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 ABSTRACT: A user-friendly approach to sidestep the venerable Grignard addition to unactivated ketones to access 
tertiary alcohols by reversing the polarity of the disconnection. In this work a ketone instead acts as a nucleophile when 
adding to simple unactivated olefins to accomplish the same overall transformation. The scope of this coupling is broad 
as enabled using an electrochemical approach and the reaction is scalable, chemoselective, and requires no precaution to 
exclude air or water. Multiple applications demonstrate the simplifying nature of the reaction on multi-step synthesis and 
mechanistic studies point to an intuitive mechanism reminiscent of other chemical reductants such as SmI2 (which cannot 
accomplish the same reaction).

   Tertiary alcohols are an abundant functional group with 
versatile reactivity that are found in natural products,1 
pharmaceuticals,2 and a multitude of useful materials.3 
Traditionally, perhaps overwhelmingly, the ketone has 
served as a loyal progenitor of this species (Figure 1A) for 
good reasons. Every undergraduate organic textbook pre-
scribes a direct nucleophilic addition of a strong nucleo-
phile, such as RMgX or RLi, to these electrophilic species.4 
Although these incredibly robust reactions have been em-
ployed countless times, they can indirectly contribute to 
synthetic inefficiencies as their low chemoselectivity often 
necessitates the use of protecting groups.5 This dilemma 
is nicely illustrated (Figure 1B) by examining the patented 
route to steroid derivative 2.6  Although a Grignard reac-
tion with commercially available ketone 1 is an obvious 
disconnection, its use introduces several protecting group 
additions, removals and functional group manipulations 
throughout the course of a seven-step sequence (only one 
of which forges a C–C bond).  

   Within the specific realm of intermolecular alkyl nucle-
ophile additions to unactivated ketones, Grignard and re-
lated organometallic additions are fundamentally limited 
by their 2-electron mechanisms, which render these nu-
cleophiles both strongly nucleophilic and often highly 
basic.4,5,7 Efforts to tone down their reactivity have been 
explored, with the most successful stemming from nucle-
ophiles bearing activated positions (i.e. allylic, benzylic, 

propargylic,  a-carbonyl, Figure 1C).8,9 Studies employing 
Zr-,10 Ti-,11 Ru-,12  and Os-13 based systems, as well as HAT 
chemistry,14 have also pointed to the use of olefins as pre-
cursors to species capable of adding to carbonyl groups 
although intermolecular additions into unactivated ke-
tones are without  

FIGURE 1. Tertiary alcohols from simple ketones remain 
a challenge for modern synthesis (A). Synthesis of 2 is em-
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blematic of the problems with Grignard (B). Recent ap-
proaches so far do not address the problem (C). Electro-
chemical precedent on activated olefins (D) and a sum  
mary of this work (E). 

precedent.15 A less intuitive approach involves an um-
polung disconnection, which renders the ketone the nu-
cleophilic group through a reductive 1-electron approach. 
Thus far, such approaches have relied primarily on 
Sm(II),7a-b Ti(III),16 or photoinduced electron transfer17 to 
couple activated olefins and styrenes to ketones. A general 
intermolecular reductive coupling of unactivated ketones 
and olefins is so far absent from the literature. The closest 
precedent for the desired transformation was disclosed by 
Shono and co-workers (Figure 1D).18 These reports focus 
predominantly on intramolecular couplings,18a-b with only 
a few intermolecular examples18c-d presented. To the best 
of our knowledge, this chemistry has not been applied in 
the literature, despite being available for decades, pre-
sumably due to the challenges of using a divided cell setup 
under an argon atmosphere and the need for at least a 
five-fold excess of the ketone. In this Communication, a 
new protocol for electrochemically driven reductive cou-
plings of unactivated ketones and olefins is presented. 
This method uses a simple undivided cell tolerating exog-
enous air and moisture, exhibits a broad scope, and can 
be easily scaled (Figure 1E). 

   Explorations began by studying Shono’s original condi-
tions18c on a medicinally-relevant model substrate pair: 
homoallylic alcohol 4 and piperidone 3 (Table 1A). In 
principle, the use of Grignard chemistry to carry out this 
assembly would necessitate the use of a protecting group 
on 4 and perhaps other precautions due to the enolizabil-
ity of 3, hence, more gentle methodologies were sought. 
Revisiting the electrochemical method developed by 
Shono for less ornate substrates,18c only resulted in low 
yields (Table 1A, entry 1). This method was pursued with 
some rigor (see SI for a full listing); however, the yield 
could not be improved beyond 17%. Chemical reductants 
such as SmI2 and LiDBB were examined next, and while 
these methods have been shown to have success in similar 
intramolecular scenarios, they were found to be unsatis-
factory for this purpose (entries 2-5, Table 1a). Developing 
this chemistry following the guiding principles from our 
own forays19,20 into electrochemistry, specifically deeply 
reductive electrochemistry,20 allowed us to hone in on the 
sacrificial anode, electrolyte, current density and concen-
tration needed to facilitate a high yielding olefin-ketone 
coupling (Table 1A, see the SI for a full listing). As graph-
ically illustrated in Table 1B, these three variables were 
crucial to the success of this transformation which, after 
optimization, let to 95% isolated yield of adduct 5 (Table 
1A, entry 6). The use of an inexpensive sacrificial anode 
(Zn) was ideal and, in contrast to prior work, a lower cur-
rent ensured broad functional group tolerance (10 mA vs. 
200 mA). Notably, unlike prior precedent, only 2 equiva-
lents of the ketone are required, inexpensive electrodes 
are employed, and an operationally simple undivided cell 
is used.  No precautions are taken to exclude air or mois-
ture and in fact the reaction can be run open to the air (cap 
removed). Finally, the linear versus branched selectivity 
is remarkable (>15:1 in most of the cases).  

TABLE 1. Optimization of the reductive ketone olefin 
coupling. Comparison to known chemical methods (A) 
and a graphical optimization overview of the newly devel-
oped electrochemical protocol (B). 

   With these results in hand, the scope of the ketone-ole-
fin coupling was investigated (Table 2). Several function-
alities on the olefin were tolerated; free alcohols (1°, 2°, 
and 3°; 6 to 8), aniline (9), amides (10, 13, 21), nitrile 
(11), ester (12), protected amino acid (14), and heterocy-
cles (15-19) (moderate to high yields). Most of these func-
tional groups would be challenging to employ using ca-
nonical 2e- tactics such as Grignard. The reaction toler-
ated mono-substituted olefins well, but performed less 
successfully with 1,1-di (22) and 1,2-di (23) substituted 
olefins – tri- and tetra-substituted olefins were not toler-
ated, and no reaction was observed in these cases. A plau-
sible reason for this lack of reactivity with more substi-
tuted olefins could be due to a slower rate of addition (for 
steric reasons) compared to the lifetime of the ketyl radi-
cal.  In the case of cyclopentene-3-ol, an interesting find-
ing was that the reaction took place in high yield with per-
fect syn diastereoselectivity. The analogous TBS-
protected olefin did not react, nor did cyclopentene itself. 
The directing effect of homo-allylic alcohols in this chem-
istry is notable and perhaps relevant to the mechanism of 
the reaction (vide infra).  

   In a similar fashion, ketones bearing several different 
substituents were tolerated (moderate to high yields); 
ethers (26), protected amines (36-37), esters (39), car-
bamates (43), alcohols (50-51), cyclopropanes (52). 
When 4-substituted cyclohexanones were used, single di-
astereomers were isolated with the selectivity reminiscent 
of SmI2 promoted reactions (anti, 38-39).21 Even cyclic 
ketones of varying ring sizes (24-39) worked well, which 
are often challenging for other methods; reduction prod-
ucts 
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TABLE 2. Scope of the electroreductive olefin-ketone coupling. 

are often observed when sterically hindered ketones react 
with Grignards. For acyclic ketones, the sterics of the sub-
stituents showed a minor impact on the reaction yields 
(40-48), although only 25% yield of the desired product 
was  

isolated when very hindered diisopropylketone (45) was 
used. Notably, unprotected steroidal substrates 50-52 
delivered a single diastereomeric product in high yield 
(see SI for structure confirmation).
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SCHEME 1. (A) Electrochemical ketone-olefin coupling facilitates rapid access to medicinally relevant structures such 
as a vitamin D sidechain (1), a DNA-binding metabolite (2), and a hedgehog signaling modulator (3). (B) Batch and flow 
scale-up. aIsolated yield

   This reductive coupling could also be applied to simplify 
real-world challenges in medicinal chemistry (Scheme 1). 
Thus, the synthesis of a simple vitamin D analog sidechain 
55 was reported through a seven-step route wherein only 
one of those steps formed a C–C bond (Scheme 1A).22  In 
contrast, commercially available oxazolidinone 53 could 
be allylated and reduced to yield (S)-2 methyl-4-penten-
1-ol 54. Coupling of 54 with acetone under the developed 
electrochemical conditions then smoothly furnished 
sidechain 55. Of the three steps required to access 55, two 
forged key C–C bonds. Next, the synthesis of DNA-
binding metabolite 58 required a five-step sequence with 
two protecting groups and air-sensitive SmI2 to forge a 

key C–C bond (73% ee, Scheme 1B).23 Using the electro-
chemical strategy outlined above, commercially available 
aldehyde 56 could be converted to the same product in 
only 3 steps via simple Brown allylation, followed by elec-
trochemical addition of acetone/TBAF work-up and a fi-
nal oxidative lactonization (72% yield, 93% ee). Finally, 
the steroidal example6 mentioned in Figure 1 could be ad-
dressed in a similar way from the same starting material 
(Scheme 1C). Thus, electrochemical addition of 1 to Teoc-
protected amine 59 delivered a single diastereomeric ter-
tiary alcohol that, after CsF-induced deprotection deliv-
ered 2 in only 2 steps. Clearly, the success of the above 
applications benefits from the chemoselective (FG toler-
ant) nature of the electrochemical ketone-olefin coupling.
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SCHEME 2. Mechanistic insights from byproducts (A), deuterium labeling (B), proposed reaction mechanism (C), and 
voltammetry studies (D & E). See SI for details.

   In terms of limitations, currently, ketones bearing an a-
heteroatom are not tolerated (as they are reduced, vide in-
fra) and heterocycles with a higher reductive potential 
than the ketone are not tolerated, such as thiophenes and 
simple pyridines (see SI for a full list of failed substrates). 

   The mechanism of this useful reaction (Scheme 2) was 
next interrogated through the observation of certain side-
products (Scheme 2A), deuterium labeling (Scheme 2B), 
kinetics, and voltammetric studies (Scheme 2D & 2E). A 
notable limitation of this chemistry was that ketones bear-
ing alpha-substituents (such as 60) were not tolerated 
and elimination of the alpha-substituent was observed 
(62), suggestive of a ketyl radical intermediate. Using al-
lyl alcohol (64), the bis addition adduct 65 was observed, 
perhaps pointing to a carbanion intermediate wherein 
ZnBr2 generated from anodic oxidation could assist in the 
departure of the primary alcohol and regeneration of an-
other olefin. Deuterium labeling using acetone-d6 led to 
70% incorporation at the highlighted position (Scheme 
2B) further supporting a carbanion intermediate. When 
regular acetone was used in the same experiment but with 
deuterated DMF, no deuterated product was observed. 
Kinetic studies revealed zero-order dependence on all 
components except current indicating that reduction is 
purely electrochemical. 

   Finally, a series of voltammetric studies were performed 
(Scheme 2D & 2E) to understand how traditionally nucle 

ophilic ketyl radical can serve as competent coupling part-
ners with unactivated olefins, as well as to provide evi-
dence for the overall electrochemical mechanistic se-
quence as proposed in Scheme 2C. We hypothesized that 
the change in its electronic property and reactivity can be 
facilitated by a strong adsorption of the ketyl radical to the 
Sn electrode. Cyclic voltammetry studies were performed 
using Sn and glassy carbon (GC) as working electrodes 
with acetophenone24 as the source of ketyl radical. Pre-
peaks on the CV were observed using Sn as the working 
electrode but not observed using GC as the working elec-
trode. These pre-peaks are distinct characteristics of an 
electron transfer where the product (ketyl radical) is 
strongly adsorbed into the working electrode.25 Further-
more, the current response observed in the pre-peak in Sn 
was found to be dependent on the concentration of ketone 
(see SI).26 This result also rationalizes the effectiveness of 
using Sn-cathode over other electrode materials (see SI). 
Square-wave voltammetry (SWV) studies were performed 
and the results are summarized in Scheme 2E. The addi-
tion of alkene 61 to acetophenone showed an anodic shift 
in the cathodic peak potential denoting a chemical reac-
tion with the ketyl radical after one-electron reduction. 
However, even at high frequencies (100 Hz), the expected 
second reduction peak was not observed. We hypothe-
sized that one crucial role of the sacrificial Zn-anode is to 
provide Zn2+ as a thermodynamic sink for the second elec-
tron reduction. SWV analysis in the presence of catalytic 
amounts of ZnBr2 showed three distinct reduction peaks 
where the third peak can be the reduction of the ZnBr2-
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Implications: The observed shift in the reduction peak current indicates a chemical reaction between the 
ketyl radical and olefin after one-electron reduction of ketone (EC-type, left squarewave voltametry (SWV). 
The observance of two reduction peak potentials in the presence of ZnBr2 (shown as three peaks, third 
peak is the reduction of Zn-coordinated ketone) suggests that a ZnBr2-promoted second reduction follows 
after the EC steps. Overall, an ECEC-type mechanism is proposed where the second chemical step is 
protonation (see deuterium labeling, 2B).



 

coordinated ketone (see SI). Taken together, these results 
suggest an ECEC-type electrochemical mechanism where 
the ketyl radical formation (E) takes place at the Sn-cath-
ode with strong adsorption characteristic followed by rad-
ical addition (C) into the olefin. A second one-electron re-
duction (second E) of the radical anion to the dianion fol-
lowed by protonation (second C) and then workup deliv-
ers the final product. The enhanced reactivity of homoal-
lylic alcohols may be due to improved binding of the olefin 
substrate to the cathode surface.  

   In summary, a chemoselective, scalable method to com-
bine unactivated olefins and ketones has been developed 
that subverts the issues encountered using Grignard rea-
gents in conventional retrosynthetic analysis. The scope 
of this reaction is broad and it is operationally simple to 
perform. A number of applications demonstrate that the 
utility extends beyond that of a simple tactical change as 
when strategically employed, it can dramatically reduce 
overall step count. Mechanistic studies point to an intui-
tive electrochemically driven reductive pathway that initi-
ates upon the formation of a ketyl radical, addition to the 
olefin, and further reduction to a stabilized carbanion 
prior to workup. This work is thus another example of 
how strongly reducing chemistry can be uniquely facili-
tated and enabled in complex settings under electrochem-
ical control when classical chemical reagents fail. 
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General Experimental 

Tetrahydrofuran (THF), N,N-dimethylforamide (DMF), acetonitrile (CH3CN), and 

dichloromethane (CH2Cl2) were obtained by passing the previously degassed solvents through an 

activated alumina column (1). Reagents were purchased at the highest commercial quality grade 

and used without further purification, unless otherwise stated. Lithium bromide (LiBr) was flamed-

dried under high vacuum. Yields refer to chromatographically and spectroscopically (1H NMR) 

homogeneous material, unless otherwise stated. Reactions were monitored by GC/MS, LC/MS, 

and thin layer chromatography (TLC). TLC was performed using 0.25 mm E. Merck silica plates 

(60F-254), using short-wave UV light as the visualizing agent, and phosphomolybdic acid and 

Ce(SO4)2, acidic ethanolic anisaldehyde, KMnO4, or iodine absorbed on silica gel was used, and 

heat as developing agents (not for iodine staining). NMR spectra were recorded on Bruker DRX-

600, DRX-500, and AMX-400 instruments and are referenced using residual undeuterated solvent 

(CHCl3 at 7.26 ppm 1H NMR, 77 ppm 13C NMR; acetone at 2.05 ppm 1H NMR, 29.84 ppm 13C 

NMR; CH3OH at 3.31 ppm 1H NMR, 49.0 ppm 13C NMR; C6H6 at 7.16 ppm 1H NMR, 128.06 

ppm 13C NMR; pyridine at 7.22 ppm 1H NMR, 123.87 ppm 13C NMR)(2). The following 

abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, 

m = multiplet, br = broad. Column chromatography was performed using E. Merck silica (60, 

particle size 0.043–0.063 mm), and pTLC was performed on Merck silica plates (60F-254). High-

resolution mass spectra (HRMS) were recorded on an Agilent LC/MSD TOF mass spectrometer 

by electrospray ionization time of flight reflectron experiments. Gas chromatography-mass 

spectrometry (GCMS) were recorded on an Agilent 5975 MSD Series spectrometer. 
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General Procedures for Electro-Reductive Ketone-Olefin Coupling 
 

General Procedure A 

 

Setup (see graphical guide): 

IKA Zn (anode) and Sn (cathode) plate electrodes or home-made ones from the corresponding 

metal wires were connected to an ElectraSyn vial cap. A standard 2-mL ElectraSyn vial was 

charged a magnetic stirrer bar, nBu4NBr (96.7mg, 0.3 mmol), ketone (0.7 mmol), olefin (0.35 

mmol) and DMF (1 mL). The cap was installed and the vial was pre-stirred until all solids dissolved. 

Then, it was fit into the ElectraSyn and the following setup was employed: New exp. ➞ Constant 

current ➞ 10 mA ➞ No ref. electrode ➞ Total charge ➞ 0.35 mmol, 5 F/mol (see individual 

compounds) ➞ No alternating polarity ➞ start. After completion, the reaction mixture was passed 

through a short plug of silica gel and washed with EtOAc (20 mL). The solution was further 

purified via column chromatography to give the desired product. See the graphical representation 

of the reaction sequence and setup.  

 

General Procedure B  

The procedure is the same as procedure A except 0.35 mmol of ketone, 0.7 mmol of olefin and 

2.5F/mol were used. 

Note: Generally speaking, procedure A gave higher yields than procedure B. However, procedure 

A would lead to the formation of ~1 equivalent of corresponding secondary alcohol, which came 

from the reduction of ketone. When a ketone with relatively high molecular weight (e.g. steroids) 

was used, procedure B led to easier purification. 

