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1. Introduction

When a certain strong electrical pulse applied across a cell or tissue, the structures of the cell
or tissue would be rearranged to cause the permeabilization of the cell membrane, named
in early 1980’s “electroporation”[1]. The theoretical and experimental studies of electric field
effects on living cells with their bilayer lipid membrane has been studies in 1960’s to 1970’s
century [1-6]. During these years, the researches were primarily dealt with reversible and
irreversible membrane breakdown in vitro. Based on these research, the first gene transfer
by custom-built electroporation chamber on murine cells was performed by Neumann et al.
in 1982 [7]. When electric field (E≈0.2V, Usually 0.5-1V) applied across the cell membrane, a
significant amount of electrical conductivity can increase on the cell plasma membrane. As
a result, this electric field can create primary membrane “nanopores” with minimum 1 nm
radius, which can transport small amount of ions such as Na+ and Cl- through this mem‐
brane “nanopores”. The essential features of electroporation included (a) short electric pulse
application (b)  lipid bilayer charging (c)  structural  rearrangements within the cell  mem‐
brane (d) water-filled membrane structures, which can perforate the membrane (“aqueous
pathways” or pores) and (e) increment of molecular and ionic transportation [8]. In conven‐
tional electroporation (Bulk electroporation) technique, an external high electric field pulses
were applied to millions of cells in suspension together in-between two large electrodes.
When this  electric  field was above the critical  breakdown potential  of  the cell,  a  strong
polarization of the cell membrane occur due to the high external electric field. Applying a
very high electric field could be resulted in the formation of millions of pores into the cell
membrane simultaneously without reversibility [9]. Several methods other than electropora‐
tion  can  be  used  for  gene  transfer  like  microprecipitates,  microinjection,  sonoporation,
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endocytosis,  liposomes,  and  biological  vectors  [10-16].  But  electroporation  have  some
advantages when compared to other  gene transfer  methods such as,  (a)  easy and rapid
operation  with  high  reproducibility  due  to  control  of  electrical  parameters  (b)  higher
transformation efficiency when compared to CaCl2 and PEG mediated chemical transforma‐
tion (c)  controllable pore size with variation of electrical  pulse and minimizing effect  of
cytosolic components, and (d) easy to uptake DNA into cells with smaller amount, when
compared  to  other  techniques  [17-19].  For  bulk  electroporation,  drug  delivery  can  be
performed in homogeneous electric field, whereas as single cell electroporation (SCEP), can
introduce an inhomogeneous electric field focused on targeted single adherent or suspend‐
ed cell without affecting other neighboring cells. Both techniques can deliver molecules such
as DNA, RNA, anticancer drugs into cells  in–vitro and in-vivo.  However SCEP is  more
advanced technique compared to the bulk electroporation technique. Recently researchers
are concentrating on more advanced research area, such as localized single cell membrane
electroporation (LSCMEP), which is an efficient and fast method to deliver drugs into single
cell by selective and localized way from millions of cells. This LSCMEP can judge cell to cell
variation precisely with their organelles and intracellular biochemical effect. This process can
deliver more controllable drug delivery inside the single cell with application of different
pulse duration. Both single cell electroporation (SCEP) and localized single cell membrane
electroporation (LSCMEP) can provide high cell viability rate, high transfection efficiency,
lower  sample  contamination,  and  smaller  Joule  heating  effect  in  comparison  with  bulk
electroporation (BEP) process.

2. Electroporation conditions

To achieve excellent gene delivery into the cells, several electroporation conditions will be
accomplished during experiment. Also these electroporation conditions depend upon cell to
cell variation. Generally these conditions can be divided into three categories (a) cellular factors
(b) physiochemical factors and (c) electrical parameters.

2.1. Cellular factors

The gene delivery by electroporation into living cells should take place with high transfection
efficiency and high cells viability in a physiological unperturbed state, so that, the effect of
gene on a specific cellular function can be measured. The transformation efficiency can be
influenced by growth phase of the cells, cell density, cell diameter, cell rigidity etc. The growth
period of the cells in higher transformation success can be achieved from early to middle phase
[20]. For electroporation, two main parameters needed to be optimized, one is electric field
strength and the other is the pulse duration of electric field. When we apply voltage between
two electrodes (this two electrodes maintain some distance), the pulse is generally an expo‐
nentially decayed signal with a time constant given by the product of the capacitance and
resistance of the buffer solution. For any kind of field strength and pulse duration, the extent
of macromolecular entry and degree of mortality will vary among different cell lines [21]. If
transmembrane potential (TMP) difference is proportional to the cell size, the electric field
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strength will be more sensitive for larger cells compared to smaller cells [22]. Also it has been
reported that, transmembrane potential difference is related to cell angles and the directions
of applied electric fields, where TMP values linearly proportional to the external applied
electric field and cell diameter [23]. For the detection of specific effect of electroporated
antibody, cellular function can depends on many variables, such as (a) concentration and
affinity of introduced antibody into the target cell (b) restriction of antibodies to bind by target
molecules (c) antibody can effect by intracellular concentration of target molecules (d) target
molecules cellular factor such as epitopes(s) which can recognize the antibodies are unable to
bind with target molecules (e) the cellular distribution of target molecules is accessible or not
for antibody [21]. The cell viability during electroporation is also an important factor. Several
literatures reported that nucleic acid molecules can be delivered in a highly efficient manner
by optimizing the electroporation parameters, and the optimized electroporation conditions
using a fluorescently labeled transfection control siRNA resulted in 75% transfection efficiency
for Neuro-2A, 93% for human primary fibroblasts, and 94% for HUVEC cells, as analyzed by
flow cytometry [24]. Saunders et al. have shown the successful uptake of trypan blue and FDA
in cells, protoplasts and pollen from different plants using variety of pulse generator for
optimizing the electroporation conditions [25].

