). channel b subunit mRNA exhibit disparate findings.
The voltage-dependent L-type Ca channel is a mul- Northern blots of samples from the left ventricle of

tisubunit protein that is ubiquitous in the heart. The L-type terminally failing hearts revealed no change in b subunit
21Ca current is the primary source of Ca entry, triggering (or a ) mRNA [104]. In contrast, samples from right1C

21release of Ca from the sarcoplasmic reticulum and ventricular endomyocardial biopsies revealed an inverse
initiating actin–myosin crossbridge cycling. The density of relationship between b subunit mRNA levels measured by
Ca current has been studied in a number of animal models competitive PCR and LV end diastolic pressure in trans-
of ventricular hypertrophy and failure (see review by Hart planted hearts [105].
[72]). The severity of hypertrophy or failure appears to Up-regulation or re-expression of the T-type Ca current
influence the density of the L-type current is a prominent feature of some animal models of ventricu-
[11,13,20,29,32,69,73–86] or number of dihydropyridine lar hypertrophy [84]. The T-type current activates at
(DHP) binding sites [80,87–94]. In general, when a hyperpolarized voltages and may participate in automat-
difference in L-type Ca current density has been detected, icity in some cells and tissues in the heart. The distribution
the current is increased in mild-moderate hypertrophy and of the T-type current is more restricted in the heart (for
decreased in more severe hypertrophy and heart failure review see Vassort et al. [106]) than the L-type current,
(Table 2). Studies of L-type Ca current in cells isolated particularly in the adult ventricle. Normal maturation of
from failing human hearts parallel the findings in animal cardiomyocytes is associated with loss of the T-type
models with severe hypertrophy or failure; human cells current, but myocytes grown in primary culture [107],
exhibit either no change [38,95–97], or a decrease in exposed to insulin-like growth factor (IGF-1) in short-term
current density [98] or DHP binding sites [99,100] (Table culture [108] or isolated from the atria of rats with growth
2).Ventricular myocytes isolated from failing hearts exhibit hormone-secreting tumors [109] reexpress this current. The
attenuated augmentation of the L-type Ca current by beta- T-type current has not been detected in cells isolated from
adrenergic stimulation [96,98] and depression of rate-de- either normal or failing human ventricles [38,96,110],
pendent potentiation [101] compared to cells isolated from therefore a role for this current in progression of human
control hearts. heart failure and associated arrhythmogenesis is unlikely.

21The basic electrophysiological features of the L-type The amplitude of the intracellular Ca transient and its
current are altered in some studies of hypertrophy and rate of decay are reduced in intact muscles [36] and cells
failure. The most common change is a slowing of the [34,38,96,111] isolated from failing ventricles compared

21decay of the whole-cell current (e.g. [11,20,74,79]), a with normal controls (Fig. 1). The changes in the Ca
change that could alter excitation–contraction coupling and transient are the result of defective function of the sarcop-
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Table 2
Calcium current changes in hypertrophy and failure

Reference Model Current density /binding sites Comment

Animal models

Mild–moderate hypertrophy
Mayoux et al., 1988 [87] Ao/ rat ↑ DHP-binding sites
Keung, 1989 [74] RVHTN rat ↑ I Slowed decayCa-L

Scamps et al., 1990 [75] Ao/ rat ↔ I ↓b-adrenergic responsivenessCa-L

Qin et al., 1996 [29] Post-MI/ rat ↔ I No change in kineticsCa-L

Santos et al., 1995 [76] Post-MI/ rat ↓ I No significant change in kineticsCa-L

Gomez et al., 1997 [77] SHR ↔ I No change in kineticsCa-L

Xiao and McArdle, 1994 [78] SHR ↑ I (10 weeks)Ca-L

Kleiman and Houser, 1988 [79] PA banding/cat ↑ I No change in kineticsCa-L

Finkel et al., 1987 [88] Syrian hamster ↑ DHP binding sites (early)
Wagner et al., 1989 [89] Syrian hamster ↑ DHP binding sites (early)
Creazzo, 1990 [80] Chick PDA ↑ I No change DHP binding sitesCa-L

Ryder et al., 1993 [20] Ao/gp ↑ I Slowed decay, depolarizing shift of SS inactivationCa-L

Mukerjee et al., 1998 [81] Pacing pig (1 week) ↓ I No change in kinetics, ↓b-adrenergic responsivenessCa-L

Severe hypertrophy and failure
Momatz et al., 1996 [82] DOCA–salt / rat ↔ I No change in kineticsCa-L