  

R3

R1 R2

O
nBu4NBr (0.3 M)
DMF (1 mL), rt

(0.35 mmol)(0.7 mmol)

+
R3

OH

R1

R2+Zn/-Sn, 10 mA, 5 F/mol
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Graphical Guides 

 

 

 

Graphical Supporting Information for electrode assembly 

 
 

Non-IKA based electrode materials can also be used such as the items shown in the picture. Zinc 

could also be purchased from Bean Town Chemicals, 2.0 mm diameter (Catalogue no. 141550-

1M). Tin can be purchased in the form of solder wire from Amazon (1.5 mm, 98% purity). In order 

to get these wires to fir into the IKA electrode holders, the ends need to be hammered flat and 

occasionally filed to ensure a fit; see flattened wire B in picture.  
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Graphical Supporting Information for setting up Electro-Reductive Ketone-Olefin Coupling 

 

 
(Left) IKA electrochemical kit needed. (Right) Chemicals. 

 

(Left) TBAB added to vial. (Center) Liquid reagents added to vial via a micro syringe. (Right) 

Solvent added to vial. 

 

 

Zn(+) Sn(-) 2-mL Vial
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(Left) Selecting a new experiment. (Center) Select constant current. (Right) Set the current to 10 

mA (for a 0.35 mmol scale). 

 

(Left) No need to use a reference electrode, so select No. (Center) Reactions are run based on how 

much charge they need. (Right) Typically reactions were run on a 0.35 mmol scale and typically 

current efficiencies are around 50 %, so select double/triple what is needed. NOTE: ALL 

REACTIONS WERE MONITORED AND STOPPED ACCORDING TO TLC ANALYSIS 

(consumption of starting material), MORE OR LESS CHARGE MAY BE REQUIRED FOR 

EACH INDIVIDUAL CASE! 
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(Left) No need to alternate the polarity, if fact, that will result in NO REACTION. (Center) This 

is up to the individual, but there is really no need to save the experiment. (Right) Start when ready! 

 

 

 

A typical ongoing reaction. 
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Graphical Supporting Information for Working-Up the Electro-Reductive Ketone-Olefin 

Coupling 

 

(Left/Center) Heating a tube to fashion a column/filtration utensil. (Right) a Kimwipe or piece of 

cotton can be used as a plug. 

 

(Left) Add ~ 3 cm of silica gel (Center) Add the reaction mixture neat onto the dry silica plug. 

(Right) Typical appearance of the setup before rinsing with EtOAc. 
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(Left) After sample properly loaded on the silica, ~ 15 mL of EtOAc. (Right) Filtered sample 

ready for removal of the solvent on a Rotavap. Volatiles such as EtOAc are first removed on a 

Rotavap, and remaining DMF is removed using a high vacuum pump. 

Graphical Supporting Information for cleaning the electrodes 

 

(Left) Electrodes after reaction (Center) Electrodes can be cleaned with a tissue. (Right) Cleaning 

electrodes with a blade is most efficient but does erode the electrodes. 
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Attempts to replicate Shono’s conditions 
 

Attempts at applying Shono’s conditions on a medicinally-relevant substrate 

 

 
 

Entry Anode Cathode Electrolyte Cell Charge 

Current 

density/ 

mA.cm-2 

Ket:Olefin 

Conc.of 

olefin/ 

M 

% 

Yield 

1 Pt CF TBA.BF4 divided 2.5 50 5:1 0.14 8 

2 Pt CF TBA.BF4 divided 5 50 5:1 0.14 10 

3 Pt CF TBA.BF4 divided 5 50 2:1 0.14 8 

4 Pt CF TBA.BF4 divided 5 14 2:1 0.35 17 

5 Pt CF 
TBA.BF4 + 

ZnBr2 
divided 5 50 2:1 0.35 ND 

 

  

(0.5 mmol)(2.5 mmol)

conditions

OH Bn

OH

2

BocN

Bn

OH

2

BocN

O

+
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Attempts at repeating Shono’s results using a set of simple substrates 

 

 
 

 

Entry 

 

Anode 

 

Cathode 

 

Electrolyte 

 

Charge 

 

Cell 

Current 

density/ 

mA.cm-2 

 

Ket:Olefin 
Conc.of 

olefin/ M 

% 

Yield 

1 Pt CF TBA.BF4 2.5 divided 50 5:1 0.14 25 

2 Pt CF TBA.BF4 5 divided 50 5:1 0.14 49 

3 Pt Sn TBA.BF4 2.5 divided 50 5:1 0.14 7 

4 Pt Zn TBA.BF4 2.5 divided 50 5:1 0.14 32 

 

 

  

Ph
n-Bu Me

O

(0.5 mmol)

+

Phn-Bu
Me

OH

(2.5 mmol)

conditions
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Graphical Supporting Information for reproducing Shono’s conditions  

 

IKA Pt (anode) and 3K Carbon fiber (cathode) purchased from Amazon (cut 8 x5 5 mm, 1 mm 

thick) plate electrodes were connected to an ElectraSyn vial cap. To the ElectraSyn vial was then 

added TBABF4 (1.25 mmol) and DMF (5 mL/chamber), followed by olefin (0.5 mmol, 1.0 equiv), 

and ketone (2.5 mmol, 5.0 equiv) to the cathodic chamber. The ElectraSyn was setup as follows: 

New exp. > Constant current > 200 mA > No ref. electrode > Total charge > 0.5 mmol, 2.5 F/mol > 

No alternating polarity > start. 

Using IKA divided cell 

 
(Left) 3K carbon fiber bought from Amazon (Center) IKA divided cell assembly. (Right) 

Reaction setup, with reactants in cathodic chamber. 

 

(Left) Electrode assembly (Center) Reaction setup to run -200 mA at cathode, and (Right) unable 

to pass 200 mA when stabilized (85 mA when reaching the voltage limit). 

Ph
n-Bu Me

O

(0.5 mmol)

nBu4NBF4 (0.25 M)
DMF (5 mL/chamber)

(+)Pt/(−)CF, 
200 mA, 2.5F/mol

+
Phn-Bu

Me

OH

(2.5 mmol)

Anolyte 

Catholyte 

Carbon fiber(-), 
cut from the 

sheet 

Pt(+) anode 
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(Left) Reaction after 5 F/mol. (Center) Carbon felt/cloth used. (Right) Folded carbon cloth  

cathode secured by rolling and tying it with Teflon tape. 

 

 

(Left) Reaction after 2.5 F/mol. (Right) Reaction after 5 F/mol. 

 

Using a Standard H-cell 

  

(Left) Reaction setup before start. (Right) Details of the H-cell. 
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(Left) unable to pass 200 mA when stabilized (only 45 mA when reaction reached the 30V 

potential limit of the potential stat.). (Right) Reaction after 2.5 F/mol. 

 

Comparison of the electrode distance in IKA divided cell and a standard H-cell 

 

(Left) IKA divided cell’s electrode distance is ~2 cm. (Right) A standard H-cell we used has an  

electrode distance of ~5 cm. 

 

In the case where carbon fiber was used, a yield of 22% was obtained after 2.5 F/mol, and 35% 

when the reaction was run up to 5 F/mol. When carbon felt was used instead, after 2.5 F/mol, a 

yield of 19% was obtained, and when this was extended to 5 F/mol the yield was found to be 25%. 
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Most of the olefin still remained after 5 F/mol (60% in case of the carbon felt). As the reaction 

proceeds the cell resistance increases significantly, and therefore, after delivery of 5 F/mol, it 

becomes very difficult to pass current, and comparison of the 2.5 F/mol yield to the 5 F/mol shows 

that the reaction starts to plateau. The conditions reported in Shono’s paper are quite vague, and 

therefore it is difficult to replicate exactly his reaction conditions. Nevertheless, in order to reach 

the 0.2 A current reported in Shono’s paper, a customized divided cell is probably required 

and therefore adds operational difficulties for users. 
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Condition Optimization 
 

 
  

nBu4NBr (0.3 M)

DMF (1 mL), r.t.

+Zn/-Sn
10 mA, 5 F/mol

Optimized set of conditions

Optimization of the Reductive Ketone Olefin Coupling

OH Bn

OH
BocN

Bn

OHBocN

O

+

Y (0.7 mmol) X (0.35 mmol) XY, 95%

2

yield (%)a

1

2

3

4

5

entry conditions

SmI2
SmI2 + HMPA

SmI2 + MeOH

LiDBB

X/Y (5/1), +C/-Pt, divided cell, 0.2 A, 2.5 F/mol (Shono)

<10

<10

<10

<5

<10

Anode Optimization

Comparison with existing procedures

6

7

8

9

Fe instead of Zn
Mg instead of Zn
Al instead of Zn

graphite instead of Zn

64

39

64

<5
Electrolyte Optimization

10

11

12

13

n-Bu4BF4 instead of n-Bu4Br
n-Bu4Cl instead of n-Bu4Br

LiBr instead of n-Bu4Br
n-Bu4OTs instead of n-Bu4Br

75

79

<5

47
Current Optimization

14

15

16

17

5 mA instead of 10 mA
15 mA instead of 10 mA
50 mA instead of 10 mA

100 mA instead of 10 mA

80

78

36

<10
Cathode Optimization

18

19

20

21

Zn instead of Sn
SS instead of Sn

graphite instead of Sn
carbon felt instead of Sn

94

87

91

83
Solvent Optimization

22

23

24

25

THF instead of DMF
THF/TPPA (10:1) instead of DMF 

CH3CN instead of DMF
CH2Cl2 instead of DMF

<10

<30

<10

<10

undivided cell

Substrate Concentration Optimization

26

27

28

29

0.2 M instead of 0.35 M
0.3 M instead of 0.35 M 
0.4 M instead of 0.35 M
0.5 M instead of 0.35 M

78

90

86

69
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Scale up experiments 
 

Gram-scale synthesis of compound 23. 

 

IKA Zn (anode) and Sn (cathode) plate electrodes were connected to an ElectraSyn vial cap. A 

standard 20-mL ElectraSyn vial was charged with a magnetic stirrer bar, nBu4NBr (1.45 g, 3.6 

mmol), ketone (2.74 g, 24 mmol), olefin (1.01 g, 12 mmol) and DMF (12 mL). The cap was 

installed and the vial was pre-stirred until all solids dissolved. Then, it was fit into the ElectraSyn 

and the following setup was employed: New exp. ➞ Constant current ➞ 10 mA ➞ No ref. electrode 

➞ Total charge ➞ 0.35 mmol, 4 F/mol ➞ No alternating polarity ➞ start. After completion, the 

reaction mixture was directly purified via column chromatography to give product 23 (1.77 g, 74%) 

and epi-23 (80.4 mg, 3.4%).  

 

Note: Due to the high reaction concentration, the reaction mixture solidify after 4F/mol of current 

was passed and the resistance became very high. 

  

OH

O

+

nBu4NBr (0.3 M)
DMF (12 mL), r.t.

(2.74 g, 24 mmol) (1.01 g, 12 mmol)

(+)Zn/(−)Sn, 
40 mA, 4F/mol H

H

OH

OH

nPr

nPr

H

H

OH

OH

nPr

nPr+

23 epi-23

Me Me
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Hundred-gram scale reaction using flow-cell Conducted by Asymchem 

A. Reaction scheme  

 
B. Condition optimization: 
 

Entry/Scale 

(g) 

Con. 

of SM 

(g/mL) 

Acetone/ 

eq 

Anode(+)/ 

Cathode(-

) 

Electrolyte 
Temperature 

(
o

C) 
F/mol 

Current 

(mA) 

/Voltage 

(V) 

CD 

(mA/cm
2

) 

NMR/% 

Cell 

SM TP 

2211/0.03 0.006 2.0 
Zn (+)/Sn 

(-) 
TBAB rt (24) 4 10/2~5 8.3 0% 75% IKA 

2212/1.0 0.025 2.0 
Zn (+)/Sn 

(-) 
TBAB rt (24) 4 335/6~9 15 0% 72% Beaker 

2214/10.0 0.025 2.0 
Zn (+)/Sn 

(-) 
TBAB rt (24) 4 1350/6~9 15 0% 69% Beaker 

2215/10.0 0.025 2.0 
Zn (+)/Sn 

(-) 
TBAB rt (24) 4 1360/8~32 15 0% 77a 

Flow 

cell 

2216/100.0 0.025 2.0 
Zn (+)/Sn 

(-) 
TBAB rt (24) 4 8000/8~32 15 0% 63a 

Flow 

cell 

aIsolated yield 

 

C. Procedure: 

 

a. 10 g scale-up (in batch) 

 

A clean and dry 500 mL beaker equipped with a stir bar was charged with 4-penten-2-ol (10.0 

g, 116.3 mmol, 1 equiv.), acetone (13.5 g, 232.6 mmol, 2 equiv.), tetrabutylammonium bromide 

(TBAB, 38.6 g, 120 mmol, 0.3 M) and DMF (400 mL). A Zn plate and two Sn plates, embedded 

a rubber cap with a distance of 2.0 cm between them, were inserted into the reaction mixture. The 

 A 

 A 
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submerged surface area of electrode was adjusted to 8 cm × 5.5 cm × 2. The undivided cell was 

put into water bath to release heat produced by electrolysis. Reaction mixture was electrolyzed 

under a constant current of 1350 mA from DC power for 9 h until the complete consumption of 4-

penten-2-ol as judged by TLC. 

After reaction, the electrodes were taken out and rinsed with ethyl acetate (EtOAc). The 

mixture was transferred to a 1.0 L round bottom and volatiles were then removed on the under 

reduced pressure (~4 mbar, 55 °C oil bath). The remaining oily liquid was eluted with ethyl acetate 

through a short silica plug. Crude product was delivered after rotary evaporation. 69% yield was 

obtained through qNMR with maleic acid as internal standard.  

 

 

      

(Left) Batch cell. (Middle) Top view. (Right) electrodes 
 

      

(Left) Electrolysis setup. (Right) Right view of electrolysis 

 

 
 
 

Sn Zn Sn 

2 

cm

2 

cm
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b. 10 g scale-up (Flow) 

 

Frame Cell Setup: A Sn plate (length: 20.5 cm, width: 12.0 cm, thickness: 2.0 mm) and a 

Zn plate (length: 20.5 cm, width: 12.0 cm, thickness: 1.5 mm) were used as cathode and anode, 

respectively. Two silica pads (length: 18.0 cm, width: 12.0 cm, thickness: 2.0 mm) attached on 

their both sides were inserted between frame (Teflon frame block, length: 18.0 cm, width: 12.0 

cm, thickness: 2.0 cm). The two ends of frame cell were attached by two Teflon plates (length: 

18.0 cm, width: 12.0 cm, thickness: 2.0 cm) and all components were then threaded through 8 

stainless steel screws (length: 10 cm, diameter: 5.0 mm) and locked by nuts above stainless steel 

gasket. The side of frame was screwed a Teflon joint with which connected rubber tube (6 mm in 

diameter). The immersion surface area of each electrode in frame cell was 7.0 cm × 13.0 cm 

(Figure 3 & 4).  

 

Components of frame cell for the flow reactor assembly. (1. Zn plate; 2. Sn plate; 3. Flame cell; 

4. Teflon plate; 5. stainless steel sheet ×2; 6. stainless steel screws; 7. silica pads ×2; 8. Teflon 

plate) 

 A 

13×7 cm
2 
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Three views of assembled flow cell 
 

Experimental procedure: A clean and dry 500 mL 4-necked round bottom equipped with a 

stir bar and used as external container was charged with 4-penten-2-ol (10.0 g, 116.3 mmol, 1 

equiv.), acetone (13.5 g, 232.6 mmol, 2 equiv.), tetrabutylammonium bromide (TBAB, 38.6 g, 120 

mmol, 0.3 M) and DMF (400 mL). A peristaltic pump was connected with frame cell and external 

round bottom by rubber tubes (diameter: 6.0 mm) and Teflon tubes (diameter: 6.0 mm) 

respectively to form a circulatory system. The external round bottom was put into water bath to 

release heat produced by electrolysis. The mixture was then pumped into frame cell with a speed 

of 500 rmp in the loop by peristaltic pump. The frame cell with a distance of 2.0 cm between each 

electrode was then conducted electrolysis (Figure 6) under a constant current of 1.36 A from DC 

power for 9 h until the complete consumption of 4-penten-2-ol judged by TLC.  

After reaction, the entire mixture was transferred into a 2.0 L round bottom from frame cell 

and external round bottom by peristaltic pump. 300 mL EtOAc was added and circulated for 5 min 

to wash frame cell and connecting tube twice (300 mL x 2). The volatiles were then removed on 

the under reduced pressure (~4 mbar, 55 °C oil bath). The remaining oily liquid was eluted with 

EtOAc through a short silica plug. Crude product was delivered after rotary evaporation. Crude 

product was purified by column chromatography (n-Hexane: EA = 1:1) to afford desired product 

13.1 g as a colorless oil with 77 % isolated yield.  

 

 

 

2 cm
 



 
 

S26 
 

Figure S1. 10 g scale up flow diagram. 

 
 

  

 

Electrolysis setup in flow cell.  
 
 

 
DC power supply and frame cell. 

 
 
 

Peristaltic pump

500 rmp

Zn (+) Sn (-)

Reservoir tank

Peristaltic pump 

Flow cell 

DC power 

External round bottom 
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c. 100 g scale-up (Flow) 

 

Frame Cell Setup: Six Teflon frame block (length: 18.0 cm, width: 12.0 cm, thickness: 2.0 

cm) were packed in a row, 4 Zn plates (length: 20.5 cm, width: 12.0 cm, thickness: 1.5 mm) as 

anode and 3 Sn plates (length: 20.5 cm, width: 12.0 cm, thickness: 2.0 mm) as anode which have 

two silica pads (length: 18.0 cm, width: 12.0 cm, thickness: 2.0 mm) attached on their both sides 

were inserted between each frame. The two ends of frame cell were attached by two Teflon plates 

(length: 18.0 cm, width: 12.0 cm, thickness: 2.0 cm) and all components were then threaded 

through 8 stainless steel screws (length: 25.0 cm, diameter: 5.0 mm) and locked by nuts above 

stainless steel gasket. The side of each frame was screwed a Teflon joint with which connected 

rubber tube (6 mm in diameter). The immersion surface area of each electrode in frame cell was 

7.0 cm × 13.0 cm (Figure 7).  

 

 

Components of frame cell for the flow reactor assembly. 

 A 
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Three views of assembled flow cell. 
 