2.2. Physiochemical factors

Physiochemical factors are more important for electroporation. This phenomena can occur
during tissue development which contain the transportation, consumption of nutrients and
oxygen, waste generated by cells, mechanical loading of tissue or cells, electromechanical
phenomena (piezoelectricity), chemomachanical phenomena (swelling), electrochemical
phenomena (Debye length) or osmotic phenomena (transport through the cell membrane).
During cell culture stage, cells have to proliferate, colonize homogeneously in porous scaffolds
and synthesized extracellular matrixes [26]. Different type of molecules or elements can
interact with cells during cell culture [27]. Among all of the soluble elements, oxygen molecules
possess the major importance for tissue growth particularly for osteoarticular system [28-29].
The magnitude of cell local oxygen consumption could be affected by cell concentration and
temperature. The oxygen molecules passes through the cell membrane subject to enzymatic
chemical, which is familiar as fundamental in enzymology. The oxygen consumption (Rs) per
unit area of cell layer with surface density σcell can be described as the following expression

max maxS cel
M M

C CR V R
C K C K

s= ´ ´ = - ´
+ + (1)

Where KM is the Michaelis constant, C is the nutrient molecular concentration and the negative
sign indicated that all cell layers have a sink effect. The maximum oxygen consumption rates
Vmax depends upon cell types and it can vary several order of magnitude. The oxygen con‐
sumption in unit volume such as porous substrate as written as
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V V SR S R= ´ (2)

This law also can be utilized for other biological phenomena such as cell population growth,
drug uptake by tumor cells or absorption of biochemical molecules within kidney [26]. The
electroporation efficiency can be affected by ionic composition of buffer solution. The resis‐
tivity and RC time constant of the electric pulse can be determined by ionic concentration of
the buffer as written as [20]

0 exp( )tV V
RC
-

= (3)

RCt = (4)

where, V is the voltage across the pulsing chamber, V0 is initial voltage, t is the time after
starting of the pulse, R is the resistance of suspension, C is the capacitor of the capacitance,
and τ is the time constant. The salt concentration of the electroporation buffer as well as pH of
the buffer solution can affect the electroporation efficiency [30-31]. Generally the pH value 7.2
can be considered as an appropriate value for electroporation condition. The permeability of
the cell membrane depends upon the solubility properties (such as salt composition, pH),
charges or chemistry and solute size. The water molecule can transport inside and outside by
osmotic balance. Osmosis can maintain the turgor pressure of the cells, across the cell mem‐
brane between the cell interior and relatively hypotonic environment [32]. The swelling
properties of biological tissues can be explained by osmotic disjoining pressure [33]. Also the
electroporation efficiency is much better, by introducing gene into cells at (0-4 °C) compared
to elevated temperature during electroporation experiment [34-35]. This low temperature
helps to protect the rapid resealing of the pores and enhance the uptake efficiency of gene
inside the cell [17]. It has been reported that high transformation efficiency can be achieved by
cell suspension of slow growing mycobacteria at elevated temperature [36]. Regarding the
transfer of DNA into cells , it has been shown that cooling at the time of permeabilization and
subsequent incubation (37 °C), can enhance the transformation efficiencies and cell viability
[37]. Some of the authors has reported that, the use of low conductivity medium for DNA
transfer, can increase the cell viability and transformation efficiency [37]. Increasing the
amount of DNA into the pulse chamber can increase linearly transfection level [38-39].
However the toxic effect can be observed for high DNA concentration [39-40]. It is generally
considered the use of calcium in the medium during electroporation for not causing high
intracellular level of electrolyte. However some researchers use calcium and magnesium into
the buffer solution for performing DNA transformation into the cell. In such a condition, DNA
with calcium ions can act as positively charged ‘glue’ and attracted by the negatively charged
ions on the exterior cell membrane, as a result, DNA molecules are approximating to the
membrane before the electroporation process [41-42].
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2.3. Electrical parameters

Electrical parameters are the most important factors to achieve high transformation efficien‐
cy and high cell  viability during successful  gene transfer  into living cells.  The electrical
parameters mainly depend upon electric field strength, pulse length, number of pulses, time
between two pulses and etc. Cell plasma membrane always have a tendency to protect the
cytoplasmic volume from outside of any exogenous molecules. Cell membrane also continu‐
ously prevent cell to cell fusion. However, if we apply external electric field pulses and if
this electric field just surpasses the capacitance of the cell membrane, then transient electro‐
permeabilized state can occur, which allow the delivery of various extracellular molecules,
such as drugs, antibodies, DNA, RNA, dyes, tracers and oligonucleotides from outside of
the cell to inside of the cell. If the molecular size is small, it can enter inside the cell membrane
by diffusion after electropermeabilization. However if the size is large, the molecules can
enter into the cell through electrophoretically driven process as like DNA transferring into
the cell membrane. Previously it was reported that, short and strong electric field pulses can
make the membrane permeable in a spontaneously reversible way [43]. Also, it was reported,
an extremely short pulse in nanosecond range with very high voltages, cellular organelles
can  be  electroporated  without  cell  membrane  permeabilization  [44].  The  cell  membrane
permeabilization area can be controlled by pulse amplitude. By this permeabilization area,
diffusion can take place into the cell membrane [45]. The degree of permeabilization can be
controlled by the pulse duration and pulse number, where the longer the pulse, the greater
the perturbation of the membrane in a given area [46]. Also it has been reported that area of
the membrane being permeabilized is larger on the pole facing positive electrode, but degree
of permeabilization is greater on the cell, where pole facing negative electrode [47]. Howev‐
er high transformation efficiency can be obtained, when three successive pulses with two
intermittent cooling steps of one minute in each or single pulse without cooling for transfor‐
mation of Enterococcus faealits, E. coli and Pseudomonas putida [38]. Kinetic study of electroper‐
meabilization leads to 5 steps.

Time dependent electropermeabilization

Trigger The external field induces an increase in the transmembrane potential up to the

critical permeabilizing threshold

µm

Expansion A Time dependent membrane transition occurs as long as the field is maintained at a

overcritical value

ms

Stabilisation A dramatic recovery of the membrane organization take place as soon as the field is

subcritical

ms

Resealing The annihilation of leaks is slow s

Memory Cell viability is preserved but membrane structural (flip flop) and physiological

properties (macropinocytosis) recover on a much longer time

h

Table 1. Time dependence of electropermeabilization. Permission to reprint obtained from Elsevier [50].
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Table-1, illustrates the five steps where “Induction step” describes the field induced mem‐
brane potential increase which provides local defects, when it reached to a certain critical value
(above 200mV). Here mechanical strength of the cell membrane depends upon buffer composi‐
tion. The “Expansion step” comes when field presents with a strength larger than a critical value.
In this case electromechanical stress present. “Stabilization step” indicates, field intensity is lower
than threshold value, a stabilization process will take place in a few milliseconds. As a result
membrane will be permeabilized for small molecules. “Resealing step” demonstrates a slow
resealing on a scale of seconds and minutes. The “Memory effect” comes due to some changes
of the membrane properties for longer time, such as an hours, but cell behavior is still normal
[48-50]. Table-2 demonstrate electroporation conditions of various cell types [51], where electric
field strength, pulse length, no of pulses, time between two pulses vary in each different type of
cells.