Gomez et al., 1997 [77] SHR ↔ I No change in kineticsCa-L

Brooksby et al., 1993 [11] SHR ↔ I Slowed decayCa-L

Cerbai et al., 1994 [13] SHR ↔ ICa-L

Dixon et al., 1990 [91] Post MI/ rat ↓ DHP binding sites
Gopalakrishnan et al., 1991 [90] Post-MI/ rat ↓ PN200-110 binding sites
Furukawa et al., 1994 [69] Post-MI/cat ↔ I Slowed decayCa-L

Finkel et al., 1987 [88] Syrian hamster ↓ DHP binding sites (late)
Wagner et al., 1989 [89] Syrian hamster ↓ DHP binding sites (late)
Bouron et al., 1992 [83] PA banding/ ferret ↓ ICa-L

Nuss and Houser, 1991 [84] PA banding/cat ↓I Re-expression of ICa-L Ca-T

Gidh-Jain et al., 1995 [85] Post-MI/gp ↓I Increase in the fetal splice variant of a1CCa-L

Ming et al., 1994 [86] RVHTN/gp ↓ I No change in kinetics, ↓b-adrenergic responsivenessCa-L

Colston et al., 1994 [92] Pacing rabbit ↓ DHP binding sites
Vatner et al., 1994 [93] Pacing dog ↓ DHP binding sites

¨ ¨Kaab et al., 1996 [32] Pacing dog ↔ I No change in kineticsCa-L

Gengo et al., 1992 [94] MI dog ↓ DHP binding sites
Aggarwal and Boyden, 1996 [73] MI dog ↓I No change in kinetics,↓b-AR sensitivityCa-L

Mukerjee et al., 1998 [81] Pacing pig (3 week) ↓I , ↓ DHP binding sites No change in kinetics, ↓b-adrenergic responsivenessCa-L

Human studies
Beuckelmann et al., 1992 [96] ↔ I No change in kinetics, ↓b-AR sensitivityCa-L

Mewes and Ravens, 1994 [97] ↔ I No change in kinetics or voltage dependenceCa-L

Ouadid et al., 1995 [98] ↓I ↓b-AR sensitivityCa-L

Piot et al., 1996 [101] Blunted upregulation of I by rapid stimulation in hearts with EF,40%Ca-L

Rassmussen et al., 1990 [95] ↔ DHP binding sites
Takahashi et al., 1992 [99] ↓ DHP binding sites, a1C mRNA
Gruver et al., 1994 [100] ↔ DHP binding sites Normal vs. DCM LV

↓ DHP binding sites Normal vs. IsCM LV
Schroder et al., 1998 [104] ↑Ensemble average I ↑P , single channel availabilityCa-L open

↔ a , b mRNA1C

MI5myocardial infarction; PA5pulmonary artery; PDA5patent ductus arteriosus. For other abbreviations see Table 1.

21lasmic reticulum, but the precise molecular mechanism(s) induced Ca release. The level of ventricular RyR mRNA
of this defect is controversial. The sarcoplasmic reticulum decreases in some studies of terminal human heart failure

21 1 21Ca –ATPase (SERCA2a) and the Na –Ca exchanger [113,114] but no change in RyR protein level has been
21(NCX) are primary mediators of Ca removal from the demonstrated [115].

cytoplasm. SERCA2a is inhibited by unphosphorylated Many studies have demonstrated a reduction in
phospholamban (PLB) by direct protein-protein interaction SERCA2a mRNA [99,116–124], but fewer studies have
[112], when PLB is phosphorylated SERCA2a inhibition is shown a reduction in immunoreactive protein [34,124–

21 21relieved. Ca entry into the cell through the L-type Ca 126]. Despite unanimity of opinion that Ca sequestration
21channel stimulates release of Ca from the SR by the by the SR is defective in failing myocardium, there is

21ryanodine receptor (RyR) in a process known as Ca - controversy about whether there is a change in SERCA
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1 21 21pump function (for discussion see reviews by Hasenfuss (Na in and Ca out) compensates for defective SR Ca
[127] and Movsesian [128]). SERCA2a function may also removal at the expense of depletion of the releasable pool

21be altered in hypertrophy and heart failure by changes in of Ca with repetitive stimulation (flat or negative force–
the relative expression or function of PLB. PLB mRNA is frequency relation) [135-137], increasing depolarizing

1 21consistently reduced in failing human hearts [116,119– current. Reverse mode exchange (Na out and Ca in)
121,129], but this has not translated into a decrease in PLB has been suggested to provide inotropic support to the
protein in all studies (Table 3 [119–121,130]. failing heart [132,138]. Computer simulations based on the