Experimental procedure: A clean and dry 5 L 4-necked round bottom with mechanical 

stirring and used as an external container was charged with 4-penten-2-ol (100.0 g, 1.16 mol, 1 

equiv.), acetone (135 g, 2.32 mol, 2 equiv.), tetrabutylammonium bromide (TBAB, 386 g, 1.2 mol, 

0.3 M) and DMF (4 L). A peristaltic pump was connected with frame cell and external round 

bottom by rubber tubes (diameter: 6.0 mm) and Teflon tubes (diameter: 6.0 mm) respectively to 

form a circulatory system. The external round bottom was put into water bath to release heat 

produced by electrolysis. The mixture was then pumped into frame cell with a speed of 200 rmp 

(~3.5 L/min) in the loop by peristaltic pump. The frame cell with a distance of 2.0 cm between 

each electrode was then conducted electrolysis under a constant current of 8.0 A from DC power 

for 15 h until the complete consumption of 4-penten-2-ol judged by TLC.  

After reaction, the entire mixture was transferred into a 5.0 L round bottom from frame cell 

and external round bottom by peristaltic pump. 1 L EtOAc was added and circulated for 5 min to 

wash frame cell and connecting tube twice (1 L×2). The volatiles were then removed on the under 
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reduced pressure (~4 mbar, 55 °C oil bath). Rochelle’s’ salt (2.0 L, 10% aq. solution) was then 

added followed immediately by the addition of EtOAc (2.0 L) and stirred for 5 min to help 

precipitate solid and form a liquid-solid biphasic system. The upper organic layer was collected, 

the under aqueous layer was then washed with EtOAc (5 × 2.0 L). The organic layer was combined 

and concentrated under reduced pressure. The crude product was purified by column 

chromatography (n-Hexanes: EA = 1:1) to afford desired product (106.8 g) as colorless oil with 

63% isolated yield. 

 

Figure S2 100 g scale up flow diagram. 

 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Peristaltic pump

200rmp

DC power 

Reservoir tank

SnZn Sn Zn Zn Sn Zn

5 L

8.0 A

Mechanical 

stirring

+ - + + +- -
+ + + +

- - -

Input Output
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Figure S3. Electrolysis setup in flow cell and local views. 
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(Left) Zn electrode. (Right) Sn electrodes. 
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Figure S4. Workup procedure and local views. 

 

 
 
 
 
 

 

 

 

 

 

 

Reduced pressure distillation 
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The concentrated reaction mixture 

 
 
 

 
Extraction 
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(Left) Concentrated crude product. (Right) pure product 

 
 

d. Notes 

 

1.  The reaction is not sensitive to air or water, and all reactants were purchased from commercial 

sources and used without any pretreatment. The purity of zinc and tin electrode is greater than 

99.5%. 

2.  In fact, compared with batch reaction, the voltage of continuous reaction was higher, which 

might be cause by deposition of generated precipitated solids in the frame cell, leading to poor 

reaction conductivity. For the electrochemical flow reaction of 10 g and 100 g, the reaction 

voltages would reach 32 V (maximum range) after electrolysis of 3 F. Through TLC detection, 

there is basically no starting material left, which means that the reaction didn’t need 4 F electric 

quantity. 

3.  After the reaction mixture was concentrated, the reaction liquid was very thick. For the post-

treatment of 1-10 g scale of reaction, it is relatively easy to be filtered by small silica plug. But for 

100 g reaction, the oily substance will block the elution of EtOAc. 

4.  We have also tried to separate the products directly by vacuum distillation, the products could 

be obtained under the condition of 4 mbar and 140 °C, but other unknown substances were also 

obtained at the same time. We speculated that some side reactions might occur at high temperature. 

5.  In the extraction with pure water or brine, the black substance was mostly in the organic phase 

and difficult to separate, even although it is also stratified. At present, it was useful to employ 

Rochelle’s’ salt to help precipitate solid and form a liquid-solid biphasic system. 

6.  The under aqueous layer need to be washed with EtOAc (5 x 2.0 L) to separate the product 

dissolved in aqueous phase. And the times of reverse extraction were determined by TLC results. 
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7.  Based on the literature report (Org. Lett. 2016, 18, 3826−3829), H of Hydroxyl didn't show up 

in 1H NMR. But in our experiments, H of Hydroxyl could show up with high concentration of 

product. Both of NMR data were provided as attachment. 

 

D. Characterization Data 

 

 
Colorless oily liquid. 1H NMR (400 MHz, CDCl3) δ 3.94 – 3.66 (m, 1H), 2.97 (s, 1H), 2.52 

(s, 1H), 1.58 – 1.30 (m, 6H), 1.21 (s, 6H), 1.19 – 1.10 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 

70.76, 67.37, 43.38, 39.42, 29.24, 28.95, 23.36, 20.23. 

 

E. NMR and GC-MS spectra 
 

1H NMR 
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13C NMR 
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GC-MS 

Testing spectra 
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Fitting figure 
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Mechanistic Studies 
 

Mechanistic insights from specific substrates (compound 62 and 65) 

 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 50:1 to 20:1) afforded 38.2 mg (53%) of the title compound. 

Physical State: colorless oil 

1H NMR (400 MHz, CDCl3): δ 7.31 – 7.23 (m, 2H), 7.21 – 7.14 (m, 3H), 2.63 (t, J = 7.8 Hz, 2H), 

1.69 – 1.57 (m, 2H), 1.55 – 1.44 (m, 4H), 1.40 (ddd, J = 10.2, 6.3, 2.8 Hz, 2H), 1.14 (s, 3H), 0.89 

(t, J = 7.5 Hz, 3H). 

13C NMR (151 MHz, CDCl3): δ 142.6, 128.4, 128.2, 125.6, 72.9, 41.1, 35.9, 34.2, 32.1, 26.4, 23.5, 

8.2. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.57 (10:1 hexanes/EtOAc). 

 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 1:1) afforded 53.4 mg (56%) of the title compound XX. 

Physical State: white foam. 

1H NMR (400 MHz, CDCl3):1.45 – 1.35 (m, 12H), 1.34 – 1.23 (m, 10H), 0.90 (t, J = 7.1 Hz, 

12H). 

13C NMR (101 MHz, CDCl3): δ 74.5, 41.6, 39.9, 17.3, 16.8, 14.7. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.57 (1:1 hexanes/EtOAc). 
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Deuterium Experiments 

 

 

These experiments revealed that the a-proton of the ketone serves as a proton source, rather 

than the solvent, which indicates the formation of carbanion at the D-incorporated position.  

Due to overlapping signals in the 1H NMR (see above spectra), quantitative 13C NMR 

(NOE decoupled, 60 s relaxation, 15 scans, delayed receiver-gain acquisition sequence) was run 

to determine the extent of deuterium incorporation. The ratio of 1:3.5, H:D translates to 80% 

deuterium incorporation where the only source of deuterium is from the d6-acetone. Therefore, it 

is clear from this data that one equivalent of ketone is consumed as a sacrificial proton source. The 

20% b-proton incorporation is suspected to mainly being captured by Zn2+ to form alkyl-Zn species, 

which is protonated to during work-up. 

  

O

CD3D3C
+
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OH

CD3

66 61
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Ph
Ph
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80% D
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O
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Comparison of the 1H-NMR of authentic sample and deuterium-labeled sample. 
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Comparison of the 13C-NMR of authentic sample and deuterium-labeled sample. 
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Comparison of the 13C-NMR of authentic sample and deuterium-labeled sample (20 to 46 

ppm) 
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Quantitative 13C-NMR of deuterium-labeled sample  

 
 

 
 

Deuterium vs Non-Deuterium = 4 : 1 
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Kinetic Experiments 

The kinetics of the reaction were investigated at a number of different currents (5, 10 and 20 mA). 

The results for the concentration vs time for the product, olefin and ketone are presented in the 

figure: 

 
 

Plot A is indicative of overall zero-order dependence on product formation. Monitoring the olefin 

(plot B), reveals that there might be an overall zero-order dependence, however, the R2 values are 

not significantly high enough to suggest this is certainly the case. The same is true for the ketone 

(plot C), and it is likely that a more complex relationship is at work. Plotting the rate of the product 
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formation against the current (plot D), did not show a good linear fit to suggest an overall first 

order relationship to current. 
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Voltametric studies 

 
General Procedure 

Mechanistic studies using cyclic voltammetry (CV), square wave voltammetry (SWV), and 

chronoamperometry (CA) were performed with a Biologic (Model SP-150) with an SCE as 

reference electrode. A protruding Sn wire (1.5 mm diameter, 2.0 mm length) or glassy carbon 

(0.0708 cm2) were used as working electrodes. Platinum gauze was employed as the counter 

electrode. Experiments were performed using acetophenone (1, 2, or 5 mM) and 4-phenyl-1-butene 

as coupling substrates. ZnBr2 (0 mM to catalytic amounts) were added in some SWV experiments. 

Tetrabutylammonium bromide (TBAB) in DMF (100 mM) was used as electrolyte. Total volume 

of solutions was 2.0 mL unless specified otherwise. All experiments were performed in a drybox 

under argon. 

A. Electrochemical studies on adsorption to Sn electrode 

a. CV analysis to observe pre-peak in the voltammogram 

Procedure: In a 2 mL vial, 1 mM acetophenone in 100 mM TBAB in DMF were scanned from two 

different potential windows using Sn and glassy carbon as working electrodes at a scan rate of 100 

mV/s. CV analysis of acetophenone in various concentrations (0.5, 1.0, 2.0 mM) were also 

performed using Sn as working electrode. 
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Fig. S5. CV plots of 1 mM acetophenone in (A) glassy carbon and (B) Sn as working electrodes 

using at two different potential windows, scan rate at 100 mV/s. Potentials are reported vs SCE. 

Discussion: Summarized in Fig. S5 are the CV plots obtained from acetophenone in Sn and glassy 

carbon electrodes in different potential windows. Scanning the potential on less positive value 

showed a distinct appearance of pre-peaks when Sn electrode was used (but not observed using 

glassy carbon). Importantly, the pre-peak current increases as function of number of scans and 

concentration of acetophenone. We hypothesized that change in reactivity can be facilitated by a 

strong adsorption of the ketyl radical to the Sn electrode. Cyclic voltammetry studies were 

performed using Sn and glassy carbon (GC) as working electrodes with acetophenone as the source 

of ketyl radical. Pre-peaks on the CV were observed using Sn as working electrode but not 

observed using GC. These pre-peaks are distinct characteristics of an electron transfer where the 

product (ketyl radical) is strongly adsorbed into the working electrode.3 Furthermore, the current 

response observed in the pre-peak in Sn was found to be dependent on the concentration of ketone 

(see Fig. S6). This result also rationalizes for the effectiveness of using Sn-cathode over other 

electrode materials. From here, additional electrochemical experiments were also performed to 

support the proposed adsorption (see Sections b and c). 
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Fig. S6. (A) CV plots of increasing concentration of acetophenone (0.5, 1.0, 2.0 mM) in Sn as 

working electrodes. (B) A control CV plot of 1 mM acetophenone at potential window where pre-

peak was observed. Scan rates were performed at 100 mV/s; currents in mA. 

b. CV analysis with various scan rates 

Procedure: In a 2 mL vial, 1 mM acetophenone in 100 mM TBAB in DMF were scanned at various 

scan rates (25, 50, 75, 100, 200, 300, 500, 750, and 100 mV/s) using Sn as working electrode to 

determine the extent of adsorption. The peak cathodic and peak anodic currents (ipc and ipa) were 

plotted versus the square root of the scan rate. 
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Fig. S7. (A) CV plots of 1 mM acetophenone at various scan rates. (B) Plot of the peak cathodic 

and peak anodic currents (ipc and ipa) versus the square root of scan rate. 

Discussion: The resulting CV plot (Fig. S7) reveals a quasi-reversible redox couple for which, the 

distance between the potential at peak cathodic (reductive) current (Eipc) and the potential at peak 

anodic (oxidative) current (Eipa) is significantly impacted by scan rate. This behavior is consistent 

with a homogeneous species exhibiting a reversible electrochemical process with slow 

heterogeneous electron transfer rates.4 Furthermore, the peak cathodic and peak anodic currents 

(ipc and ipa, Fig. S7) exhibit a linear dependence on the square root of scan rate, however, a 

deviation on the peak anodic current (ipa) was observed. These suggest that acetophenone is not 
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adsorbed onto the Sn electrode, but the electrochemically reduced species (ketyl radical) is 

adsorbed onto the electrode surface.4 

c. Chronoamperometric studies 

Procedure: In a 2 mL vial, 2 mM acetophenone in 100 mM TBAB in DMF were electrolyzed for 

xx min using Sn as working electrode at –2.1 V (vs SCE). Currents were recorded over time. At 

the end of the electrolysis, a series of electrolysis under similar conditions were performed by 

reusing the Sn working electrode on a freshly prepared acetophenone solution. The Sn electrode 

was rinsed in the electrolyte solution for 30 seconds prior to reusing (no electrode polishing was 

done in between runs). 

 

Fig. S8. (A) CA curve of 2 mM acetophenone after several electrolysis and reusing of the Sn 

electrode. Working electrode potential at –2.1 V (vs SCE). 

 

Discussion: The current vs time plot (Fig. S8) generated in chronoamperometric studies shows a 

significant decrease in limiting current after each reuse of Sn electrode. This is an indication of an 

adsorption of the substrate (or the reduced form) to the Sn electrode in every electrolysis. 
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d. CV analysis of various dialkyl ketones 

Procedure: In a 2 mL vial, 5 mM dialkyl ketones in 100 mM TBAB in DMF were scanned using 

Sn or glassy carbon as working electrodes at a scan rate of 100 mV/s. 

Discussion: In our attempt to use dialkyl ketones as model substrates for the electrochemical 

studies, we found that most of the dialkyl ketones (in general) gave insignificant current 

responses/peaks under reductive conditions. This is probably due to low interaction of the dialkyl 

ketones to the electrodes under CV scale.5 Fig. S9 shows the representative CV plots of various 

dialkyl ketones in Sn and glassy carbon working electrodes. 

 

Fig. S9. Representative CV plots of 5 mM dialkyl ketones in Sn working electrode at scan rate of 

100 mV/s. Similar CV plots were obtained using glassy carbon electrode. In all cases, no 
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significant reduction peaks were observed needed for a mechanistic CV analysis. As such, 

acetophenone was used as the model substrate in all electrochemical mechanistic studies. 

 

B. Electrochemical studies on probing ECEC mechanism 

a. SWV studies for the reaction of acetophenone and 4-phenyl-1-butene 

Procedure: Variable frequency square wave voltammetry (SWV) was performed on solutions 

containing 1 mM acetophenone in the presence or absence of 1 mM 4-phenyl-1-butene and 

catalytic ZnBr2, at a pulse height of 10 mV, step height of 5 mV, and frequencies of 10, 40, and 

100 Hz, using a solution of 100 mM TBAB in DMF at 25 °C. 

 

Fig. S10. (A) SWV plots of acetophenone in the absence and presence of alkene. (B) SWV plots 

of acetophenone, alkene and catalytic amount of ZnBr2. Pulse height of 10 mV, step height of 5 

mV, and frequencies of 10, 40, and 100 Hz. 

 

Discussion: Fig. S10 summarized the SWV plots obtained from acetophenone (1 mM) in the 

absence and presence of alkene (1 mM) (Fig. S10A) and catalytic amount (20 mol %) of ZnBr2 
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(Fig. S10B). As described in the main text, SWVs of acetophenone in the presence of the alkene 

gave a cathodic shift on the peak current potential but did not result to the formation of separate 

peaks even at faster frequencies. The addition of ZnBr2 (Fig. S10B) into this system exhibited a 

broad peak at low frequencies. However, three separate peaks were resolved at faster frequencies. 

While the observation of three distinct peaks at low frequencies was unexpected (two peaks were 

expected from the proposed ECEC mechanism), on a separate control experiment we found that 

the third (extra) peak at –1.84 V (vs SCE) was due to the reduction of ZnBr2-coordinated 

acetophenone (see Section b below). These experiments suggest an ECE mechanism, where the 

final chemical step (protonation of a species resulting from the second electrochemical reduction, 

see deuteration experiment) would result in an overall ECEC mechanism. 

 

b. Control SWV studies for ZnBr2-coordinated ketone 

Procedure: Variable frequency square wave voltammetry (SWV) was performed on solutions 

containing 1 mM acetophenone in the presence or absence of catalytic ZnBr2 (10, 20 and 40 mol 

%), at a pulse height of 10 mV, step height of 5 mV, and frequencies of 10, 40, and 100 Hz, using 

a solution of 100 mM TBAB in DMF at 25 °C. 

 

Fig. S11. SWV plots of acetophenone in the presence of catalytic amounts of ZnBr2. Pulse height 

of 10 mV, step height of 5 mV, and frequencies of 10, 40, and 100 Hz. 

 

Discussion: The appearance of an additional peak at –1.84 V (vs SCE, Fig. SX) in the presence of 

ZnBr2 denotes that the observed peak in Section 3.1 is due to the reduction of ZnBr2-coordinated 

acetophenone. Moreover, the peaks observed for the reduction of ZnBr2-coordinated acetophenone 
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(–1.84 V vs SCE) and that of free acetophenone (–1.97 V vs SCE), increases and decreases, 

respectively, as the amount of ZnBr2 is increased. 
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Linear vs Branched Selectivity 

 

The major product of this reaction is the linear product while a small amount of branch-selective 

minor product can be observed on GC-MS. Typically the selectivity is greater than 15:1. Very 

often the branch-selective product is hard to be observed due to peak overlapping. In addition, 

through the course of our investigation, we were not able to isolate a pure sample of the minor 

product. In order to confirm the structure, we synthesized an authentic sample of the minor 

regioisomer via an alternative route and verify its ratio via 13C NMR. In following example, the 

ratio of Branched vs Linear is 1:16. 

 

  



 
 

S57 
 

Comparison of the 1H-NMR of electrochemical ketone-olefin reductive coupling product and 

authentic branched. 
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Comparison of the 13C-NMR of electrochemical ketone-olefin reductive coupling product 

and authentic branched. 
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Synthetic Applications 
 

Synthesis of a Vitamin D analog side chain 55 

 
The known alcohol 54 was converted to diol 55 following general procedure A on 0.35 mmol 

scale. Purification via silica gel column chromatography (hexanes/EtOAc, 5:1 to 1:1) afforded 

35.9 mg (64%) of the title compound 55.  

Physical State: colorless oil. 