Cell type
Voltage

(Volt)

Pulse length

(µS)
Number of pulses (sec)

Time between

pulses (second)
Number of cells

HMSC 700V 90 5sec 0.1 75,000

HUVEC 250V 150 - - 75000

RPTEC 300V 300 - 0.1 75000

Human

T-Cells
300V 400 - 0.1 200000

NHDF-neo 900V 70 5sec 5 75000

PC-12 450V 200 - - 75000

Rat astrocytes 300V 90 0.1sec 0.1 75000

NHA 450V 120 0.1sec 0.1 75000

K562 350V 130 0.1sec 0.1 150000

Table 2. Electroporation conditions for various cell types. Permission to reprint obtained from RNA society [51].

3. Single cell electroporation

3.1. Prospect of SCEP over Bulk Electroporation (BEP)

For single cell electroporation (SCEP), the electric field parameters can be controlled to avoid
cell death. In SCEP, where an inhomogeneous electric field is applied locally surrounding the
single cell adhesion or suspension, whereas in bulk electroporation (BEP), a homogeneous
electric field is applied to suspension of millions of cells together. Fig.1. shows two types of
conventional bulk electroporation(BE) chamber, to apply electric field with suspension of
millions of cells together for vitro experiment. Both figures has shown the cross sectional view
with two metal electrodes.
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Figure 1. Bulk electroporation apparatus for vitro experiment. Two types of electroporation chamber, to apply an ex‐
ternal electric field into the suspension of millions of cells together. Each chamber (a.b) consists cross sectional view of
cuvette with two metal electrodes. Figure has redrawn with reprint permission [8].

Fig.2. demonstrates the single cell electroporation technique, where an external electric field
is applied across the single cell membrane surface.

Figure 2. Single cell electroporation (SCEP) (a) Electric field was applied outside of the cell membrane (b) When exter‐
nal electric field reaches to a certain threshold value of the cell membrane, then cell membrane can permeabilized to
deliver drug/biomolecules inside the single cell. After electroporation cell membrane reseal again.

When an external electric field beyond the certain threshold value of the cell membrane, then
cell membrane can permeabilized to deliver biomolecules inside the single cell. The success rate
like surviving cell for single cell electroporation is far better compared with bulk electropora‐
tion (BEP). This technique is faster and easy to perform with less toxicity and technical difficul‐
ty for application of wider tissues and cells. By this electroporation technique, the specific cell
membrane region with small volume can be targeted to deliver the drugs, which can help to
preserve expansive gene or molecules. Due to small volume of electroporation, different gene
can be transferred in different electroporated time without cell damage. SCEP technique can
provide precise temporal and spatial gene or dye delivery inside the cell. These processes are
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affordable methods for fluorescently labeled and genetically manipulated individual cells [52].
This level of electroporation study is more convenient to understand molecular and genetic
mechanisms with their biological functions and SCEP has ability to control temporally molecu‐
lar biology of the cell, which was challenging task for transgenic model systems [52]. For bulk
electroporation the required voltages are very high (103V) and this technique has little control
of individual cell resulting in suboptimal parameters [53], as a result it is difficult to achieve
reversible electroporation of all cells [54]. Moreover in single cell electroporation, there is good
opportunity to observe the single cell response with specific cell size, shape, status and orienta‐
tion of the electric field. SCE is useful for primary culture and heterogeneous culture such as
brain tissue culture [55].

The first single cell electroporation has been demonstrated by using two carbon fiber micro‐
electrodes [46], where the electrodes (2 µm to 5 µm) was positioned from the boundary of the
cell surface at an 0-20° angle and 160-180° angle with respect to the objective plane. The patch
clamp technique demonstrated the single cell electroporation (SCE), where patch-clamp
pipette was sealed on the cell at a 900 angle with respect to the microelectrodes [56]. Using this
technique, from transmembrane current response, it was possible to determined electric field
strength for ion permeable pore formation and kinetics of pore opening, closing as well as pore
opening times [56]. The electrolyte-filled capillary (EFC) coupled with a high-voltage power
supply has been used for single cell experiment [57]. For application of a large voltages across
EFC, It causes the formation of pores in the cell membranes which induces an electroosmotic
flow of electrolyte. Micropipettes filled with DNA or other molecules stimulated by electric
field have been electroporate the single cell at the tip of the pipette and successfully deliver
the molecules inside single cell [58]. Microfabricated chip was used to incorporated the
biomolecules into live biological cells for single cell experiment [59]. To achieve successful
single cell electroporation, cell must be isolated from its population or inhomogeneous electric
field must be focused on a particular cell, leaving neighboring cells unaffected [60]. Microfab‐
ricated devices can fulfil both isolated single cell and focused the electric field on particular
single cell. Also this technology can offer other functionalities into the chip. Nowadays, SCEP
research is growing on rapidly for biomedical application in vivo and in vitro. However to
allow selective manipulation of single organelles within a cell, the electrode size must be
reduced to nanoscale level. Nanoelectrode can provide less toxicity with high cell viability
during electroporation experiment. Thus the localized single cell membrane electroporation
concept has come in several years [61]. Fig.3. shows the localized single cell membrane
electroporation (LSCMEP) process, where electric field is applied very short region of the cell
membrane.

As a result, due to permeabilization of the cell membrane, drug/biomolecules can be delivered
precisely (through sub micrometer to nanometer region of the cell membrane surface) inside
the single cell. By this technique selective manipulation of organelles and biochemical effects
can be analyze more precisely of the individual cell and this technique have more advantage
compared to SCEP. Also the cell rapture and cell death can be minimize because electric field
can intense in localized region of the cell membrane compared to SCEP. But this technology
is now in underdeveloped stage. Recently Boukany et al. suggested nanochannel electropo‐
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ration with precise amount of biomolecules delivery by LSCMEP process. Where single cell
has been positioned in one microchannel by optical tweezers and transfection agent was loaded
to another microchannel. Two microchannel were connected by one nanochannel. Due to
application of voltage between two microchannels, transfection agent was delivered through
nanochannel using electrophoretically driven process and finally drugs delivered inside single
cell through a very small area of the cell membrane [62]. Nawarathna et al. demonstrated
localized electroporation technique using atomic force microscopy (AFM). Where modified
AFM tip (0.5 µm) was used as a nanoelectrode, which was produced localized electric field
into the cell membrane [61]. Fig 4.(a-h) shows the results of LSCMEP technique using AFM tip
for electroporation process and Fig.4(i) demonstrated the AFM tip, which was positioned on
top of the single cell for LSCMEP process.

 

Figure 4. (a) Bright field image of AFM tip where the cell in the electroporation medium (cell A is electroporated while
cell B and C are about 20 µm away from cell A). (b) Fluorescence image of rat fibroblast cell after electroporation. (c)
Confocal fluorescence image of an electroporated cell. (d)-(h) Sequence of real time confocal fluorescence images of
rat fibroblast cell after electroporation. (i) Calculated spatial distribution of electric field in the vicinity of the cell being
electroporated. Permission to reprint obtained from American Institute of Physics (AIP) [61].