21 21Intracellular Ca concentration ([Ca ] ) is an im- canine pacing tachycardia model suggest that augmentationi

portant modulator of the cellular electrophysiology of the of reverse mode exchanger function during the early
heart, affecting the function of a number of ion channels plateau will tend to shorten the action potential duration.
and transporters and increasing the resistance between cells However, with exaggerated forward mode function and
by reducing gap junctional conductance [131]. The NCX changes in the decay rate of the L-type Ca current the net

21importantly contributes to control of [Ca ] , extruding effect is prolongation of the action potential [66].i
21cytoplasmic Ca by electrogenically exchanging it for
1extracellular Na . Most studies from hypertrophied and 2.4. Pacemaker current, If

failing hearts have demonstrated an increase in both NCX
mRNA and protein [34,118,132,133] (Table 3), suggesting The hyperpolarization-activated ‘funny’ or pacemaker
that enhanced NCX function compensates for defective SR current (I ) in the heart is a nonselective cation current thatf

21removal of Ca from the cytoplasm in the failing heart. was originally described in automatic tissues such as the
O’Rourke et al. [34] have reported functional evidence for sinoatrial node [139–141]. More recently I has beenf

a prominent role of NCX in myocytes from failing canine demonstrated in ventricular cells from animal [142,143]
hearts, which they interpreted as being compensatory for a and human hearts [144,145], activating at very negative

21decrease in Ca reuptake by the SR. However, direct voltages outside the physiological range. The channel gene
studies of NCX function in failing hearts are limited; underlying this current has recently been cloned [146]. If

1 21Na -dependent [45] Ca flux into sarcolemmal vesicles generates an inward current that drives the membrane
has been shown to be increased in a human sarcolemmal voltage toward threshold, thus significantly contributing to

21preparation [133]. In contrast, no change in the Ni - diastolic depolarization in automatic cells. In the rat, If

sensitive exchanger current was observed in cells isolated density increases with the severity of cardiac hypertrophy
from failing hearts compared with normal controls in the [147]. In contrast, although I is found in higher density inf

rabbit pacing tachycardia heart failure model [134]. This, ventricular myocytes from failing human hearts, the differ-
however, does not imply that the current carried by the ence from controls did not reach statistical significance.
NCX is the same in cells from failing hearts compared Furthermore, no differences in the voltage dependence,

21with controls. In the context of a prolonged Ca transient, kinetics or isoproterenol-induced gating shift were noted in
the NCX is likely to play a significant role in reshaping the cells from failing compared to control hearts [145].
action potential profile. Forward-mode exchanger function Nonetheless, the trend toward an increase in I in thef

Table 3
21Alterations in Ca regulatory proteins in human heart failure

Reference SERCA NCX PLB RYR

mRNA Protein mRNA Protein mRNA Protein mRNA Protein

Mercadier et al., 1990 [117] ↓
Feldman et al., 1991 [129] ↑
Takahashi et al., 1992 [99] ↓
Brilliantes et al., 1992 [113] ↓ ICM

↔ DCM
Arai et al., 1993 [116] ↓ ↓ ↓
Studer et al., 1994 [118] ↓DCM, ICM ↑ DCM, ICM ↑ DCM, ICM
Movsesian et al., 1994 [130] ↔ Function ↔
Hassenfuss et al., 1994 [125] ↓ Function
Go et al., 1995 [114] ↓DCM, ICM
Meyer et al., 1995 [115] ↔ ↔ ↔
Flesch et al., 1996 [132] ↑ DCM, ICM ↑ DCM, ICM
Flesch et al., 1996 [120] ↓ ↔ ↓ ↔
Reinecke et al., 1996 [133] ↑ Trend ↑ Trend
Schwinger et al., 1995 [119] ↓ ↔ ↓ ↔
Linck et al., 1996 [121] ↓ ↔ ↓ ↔
Hasenfuss et al., 1997 [136] ↓ ↑
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setting of reduced I current density may predispose Since the initial observations of Bristow et al. [153],K1

ventricular myocytes isolated from failing hearts to en- adrenergic signaling in human heart failure has been the
hanced automaticity. subject of extensive study (for reviews see [154,155]). The

b , b and a adrenergic receptors mediate the effects of1 2 1
1 12.5. Na –K ATPase increased catecholamines (both circulating epinephrine and

norepinephrine released from cardiac nerve terminals) in
1 1 1The Na –K ATPase (Na, K pump) transports K into the heart. These receptor subtypes are coupled to different

1the cell and Na out with a stoichiometry of 2:3 therefore signaling systems. The b and b receptors are coupled by1 2
1 1generating an outward repolarizing current. The Na –K stimulatory G proteins to adenylyl cyclase; activation