1H NMR (400 MHz, CDCl3): δ 3.51 (dd, J = 10.5, 5.9 Hz, 1H), 3.44 (dd, J = 10.5, 6.4 Hz, 1H), 

1.72 – 1.59 (m, 1H), 1.51 – 1.39 (m, 6H), 1.38 – 1.33 (m, 1H), 1.21 (s, 5H), 1.16 – 1.08 (m, 1H), 

0.93 (d, J = 6.7 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 71.0, 68.3, 44.1, 35.7, 33.6, 29.3, 29.2, 21.7, 16.6. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.25 (1:1 hexanes/EtOAc). 

[a]20D = -8.0° (c = 1.0 in CHCl3). 

 

Synthesis of a DNA-binding metabolite 58 

 

The known alcohol 56 (93% ee determined by Mosher ester analysis) was prepared according to 

literature, Sestelo et. al. Org. Lett. 2010, 12, 852. It was converted to triol 57 via general procedure 

A, followed by one-pot deprotection with TBAF (5 equiv) on 0.35 mmol scale. Purification via 

silica gel column chromatography (EtOAc/MeOH, 20:1) afforded 61.2 mg (92%) of triol 57.   

Physical State: colorless oil. 

1H NMR (400 MHz, CDCl3): δ 3.73 – 3.49 (m, 6H), 1.70 – 1.57 (m, 4H), 1.52 – 1.40 (m, 6H), 

1.19 (s, 6H). 

13C NMR (126 MHz, CDCl3): δ 71.0, 68.3, 44.1, 35.7, 33.6, 29.3, 29.2, 21.7, 16.6. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 
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TLC: Rf = 0.44 (20:1 EtOAc/MeOH). 

[a]20D = +1.5° (c = 2.0 in CHCl3). 

 

Synthesis of lactone 58. 

To triol 57 (95.0 mg, 0.5 mmol, 1.0 equiv) in CH2Cl2 was added PhI(OAc)2 (483.1 mg, 1.5 mmol, 

3.0 equiv) and TEMPO (7.8 mg, 0.05 mmol, 0.1 equiv) and the reaction was stirred at room 

temperature for 2 h. After completion, the reaction mixture was directly purified via column 

chromatography (hexanes: EtOAc) to give 83.0 mg (89%) of lactone 58. The characterization data 

is consistent with literature values (Procter et. al. Org. Biomol. Chem. 2004, 2, 2476; Thiericke et. 

al. J. Antibio. 1999, 52, 1124). 

 Physical State: colorless oil. 

1H NMR (600 MHz, CDCl3): δ 4.53 – 4.47 (m, 1H), 2.55 – 2.50 (m, 2H),  2.36 – 2.29 (m, 1H), 

1.90 – 1.82 (m, 1H), 1.77 – 1.70 (m, 1H), 1.65 – 1.60 (m, 1H), 1.59 – 1.54 (m, 1H), 1.54 -1.42 

(m, 4H), 1.21 (s, 6H). 

13C NMR (151 MHz, CDCl3): δ 177.2, 80.9, 70.8, 43.4, 36.0, 29.3, 29.2, 28.8, 28.0, 20.2. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.68 (EtOAc). 

[a]20D = +46.2° (c = 1.0 in MeOH). 

 

Synthesis of a hedgehog signaling modulator 1. 

 
 

 

To a solution of 6-amino-1-hexene (1.0 g, 10 mmol, 1.0 equiv.) and Et3N (2.1 mL, 15 mmol, 1.5 

equiv.) in dioxane (20 mL) was added Teoc-Su (2.85 g, 11 mmol, 1.1 equiv.) and the reaction was 

stirred for 10 h. After reaction completion, the reaction was diluted with EtOAc (50 mL) and H2O 
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(20 mL). Next, the mixture was transferred to a separatory funnel and the organic phase was 

separated. The aqueous phase was exacted with EtOAc (3 × 20 mL) and the combined organic 

layer was washed with H2O (50 mL), dried over MgSO4, concentrated and further purified via 

column chromatography (hexanes/EtOAc, 10:1) to give 2.38 g of the desired product (98%). 

Physical State: colorless oil. 

1H NMR (400 MHz, CDCl3): δ 5.79 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.03 – 4.93 (m, 2H), 4.58 

(brs, 1H), 4.14 (t, J = 8.4 Hz, 2H), 3.17 (q, J = 6.8 Hz, 2H), 2.13 – 2.00 (m, 2H), 1.54 – 1.46 (m, 

2H), 1.46 – 1.37 (m, 2H), 0.97 (t, J = 8.5 Hz, 2H), 0.03 (s, 9H).	

13C NMR (151 MHz, CDCl3): δ 156.8, 138.4, 114.7, 62.8, 40.8, 33.3, 29.5, 26.0, 17.7, -1.5. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.61 (9:1, Hexanes/EtOAc). 

 
Compound 59 was synthesized following general procedure B on 0.35 mmol scale. Purification 

via silica gel column chromatography (hexanes/EtOAc, 1:1 to pure EtOAc) afforded 97.4 mg (48%) 

of the title compound. The diastereoselectivity can be established via analogy to compound 51. 

Physical State: white foam. 

1H NMR (600 MHz, CDCl3) δ 4.61 (s, 1H), 4.16 – 4.09 (m, 1H), 3.56 (tt, J = 11.1, 4.7 Hz, 1H), 

3.41 (dt, J = 10.7, 4.5 Hz, 1H), 3.18 – 3.10 (m, 1H), 2.18 (ddt, J = 12.4, 5.0, 2.5 Hz, 1H), 2.04 

(dt, J = 12.4, 3.6 Hz, 1H), 1.98 (dt, J = 12.1, 4.2 Hz, 1H), 1.86 – 1.77 (m, 1H), 1.78 – 1.55 (m, 

7H), 1.56 – 1.37 (m, 7H), 1.33 – 1.24 (m, 7H), 1.24 (s, 3H), 1.23 – 1.19 (m, 1H), 1.18 – 1.13 (m, 

1H), 1.10 (t, J = 5.6 Hz, 0H), 1.07 – 0.93 (m, 5H), 0.90 – 0.83 (m, 1H), 0.82 (s, 3H), 0.80 (s, 

3H), 0.65 (ddd, J = 12.3, 10.5, 4.1 Hz, 1H), 0.02 (s, 9H). 

13C NMR (151 MHz, CDCl3) δ 156.8, 75.1, 71.2, 69.4, 62.8, 57.7, 56.3, 53.7, 51.6, 43.8, 42.9, 

41.4, 40.9, 40.1, 37.2, 36.2, 33.6, 32.2, 31.0, 30.0, 29.9, 26.7, 26.3, 24.2, 23.6, 22.3, 21.0, 17.7, 

13.7, 13.4, -1.5. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.25 (1:1 hexanes/EtOAc). 

[a]20D = +12.8° (c = 1.0 in CHCl3)  

 

Synthesis of compound 2 

To a DMF (5 mL) solution of compound 59 (27.3 mg, 0.047 mmol, 1.0 equiv.) was added 
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anhydrous CsF (71.0 mg, 0.47 mmol, 10.0 equiv.) and the reaction was stirred at 50 °C for 10h. 

Next the reaction was diluted with MeOH (10 mL) and the mixture was passed through a syringe 

filter. The resulted solution was concentrated on a rotavap to give a yellow oil, which was dried 

on high vacuum overnight under gentle heating to yield a yellow foam. The solid was then 

subsequently washed with hexanes (5 mL), CHCl3 (5 mL) and toluene (5 mL). Residual solvent 

was removed under high vacuum to give the 20.0 mg (98%) of compound 2. No characterization 

data was given in the patent (WO2012/024584A2) that previously described the title compound. 

Physical State: white foam. 

1H NMR (600 MHz, d5-pyr): δ 4.01 – 3.92 (m, 1H), 3.74 (td, J = 10.6, 4.5 Hz, 1H), 3.31 – 3.25 

(m, 1H), 3.18 – 3.04 (m, 2H), 2.33 (dt, J = 12.2, 4.3 Hz, 1H), 2.29 – 2.16 (m, 2H), 2.15 – 2.08 

(m, 2H), 2.07 – 1.98 (m, 1H), 1.87 – 1.70 (m, 5H), 1.70 – 1.64 (m, 1H), 1.61 – 1.52 (m, 5H), 

1.48 (s, 3H), 1.46 – 1.35 (m, 5H), 1.34 – 1.20 (m, 6H), 1.14 (s, 3H), 1.14 – 1.06 (m, 2H), 0.93 (s, 

3H), 0.81 – 0.74 (m, 1H).	

13C NMR (151 MHz, d5-Pyr): δ 74.4, 71.4, 69.1, 59.0, 57.3, 54.8, 53.2, 45.4, 43.6, 43.2, 43.1, 

41.2, 38.5, 36.9, 34.7, 34.5, 34.1, 32.8, 31.1, 27.8, 27.2, 25.2, 24.6, 23.3, 21.9, 14.6, 14.2. 

HRMS (ESI-TOF): calc’d for C27H48NO2 [M+H-H2O]+: 418.3685, found 418.3687. 

[a]20D = +24.4° (c = 1.0 in MeOH). 
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Troubleshooting: Frequently Asked Questions 

Question 1: 

How do I monitor the reaction? 

Answer: 

We use TLC analysis with UV visualization (254 nm) for compounds that contain a chromophore. 

Staining with iodine (absorbed on silica gel) brings about a strong deep red spot for the product. 

The product responds well to anisaldehyde or Hanessian's stain. The product is substantially more 

polar than the two starting materials, and typically even the most greasy products tend to need at 

least EtOAc/Hex 1:1, to move sufficiently on TLC. 

Question 2: 

How much can the reaction be scaled up on the ElectraSyn? Does it take longer if you scale up? 

Answer: 

Reactions ranging from gram scale to hundred-gram scale have been conducted (see SI for details). 

If the current remains the same, the reaction will take longer. The current can be increased to reduce 

the reaction time, but the yield may drop. 

Question 3: 

Why does the reaction start to turn dark brown/black after ~ 2 F/mol? 

Answer: 

If you look carefully at the cathode, what you will see toward the 2 F/mol mark is the formation 

of a brown cloud. This is the destruction of the nBu4NBr electrolyte to tributyl amine. This is 

happening constantly throughout the reaction, but as the concentration of the ketone decrease more 

and more of this Lewis acid coordinated base is formed. We still continue to run the reaction longer 

as there are still small amounts of product that are formed. 

Question 4: 

How moisture and oxygen sensitive is the reaction? Is it worthwhile just operating under Schlenk-

type conditions to be sure? Are there any signs that moisture has been is a problem? 

Answer: 

The reaction was found to give the same yield with or without the use of strictly anhydrous 

conditions. nBu4NBr is known to be hygroscopic and this electrolyte we use is a crystalline solid, 

despite being stored in a reagent bottle on the bench for a long time. Although we have not 
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examined wet nBu4NBr, we do recommend using this compound with good quality. 

Question 5: 

The resistance of the reaction is very high and ElectraSyn can’t deliver the set charge, or just 

registers that the resistance is too high and will not carry out the electrolysis, what could be wrong? 

Answer: 

Several things could be wrong, so let’s go through them step by step: 

- The electrode surfaces might be contaminated. Wiping with a cloth vigorously is advised. 

Sonication can also help. 

- The electrode connections to the terminals of the cap might be poor. Make sure the contact 

is good, otherwise wipe both surfaces with some sand paper until shiny. 

- The solution is not mixed well prior to electrolysis. Ensure the TPPA has mixed with the 

THF, by stirring or sonication. 

- The upper Voltage limit on the ElectraSyn might be set too low. To adjust, on the home 

screen, select the "#$%& (top right corner) ➞ Voltage limit ➞ set to 30 V  

A useful trick is to remove the vial and replace it with a short vial or bowl containing brine. Brine 

is an excellent conductor, so there are still conductivity issues using brine, it is very likely a 

connection issue that is occuring either between the electrodes and the cap, or the cap and the 

ElectraSyn (turning off and unplugging the devices helps occasionally). 
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Unsuccessful Substrates 
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Preparation of substrates 
 

Compound S1 

 

To a solution of phenylpropionaldehyde (4.50 g, 30 mmol, 1 equiv.) in THF (30 mL) was added 

allylmagnesium bromide (40 mmol, 1.0 M in ether, 1.33 equiv.) dropwise at 0 °C over 30 minutes. 

The reaction was then slowly warmed to 23 °C and monitored via TLC. After 1h, the reaction was 

quenched with H2O and then diluted with ether (150 mL) and saturated NH4Cl (100 mL). The 

resulted mixture was transferred to a separatory funnel and the aqueous phase was separated. The 

organic phase was washed with H2O (3 ×  100 mL) and brine (50 mL), dried over MgSO4, 

concentrated and purified via column chromatography (hexanes/EtOAc, 3:1 to 1:1) to give the 

3.28 g of the title compound (62%). 

Physical State: colorless oil. 

1H NMR (500 MHz, CDCl3): δ 7.30 – 7.28 (m, 2H), 7.23 – 7.28 (m, 3H), 5.87 – 5.78 (m, 1H), 

5.18 – 5.11 (m, 2H), 3.72 – 3.65 (m, 1H), 2.82 (ddd, J = 13.7, 9.0, 6.4 Hz, 1H), 2.70 (ddd, J = 13.7, 

9.1, 7.2 Hz, 1H), 2.36 – 2.30 (m, 1H), 2.23 – 2.15 (m, 1H), 1.85 – 1.75 (m, 2H), 1.66 (brs, 1H). 

13C NMR (151 MHz, CDCl3): δ 142.0, 134.6, 128.4, 128.4, 125.8, 118.3, 69.9, 42.1, 38.4, 32.0. 

HRMS (ESI-TOF): calc’d for C12H15O [M+H-H2O]+: 159.1174, found 159.1174. 

TLC: Rf = 0.39 (1:3 hexanes/EtOAc). 

 

Compound S2 

 

To a solution of 2-pyrrolidinone (0.851 g, 10 mmol, 1.0 equiv.) in DMF (10 mL) was added 60% 

NaH in mineral oil (100 mg, 25 mmol, 2.5 equiv.) at 0 °C and the reaction was stirred at this 

temperature for 30 mins. Next, pure 5-bromo-1-pentene (1.4 mL, 12 mmol, 1.2 equiv) was added 

and the reaction was allowed to warm to 23 °C and stirred for 10 h. After reaction completion, it 

was quenched with saturated NH4Cl (10 mL) and diluted with H2O (20 mL) and EtOAc (20 mL). 
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The mixture was transferred to a separatory funnel and the organic phase was separated. The 

aqueous layer was exacted with EtOAc (3 × 20 mL). The organic phase was combined and dried 

over MgSO4, concentrated and purified via column chromatography (EtOAc) to give the 1.42 g of 

desired product (93%). 

Physical State: colorless oil. 

1H NMR (500 MHz, CDCl3): δ 5.78 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.01 (dd, J = 17.1, 1.8 Hz, 

1H), 4.95 (dt, J = 10.2, 1.6 Hz, 1H), 3.35 (t, J = 7.1 Hz, 2H), 3.31 – 3.19 (m, 2H), 2.36 (t, J = 8.2 

Hz, 2H), 2.06 – 2.01 (m, 2H), 2.01 – 1.96 (m, 2H), 1.60 (p, J = 7.6 Hz, 2H).	

13C NMR (151 MHz, CDCl3): 174.8, 137.6, 115.0, 47.1, 42.0, 31.0, 31.0, 26.5, 17.9. 

HRMS (ESI-TOF): calc’d for C9H16NO+ [M+H]+: 154.1226, found 154.1232.  

TLC: Rf = 0.43 (EtOAc) 

 

Compound S3 

 

A suspension of pyrrolidine (1.64 mL, 20 mmol, 1.0 equiv.), K2CO3 (4.17 g, 30 mmol) and 5-

bromo-1-pentene (2.6 mL, 22 mmol, 1.1 equiv) in CH3CN (30 mL) was stirred for 10 h. Next, it 

was diluted with EtOAc (50 mL) and filtered through Celite. The mixture was concentrated and 

purified via column chromatography (EtOAc) to give the 1.42 g of desired product (93%). 

Physical State: colorless oil. 

1H NMR (500 MHz, CDCl3): δ 5.83 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.02 (dd, J = 17.2, 1.9 Hz, 

1H), 4.95 (dt, J = 10.3, 1.7 Hz, 1H), 2.48 (ddt, J = 8.0, 5.3, 2.7 Hz, 4H), 2.45 – 2.40 (m, 2H), 2.09 

(td, J = 7.5, 5.9 Hz, 2H), 1.86 – 1.73 (m, 4H), 1.66 – 1.57 (m, 2H). 

13C NMR (126 MHz, CDCl3): δ 138.7, 114.5, 56.1, 54.2, 31.9, 28.3, 23.4.	

HRMS (ESI-TOF): calc’d for C22H34NO4 [M+H]+: 140.1439, found 140.1432. 

TLC: Rf = 0.51 (50:1, EtOAc/Et3N). 
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Compound S4 

 

A suspension of 1,2,4-triazole (691 mg, 10 mmol, 1.0 equiv.), K2CO3 (3.45 g, 25 mmol) and 5-

bromo-1-pentene (1.3 mL, 11 mmol, 1.1 equiv) in CH3CN (20 mL) was refluxed at 80 °C for 10 

h. Next, it was diluted with EtOAc (50 mL) and filtered through Celite. The mixture was 

concentrated and purified via column chromatography (EtOAc) to give the 1.04 g of desired 

product (76%). 

Physical State: colorless oil. 

1H NMR (600 MHz, CDCl3): δ 8.02 (s, 1H), 7.91 (s, 1H), 5.74 (ddt, J = 16.0, 10.7, 6.5 Hz, 1H), 

5.03 (dq, J = 7.1, 1.6 Hz, 1H), 5.00 (t, J = 1.5 Hz, 1H), 4.15 (t, J = 6.9 Hz, 2H), 2.07 – 2.00 (m, 

2H), 2.00 – 1.93 (m, 2H). 

13C NMR (151 MHz, CDCl3): δ  151.9, 142.9, 136.5, 116.1, 48.7, 30.2, 28.5.	

HRMS (ESI-TOF): calc’d for C7H12N3 [M+H]+: 138.1026, found 138.1030. 