Figure 3. Localized single cell membrane electroporation (LSCMEP) technique, where drug/biomolecules can deliver
precisely inside the single cell (a) Electric field was applied in a very small region of the cell membrane area (Localized
way) (b) After electric field application, due to permeabilization of the cell membrane, drug/biomolecules can success‐
fully deliver inside the single cell. Permission to reprint obtained from Springer [63].
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Chen et al. demonstrated localized single cell membrane electroporation (LSCMEP) by using
microfluidic device. Where ITO thin film was used as microelectrode with 1 µm gap between
two micro-electrodes. The ITO microelectrode with 100 nm thickness and 2 µm width intense
electric field much more in between two microelectrode gap [63]. Fig.5. shows the device
fabrication for localized electroporation experiment.

Figure 5. Fabrication process of ITO microelectrode based localized single cell electroporation chip. (a) Fabrication
process step (b) Optical microscope image of patterned ITO microelectrodes. (c) SEM image of ITO microelectrodes
with micro channel (FIB etch), Permission to reprint obtained from Springer [63].
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Figure 6. After application of 8Vpp 20 ms pulse, cell survival fluorescence image of HeLa cell at different time scale,
Permission to reprint obtained from Springer [63].

According to the results, 0.93 µm electroporation regions were achieved successfully with 60%
cell viability for 20 microsecond pulse. Fig.6. demonstrates the cell survival fluorescence image
of HeLa cell at different time scale during LSCMEP process.

3.2. Pore formation on SCEP

In single cell electroporation technique, electroporation occurs in adherent cell and tissue.
However single cell electroporation can be visualized for cell in suspension. In BEP, mostly
the cells are in suspension as spheres, in which homogeneous electric field can be applied. But
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for single cell electroporation, electric field is in inhomogeneous form, which targets on a
particular cell without effecting neighboring cells. Generally cell membrane described in terms
of fluid mosaic membrane model [64]. Due to application of an electric electric field, the
formation of pores into the cell membrane depends upon field strength with low conductance,
which is approximated as electrical capacitors with infinite resistance. The pore as liquid
capacitor which converts to the electrical force associated with transmembrane potential U
into an expanding pressure within the aqueous pore interior [65-68]. The pore creation energy
ΔE can be calculated with pressure balance by removal of planar area πr2 and creation of a
cylindrical pore edge of length 2πr, can be written as

22E r rgD = P -P G (5)

where surface energy approximately Г= 1× 10 J/m2 and the edge energy approximately Υ= 1 to
6 × 10-11 J/m [69-71]. Here Υ is constant even it is a function of r [70, 72-73]. To expand the pore
radius from zero radious to r can be written as

2 4( ) 2 /E r r r A rgD = P -P G + (6)

The first term is energy related stressed pore edge with length 2πr. The second term is energy
to remove a circular flat lipid membrane having energy per unit area Г and the third term is
steric repulsion of the lipids with constant A. Fourth term arises when transmembrane
potential Vm is nonzero, which is related to,

2 20.5 p mC V r- (7)

The transmembrane potential ΔΨE, in a uniform electric field E at a point M with time t can be
written as

( ) ( ) cos ( ) (1 exp( / ))E in outt fg RE M ty y y l q tD = - = - ´ - - (8)

where f is the shape of the spheroidal cell [74] and τ is the charging time of the cell membrane,
g depends upon the conductivities and R is the radius of the spherical cell. E is the field strength
and θ(M) is the angle between normal to the membrane at the position M and direction of the
field [55]. The exponential term can be ignored if the pulse length is longer than a few
microseconds. Because induction time τ<1µs, the value f is generally 3/2, which is for com‐
pletely insulating membrane [75].
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4. Bulk electroporation

4.1. Electric field effect on cell membrane

Biological systems are mainly heterogeneous from electrical point of view [76-77]. When a high
electric field pulses is applied across the cell membrane, due to rapid polarization, cell
membrane can deform mechanically (e.g., suspended vesicles and cells) and is allowed to redis
tribute ionic charges due to electrolyte conductivities and distributed capacitance. Initially
every bilayer cell membrane structure is dielectric in nature. After application of electric field
pulses, membrane conductivity can increase due to structural change of the cell membrane
cause the formation of hydrophilic pores from initially formatted hydrophobic pores [78].
Generally the breakdown potential of lipid bilayer is 100-300 mv, which depends upon the
lipid compositions [79]. If the pulse electric field (PEF) decreases, then breakdown voltage can
increase [80-81].

To consider a cell as a sphere with a small volume of V and current is flow of charges. Both
current and charges have relationship between them. If we consider the total current flow
through small volume of cell V, then the current must be equal to the net flow of charges with
in volume V or equal to the rate of decrease of charge with in volume or net flow of current
into volume V must be accompanied by an increase of charge with in volume V. This is the
principle of conservation of charge, which can be mathematically expressed as

.
S

I J ds= ò (9)

V
dV

t
r¶

= -
¶ ò (10)

Using divergence theorem, ∫S A.nds = ∫V ∇ .AdV  then the equation can be written as

.
V V

JdV dV
t
r¶

Ñ = -
¶ò ò (11)

where J is the current density and ρ is the volume charge density. Now we can write equation
[11] as

. 0
V

J dV
t
ræ ö¶

Ñ + =ç ÷¶è ø
ò (12)
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Since equation [12] must be true irrespective of the volume, so we can write equation [12] as

. 0J
t
r¶

Ñ + =
¶

(13)

This is equation of continuity, which is the principle of conservation of charge where steady

current involve 
∂ρ
∂ t =0 and if charges are not generated into the cell during application of

electric field pulses, then ∇ .J =0. Now electric field is the gradient of electric potential. So
Maxwell equation becomes Δ 2ψ =0, where Ψ denotes the electrical potential. If the conduc‐
tivity of cytoplasm and external medium of the cell is higher than the cell membrane conduc‐
tivity, then ΔΨ, the field induced transmembrane potential can be written as:

1.5 coscell ea Ey qD = (14)

where acell is the outer radius of the cell, Ee is the applied electric field strength and θ is angle
between field line and normal to the point of interest in the membrane which can be either
00 or 1800 [82-85]. Under the ideal experimental conditions like pulse width, electric field,
number of pulses, removal of external electric field for resealing of the pore membrane, pulse
duration and rearrangement of the membrane protein can be preserved the cell viability. If the
membrane is not spherical, then equation [14] may not be right explanation. If we consider
that the cell has ellipsoidal structure, then equation [14] will not be applicable. But for any
practical purpose this equation can be used to evaluate the field induced transmembrane
potential.