ATPase is dimeric consisting of a- and b-subunits each of results in increased cellular levels of cAMP, which may be
which has three isoforms. The a-subunit determines the quite local in the case of b receptors [156]. The a2 1

glycoside sensitivity of the pump. The majority of ex- receptor is coupled by a G protein to phospholipase C
perimental data suggest that the expression and function of (PLC) which hydrolyzes inositol phospholipids increasing

1 1the Na –K ATPase are reduced in failing compared with cellular inositol 1,4,5-trisphosphate (IP3) and diacylglyc-
control hearts [148–152]. Decreased pump function in erol (DAG). Angiotensin II (AT1) receptors are similarly
heart failure has several consequences that might be coupled to PLC. Activation of the AT1 receptor or the
relevant to production of arrhythmias. First is the reduction a-adrenergic pathway initiates a kinase cascade triggering

21in the outward repolarizing current that would tend to cell growth and altering the level of intracellular Ca .
prolong action potential duration. Second, all else being Indeed, a byproduct of local catecholamine excess in the

21equal, reduced pump function would lead to an increase in heart is an increase in cellular Ca load. The possible
1 21intracellular [Na ] and enhanced reversed mode NCX, adverse consequences of increased Ca load is activation

increasing depolarizing current. Finally, cells with less of phospholipases, proteases and endonucleases culminat-
1 1Na –K ATPase activity have greater difficulty handling ing in cell necrosis or apoptosis and progression of the

1 1changes in extracellular [K ]: low [K ] itself tends to failing phenotype.o
1inhibit the ATPase, while increases in [K ] would tend to The b and a signaling pathways significantly affect theo

be cleared less rapidly in the setting of relative pump function of a number of ion channels and transporters. The
inhibition. net effect of b-adrenergic stimulation is to shorten the

ventricular action potential duration due to an increase in
2.6. Modulation of channel and transporter function the current density and a hyperpolarizing shift of the

activation of I [157], despite b receptor stimulation ofK 1

In the face of impaired left ventricular pump function, depolarizing current through the L-type Ca channel. a -1

the body attempts to maintain circulatory homeostasis adrenergic receptor stimulation inhibits several K currents
through a complex series of neurohumoral changes. Promi- in the mammalian heart, including I , I and I in ratto K1 K

nently, the sympathetic nervous (SNS) and renin–an- ventricle with the net effect of prolonging action potential
giotensin–aldosterone (RAAS) systems are activated. Acti- duration [158].
vation of the SNS increases heart rate and contractility and Mechanical load is an important modulator of excitabili-
redistributes blood flow centrally by peripheral vasocon- ty in the heart. The effect of altered hemodynamic load
striction. The RAAS similarly causes vasoconstriction and may be exaggerated in the failing compared with the
increases circulatory volume. The neurohumoral changes normal ventricle. In doxorubicin-induced heart failure in
are initially adaptive, maintaining systolic function and the rabbit increased load produced exaggerated shortening
vital organ perfusion, but ultimately lead to progression of of the action potential duration and enhanced arrhythmia
the heart failure phenotype. Elaboration of catecholamines susceptibility in failing compared to control hearts [41].
chronically can be directly cardiotoxic and results in a The effect of load is not likely to be distributed uniformly
series of changes in adrenergic receptor densities that are across the ventricular wall or throughout the myocardium,
maladaptive. The volume overload and vasoconstriction and thus has the potential to increase dispersion in action
produced by chronic activation of both the SNS and RAAS potential duration with arrhythmogenic consequences.
increases myocardial wall stress with increased oxygen
demand and the possibility of progressive myocyte damage 2.7. Electrical remodeling and arrhythmia mechanisms
and dropout. The combination of neurohumoral activation in cardiac hypertrophy and failure
and mechanical stress activates signal transduction cas-
cades that produce myocyte hypertrophy and result in the Sudden death due to ventricular arrhythmias associated
elaboration of trophic factors that increase the interstitial with cardiac hypertrophy and failure is likely to involve
content of collagen; both effects combine to impair both multiple arrhythmic mechanisms. The variability in the
systolic and diastolic function of the heart. The changes in reported electrophysiological changes are certainly in part
neurohumoral signaling have prominent effects on the methodological, but also reflect a high degree of hetero-
electrophysiology of the failing heart. geneity in the pathobiology of hypertrophy and heart

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/42/2/270/277221 by guest on 20 August 2022