TLC: Rf = 0.50 (EtOAc) 

 

Compound S5 

 

To a solution of 2,3-dimethylindole (2.0 g, 13.8 mmol, 1.0 equiv.) in DMF (30 mL) was added 60% 

NaH in mineral oil (826 mg, 20.7 mmol, 1.5 equiv.) at 0 °C and the reaction was stirred at this 

temperature for 30 mins. Next, pure 5-bromo-1-pentene (2.4 mL, 20.7 mmol, 1.5 equiv) was added 

and the reaction was allowed to warm to 23 °C and stirred for 10 h. After reaction completion, it 

was quenched with saturated NH4Cl (10 mL) and diluted with H2O (20 mL) and EtOAc (20 mL). 

The mixture was transferred to a separatory funnel and the organic phase was separated. The 

aqueous layer was exacted with EtOAc (3 × 20 mL). The organic phase was combined and dried 

over MgSO4, concentrated and purified via column chromatography (EtOAc) to give the 2.38 g of 

desired product (93%). 
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Physical State: colorless oil. 

1H NMR (400 MHz, CDCl3): δ 7.49 (d, J = 7.8 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.13 (ddd, J = 8.1, 

6.9, 1.3 Hz, 1H), 7.07 (ddd, J = 7.9, 7.1, 1.1 Hz, 1H), 5.83 (ddt, J = 16.9, 10.2, 6.5 Hz, 1H), 5.24 

– 4.98 (m, 2H), 4.13 – 3.98 (m, 2H), 2.35 (s, 3H), 2.25 (s, 3H), 2.17 – 2.07 (m, 2H), 1.91 – 1.75 

(m, 2H).	

13C NMR (151 MHz, CDCl3): δ 137.6, 135.8, 132.0, 128.5, 120.4, 118.5, 117.9, 115.3, 108.6, 

106.4, 42.6, 31.0, 29.3, 10.1, 8.8. 

HRMS (ESI-TOF): calc’d for C15H20N [M+H]+: 214.1596, found 214.1600 

TLC: Rf = 0.79 (9:1, Hexanes/EtOAc). 
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Experimental Procedures and Characterization Data  

 

Compound 5 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to 1:1) afforded 125.5 mg (95%) of the title compound. 

Physical State: amorphous solid. 

1H NMR (500 MHz, CDCl3): δ 7.30 – 7.25 (m, 2H), 7.21 – 7.16 (m, 3H), 3.78 – 3.67 (m, 2H), 

3.67 – 3.58 (m, 1H), 3.22 – 3.08 (m, 2H), 2.83 – 2.74 (m, 1H), 2.71 – 2.62 (m, 1H), 1.83 – 1.69 

(m, 3H), 1.56 – 1.46 (m, 8H), 1.45 (s, 9H), 1.46 – 1.39 (m, 3H). 

13C NMR (151 MHz, CDCl3): δ 154.8, 142.0, 128.4, 128.4, 125.8, 79.4, 71.1, 69.7, 42.8, 39.2, 

37.7, 36.7, 36.6, 32.1, 28.4, 18.8. 

HRMS (ESI-TOF): calc’d for C17H28NO2 [M+2H–Boc]+: 278.2115, found 278.2121. 

TLC: Rf = 0.39 (1:3 hexanes/EtOAc). 

 

Compound 6 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to 1:1) afforded 62.9 mg (67%) of the title compound. 

Physical State: colorless oil. 

1H NMR (500 MHz, CDCl3): δ 3.66 (t, J = 6.5 Hz, 2H), 2.14 – 1.98 (m, 2H), 1.89 (t, J = 6.3 Hz, 

2H), 1.61 – 1.54 (m, 4H), 1.59 (s, 3H), 1.53 – 1.47 (m, 4H), 1.46 – 1.38 (m, 4H), 1.20 (s, 3H), 0.99 

(d, J = 1.2 Hz, 6H). 

13C NMR (125 MHz, CDCl3): δ 136.7, 127.0, 73.1, 62.6, 42.0, 41.2, 39.9, 35.1, 33.1, 32.8, 28.7, 

26.4, 22.7, 20.0, 19.8, 19.5. 

HRMS (ESI-TOF): calc’d for C17H31O [M+H-H2O]+:251.2375, found 251.2376. 

TLC: Rf = 0.47 (1:1 hexanes/EtOAc). 
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Compound 7 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to 1:1) afforded 100.3 mg (98%) of the title compound. 

Physical State: colorless oil. 

1H NMR (500 MHz, CDCl3): δ 7.30 – 7.26 (m, 2H), 7.22 – 7.16 (m, 3H), 3.67 – 3.61 (m, 1H), 

2.80 (ddd, J = 13.8, 9.7, 5.7 Hz, 1H), 2.67 (ddd, J = 13.8, 9.6, 6.7 Hz, 1H), 1.83 – 1.70 (m, 2H), 

1.49 – 1.42 (m, 4H), 1.42 – 1.36 (m, 5H), 1.36 – 1.24 (m, 5H), 0.91 (t, J = 7.3 Hz, 3H). 

13C NMR (125 MHz, CDCl3): δ 142.2, 128.4, 128.4, 125.8, 74.5, 71.1, 41.7, 41.6, 39.2, 39.1, 

38.0, 32.1, 19.5, 16.8, 16.8, 14.7. 

HRMS (ESI-TOF): calc’d for C19H31O [M+H-H2O]+: 275.2375, found 275.2374. 

TLC: Rf = 0.56 (1:1 hexanes/EtOAc). 

 

Compound 8 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to 1:3) afforded 75.6 mg (73%) of the title compound. 

Physical State: colorless sticky oil. 

1H NMR (600 MHz, CDCl3): δ 2.05 – 2.00 (m, 2H), 1.91 – 1.87 (m, 2H), 1.59 (s, 3H), 1.58 – 

1.50 (m, 5H), 1.49 – 1.43 (m, 6H), 1.42– 1.39 (m, 2H), 1.22 (s, 6H), 1.20 (s, 3H), 0.99 (s, 3H). 

13C NMR (150 MHz, CDCl3): δ 136.7, 127.0, 73.1, 71.0, 44.4, 42.0, 41.9, 39.8, 35.1, 32.8, 29.3, 

29.2, 28.6, 26.6, 22.7, 19.8, 19.5, 18.7. 

HRMS (ESI-TOF): calc’d for C19H35O [M+H-H2O]+: 279.2688, found 279.2695. 

TLC: Rf = 0.71 (1:3 hexanes/EtOAc). 
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Compound 9 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 3:1) afforded 92.6 mg (77%) of the title compound. 

Physical State: yellow foam. 

1H NMR (500 MHz, CDCl3): δ 7.20 – 7.11 (m, 2H), 6.70 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 7.9 Hz, 

2H), 3.12 (t, J = 7.1 Hz, 2H), 2.24 – 1.98 (m, 2H), 1.92 (t, J = 6.3 Hz, 2H), 1.70 – 1.62 (m, 2H), 

1.61 (s, 3H), 1.60 – 1.56 (m, 1H), 1.55 – 1.47 (m, 3H), 1.46 – 1.40 (m, 6H), 1.21 (s, 3H), 1.01 (s, 

6H). 

13C NMR (125 MHz, CDCl3): δ 148.4, 136.7, 129.2, 126.9, 117.1, 112.7, 73.0, 43.9, 41.9, 41.6, 

39.8, 35.0, 32.8, 29.5, 28.6, 27.7, 26.5, 23.7, 22.7, 19.7, 19.5. 

HRMS (ESI-TOF): calc’d for C24H40NO [M+H]+:358.2104, found 358.2106. 

TLC: Rf = 0.77 (1:1 hexanes/EtOAc). 

 

Compound 10 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc 3:1 to pure EtOAc) afforded 115.7 mg (94%) of the title 

compound. 

Physical State: colorless sticky oil. 

1H NMR (500 MHz, CDCl3): δ 5.45 (s, 1H), 3.27 – 3.21 (m, 2H), 2.18 (t, J = 7.5 Hz, 2H), 2.09 – 

1.97 (m, 2H), 1.89 (t, J = 6.3 Hz, 2H), 1.69 – 1.61 (m, 2H), 1.58 (s, 3H), 1.58 – 1.52 (m, 2H), 1.52 

– 1.43 (m, 6H), 1.43 – 1.37 (m, 4H), 1.37 – 1.30 (m, 2H), 1.18 (s, 2H), 0.98 (s, 6H), 0.92 (t, J = 

7.3 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 172.8, 136.7, 127.0, 72.9, 42.0, 41.3, 39.9, 39.2, 36.8, 35.1, 32.8, 

31.7, 28.7, 26.5, 26.3, 23.6, 22.7, 20.1, 19.8, 19.5, 13.7. 

HRMS (ESI-TOF): calc’d for C22H40NO [M+H-H2O]+: 334.3110, found 334.3113. 
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TLC: Rf = 0.17 (1:3 hexanes/EtOAc). 

 

Compound 11 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to 1:1) afforded 50.6 mg (58%) of the title compound. 

Physical State: colorless oil. 

1H NMR (600 MHz, CDCl3): δ 2.39 – 2.34 (m, 2H), 2.05 – 2.00 (m, 2H), 1.72 – 1.65 (m, 2H), 

1.59 (s, 3H), 1.58 – 1.54 (m, 3H), 1.54 – 1.46 (m, 6H), 1.43 – 1.38 (m, 2H), 1.21 (s, 3H), 0.99 (s, 

6H). 

13C NMR (150 MHz, CDCl3): δ 136. 5, 127.1, 119.7, 72.8, 42.0, 40.7, 39.8, 35.1, 32.7, 28.7, 28.6, 

26.4, 25.9, 23.1, 22.6, 19.8, 19.5, 17.2. 

HRMS (ESI-TOF): calc’d for C18H30N [M+H-H2O]+: 260.2378, found 260.2379. 

TLC: Rf = 0.36 (1:1 hexanes/EtOAc). 

 

Compound 12 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to 1:1) afforded 60.9 mg (56%) of the title compound. 

Physical State: colorless oil. 

1H NMR (500 MHz, CDCl3): δ 3.65 (s, 3H), 2.31 (t, J = 7.5 Hz, 2H), 2.05 – 1.91 (m, 2H), 1.89 

(t, J = 6.4 Hz, 2H), 1.68 – 1.60 (m, 2H), 1.58 (s, 3H), 1.57 – 1.53 (m, 2H), 1.52 – 1.43 (m, 4H), 

1.43 – 1.38 (m, 2H), 1.35 – 1.32 (m, 2H), 1.18 (s, 3H), 0.98 (s, 6H). 

13C NMR (125 MHz, CDCl3): δ 174.2, 136.7, 126.9, 72.9, 51.4, 41.9, 41.4, 39.8, 35.1, 34.0, 32.8, 

29.7, 28.6, 26.5, 24.9, 23.6, 22.7, 19.8, 19.5. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.49 (1:1 hexanes/EtOAc). 
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Compound 13 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to pure EtOAc) afforded 92.4 mg (98%) of the title 

compound. 

Physical State: white foam. 

1H NMR (500 MHz, CDCl3): δ 3.36 (t, J = 7.1 Hz, 2H), 3.26 (t, J = 7.4 Hz, 2H), 2.37 (t, J = 8.1 

Hz, 2H), 2.05 – 1.96 (m, 2H), 1.56 – 1.47 (m, 2H), 1.44 – 1.34 (m, 6H), 1.34 – 1.22 (m, 10H), 0.90 

(t, J = 7.2 Hz, 6H). 

13C NMR (125 MHz, CDCl3): δ 174.8, 74.3, 47.1, 42.5, 41.6, 39.1, 31.1, 27.5, 27.3, 23.1, 17.9, 

16.7, 14.7. 

HRMS (ESI-TOF): calc’d for C16H30NO [M+H-H2O]+: 252.2327, found 252.2332. 

TLC: Rf = 0.16 (1:3 hexanes/EtOAc). 

 

Compound 14 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to 1:1) afforded 30.4 mg (30%) of the title compound. 

Physical State: white foam. 

1H NMR (500 MHz, CDCl3): δ 5.08 – 5.00 (m, 1H), 4.36 – 4.27 (m, 1H), 3.73 (s, 3H), 1.83 – 

1.74 (m, 1H), 1.67 – 1.57 (m, 2H), 1.55 – 1.49 (m, 1H), 1.46 – 1.39 (m, 3H), 1.44 (s, 9H), 1.20 (s, 

3H), 1.19 (s, 3H). 

13C NMR (125 MHz, CDCl3): δ 173.4, 155.5, 79.9, 70.7, 53.1, 52.2, 42.9, 33.3, 29.4, 29.1, 28.3, 

19.9. 

HRMS (ESI-TOF): calc’d for C14H27NO5Na [M+Na]+: 312.1787, found 312.1789. 

TLC: Rf = 0.50 (1:1 hexanes/EtOAc). 
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Compound 15 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (pure EtOAc, 3:1 to EtOAc:MeOH:Et3N, 50:1:0.2) afforded 49.5 mg (56%) of 

the title compound. 

Physical State: colorless sticky oil. 

1H NMR (600 MHz, CDCl3): δ 7.49 (s, 1H), 7.06 (s, 1H), 6.90 (s, 1H), 3.93 (t, J = 7.1 Hz, 2H), 

1.79 (t, J = 7.3 Hz, 2H), 1.43 – 1.36 (m, 6H), 1.37 – 1.21 (m, 9H), 0.91 (t, J = 7.2 Hz, 6H). 

13C NMR (151 MHz, CDCl3): δ 137.0, 129.1, 118.8, 74.3, 47.1, 41.6, 39.0, 31.0, 27.2, 22.9, 16.8, 

14.7. 

HRMS (ESI-TOF): calc’d for C15H29N2O [M+H]+: 253.2280, found 253.2287. 

TLC: Rf = 0.26 (50:1:0.2 EtOAc/MeOH/Et3N). 

 

Compound 16 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to pure EtOAc) afforded 54.1 mg (61%) of the title 

compound. 

Physical State: colorless sticky oil. 

1H NMR (600 MHz, CDCl3): δ 8.09 (s, 1H), 7.95 (s, 1H),  4.17 (t, J = 7.1 Hz, 2H), 1.94 – 1.86 

(m, 2H), 1.41 – 1.36 (m, 6H), 1.35 – 1.24 (m, 9H), 0.91 (t, J = 7.2 Hz, 6H). 

13C NMR (151 MHz, CDCl3): δ 151.6, 142.7, 74.3, 49.7, 41.6, 39.0, 29.8, 27.1, 22.9, 16.8, 14.7. 

HRMS (ESI-TOF): calc’d for C14H26N3 [M+H-H2O]+: 236.2127, found 236.2132. 

TLC: Rf = 0.19 (1:3 hexanes/EtOAc). 
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Compound 17 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to pure EtOAc) afforded 60.2 mg (54%) of the title 

compound. 

Physical State: white foam. 

1H NMR (500 MHz, CDCl3): δ 7.29 (d, J = 1.8 Hz, 1H), 6.27 (dd, J = 3.1, 1.9 Hz, 1H), 5.97 (d, 

J = 3.0 Hz, 1H), 2.63 (t, J = 7.5 Hz, 2H), 2.24 – 1.97 (m, 2H), 1.90 (t, J = 6.3 Hz, 2H), 1.70 – 1.62 

(m, 2H), 1.59 (s, 3H), 1.59 – 1.54 (m, 2H), 1.53 – 1.44 (m, 4H), 1.43 – 1.40 (m, 2H), 1.38 -  1.35 

(m, 2H), 1.19 (s, 3H), 0.99 (s, 6H). 

13C NMR (151 MHz, CDCl3): δ 156.4, 140.6, 136.7, 126.9, 110.0, 104.6, 73.0, 41.9, 41.6, 39.9, 

35.1, 32.8, 29.8, 28.9, 28.0, 27.9, 26.6, 23.7, 22.7, 19.8, 19.5. 

HRMS (ESI-TOF): calc’d for C21H33O [M+H-H2O]+: 301.2526, found 301.2525. 

TLC: Rf = 0.71 (3:1 hexanes/EtOAc). 

 

Compound 18 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 10:1 to 3:1) afforded 134.8 mg (94%) of the title compound. 

Physical State: yellow solid. 

1H NMR (500 MHz, CDCl3): δ 7.49 (d, J = 7.7 Hz, 1H), 7.25 (d, J = 8.1 Hz, 1H), 7.14 (d, J = 1.2 

Hz, 1H), 7.08 (d, J = 6.9 Hz, 1H), 4.06 (t, J = 7.4 Hz, 2H), 2.36 (s, 3H), 2.26 (s, 3H), 2.07 – 1.98 

(m, 2H), 1.91 (t, J = 6.3 Hz, 2H), 1.79 – 1.66 (m, 2H), 1.59 (s, 3H), 1.59 – 1.55 (m, 2H), 1.52 – 

1.48 (m, 2H), 1.46 – 1.36 (m, 8H), 1.18 (s, 3H), 1.00 (s, 6H). 

13C NMR (151 MHz, CDCl3): δ 136.7, 135.8, 132.0, 128.4, 127.0, 120.3, 118.4, 117.9, 108.6, 

106.3, 72.9, 43.2, 42.0, 41.6, 39.8, 35.1, 32.8, 30.4, 28.7, 27.6, 26.5, 23.7, 22.6, 19.8, 19.5, 10.2, 

8.8. 
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HRMS (ESI-TOF): calc’d for C28H42N [M+H-H2O]+: 392.3317, found 392.3322. 

TLC: Rf = 0.65 (3:1 hexanes/EtOAc). 

 

Compound 19 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc/Et3N, 30:10:0.4 to EtOAc:Et3N, 50:1) afforded 37.6 mg (42%) 

of the title compound. 

Physical State: colorless oil. 

1H NMR (399 MHz, CDCl3): δ 2.56 – 2.48 (m, 4H), 2.47 – 2.41 (m, 2H), 1.81 – 1.70 (m, 4H), 

1.60 – 1.48 (m, 2H), 1.43 – 1.35 (m, 6H), 1.34 – 12.4 (m, 6H), 0.90 (t, J = 7.1 Hz, 6H). 

13C NMR (100 MHz, CDCl3): δ 74.4, 56.5, 54.1, 41.7, 39.2, 28.8, 28.3, 23.4, 23.3, 16.7, 14.7. 

HRMS (ESI-TOF): calc’d for C16H33N [M+H-H2O]+: 239.2613, found 239.2610. 

TLC: Rf = 0.24 (50:1 EtOAc/Et3N). 