4.2. Reversible electroporation

When a strong external electric field applied across cell and tissue, then membrane conduc‐
tance and permeability can increase significantly due to strong polarization of the cell mem‐
brane, as a result membrane can form nano scale defects (called nanopores). But when we
switched off the external electric field, membrane can return from its conducting state to its
normal state. This phenomenon is called reversible electric breakdown or reversible electro‐
poration [86-87]. The reversible electroporation generally involves reversible electric break‐
down (REB), which is generally a temporary high conducting state. This reversible
electroporation influences both cell membrane as well as artificial planner bilayer lipid
membrane. Reversible electroporation involve with rapid creation of many small pores, where
membrane discharge occur before any critical pores can evolve from the small pores. To
understand the method of electroporation of bilayer lipid membrane, it is necessary to use the
method of voltage clamp [65,71,88] and charge relaxation [80,89] techniques, where for charge
relaxation, kinetics of voltage decreases across the membrane after the application of short
pulses (20 nsec to 10 µsec). It was also fact that originally membrane breakdown can occur
before the start of membrane discharge. From the charge relaxation method, it used to show
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that, when membrane of oxidized cholesterol are rapidly (~ 500nsec) charged ( approximately
1 V), then membrane resistance reversibly decreased by almost nine orders of magnitude [80,
89]. By this way it was first observed that reversible breakdown of planner lipid bilayer
membrane and the charged could not be exceeded beyond 1.2 V, even pulse amplitude was
increased further. After first electroporation, it was able to recharge again. This same phe‐
nomenon was investigated later with azolectin bilayers modified UO2

2+ ions and the mem‐
branes of lecithin and cholesterol in the presence of alkaloid holoturin A [90-92]. The different
types of behavior of planer oxidized chelosterol membrane are shown in table III [78,80,93].

Characteristic electrical behavior Pulse magnitude

“Reversible electrical breakdown”(REB); membrane discharge to U=0 Largest

Incomplete REB(discharge halts at U>0) Smaller

Rupture (mechanical); slow, sigmoidal electrical discharge Still smaller

Membrane charging without dramatic behavior on U Smallest

Table 3. Planner bilayer membrane electroporation. Permission to reprint obtained from Elsevier [78, 80, 93].

For voltage clam method, the time resolution is 5-10 µs to monitor continuously charge at
specific conductance of membrane from 10-8 to 10-1 Ω-1/cm-2. Thus voltage clam technique and
charge relaxation technique are complement to each other [94].

4.3. Irreversible electroporation

In our earlier discussion of reversible electroporation, external electric field can permeabilize
the cell membrane temporarily by which, the cell membrane can survive and the process
known as “reversible electroporation” whereas, some of strong external electric field can cause
t the cell membrane to permanently permeabilize (membrane becomes weak effect on
conductance), by which the cell can die and the process is refer to as “irreversible electropo‐
ration”. This irreversible electroporation was observed in early 1754 due to discharge of static
electrical generator of the skin [95-96]. The main phenomenon of irreversible breakdown was
stochastic quantities by which mean life time of membrane can abruptly decreased with
increased of voltage. The pores of the bilayer membrane can be hydrophilic or hydrophobic
[65]. For hydrophobic cases, the pores can be formed by hydrocarbon lipid tails. Whereas the
inner surface of the pores can be covered by polar tails. The hydrophobic pores which can fill
by water are energetically unfavorable [66] and thus should be short -lived. The formation of
the pores during reversible electroporation can exist for longer periods of time due to hydro‐
philic pores. The accumulation of pores during reversible electroporation is due to membrane
containing lysolecithin, which can decrease the linear tension of hydrophilic pores [97-98]. The
hydrophilic pores can cause the reversible and irreversible breakdown of lipid membrane.
Also every electrical field can produce the thermal effect as familiar as Joule effect is disputed,
where as certain electric field is undisputed, which can provide irreversible electroporation
[95]. Irreversible electroporation can affect only the membrane of living cells and spares of
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tissues scaffold. During irreversible electroporation, the membrane survives in two stages as
(a) steady state current stage and (b) fluctuating current stage. The phenomena of irreversible
electroporation can cause by charge pulse technique [80] in which membrane is charged at
U=0.1 V (with pulse width 400 ns) and discharged was very slow. The large pulse of the same
width, can charge the membrane towards 0.4 V, but after 300-400µs, charges can be decreased
as a sigmoidal manner up to zero because of membrane rupture [78].

5. Applications

5.1. Bulk electroporation

From the last decade, the application of electroporation has been increasing rapidly. Nowa‐
days, the electroporation technique can be applied in many way to deliver drugs, antibodies,
oligonucleotides, proteins, RNA, DNA and plasmid in vivo for clinical, biotechnological and
biomedical applications [42, 99-101]. Table 4 described details about gene transfer by electro‐
poration technique with the variation of molecules/gene, targeted cells, different types of
electric pulses [7, 102-117].

Ref. Year Authors Recipient

cells

Plasmid

/gene

Pulsing

CD:E0;τ

Results

7 1982 Neumann et

al.

Mouse L tk-

Fibroblast cells

pAGO with tk

gene herpes

virus(HAT select.)

CD:3×8 KV/CM;5µs 200C, 10

min postincub., HBS

(without Mg2+)

Sharp optimum in field

strength, incubation after pulse

necessary, linear plasmid better

than circular, 100col./106

cells/µg DNA

102 1983 Shivarova et

al.

Bacillus cereus

protoplasts

pUB110 from B.

thuringiensis(kn

resistance)

CD: 3× 14 KV/cm; 5 µsec40%

PEG present, 200C, 10 min

incub.

Small objects, high electric field

strength necessary, 10-fold

increase in stable

transformation.

103 1984 Falkner et al. Mouse lymphoid

cell lines

Plasmid with Ig κ

gene

CD: 3×8 KV/cm; 5µsec 200C, 10

min incub., DME medium + 20

mM MgCl2 (plastic cuvette)

Two to five copies of plasmid

per genome integrated in

transformed clones.

104 1984 Potter et al. Mouse B and T

lymphocytes and

fibroblasts

Mouse and human

Ig κ gene

Pulse: ISCO 494 power supply

directly discharged through

cuvette, no definite pulse

parameters given, estimated:

320 V/cm; 17 msec, 00C, 5 min

preincub.,10 min postincub.,

PBS

Up to 300 transf./106 cells,

linear > supercoiled, low

temperature favorable, few

copy number (1-15) integrated,

mitotic arrest by colcemid

favorable
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Ref. Year Authors Recipient

cells

Plasmid

/gene

Pulsing

CD:E0;τ

Results

105 1985 Prochownik Mouse M12

myeloma cells

(transient

expression)

Plasmid carrying CAT

gene

Pulse: ISCO power supply (acc.