´278 G.F. Tomaselli, E. Marban / Cardiovascular Research 42 (1999) 270 –283

failure in animal models and human disease. The stage of repolarization or maintained depolarization. As a rule, the
disease is crucial in determining the degree and character longer the action potential, the more labile is the repolari-
of electrical remodeling and arrhythmic risk. Data from zation process [160]. Action potential lability may be
human heart failure trials support this concept; in VHeFT manifest as variability in duration and/or secondary depo-
the risk of sudden and presumed arrhythmic death was larizations that interrupt action potential repolarization,
proportionately greater in patients with less severe heart such as EADs that can initiate triggered arrhythmias
failure [8]. The changes in risk of sudden death with including torsades de pointes ventricular tachycardia.
progression of heart disease are likely to be a reflection of Indeed, enhanced susceptibility to afterdepolarization-me-
changes in electrophysiological substrate. The great chal- diated ventricular arrhythmias has been demonstrated
lenge remains to use insights provided by in vitro studies experimentally. Prolongation of repolarization [161–163],
to more completely understand arrhythmic mechanisms in enhanced dispersion of repolarization and susceptibility to
the intact heart and to prevent sudden death in patients. cesium-induced action potential prolongation have been

It is useful to consider the possible mechanisms of demonstrated in the canine pacing-tachycardia heart failure
ventricular arrhythmias in terms of cellular electrophysio- model, an animal model with a high incidence of sudden
logical parameters and the molecular changes in hyper- death [40]. Ventricular myocytes isolated from the failing
trophy and heart failure that modulate these parameters canine heart exhibit more spontaneous EADs than cells
(Table 4) [159]. Abnormal automaticity may arise in from control hearts and have an exaggerated response
hypertrophied and failing hearts in the setting of a reduc- (more frequent and complex EADs) to reduction of the

1tion in resting membrane potential or acceleration of phase bath K concentration and the addition of the non-specific
4 diastolic depolarization such that the threshold for K channel blocker CsCl [164]. Complex afterdepolariza-
activation of the Na current is reached rapidly. Re-expres- tions and triggered arrhthythmias are more common in
sion of I in ventricular cells changes in the voltage hypertrophied rat ventricular myocardium exposed to KCa-T

dependence, b-adrenergic sensitivity, or an increase in the channel blockers [165] and dogs with LVH exposed to the
density of I , and reduced I density could conspire to Ca channel agonist BayK 8644 [166]. Alterations in Caf K1

enhance automaticity in ventricular myocytes in failing current density or kinetics can predispose to EAD- or
hearts. DAD-mediated arrhythmias [160]. Changes in the cellular

Triggered automaticity arising from afterdepolarizations environment such as hypokalemia, hypomagnesemia, and
could be enhanced by several electrophysiological changes elevated levels of catecholamines may further increase the
described in the failing and hypertrophied heart. Cells susceptibility to afterdepolarization-mediated triggered ar-
isolated from failing animal and human hearts consistently rhythmias [37].

21reveal a significant prolongation of action potentials com- The changes in Ca handling in the hypertrophic and
pared to those in normal hearts, independent of the failing heart may also contribute to electrical instability.

21mechanism of CHF (Table 1). The plateau phase of the The characteristic slow decay of the Ca transient and
21action potential is known to be quite labile: this is a time increased diastolic [Ca ] can predispose to oscillatory

21of high membrane resistance, during which small changes release of Ca from the SR and DAD-mediated triggered
21in current can easily tip the balance either towards arrhythmias. The slow decay of the Ca transient will

Table 4
Arrhythmia mechanisms in cardiac hypertrophy and heart failure

Arrhythmogenic mechanism Molecular changes in hypertrophy/HF

Abnormal automaticity
↓RMP-V Phase 4 diastolic depolarization ↑I , ↓I , ↑Ithreshold Ca-T K1 f

(enhanced)
Maximum diastolic potential
(reduced)

Triggered automaticity
EAD-mediated AP duration ↓K currents, ↑ NCX,

(↑AP duration and altered profile) Altered I density and kinetics,Ca-L
21 21Late EAD or [Ca ] (increased) Slowed Ca transient, ↑NCXi

DAD-mediated

Reentry
Reactivation APD (prolonged)
(short excitable gap)
↓Conduction and block Anisotropic conduction (altered) Microfibrosis in the interstitium
(long excitable gap)

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/42/2/270/277221 by guest on 20 August 2022



´G.F. Tomaselli, E. Marban / Cardiovascular Research 42 (1999) 270 –283 279

¨influence ion flux through the NCX and may also pre- Rose, and Michael Nabauer for helpful discussions and
dispose to late phase 3 EAD-mediated triggered arrhyth- Jeff Balser for review of the manuscript.
mias.

The most common mechanism of ventricular arrhyth-
mias is reentry due to abnormal impulse conduction. There
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