 

Compound 20 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 10:1 to 5:1) afforded 121.7 mg (97%) of the title compound. 

Physical State: white foam. 

1H NMR (500 MHz, CDCl3): δ 7.30 – 7.24 (m, 2H), 6.96 – 6.88 (m, 3H), 3.97 (t, J = 6.5 Hz, 1H), 

2.07 – 2.01 (m, 2H),  1.93 – 1.88 (m, 2H),  1.85 – 1.79 (m, 2H), 1.60 (s, 3H), 1.59 – 1.56 (m, 2H),  

1.56 – 1.45 (m, 7H), 1.44 – 1.40 (m, 3H), 1.21 (s, 3H), 1.00 (s, 6H). 

13C NMR (151 MHz, CDCl3): δ 159.0, 136.7, 129.4, 126.9, 120.4, 114.4, 73.0, 67.7, 41.9, 41.6, 

39.8, 35.1, 32.8, 29.3, 28.7, 26.7, 26.5, 23.7, 22.7, 19.8, 19.5. 

HRMS (ESI-TOF): calc’d for C24H37O [M+H-H2O]+: 341.2844, found 341.2851. 

TLC: Rf = 0.67 (3:1 hexanes/EtOAc). 
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Compound 21 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to pure EtOAc) afforded 70.0 mg (88%) of the title 

compound. 

Physical State: white foam. 

1H NMR (600 MHz, CDCl3): δ 3.38 (t, J = 7.1 Hz, 2H), 3.36 – 3.32 (m, 2H), 2.34 (t, J = 8.1 Hz, 

2H), 2.21 (brs, 1H), 2.03 – 1.93 (m, 2H), 1.69 – 1.58 (m, 2H), 1.47 – 1.37 (m, 4H), 1.34 – 1.21 (m, 

4H), 0.89 (t, J = 7.3 Hz, 6H). 

13C NMR (151 MHz, CDCl3): δ 175.1, 73.2, 47.4, 41.5, 38.1, 36.0, 31.0, 17.8, 16.8, 14.6. 

HRMS (ESI-TOF): calc’d for C19H32NO [M+H-H2O]+:290.2478, found 290.2476. 

TLC: Rf = 0.32 (1:3 hexanes/EtOAc). 

 

Compound 22 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 10:1) afforded 32.6 mg (47%) of the title compound. 

Physical State: colorless liquid. 

1H NMR (600 MHz, CDCl3): δ 1.88 – 1.75 (m, 3H), 1.65 – 1.56 (m, 2H), 1.51 (m, 4H), 1.46 – 

1.39 (m, 4H), 1.35 – 1.25 (m, 4H), 1.11 (m, 2H), 0.91 (t, J = 7.3 Hz, 6H). 

13C NMR (151 MHz, CDCl3): δ 75.0, 45.3, 42.1, 35.8, 34.5, 24.9, 16.9, 14.7. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.54 (10:1 hexanes/EtOAc). 
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Compound 23  

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to 1:3) afforded 65.9 mg (94%) of the title compound XX. 

Physical State: colorless sticky oil. 

1H NMR (600 MHz, CDCl3): δ 4.25 – 4.19 (m, 1H), 2.73 – 2.52 (m, 2H), 2.20 – 2.10 (m, 1H), 

1.87 – 1.80 (m, 1H), 1.80 – 1.63 (m, 3H), 1.60 – 1.53 (m, 1H), 1.53 – 1.44 (m, 2H), 1.44 – 1.36 

(m, 2H), 1.33 – 1.22 (m, 4H), 0.96 – 0.88 (m, 6H). 

13C NMR (151 MHz, CDCl3): δ 75.2, 73.0, 44.2, 40.5, 39.3, 35.8, 35.5, 23.4, 17.3, 17.1, 14.7, 

14.7. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.40 (1:1 hexanes/EtOAc). 

The diastereoselectivity was determined by comparing with the same compound made from the 

following well-established reaction. 

 

 

Compound epi-23 (minor diastereomer observed in the gram-scale reaction) 

 

Physical State: colorless sticky oil. 

1H NMR (600 MHz, CDCl3): δ 4.42 – 4.34 (m, 1H), 2.41 – 2.39 (m, 1H), 2.00 – 1.90 (m, 1H), 

1.83 – 1.75 (m, 1H), 1.75 – 1.54 (m, 4 H), 1.54 – 1.39 (m, 5H), 1.39 – 1.25 (m, 6H), 0.97 – 0.90 

(m, 6H). 

13C NMR (151 MHz, CDCl3): δ 75.0, 73.7, 44.6, 40.1, 35.9, 35.1, 23.7, 17.0, 16.9, 14.7. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.63 (1:1 hexanes/EtOAc). 
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Compound 24 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to pure EtOAc) afforded 92.9 mg (96%) of the title 

compound. 

Physical State: white foam. 

1H NMR (600 MHz, CDCl3): δ 7.30 – 7.26 (m, 2H), 7.22 – 7.16 (m, 3H), 3.67 – 3.62 (m, 1H),  

2.80 (ddd, J = 13.7, 9.7, 5.8 Hz, 1H), 2.67 (ddd, J = 13.8, 9.7, 6.7 Hz, 1H), 1.87 (brs, 1H), 1.82 – 

1.70 (m, 2H),  1.61 – 1.36 (m, 15H), 1.30 – 1.22 (m, 1H). 

13C NMR (151 MHz, CDCl3): 142.2, 128.4, 128.3, 125.7, 71.4, 71.0, 39.1, 37.9, 37.5, 37.3, 32.1, 

25.8, 22.2, 18.8. 

HRMS (ESI-TOF): calc’d or C18H27O [M+H]+: 259.2062, found 259.2064. 

TLC: Rf = 0.45 (1:1 hexanes/EtOAc). 

 

Compound 25 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 10:1) afforded 45.6 mg (56%) of the title compound. 

Physical State: colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.29 – 7.24 (m, 2H), 7.20 – 7.15 (m, 3H), 2.65 – 2.60 (m, 2H),  

1.66 – 1.60 (m, 2H),  1.60 – 1.54 (m, 2H), 1.53 – 1.44 (m, 7H), 1.44 – 1.38 (m, 4H), 1.29 – 1.22 

(m, 2H). 

13C NMR (151 MHz, CDCl3): δ 142.7, 128.4, 128.3, 125.6, 71.4, 37.4, 36.0, 32.2, 25.9, 22.6, 

22.3. 

HRMS (ESI-TOF): calc’d for C16H23O [M+H]+: 215.1800, found 215.1801. 

TLC: Rf = 0.42 (10:1 hexanes/EtOAc). 
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Compound 26 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to pure EtOAc) afforded 92.6 mg (95%) of the title 

compound. 

Physical State: white foam. 

1H NMR (600 MHz, CDCl3): δ 7.32 – 7.25 (m, 2H), 7.22 – 7.16 (m, 3H), 3.79 – 3.71 (m, 4H), 

3.68 – 3.62 (m, 1H), 1.83 – 1.72 (m, 2H), 1.71 – 1.64 (m, 2H), 1.58 – 1.40 (m, 10H). 

13C NMR (151 MHz, CDCl3): δ 142.0, 128.4, 128.4, 125.8, 71.2, 68.9, 63.8, 43.1, 39.2, 37.7, 

37.7, 37.6, 32.1, 18.5. 

HRMS (ESI-TOF): calc’d for C17H25O2 [M+H-H2O]+: 261.1855, found 261.1856. 

TLC: Rf = 0.2 (1:3 hexanes/EtOAc). 

 

Compound 28 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to 1:1) afforded 87.2 mg (95%) of the title compound XX. 

Physical State: white foam. 

1H NMR (600 MHz, CDCl3): δ δ 7.30 – 7.26 (m, 2H), 7.22 – 7.16 (m, 3H), 3.67 – 3.60 (m, 1H),  

2.80 (ddd, J = 13.7, 9.5, 6.0 Hz, 1H), 2.67 (ddd, J = 13.7, 9.5, 6.9 Hz, 1H), 2.44 (brs, 2H), 1.82 – 

1.70 (m, 4H),  1.67 – 1.56 (m, 6H), 1.56 – 1.45 (m, 6H). 

13C NMR (151 MHz, CDCl3): δ 142.2, 128.4, 128.3, 125.7, 82.4, 70.9, 41.1, 39.7, 39.5, 39.2, 

37.8, 32.1, 23.7, 23.7, 20.7. 

HRMS (ESI-TOF): calc’d for C17H25O [M+H-H2O]+: 245.1905, found 245.1907. 

TLC: Rf = 0.68 (1:1 hexanes/EtOAc). 
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Compound 29 

  

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 20:1 to 10:1) afforded 38.2 mg (50%) of the title compound. 

Physical State: colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.30 – 7.26 (m, 2H), 7.20 – 7.16 (m, 3H), 2.65 – 2.61 (m, 2H),  

1.85 – 1.72 (m, 2H),  1.69 – 1.58 (m, 8H), 1.58 – 1.51 (m, 2H), 1.50 – 1.43 (m, 2H), 1.33 (brs, 1H). 

13C NMR (151 MHz, CDCl3): δ 142.7, 128.4, 128.2, 125.6, 82.5, 41.3, 39.7, 36.0, 32.1, 24.4, 

23.8. 

HRMS (ESI-TOF): calc’d for C15H21 [M+H-H2O]+: 201.1643, found 201.1636. 

TLC: Rf = 0.29 (10:1 hexanes/EtOAc). 

 

Compound 30 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 3:1 to 2:1) afforded 39 mg (45 %) of the title compound. 

Physical State: white foam. 

1H NMR (600 MHz, CDCl3): δ 7.31 – 7.26 (m, 2H), 7.23 – 7.16 (m, 3H), 3.69 – 3.64 (m, 1H), 

2.80 (ddd, J = 13.8, 9.8, 5.8 Hz, 1H), 2.68 (ddd, J = 13.7, 9.6, 6.7 Hz, 1H), 2.08 – 2.02 (m, 2H), 

2.02 – 1.96 (m, 2H), 1.95 – 1.86 (m, 2H), 1.84 – 1.70 (m, 3H), 1.66 – 1.58 (m, 2H), 1.57 – 1.48 

(m, 4H), 1.47 – 1.40 (m, 2H). 

13C NMR (151 MHz, CDCl3):  142.1, 128.4, 125.8, 75.4, 71.3, 39.2, 39.1, 37.7, 36.1, 35.99, 32.1, 

19.5, 12.1. 

HRMS (ESI-TOF): calc’d for C16H23O [M+H-H2O]+: 231.1749, found 231.1753. 

TLC: Rf = 0.61 (1:1 hexanes/EtOAc). 
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Compound 31 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 20:1 to 10:1) afforded 15.0 mg (21%) of the title compound. 

Physical State: colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.30 – 7.25 (m, 2H), 7.21 – 7.16 (m, 3H), 2.67 – 2.62 (m, 2H),  

2.07 – 2.02 (m, 2H),  2.02 – 1.95 (m, 2H),  1.78 – 1.71 (m, 1H),  1.71 – 1.65 (m, 2H),  1.65 – 1.60 

(m, 3H), 1.56 – 1.48 (m, 1H), 1.48 – 1.40 (m, 2H). 

13C NMR (151 MHz, CDCl3): ): δ 142.6, 128.4, 128.2, 125.6, 75.3, 39.3, 36.0, 35.9, 31.9, 23.1, 

12.1. 

HRMS (ESI-TOF): calc’d for C14H19 [M+H-H2O]+: 187.1481, found 187.1481. 

TLC: Rf = 0.33 (10:1 hexanes/EtOAc). 

 

Compound 32 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 1:1) afforded 70.7 mg (56%) of the title compound. 

Physical State: white foam. 

1H NMR (600 MHz, CDCl3): δ 7.30 – 7.25 (m, 2H), 7.22 – 7.16 (m, 3H), 3.67 – 3.62 (m, 1H), 

2.80 (ddd, J = 14.9, 9.8, 5.7 Hz, 1H), 2.67 (ddd, J = 13.7, 9.6, 6.6 Hz, 1H),  1.83 – 1.70 (m, 2H), 

1.69 – 1.61 (m, 2H),  1.57 – 1.44 (m, 6H), 1.44 – 1.22 (m, 22H). 

13C NMR (151 MHz, CDCl3): ): δ 142.2, 128.4, 128.3, 125.8, 75.2, 71.1, 40.4, 39.2, 38.0, 34.5, 

34.3, 32.1, 26.4, 26.0, 22.5, 22.0, 19.6, 19.5, 18.8. 

HRMS (ESI-TOF): calc’d for C24H39O [M+H]+: 343.3001, found 343.2994. 

TLC: Rf = 0.73 (1:1 hexanes/EtOAc). 
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Compound 33 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 3:1) afforded 85.3 mg (77%) of the title compound. 

Physical State: white foam. 

1H NMR (500 MHz, CDCl3): δ 7.31 – 7.24 (m, 2H), 7.22 – 7.14 (m, 3H), 2.67 – 2.60 (m, 2H), 

1.67 – 1.57 (m, 2H), 1.55 – 1.46 (m, 2H),  1.46 – 1.25 (m, 25H). 

13C NMR (125 MHz, CDCl3):  142.7, 128.3, 128.2, 125.6, 75.1, 40.7, 36.0, 34.4, 32.2, 26.5, 26.0, 

22.6, 22.5, 22.0, 19.6. 

HRMS (ESI-TOF): calc’d for C22H35 [M+H-H2O]+: 299.2739, found 299.2742. 

TLC: Rf = 0.64 (3:1 hexaness/EtOAc). 

 

Compound 34 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 1:1) afforded 108.1 mg (94%) of the title compound. 

Physical State: white solid. 

1H NMR (600 MHz, CDCl3): δ 7.31 – 7.24 (m, 2H), 7.22 – 7.16 (m, 3H), 3.69 – 3.63 (m, 

1H),  2.80 (ddd, J = 14.9, 9.8, 5.7 Hz, 1H), 2.67 (ddd, J = 13.7, 9.7, 6.7 Hz, 1H), 2.18 – 2.11 (m, 

2H),  1.87 – 1.77 (m, 5H), 1.77 – 1.73 (m, 3H),  1.73 – 1.62 (m, 9H),  1.59 – 1.53 (m, 2H),  1.53 – 

1.45 (m, 3H), 1.45 – 1.38 (m, 1H). 

13C NMR (151 MHz, CDCl3): δ 142.2, 128.4, 128.4, 125.8, 75.1, 71.2, 39.2, 38.3, 38.0, 37.9, 

37.0, 36.7, 34.6, 34.6, 32.9, 32.9, 32.1, 27.4, 27.2, 18.1. 

HRMS (ESI-TOF): calc’d for C22H31O [M+H-H2O]+: 311.2375, found 311.2374. 

TLC: Rf = 0.73 (1:1 hexanes/EtOAc). 
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Compound 36 

 

Following general procedure A on 0.35 mmol scale. The product was purified by mass-directed 

prep LC. The crude material was purified on a Waters Autopurification LC with a Waters BEH 

C18 column (5 um, 19x160 mm) using a 0.1% aqueous formic acid:acetonitrile gradient (30 

mL/min, main segment of gradient at 10-25% acetonitrile over 8 minutes) at ambient temperature. 

Fractionation was triggered by a Waters QDa single quadrupole mass spec (ESI+). The eluent was 

combined to concentrated to afford 85.2 mg (67%) of the title compound as a formate salt. While 

it is hard to determine the diastereoselectivity based on the 1H-NMR spectra of the formate salt, 

the peaks can be well separated in the free base form, which was obtained after washing the Prep-

HPLC eluent with K2CO3 before concentration. The diastereoselectivity was thus determined to 

be 3.1:1. The structure of the major diastereomer was determined via analogy to compound 37. 

Physical State: brown solid. 

1H NMR (500 MHz, CDCl3): δ 8.49 (s, 1H), 7.26 – 7.21 (m, 2H), 7.19 – 7.11 (m, 3H), 3.81 – 

3.55 (m, 3H), 2.98 – 2.92 (m, 0.22), 2.79 – 2.71 (m, 1H), 2.69 – 2.48 (m, 6H), 2.47 – 2.32 (m, 

1.78H), 2.10 – 1.98 (m, 2H), 1.96 – 1.79 (m, 2H), 1.75 – 1.65 (m, 2H), 1.55 – 1.32 (m, 5H). 

13C NMR (151 MHz, CDCl3): δ 168.0, 142.3, 128.4, 128.4, 128.3, 128.3, 125.7, 70.4, 69.0, 68.6, 

62.8, 51.7, 44.6, 41.1, 40.3, 39.9, 39.3, 38.6, 37.8, 37.4, 25.1, 24.1, 20.1, 18.7, 14.1, 13.6, 12.6. 

HRMS (ESI-TOF): calc’d for C20H32NO [M+H]+: 318.2433, found 318.2434. 

TLC: Rf = 0.45 (1:1 MeOH/Et3N). 

 

Compound 37 

 

Following general procedure A on 0.35 mmol scale. Purification via prep-TLC (50:1:0.5 

EtOAc:MeOH:Et3N) afforded 25.8 mg (27%) of the title compound. Unlike the case of compound 

36, a single diastereomer was isolated. The structure of the product was confirmed by comparing 

the NMR data with the product obtained from a Grignard reaction, of which the selectivity was 

well-precedented (Miooque et. al. Heterocycles 1985, 23, 2173–2175). 

Physical State: white foam. 
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1H NMR (500 MHz, CDCl3): δ 7.31 – 7.24 (m, 2H), 7.21 – 7.14 (m, 3H), 3.15 – 3.07 (m, 2H),  

2.64 – 2.57 (m, 2H),  2.28 (s, 3H), 2.10 – 2.02 (m, 2H), 2.00 – 1.92 (m, 2H),  1.92 – 1.83 (m, 2H), 

1.68 – 1.53 (m, 4H),   1.44 – 1.31 (m, 4H), 0.98 (brs, 1H). 

13C NMR (126 MHz, CDCl3):  δ 142.6, 128.4, 128.3, 125.6, 70.4, 60.4, 46.7, 43.8, 40.3, 35.9, 

31.9, 25.4, 22.3. 

HRMS (ESI-TOF): calc’d for C18H28NO [M+H]+: 274.2165, found 274.2169. 

TLC: Rf = 0.43 (50:1:0.5 EtOAc/MeOH/Et3N). 

 

Compound 38 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 1:3) afforded 101.2 mg (87%) of the title compound. 