To Potter) 00C. PBS, Cuvette

Successfully transformation,

CAT actively after 48 hr

observed

106 1985 Zerbib et al. Hamster CHO tk-

cells in

suspension or

monolayer

pAGO with tk gene

from herpes virus

CD: 3×6 KV/cm; τ= 10 µsec

(200C, HBS)

Square pulse: 3×1.5 KV/cm; 50

µsec(low ionic strength)

150 transf./106 cells/µg DNA,

threshold: >4 KV/cm

70 transf./106 cells/µg DNA,4

plasmids/transformed cell in

monolayer

107 1986 Weir and

Leder

Mouse B and pre-

B cell lines

Functionally

rearranged VκII gene

Pulse: ISCO power supply(acc.to

potter)

Gene successfully introduced

both transiently and

permanently by electroporation

108 1986 Yancopoulos

et al.

Tk- derivative of

38B9 A-MuLV-

transformed pre-

B cell line

T cell receptor

variable region gene

segments on special

plasmid construct

Pulse: ISCO power supply (acc.

To potter) 00C, PBS

Linearized plasmid successfully

transfected

109 1987 Boston et al. Daucus carota

protoplasts

(W001C)

pCATTi,

pCATZ2(supercoiled)

Pulse: ISCO power supply(acc.

To Potter)

Preincub. 5 min 450 C + 5 min

on ice with PEG; postincub. 10

min at RT; PCM; Cuvette with

AL foil electrodes (acc. To

Potter)

2.0 KV setting results in 40%

intact viable cells and maximum

CAT activity; presence of PEG is

necessary (no sharp optimum

related to concentration); no

effect of heat-shock treatment;

linear DNA and presence of

carrier DNA decreases CAT

expression

110 1992 Puchalski et

al.

COS-M6 Monkey

kidney cells

Glutathione

Stransferase

(GST) gene.

(University of Wisconsin

Medical Electronics, Madison,

WI) (4 0C, 1-cm-wide aluminum

electrodes, and 1-cm

gap)

With lipofection, only 1% of the

surviving cells expressed

recombinant

GST, although 2.540% of the

cells that

survived transfection formed

colonies.

111 1996 Heller et al. Rat liver tissue Psv-β-galactosidase.

The BamHI-XhoI

fragment carrying

the Luc coding

sequence from

pGEM- Luc was

DC generator,

(T820,BTX,Inc.;San Diego, CA)

and a switch box (195-7460;

BTX,Inc.;San Diego, CA).

Field strength 1000V/cm, 6

pulses, duration=99 µs

Gene transfer by

electroporation in Vivo may

avoid anatomical constraints

and low transfection efficiency.
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Ref. Year Authors Recipient

cells

Plasmid

/gene

Pulsing

CD:E0;τ

Results

cloned into pRc/

CMV plasmid

112 2000 Dujardin et

al.

Rat keratinocytes pEGFP-N1 with CMV

promoter

Cytopulse PA-4000

(Cyto Pulse Sciences, Inc.,

Maryland, USA), 10 pulses of

1000V and 100µs duration

A localized expression of GFP

was observed for at least 7 days

in the epidermis. Skin viability

was not compromised by

electroporation

113 2004 Yamauchi et

al.

Human

embryonic kidney

cells, HEK293

pEGFP-C1 and

pDsRed-C1

ElectroSquare-

Porator T820, BTX, San Diego,

100v/cm, 10ms

Efficient to transfer multiple

genes, in parallel, into cultured

mammalian cells for high-

throughput reverse genetics

research.

114 2006 Yamaoka et

al.

Male Japanese

white rabbits

(2.5–3.0 kg body

wt;

Kyudo, Tosu,

Saga, Japan)

Plasmid DNA Electric pulse generator (model

CUY 201 BTX)

Pon=5ms, Poff=95 ms, No of pulse

10

Optimal gene transfer efficiency

in the

in situ jugular veins of rabbits,

and transgene expression was

observed

primarily in endothelial cells.

115 2008 Takei et al. MKN-1, PC-3, F12 VEGF Si RNA Square Electro Porator

(CUY21; Nepagene).

The delivery efficiency

correlated to the electric

current. The electric current

correlated to the microvascular

density and vascular

endothelial growth factor

(VEGF) expression and exhibited

a threshold that guaranteed

efficient delivery.

116 2010 Kaufman et

al.

A549 cells (ATCC,

Manassas,

VA,USA) a human

lung

adenocarcinoma

cell line

Plasmid DNA BTX ECM 830 ,

Electroporation coupled with a

Petri-Pulser PP35–2P

electrode (Harvard Apparatus,

Holliston, MA, USA)

using a single 10 ms 160 V

square wave

cyclic stretching of the murine

lung using

ventilation immediately after

endotracheal administration

and transthoracic

electroporation of plasmid DNA

increases exogenous gene

expression up to fourfold in

mice that were

not ventilated after plasmid

administrationand transfection

by electroporation in vivo
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Ref. Year Authors Recipient

cells

Plasmid

/gene

Pulsing

CD:E0;τ

Results

117 2011 Geng et al. CHO-K1 cells

(ATCC)

pEGFP –C1

plasmid(Clontec),

cat.no.6084-1

DC power supply (ps350;

Standford research system)

with alligator chip leads.

Enable to continuous

transfection of cells by flow

through electroporation in

PDMS fluidic channel with

alternating wide and narrow

section

Table 4. Modified table of gene delivery by electroporation technique. Permission to reprint obtained from Springer
book series [94]

In vivo electroporation is a special kind of interest for all researchers because it is nonviral gene
delivery with low cost, safety and ease of realization. Recently nucleic acid based gene transfer
has been investigated successfully which could be helpful for more clinical trials in human
body [118]. T This technique can be applied for food industry [119]. For cancer treatment,
electrochemotherapy has emerged and this therapy successfully used for clinical trials [42,99,
120-123]. The different types of application of electroporation has mention below.

5.1.1. Electroporation for DNA transfer

The first reversible electroporation with DNA electrotransfer has been investigated in 1982 [7].
After application of an external electric pulse, cell membrane can permeabilize and DNA will
move towards the cell membrane by electrophoretic force and finally it can enter into cyto‐
plasm of the cell. It has been reported that, small molecules can diffuse into the cell before
membrane reseals but DNA cannot transfer inside the cell, if DNA is added immediately after
the pulse applications [124]. For better DNA electrotransfer, electric field pulses are important.
The electroporating pulse can stimulate a vascular lock (i.e., a transient hypoperfusion) as well
as affects the blood circulation to the electropulsed tissues, caused by histamine dependent
physiological reaction [125]. For better electrotransfer, electric field pulses have three steps
which includes,

(a) Molecules can increase the electrophoretic displacement of the charged molecules due to
application of electric filed pulses (b) Cell membrane can enhance the permeabilization (c)
Exposed tissues can stimulate the vascular lock [126].