Physical State: white solid. 

1H NMR (600 MHz, CDCl3): δ 7.30 – 7.25 (m, 2H), 7.22 – 7.16 (m, 3H), 3.69 – 3.63 (m, 1H), 

2.81 (ddd, J = 13.8, 9.7, 5.8 Hz, 1H), 2.68 (ddd, J = 13.7, 9.7, 6.8 Hz, 1H),  1.84 – 1.72 (m, 6H), 

1.70 – 1.62 (m, 2H), 1.55 – 1.45 (m, 5H), 1.44 – 1.37 (m, 1H), 1.37 – 1.28 (m, 2H), 1.09 – 0.98 

(m, 3H), 0.85 (s, 9H). 

13C NMR (151 MHz, CDCl3):  δ 142.2, 128.4, 128.3, 125.8, 72.3, 71.1, 47.5, 39.2, 39.1, 38.6, 

37.9, 36.0, 32.2, 32.1, 27.6, 24.5, 24.4, 18.7. 

HRMS (ESI-TOF): calc’d for C22H35O [M+H-H2O]+: 315.2688, found 315.2685. 

TLC: Rf = 0.59 (1:3 hexanes/EtOAc). 

 

Compound 39 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 1:3) afforded 72.6 mg (62%) of the title compound. 

Physical State: white solid. 

1H NMR (600 MHz, CDCl3): δ 7.31 – 7.26 (m, 2H), 7.22 – 7.16 (m, 3H), 4.14 (d, J = 7.1 Hz, 
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1H), 4.11 (d, J = 7.1 Hz, 1H), 3.68 – 3.62 (m, 1H), 2.79 (ddd, J = 13.7, 9.7, 5.7 Hz, 1H), 2.67 (ddd, 

J = 13.7, 9.6, 6.7 Hz, 1H), 2.43 – 2.36 (m, 1H), 1.93 – 1.85 (m, 2H), 1.83 – 1.74 (m, 2H), 1.74 – 

1.69 (m, 2H), 1.69 – 1.61 (m, 2H), 1.59 – 1.45 (m, 7H), 1.45 – 1.37 (m, 3H), 1.25 (t, J = 7.1 Hz, 

3H). 

13C NMR (151 MHz, CDCl3):  δ 175.4, 142.1, 128.4, 125.8, 71.4, 71.2, 60.2, 41.2, 39.2, 37.8, 

36.1, 36.0, 32.1, 25.0, 18.8, 14.2. 

HRMS (ESI-TOF): calc’d for C21H31O3 [M+H-H2O]+: 331.2273, found 331.2267. 

TLC: Rf = 0.47 (1:3 hexanes/EtOAc). 

 

Compound 40 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 3:1) afforded 84.3 mg (97%) of the title compound. 

Physical State: colorless oil. 

1H NMR (500 MHz, CDCl3): δ 7.31 – 7.24 (m, 2H), 7.20 – 7.14 (m, 3H), 2.63 (t, J = 7.8 Hz, 2H), 

1.67 – 1.58 (m, 2H), 1.48 – 1.42 (m, 2H), 1.42 – 1.26 (m, 10H), 1.12 (brs, 1H),  0.91 (t, J = 7.0 

Hz, 6H). 

13C NMR (151 MHz, CDCl3): 142.6, 128.3, 128.2, 125.6, 74.4, 41.7, 39.1, 35.9, 32.1, 23.2, 16.7, 

14.7. 

HRMS (ESI-TOF): calc’d for C17H27 [M+H-H2O]+: 231.2113, found 231.2111. 

TLC: Rf = 0.65 (3:1 hexanes/EtOAc). 

 

Compound 41 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 3:1) afforded 77.4 mg (85%) of the title compound. 

Physical State: colorless oil. 

1H NMR (500 MHz, CDCl3): δ 7.31 – 7.25 (m, 2H), 7.21 – 7.14 (m, 3H), 2.67 – 2.60 (m, 2H), 
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1.85 – 1.75 (m, 3H), 1.75 – 1.66 (m, 2H), 1.66 – 1.59 (m, 2H), 1.50 – 1.45 (m, 2H), 1.44 – 1.35 

(m, 2H), 1.34 – 1.25 (m, 1H), 1.27 – 1.20 (m, 2H), 1.20 – 1.10 (m, 2H), 1.09 (s, 3H), 1.07 – 0.94 

(m, 2H) 

13C NMR (151 MHz, CDCl3): δ 142.7, 128.4, 128.3, 125.6, 74.5, 47.3, 39.7, 36.0, 32.2, 27.6, 

26.9, 26.8, 26.8, 26.6, 24.0, 23.0. 

HRMS (ESI-TOF): calc’d for C18H34NO4 [M+H-H2O]+: 231.2107, found 231.2111. 

TLC: Rf = 0.63 (3:1 hexanes/EtOAc). 

 

Compound 42 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 3:1) afforded 77.1 mg (84%) of the title compound. 

Physical State: colorless oil. 

1H NMR (500 MHz, CDCl3): δ 7.31 – 7.24 (m, 2H), 7.21 – 7.14 (m, 3H), 4.07 – 3.98 (m, 2H), 

3.39 – 3.31 (m, 2H), 2.66 – 2.61 (m, 2H), 1.68 – 1.58 (m, 3H), 1.57 – 1.36 (m, 8H), 1.15 (brs, 1H), 

1.10 (s, 3H). 

13C NMR (151 MHz, CDCl3): δ 142.5, 128.4, 128.3, 125.7, 73.7, 68.4, 68.3, 44.6, 39.4, 35.9, 

32.0, 27.5, 26.9, 23.8, 22.9. 

HRMS (ESI-TOF): calc’d for C17H25 [M+H-H2O]+: 245.1905, found 245.1905. 

TLC: Rf = 0.23 (3:1 hexanes/EtOAc). 

 

Compound 43 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 3:1) afforded 93.6 mg (74%) of the title compound. 

Physical State: white solid. 

1H NMR (600 MHz, CDCl3): δ 7.29 – 7.25 (m, 2H), 7.19 – 7.15 (m, 3H), 4.30 – 4.15 (m, 2H), 

2.67 – 2.56 (m, 4H), 1.74 – 1.68 (m, 1H), 1.66 – 1.58 (m, 3H), 1.50 – 1.45 (m, 2H), 1.46 (s, 9H), 
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1.44 – 1.36 (m, 4H), 1.29 – 1.17 (m, 2H), 1.09 (s, 3H).  

13C NMR (151 MHz, CDCl3): δ 154.8, 142.4, 128.3, 128.2, 125.7, 79.3, 73. 8, 45.7, 39.6, 35.8, 

32.0, 28.4, 26.7, 26.0, 23.9, 22.8. 

HRMS (ESI-TOF): calc’d for C22H34NO2 [M+H-H2O]+: 262.2171, found 262.2179. 

TLC: Rf = 0.25 (3:1 hexanes/EtOAc). 

 

Compound 44 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 20:1 to 10:1) afforded 70.1 mg (61%) of the title compound. 

Physical State: white foam. 

1H NMR (600 MHz, CD2Cl2): δ 7.29 – 7.23 (m, 2H), 7.21 – 7.13 (m, 3H),  2.64 – 2.59 (m, 2H), 

1.80 – 1.72 (m, 6H), 1.70 – 1.63 (m, 4H), 1.61 – 1.54 (m, 2H), 1.52 – 1.44 (m, 4H), 1.36 – 1.29 

(m, 2H), 1.25 – 1.15 (m, 5H), 1.15 – 1.04 (m, 6H). 

13C NMR (151 MHz, CDCl3): δ 143.4, 128.9, 128.7, 126.1, 77.4, 45.0, 36.3, 35.1, 33.2, 28.1, 

27.8, 27.7, 27.6, 27.4, 24.4. 

HRMS (ESI-TOF): calc’d for C23H35 [M+H-H2O]+: 311.2739, found 311.2747. 

TLC: Rf = 0.63 (10:1 hexanes/EtOAc). 

 

Compound 45 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 20:1 to 10:1) afforded 21.7 mg (25%) of the title compound. 

Physical State: colorless oil. 

1H NMR (600 MHz, CD2Cl2): δ 7.29 – 7.24 (m, 2H), 7.21 – 7.14 (m, 3H),  2.61 – 2.59 (m, 2H), 

1.92 – 1.84 (m, 2H), 1.63 – 1.55 (m, 2H), 1.40 – 1.33 (m, 2H), 1.42 – 1.34 (m, 2H), 1.00 (brs, 1H), 

0.92 (d, J = 6.9 Hz, 6H), 0.90 (d, J = 6.9 Hz, 6H). 

13C NMR (151 MHz, CD2Cl2): δ 143.5, 128.9, 128.7, 126.1, 77.5, 36.4, 34.5, 34.5, 33.3, 24.6, 
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17.9, 17.6. 

HRMS (ESI-TOF): calc’d for C22H34NO4 [M+H]+: 231.2113, found 231.2111. 

TLC: Rf = 0.66 (3:1 hexanes/EtOAc). 

 

Compound 46 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 20:1 to 5:1) afforded 52.4 mg (53%) of the title compound. 

Physical State: colorless oil. 

1H NMR (500 MHz, CD2Cl2): δ 7.29 – 7.24 (m, 2H), 7.21 – 7.14 (m, 3H),  2.61 – 2.59 (m, 2H), 

1.92 – 1.84 (m, 2H), 1.63 – 1.55 (m, 2H), 1.40 – 1.33 (m, 2H), 1.42 – 1.34 (m, 2H), 1.00 (brs, 1H), 

0.92 (d, J = 6.9 Hz, 6H), 0.90 (d, J = 6.9 Hz, 6H). 

13C NMR (151 MHz, CD2Cl2): δ 142.6, 142.5, 128.4, 128.4, 128.3, 128.3, 125.7, 125.7, 72.7, 

43.7, 41.8, 35.9, 32.0, 30.3, 27.0, 23.6. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.66 (3:1 hexanes/EtOAc). 

 

Compound 47 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 20:1 to 5:1) afforded 50.0 mg (61%) of the title compound. 

Physical State: colorless oil. 

1H NMR (500 MHz, CDCl3): δ 7.31 – 7.24 (m, 2H), 7.21 – 7.14 (m, 3H), 2.65 (t, J = 7.7 Hz, 2H), 

1.69 – 1.60 (m, 2H), 1.57 – 1.38 (m, 4H), 1.11 (s, 3H), 0.94 (s, 9H). 

13C NMR (151 MHz, CDCl3): δ 142.7, 128.4, 128.2, 125.6, 76.3, 38.0, 36.1, 35.8, 32.4, 25.3, 

23.7, 20.8. 

HRMS (ESI-TOF): molecular weight peak not found despite extensive efforts. 

TLC: Rf = 0.69 (1:1 hexanes/EtOAc). 
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Compound 48 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 1:1) afforded 62.3 mg (57%) of the title compound. 

Physical State: white solid. 

1H NMR (600 MHz, CDCl3): δ 7.30 – 7.25 (m, 2H), 7.21 – 7.14 (m, 3H),  2.64 (t, J = 7.8 Hz, 

2H), 2.03 – 1.97 (m, 3H), 1.73 – 1.68 (m, 3H), 1.67 – 1.58 (m, 11H), 1.55 – 1.45 (m, 2H), 1.44 – 

1.37 (m, 2H), 1.04 (s, 3H). 

13C NMR (151 MHz, CDCl3): δ 142.8, 128.4, 128.2, 125.6, 76.0, 39.3, 37.2, 36.1, 36.0, 34.8, 

32.4, 28.6, 23.5, 19.8. 

HRMS (ESI-TOF): calc’d for C22H31 [M+H-H2O]+: 295.2426, found 295.2419. 

TLC: Rf = 0.69 (1:1 hexanes/EtOAc). 

 

Compound 49 

 

Following general procedure A on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 50:1 to 5:1) afforded 9.8 mg (11%) of the title compound. 

Physical State: colorless liquid. 

1H NMR (600 MHz, CDCl3): δ  7.45 – 7.41 (m, 2H), 7.37 – 7.32 (m, 2H), 7.28 – 7.22 (m, 3H), 

7.20 – 7.14 (m, 1H), 7.14 – 7.10 (m, 2H), 2.59 – 2.50 (m, 2H), 1.92 – 1.75 (m, 2H), 1.70 (brs, 1H), 

1.61 – 1.57 (m, 2H), 1.56 (s, 3H), 1.39 – 1.30 (m, 1H), 1.26 – 1.16 (m, 1H). 

13C NMR (151 MHz, CDCl3): δ 148.0, 142.6, 128.3, 128.2, 128.1, 126.5, 125.6, 124.7, 74.7, 44.0, 

35.8, 31.8, 30.1, 23.7. 

HRMS (ESI-TOF): calc’d for C18H21 [M+H-H2O]+: 237.1643, found 237.1645. 

TLC: Rf = 0.65 (3:1 hexanes/EtOAc). 
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Compound 50 

 

Following general procedure B on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 1:1) afforded 102.6 mg (70%) of the title compound as a 

single diastereomer. The diastereoselectivity was determined via analogy to compound 51. 

Physical State: white solid. 

1H NMR (600 MHz, CDCl3): δ 5.37 – 5.33 (m, 1H), 3.56 – 3.48 (m, 1H), 2.29 (ddd, J = 13.0, 5.1, 

2.1 Hz, 1H), 2.23 (ddd, J = 13.2, 10.8, 2.7 Hz, 1H), 2.09 (dt, J = 12.5, 3.5 Hz, 1H), 1.97 (ddt, J = 

16.9, 5.0, 2.6 Hz, 1H), 1.87 – 1.80 (m, 1H), 1.78 – 1.71 (m, 0H), 1.70 – 1.60 (m, 1H), 1.54 -1.41 

(m, 12H), 1.39 – 1.32 (m, 3H), 1.29 (s, 3H), 1.24 – 1.18 (m, 7H), 1.16 – 1.10 (m, 1H), 1.10 -1.04 

(m, 1H), 1.04 – 0.96 (m, 4H), 0.92 (dt, J = 11.3, 5.2 Hz, 1H), 0.86 (s, 3H). 

13C NMR (151 MHz, CDCl3): δ 140.8, 121.6, 75.2, 71.7, 71.0, 57.8, 56.8, 50.0, 44.4, 44.2, 42.6, 

42.2, 40.1, 37.2, 36.5, 31.8, 31.6, 31.3, 29.5, 29.2, 26.4, 23.8, 22.4, 20.9, 19.4, 18.9, 13.6. 

HRMS (ESI-TOF): calc’d for C27H45O2 [M+H-H2O]+: 401.3420, found 401.3414. 

TLC: Rf = 0.21 (1:1 hexanes/EtOAc). 

[a]20D = -51.2° (c = 0.5 in CHCl3)  

 

Compound 51 

 

Following general procedure B on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to pure EtOAc) afforded 120.7 mg (82%) of the title 

compound as a single diastereomer. The diasterselectivity was determined by comparing with the 

authentic sample prepared via the following well-established sequence. 
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Me

HO

Me

Me

OH
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HO
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Me
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Note: Our 13C NMR data matched what is listed in this paper (Stappenbeck et. al. Bioorg. Med. 

Chem. Lett. 2012, 22, 5893) but 1H NMR data does not. The 1H NMR data listed in the 

Stappenbeck’s paper clearly does not match the title compound. 

Physical State: white solid. 

1H NMR (600 MHz, CDCl3): δ 3.64 – 3.57 (m, 1H), 3.45 (dt, J = 10.7, 4.6 Hz, 1H), 2.21 (ddt, J 

= 12.2, 5.0, 2.6 Hz, 1H), 2.08 (dt, J = 12.6, 3.6 Hz, 1H), 2.02 (dt, J = 12.0, 4.2 Hz, 1H), 1.86 – 

1.81 (m, 1H), 1.78 – 1.62 (m, 5H), 1.55 – 1.45 (m, 8H), 1.36 – 1.28 (m, 8H), 1.28 (s, 3H), 1.22 – 

1.18 (m, 1H), 1.18 – 1.12 (m, 2H), 1.11 – 1.00 (m, 4H), 0.92 – 0.89 (m, 3H), 0.86 (s, 3H), 0.84 (s, 

3H),  0.68 (ddd, J = 12.4, 10.6, 4.1 Hz, 1H).  

13C NMR (151 MHz, CDCl3): δ 75.1, 71.2, 69.5, 57.6, 56.3, 53.7, 51.7, 44.1, 42.9, 41.5, 40.2, 

37.2, 36.2, 33.6, 32.2, 31.9, 31.0, 29.9, 26.4, 24.3, 23.7, 22.6, 22.3, 21.0, 14.1, 13.7, 13.4. 

HRMS (ESI-TOF): calc’d for C27H47O [M+H-H2O]+: 403.3576, found 403.3570. 

TLC: Rf = 0.30 (EtOAc). 

[a]20D = +74.8° (c = 1.0 in CHCl3)  

 

Compound 52 

 

Following general procedure B on 0.35 mmol scale. Purification via silica gel column 

chromatography (hexanes/EtOAc, 5:1 to 3:1) afforded 143.1 mg (88%) of the title compound. The 

diastereoselectivity was determined via analogy to compound 51. 

Physical State: white solid. 

1H NMR (600 MHz, CDCl3): δ 7.29 – 7.25 (m, 2H), 7.20 – 7.14 (m, 3H), 3.33 (s, 3H), 2.78 (t, J 

= 2.9 Hz, 1H), 2.64 – 2.58 (m, 2H), 2.10 – 2.00 (m, 1H), 1.90 (dt, J = 13.6, 3.2 Hz, 1H), 1.80 – 
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1.71 (m, 3H), 1.68 – 1.63 (m, 2H), 1.63 – 1.57 (m, 2H), 1.55 – 1.45 (m, 4H), 1.45 – 1.37 (m, 3H), 

1.36 – 1.31 (m, 2H), 1.26 (s, 3H), 1.22 – 1.13 (m, 3H), 1.12 – 1.04 (m, 2H), 1.03 (s, 3H), 0.90 (s, 

3H), 0.89 – 0.78 (m, 2H), 0.65 (dd, J = 5.1, 3.8 Hz, 1H), 0.44 (dd, J = 8.1, 5.1 Hz, 1H).  

13C NMR (151 MHz, CDCl3): δ 142.6, 128.3, 128.2, 125.6, 82.3, 75.1, 57.8, 56.6, 56.5, 47.9, 

43.6, 43.3, 43.0, 40.6, 35.9, 35.2, 34.9, 33.3, 32.1, 29.8, 26.4, 24.9, 23.9, 23.6, 22.6, 22.4, 21.4, 

19.2, 14.0, 13.0. 

HRMS (ESI-TOF): calc’d for C32H47O [M+H-H2O]+: 447.3627, found 447.3620. 

TLC: Rf = 0.56 (3:1 hexanes/EtOAc). 

[a]20D = +33.6° (c = 1.0 in CHCl3)  
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X-ray data of compound 38.  
 
Experimental Summary 

         The single crystal X-ray diffraction studies were carried out on a Bruker APEX II Ultra diffractometer 

equipped with Mo K
a
 radiation (l=0.17073 Å). 

Crystals of the subject compound were used as received (grow from CHCl3/Hexane). 

A 0.600 x 0.050 x 0.050 mm colorless crystal was mounted on a Cryoloop with Paratone oil.  Data were 

collected in a nitrogen gas stream at 100(2) K using f and v scans.  Crystal-to-detector distance was 40 

mm and exposure time was 2.0 seconds (depending on the 2q  range)  per frame using a scan width of 0.70°.  

Data collection was 100.0 % complete to 25.242° in q.  A total of 20286 reflections were collected covering 

the indices, -7<=h<=7, -12<=k<=12, -20<=l<=20.  3870 reflections were found to be symmetry 

independent, with a R
int

 of 0.0515.  Indexing and unit cell refinement indicated a Primitive, Monoclinic 

lattice. The space group was found to be P-1. The data were integrated using the Bruker SAINT Software 

program and scaled using the SADABS software program.  Solution by direct methods (SHELXT) 

produced a complete phasing model consistent with the proposed structure.   

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014).  

All carbon bonded hydrogen atoms were placed using a riding model.  Their positions were constrained 

relative to their parent atom using the appropriate HFIX command in SHELXL-2014.  .   Crystallographic 

data are summarized in Table 1. 

 

Notes: Excellent data and refinement,  

Centrosymmetric (racemic) space group 
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  Table S1.  Crystal data and structure refinement for Baran771. 

Report date  2020-10-16 

Identification code  baran771 

Empirical formula  C22 H36 O2 

Molecular formula  C22 H36 O2 

Formula weight  332.51 

Temperature  100.0 K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 5.8548(3) Å a= 87.8070(10)°. 

 b = 10.1049(5) Å b= 85.719(2)°. 

 c = 16.7631(8) Å g = 84.188(2)°. 

Volume 983.42(8) Å3 

Z 2 

Density (calculated) 1.123 Mg/m3 

Absorption coefficient 0.069 mm-1 

F(000) 368 

Crystal size 0.6 x 0.05 x 0.05 mm3 

Crystal color, habit colorless needle 

Theta range for data collection 1.219 to 26.017°. 

Index ranges -7<=h<=7, -12<=k<=12, -20<=l<=20 

Reflections collected 20286 

Independent reflections 3870 [R(int) = 0.0515] 

Completeness to theta = 25.242° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7454 and 0.7030 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3870 / 0 / 224 

Goodness-of-fit on F2 1.034 

Final R indices [I>2sigma(I)] R1 = 0.0385, wR2 = 0.0949 

R indices (all data) R1 = 0.0445, wR2 = 0.0999 

Largest diff. peak and hole 0.328 and -0.180 e.Å-3 
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 Table S2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for Baran771.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

O(1) 8136(1) 797(1) 4268(1) 18(1) 

O(2) -567(1) 1592(1) 5694(1) 17(1) 

C(1) 379(2) 2970(1) 8000(1) 26(1) 

C(2) 1402(3) 2347(1) 8650(1) 30(1) 

C(3) 557(3) 1225(1) 9011(1) 30(1) 

C(4) -1320(3) 741(1) 8716(1) 35(1) 

C(5) -2334(2) 1365(1) 8062(1) 28(1) 

C(6) -1509(2) 2494(1) 7692(1) 20(1) 

C(7) -2683(2) 3169(1) 6989(1) 22(1) 

C(8) -1073(2) 3695(1) 6316(1) 20(1) 

C(9) 681(2) 2631(1) 5952(1) 17(1) 

C(10) 2159(2) 3202(1) 5257(1) 18(1) 

C(11) 3838(2) 2162(1) 4832(1) 18(1) 

C(12) 5467(2) 2781(1) 4199(1) 16(1) 

C(13) 7115(2) 1774(1) 3718(1) 15(1) 

C(14) 5901(2) 1000(1) 3137(1) 17(1) 

C(15) 5114(2) 1857(1) 2412(1) 17(1) 

C(16) 7123(2) 2477(1) 1949(1) 15(1) 

C(17) 8266(2) 3298(1) 2531(1) 16(1) 

C(18) 9058(2) 2439(1) 3249(1) 17(1) 

C(19) 6474(2) 3252(1) 1163(1) 17(1) 

C(20) 5350(2) 2343(1) 626(1) 24(1) 

C(21) 8666(2) 3670(1) 700(1) 24(1) 

C(22) 4820(2) 4500(1) 1326(1) 21(1) 

________________________________________________________________________________ 
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 Table S3.   Bond lengths [Å] and angles [°] for Baran771. 

_____________________________________________________  

O(1)-H(1)  0.844(16) 

O(1)-C(13)  1.4403(13) 

O(2)-H(2)  0.870(16) 

O(2)-C(9)  1.4358(13) 

C(1)-H(1A)  0.9500 

C(1)-C(2)  1.3818(19) 

C(1)-C(6)  1.3899(18) 

C(2)-H(2A)  0.9500 

C(2)-C(3)  1.3832(19) 

C(3)-H(3)  0.9500 

C(3)-C(4)  1.379(2) 

C(4)-H(4)  0.9500 

C(4)-C(5)  1.385(2) 

C(5)-H(5)  0.9500 

C(5)-C(6)  1.3898(17) 

C(6)-C(7)  1.5146(17) 

C(7)-H(7A)  0.9900 

C(7)-H(7B)  0.9900 

C(7)-C(8)  1.5301(16) 

C(8)-H(8A)  0.9900 

C(8)-H(8B)  0.9900 

C(8)-C(9)  1.5213(16) 

C(9)-H(9)  1.0000 

C(9)-C(10)  1.5289(15) 

C(10)-H(10A)  0.9900 

C(10)-H(10B)  0.9900 

C(10)-C(11)  1.5234(16) 

C(11)-H(11A)  0.9900 

C(11)-H(11B)  0.9900 

C(11)-C(12)  1.5318(15) 

C(12)-H(12A)  0.9900 

C(12)-H(12B)  0.9900 

C(12)-C(13)  1.5382(15) 

C(13)-C(14)  1.5300(15) 

C(13)-C(18)  1.5318(15) 

C(14)-H(14A)  0.9900 

C(14)-H(14B)  0.9900 

C(14)-C(15)  1.5356(15) 

C(15)-H(15A)  0.9900 

C(15)-H(15B)  0.9900 

C(15)-C(16)  1.5339(15) 

C(16)-H(16)  1.0000 

C(16)-C(17)  1.5359(15) 

C(16)-C(19)  1.5590(15) 

C(17)-H(17A)  0.9900 

C(17)-H(17B)  0.9900 

C(17)-C(18)  1.5290(15) 

C(18)-H(18A)  0.9900 

C(18)-H(18B)  0.9900 

C(19)-C(20)  1.5363(16) 

C(19)-C(21)  1.5377(16) 

C(19)-C(22)  1.5307(17) 

C(20)-H(20A)  0.9800 

C(20)-H(20B)  0.9800 

C(20)-H(20C)  0.9800 

C(21)-H(21A)  0.9800 

C(21)-H(21B)  0.9800 

C(21)-H(21C)  0.9800 

C(22)-H(22A)  0.9800 

C(22)-H(22B)  0.9800 

C(22)-H(22C)  0.9800 

 

C(13)-O(1)-H(1) 109.5 

C(9)-O(2)-H(2) 109.5 

C(2)-C(1)-H(1A) 119.3 

C(2)-C(1)-C(6) 121.38(12) 

C(6)-C(1)-H(1A) 119.3 

C(1)-C(2)-H(2A) 119.8 



 
 

S100 
 

C(1)-C(2)-C(3) 120.34(13) 

C(3)-C(2)-H(2A) 119.8 

C(2)-C(3)-H(3) 120.5 

C(4)-C(3)-C(2) 119.09(13) 

C(4)-C(3)-H(3) 120.5 

C(3)-C(4)-H(4) 119.8 

C(3)-C(4)-C(5) 120.41(12) 

C(5)-C(4)-H(4) 119.8 

C(4)-C(5)-H(5) 119.4 

C(4)-C(5)-C(6) 121.26(13) 

C(6)-C(5)-H(5) 119.4 

C(1)-C(6)-C(7) 122.47(11) 

C(5)-C(6)-C(1) 117.53(12) 

C(5)-C(6)-C(7) 120.00(11) 

C(6)-C(7)-H(7A) 108.4 

C(6)-C(7)-H(7B) 108.4 

C(6)-C(7)-C(8) 115.41(10) 

H(7A)-C(7)-H(7B) 107.5 

C(8)-C(7)-H(7A) 108.4 

C(8)-C(7)-H(7B) 108.4 

C(7)-C(8)-H(8A) 108.8 

C(7)-C(8)-H(8B) 108.8 

H(8A)-C(8)-H(8B) 107.7 

C(9)-C(8)-C(7) 113.88(10) 

C(9)-C(8)-H(8A) 108.8 

C(9)-C(8)-H(8B) 108.8 

O(2)-C(9)-C(8) 107.43(9) 

O(2)-C(9)-H(9) 108.9 

O(2)-C(9)-C(10) 111.22(9) 

C(8)-C(9)-H(9) 108.9 

C(8)-C(9)-C(10) 111.47(9) 

C(10)-C(9)-H(9) 108.9 

C(9)-C(10)-H(10A) 108.8 

C(9)-C(10)-H(10B) 108.8 

H(10A)-C(10)-H(10B) 107.7 

C(11)-C(10)-C(9) 113.79(9) 

C(11)-C(10)-H(10A) 108.8 

C(11)-C(10)-H(10B) 108.8 

C(10)-C(11)-H(11A) 109.1 

C(10)-C(11)-H(11B) 109.1 

C(10)-C(11)-C(12) 112.49(9) 

H(11A)-C(11)-H(11B) 107.8 

C(12)-C(11)-H(11A) 109.1 

C(12)-C(11)-H(11B) 109.1 

C(11)-C(12)-H(12A) 108.6 

C(11)-C(12)-H(12B) 108.6 

C(11)-C(12)-C(13) 114.83(9) 

H(12A)-C(12)-H(12B) 107.5 

C(13)-C(12)-H(12A) 108.6 

C(13)-C(12)-H(12B) 108.6 

O(1)-C(13)-C(12) 108.54(9) 

O(1)-C(13)-C(14) 106.15(9) 

O(1)-C(13)-C(18) 108.10(9) 

C(14)-C(13)-C(12) 113.21(9) 

C(14)-C(13)-C(18) 108.61(9) 

C(18)-C(13)-C(12) 111.97(9) 

C(13)-C(14)-H(14A) 109.0 

C(13)-C(14)-H(14B) 109.0 

C(13)-C(14)-C(15) 112.81(9) 

H(14A)-C(14)-H(14B) 107.8 

C(15)-C(14)-H(14A) 109.0 

C(15)-C(14)-H(14B) 109.0 

C(14)-C(15)-H(15A) 109.2 

C(14)-C(15)-H(15B) 109.2 

H(15A)-C(15)-H(15B) 107.9 

C(16)-C(15)-C(14) 111.98(9) 

C(16)-C(15)-H(15A) 109.2 

C(16)-C(15)-H(15B) 109.2 

C(15)-C(16)-H(16) 106.6 

C(15)-C(16)-C(17) 108.23(9) 

C(15)-C(16)-C(19) 114.35(9) 

C(17)-C(16)-H(16) 106.6 
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C(17)-C(16)-C(19) 114.02(9) 

C(19)-C(16)-H(16) 106.6 

C(16)-C(17)-H(17A) 109.4 

C(16)-C(17)-H(17B) 109.4 

H(17A)-C(17)-H(17B) 108.0 

C(18)-C(17)-C(16) 111.02(9) 

C(18)-C(17)-H(17A) 109.4 

C(18)-C(17)-H(17B) 109.4 

C(13)-C(18)-H(18A) 108.8 

C(13)-C(18)-H(18B) 108.8 

C(17)-C(18)-C(13) 113.64(9) 

C(17)-C(18)-H(18A) 108.8 

C(17)-C(18)-H(18B) 108.8 

H(18A)-C(18)-H(18B) 107.7 

C(20)-C(19)-C(16) 109.76(9) 

C(20)-C(19)-C(21) 107.64(10) 

C(21)-C(19)-C(16) 109.56(9) 

C(22)-C(19)-C(16) 112.27(9) 

C(22)-C(19)-C(20) 108.90(10) 

C(22)-C(19)-C(21) 108.59(10) 

C(19)-C(20)-H(20A) 109.5 

C(19)-C(20)-H(20B) 109.5 

C(19)-C(20)-H(20C) 109.5 

H(20A)-C(20)-H(20B) 109.5 

H(20A)-C(20)-H(20C) 109.5 

H(20B)-C(20)-H(20C) 109.5 

C(19)-C(21)-H(21A) 109.5 

C(19)-C(21)-H(21B) 109.5 

C(19)-C(21)-H(21C) 109.5 

H(21A)-C(21)-H(21B) 109.5 

H(21A)-C(21)-H(21C) 109.5 

H(21B)-C(21)-H(21C) 109.5 

C(19)-C(22)-H(22A) 109.5 

C(19)-C(22)-H(22B) 109.5 

C(19)-C(22)-H(22C) 109.5 

H(22A)-C(22)-H(22B) 109.5 

H(22A)-C(22)-H(22C) 109.5 

H(22B)-C(22)-H(22C) 109.5 
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_____________________________________________________________  
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 Table 4.   Anisotropic displacement parameters  (Å2x 103) for Baran771.  The anisotropic 

displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(1) 23(1)  15(1) 15(1)  1(1) -6(1)  2(1) 

O(2) 19(1)  14(1) 19(1)  -2(1) -2(1)  0(1) 

C(1) 33(1)  25(1) 22(1)  2(1) -1(1)  -10(1) 

C(2) 35(1)  33(1) 24(1)  -1(1) -6(1)  -9(1) 

C(3) 44(1)  25(1) 20(1)  1(1) -3(1)  3(1) 

C(4) 51(1)  22(1) 32(1)  4(1) 1(1)  -11(1) 

C(5) 32(1)  24(1) 30(1)  -2(1) 1(1)  -9(1) 

C(6) 23(1)  18(1) 17(1)  -6(1) 5(1)  0(1) 

C(7) 22(1)  25(1) 20(1)  -4(1) 1(1)  2(1) 

C(8) 26(1)  17(1) 17(1)  -1(1) -1(1)  3(1) 

C(9) 20(1)  16(1) 14(1)  -1(1) -3(1)  -1(1) 

C(10) 22(1)  16(1) 17(1)  0(1) -1(1)  -1(1) 

C(11) 20(1)  16(1) 18(1)  2(1) 1(1)  -1(1) 

C(12) 18(1)  14(1) 16(1)  1(1) -1(1)  -2(1) 

C(13) 17(1)  14(1) 14(1)  3(1) -3(1)  0(1) 

C(14) 19(1)  15(1) 17(1)  1(1) -2(1)  -4(1) 

C(15) 17(1)  20(1) 16(1)  1(1) -3(1)  -6(1) 

C(16) 14(1)  17(1) 15(1)  0(1) -2(1)  -1(1) 

C(17) 15(1)  20(1) 16(1)  2(1) -1(1)  -5(1) 

C(18) 15(1)  20(1) 16(1)  0(1) -3(1)  -3(1) 

C(19) 15(1)  22(1) 14(1)  2(1) -2(1)  -2(1) 

C(20) 27(1)  28(1) 18(1)  0(1) -7(1)  -3(1) 

C(21) 18(1)  37(1) 16(1)  6(1) 0(1)  -4(1) 

C(22) 20(1)  23(1) 20(1)  4(1) -3(1)  0(1) 

______________________________________________________________________________ 
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 Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for Baran771. 

________________________________________________________________________________  

 x  y  z  U(eq) 
________________________________________________________________________________  

  

H(1) 8480(20) 1179(8) 4676(9) 27 

H(2) 236(18) 828(14) 5757(8) 26 

H(1A) 978 3741 7760 32 

H(2A) 2693 2690 8849 36 

H(3) 1260 794 9457 36 

H(4) -1921 -25 8961 42 

H(5) -3618 1015 7863 34 

H(7A) -3761 3923 7188 27 

H(7B) -3610 2528 6762 27 

H(8A) -2010 4110 5888 25 

H(8B) -243 4396 6528 25 

H(9) 1706 2258 6374 20 

H(10A) 1134 3646 4863 22 

H(10B) 3040 3886 5463 22 

H(11A) 2958 1533 4572 22 

H(11B) 4758 1650 5233 22 

H(12A) 6393 3375 4468 19 

H(12B) 4532 3339 3821 19 

H(14A) 4543 646 3425 20 

H(14B) 6961 234 2945 20 

H(15A) 4391 1300 2049 21 

H(15B) 3941 2575 2598 21 

H(16) 8284 1722 1788 18 

H(17A) 9607 3679 2248 20 

H(17B) 7157 4045 2721 20 

H(18A) 9763 3001 3614 20 

H(18B) 10260 1740 3057 20 

H(20A) 6325 1501 565 36 

H(20B) 5174 2781 100 36 

H(20C) 3834 2168 872 36 

H(21A) 9352 4311 1010 36 

H(21B) 8274 4081 183 36 

H(21C) 9769 2884 612 36 

H(22A) 3453 4255 1649 32 

H(22B) 4359 4914 817 32 

H(22C) 5588 5132 1616 32 

________________________________________________________________________________ 
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 Table 6.  Hydrogen bonds for Baran771  [Å and °]. 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 O(1)-H(1)...O(2)#1 0.84 1.91 2.7338(12) 165.6 

 O(2)-H(2)...O(1)#2 0.87 1.81 2.6771(11) 171.4 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 x+1,y,z    #2 -x+1,-y,-z+1       
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