Moreover to deliver the electric pulse for DNA is electrotransfer, just short or high amplitude
pulse (e.g. six pulses, 100µs and 1.4 kV cm-1) required to deliver small molecules [127]. For
better electrophoretic effect, longer pulses with low amplitude (e.g. eight pulses, 20ms, 200 kV
cm-1) are required to increase the transfection rates [124]. However short, high amplitude pulse
can follow the long low amplitude pulse. From these two pulses, high amplitude pulse can
permeabilize the cell membrane, then long duration low voltage pulse can play the role to
drive the DNA into destabilized membrane of the cell [128]. The transfection threshold values
are the same for cell electropermeabilization [39]. The transfection efficiency maintains the
following equation as mentioned below
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Transfection Efficiency=KNT2.3(1 - EP / E)f(ADN) (15)

where plasmid concentration f(AND) is complex and high level of plasmid is toxic [129] and
K is constant. As results, for DNA electrotransfer, the pulse effect (Field strength, short high
amplitude pulse, long low amplitude pulse) are very important and which is the major
parameters for efficient gene expression into cell and tissues.

5.1.2. Electrotransfer for clinical developments

The electroporation technique has been used widely for transfection of plasmid in vitro and
in vivo. Recently this technique has been used for application of DNA vaccine and gene
therapies for clinical trials. Electroporation technology are not only the basis for human studies,
but also it influence veterinary medical for animals, which can make the bridge between human
and animal studies [130-134]. In this section, different clinical trials with electroporation
techniques are mentiond below.

5.1.2.1. DNA vaccine

DNA vaccines  have  excellent  potential  as  preventive  or  therapeutic  agents  against  can‐
cers and infectious diseases. For a successful DNA delivery into the cell or tissues, DNA
must need to subsequently achieve gene expression of the encoded protein at desired level
or for the desired duration of time. In vivo electroporation, which can enhance the delivery
efficiency and the cellular uptake of an agent by 1,000 times and it can increase the levels
of gene expression (i.e. production of the coded protein) by 100 times or more compared
to  plasmid  DNA  delivered  without  other  delivery  enhancements.  DNA  vaccination  by
electroporation  technique  has  been  developed  in  last  several  years  [134-140].  For  DNA
vaccination by electroporation, preclinical trials for mouse studies revealed that xenogene‐
ic  DNA vaccination with  gene  encoding tyrosinase  family  membrane can induced anti‐
body and cytotoxic T cell  responses resulted in tumor rejection [141-142].  DNA vaccine,
p.DOM-PSMA encoded a domain (DOM) of fragment C of tetanus toxin to induced CD4+

T cell helps to fuse to a tumor-derived epitope from prostate-specific membrane antigen
(PSMA) for use in HLA-A2+  patients with recurrent prostate cancer [139].  For this  open
level phase I/II work, DNA was delivered by intracellular injection followed by electropo‐
ration with five patients per dose level.  Plasmid DNA vaccination using electroporation
able to elicited robust humoral and CD8+ T-cell immune responses, while limited invasive‐
ness  of  delivery  [140].  DNA  delivered  method  which  included  phase  I  clinical  trial
investigated safety and immunogenicity  of  xenogenic  tyrosinase DNA vaccine,  adminis‐
tered intramuscularly with electroporation to patient with stage IIB, IIC,III or IV melano‐
ma(Clinical Trials. Gov ID NCT00471133). Electroporation with xenogeneic tyrosinase DNA
vaccine can increase the human response and anti-tumor effects compared to the vaccine
alone [143].
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5.1.2.2. RNA electroporation

The RNA transfer by electroporation technique has been increases continuously recently. RNA
can enter inside the cell alone or be used for transfection of dendritic cells, showing several
advantages as a vaccine including feasibility, applicability, safeness, and effectiveness, when
it comes to the generation of immune responses. In vitro experiment, dendritic cells (DC)
pulsed with whole tumor RNA or RNA encoding specific antigen like TAAs induced the
generation of specific positive cytotoxic T lymphocytes (CTLs) into the cell [144]. Electropo‐
rated monocyte-derived DCs with whole RNA from LP-1, U266 cell lines and induced specific
CTLs that lysed LP-1 and U266 myeloma cells [145]. The RNA delivery into the dendritic cells
(DCs) can be achieved by using electroporation of dendritic cells in the presence of RNA [146].
In vivo study was performed by TriMix dendritic cells (DCs) [146]. The transfection of
Dendritic cells (DCs) were performed by electroporation technique with mRNA encoding
CD40L, CD70, and a constitutively actived TLR4 as enhancing elements. Additionally the cells
were electroporated with either Mage-A3, Mage-C2, tyrosinase, or gp100 mRNA. The intra‐
dermal injections at four different sites of 1.25 × 107 TriMix DCs per antigen were provided to
two melanoma patient in four times per week. While antigen-specific CD8 T cell responses
was detected in both patients after finished treatment, but no data published for this trials [147].

5.1.2.3. HIV vaccine

Since early 1980s, for causative agent of acquired immudeficiency syndrome (AIDS), an
effective vaccine has been continuously tried to find to recover AIDS. Nowadays, the HIV
vaccine is introduced by electroporation technique. In vivo experiment on mice, electropora‐
tion technique can amplify cellular and humoral immune response to a HIV type 1 EnvDNA
vaccine, capable of tenfold reduction in vaccine dose and resulting in an increased recruitment
of inflammatory cells [148]. The plasmid HIV vaccine, ADVAX env/gag+ADVAX pol/nef-tat
(ADVAX), ongoing to examine in phase I trials for uninfected adults (Clinical Trials.gov
Identifier: NCT00249106) combination with electroporation as a potential protective vaccine
against HIV (Clinical Trials.gov Identifier:NCT00545987). Now more recent study was going
on for safety and immunogenicity of an IM injection of two dose of ADVAX using Electropo‐
ration TriGrid Delivery Systems (Inchor Medical Systems, Clinical Tials.gov Identifier:
NCT00545987)[143].

5.1.2.4. Cancer treatment

Electroporation technique for cancertreatment (Electrochemotherapy) have been increasing
rapidly after first reported of clinical use of electroporation [122]. Electrochemotherapy can
combine electroporation and chemotherapeutic agents [149-150]. The treatment of cutane‐
ous and subcutaneous tumors has reached for clinical trials using bleomycin or cisplatin by
antitumor  electrochemotherapy  process  [120,151-157].  For  localized  therapy  to  avoid
systematic  drug  delivery,  bleomycin  can  be  injected  directly  into  the  tumors  by  using
electrochemotherapy process.  Bleomycin is  hydrophilic in nature,  which can be internal‐
ized in limited amounts only in normal condition [158]. The use of bleomycin for electropo‐
ration process can directly enter into cytosol and its  cytotoxicity can be increased up to
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300-5000 fold [159-161]. Different types of cancer can be treated by electroporation techni‐
que. The prostate cancer is one of the most common cancer, which is increasing day to day.
For  this  cancer  prostate  specific  antigen  (PSA),  targeted  to  the  prostate  cancer  cell  for
immunotherapeutic approach. The phase I clinical trials with PSA DNA vaccine for human
prostate cancer is safe and which can include cellular and humoral immune responses against
PSA  protein  [162-163].  The  PSA-DNA  vaccine  has  been  investigated  by  electroporation
technique  [164-165].  Electroporation  treated  with  CD4+,  CD8+  cells  and  antibodies  were
detected in patient successfully with safe and tolerated mode. Electrochemotherapy has also
been investigated for treatment of human colorectal cell line and liver tumours [166-167].
The local treatment of electrochemotherapy (ECT) with master cell tumours of Dog has been
experimented in where size of the tumors was 5.2 cm3 and 2.9 cm3 treated by surgery and
ECT. The ECT treatment was easy, effective and safe local treatment for master cell tumors
of Dogs [168]. Recently, electrochemotherapy has been developed in more advancement for
treat ment of internal tumors using surgical procedures, endoscopic routes or percutane‐
ous approaches to gain access to the treatment area [169-170].

5.1.3. Skin electroporation

Molecule or DNA vaccine can transport across targeted tissue of human skin is of great interest
for transdermal drug delivery and non-invasive chemical sensing. Skin has capability to
produce therapeutic molecules, which not only acts as a systematically or locally, but it can
create immunological response, when antigen presenting cells will be targeted. The skin
containing antigen presenting cells like dendritic cells, langerhans cells, and mononuclear cells.
The gene delivery through the skin electroporation is feasible, efficient and comparable to other
tissues [171]. The first skin electroporation study was observed in Newborn mice which
transfected with a plasmid coding for a neomycin resistance gene [172]. The transfection
efficiency can depend upon the age of the skin, where the higher transfection efficiency can be
achieve for younger mice compare to the older mice [173]. Skin electroporation, only clinical
study has been reported belonging to metastatic melanoma [118]. To date, the skin electropo‐
ration has been studied broadly for animal infectious diseases. For most cases Hapatitis B has
been investigated for animals through skin electroporation [137,174-176]. Also experiments
have been performed vaccine against HIV, smallpox, malaria [177-179].

5.2. Single cell electroporation

By using single cell electroporation technique, it is possible to deliver the molecules such as
drugs, DNA, RNA, peptide, nucleic acid into the cell membrane in vivo and vitro for single
cell analysis. The plasmid delivery inside the cell membrane with high efficiency in adherent
cells and tissues has been studied in vitro [180-184] and in vivo [52,183-186]. Fig.7. show the
different applications of single cell electroporation, where membrane can permeabilized to
transport protein, small and large molecules inside the single cell.

When two single cells are closed to each other, then cell fusion can occur. Due to high electric
field strength, which exceeds the critical value of cell membrane, irreversible electroporation
can occur, resulting in cell membrane rapture and finally cell death. This electroporation
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successfully investigated cell to cell intracellular biochemical variation from millions of cells.
However this technique needs a lot of research in the future for more improvement because
this technology is in underdeveloped stage. For intracellular targeting, single cell electropo‐
ration based systems can be developed for genomic characterization, where a tagged antisense
oligonucleotide is introduced to block expression and proteins can be profile by tagged
markers [188]. To reduce the electrode size in nanoscale label, selective manipulation of single
organelles within a cell can be possible. Thus the localized single cell membrane electropora‐
tion (LSCMEP) concept has come in frontier research in last several years [61-63]. This
technique can control spatial-temporal process successfully and its have ability to monitor the
transfection results in real time situation. To reduce the electrode size in nanoscale label,
effective electroporation region should be reduce. As results transfection efficiency should be
increase with high cell viability. Florescent markers with single cell electroporation permits
direct visualization of cell morphology, cell growth, and intracellular events over timescales
ranging from seconds to days. Fluorescent dye or plasmid DNA can enter the neurons with
the intact brain of albino Xenopus tadpoles [189]. Individual neurons can be elctroporated by
this technique in vivo and in vitro including mature and fully differentiated neurons. The
transfection of neurons into brain slices and in intact brains of living animals is possible to use

Figure 7. Different application of single cell electroporation. When external applied electric field reaches to the
threshold values of the cell membrane, then cell membrane can permeabilized to deliver protein, small and large mol‐
ecules inside the cell. If two single cells are close to each other, then cell fusion can occur. To apply an intense electric
field, which exceeds certain critical value, irreversible electroporation can occur resulting cell membrane rapture and
finally cell death. Figure has redrawn from reference. Figure has redrawn with reprint permission obtained from
Springer [187].
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this technique. The neuron transfection achievable up to 1 mm dip into a tissue and electro‐
physiological recording of individual neuron was possible by use of SCEP [190]

6. Conclusions

This chapter described the detailed concepts about bulk electroporation(BEP) as well as single
cell electroporation (SCEP) techniques. In both electroporation technique different types of
exogenous molecules such as DNA, RNA, proteins, anticancer drugs, ions, oligonucleotides
can be transported into the cell cytosol in vivo or in vitro. For bulk electroporation, the clinical
development of DNA based vaccine and immunotherapeutic delivery is progressing. As a
nonviral gene transfer, this technique is important for clinical gene transfer regarding efficacy
and safety issue compared to other gene transfer techniques. The new technique such as single
cell electroporation (SCEP) makes the possibility to judge cell to cell variations with their
organelles and intracellular biochemical effect. The development of SCEP technique at clinical
level and for biomedical application needs more research in the future. In SCEP, there still
lacks the are lack of understanding of theory and molecular delivery inside the cell. But this
technique can initiate new root of research, such as single cell biophysics and drug delivery
inside single cell. To reduce the electrode gap at nanoscale level, it is possible to do localized
single cell mambrane electroporation (LSCMEP) by which selective specific single cell
organelles can be manipulated with higher transfection rate and high cell viability.
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