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The electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon was shown, and the de-

tailed studies were conducted to correlate the fiber morphology with electrospinning process parameters and

gelatin concentration in electrospinning solution. Particularly, variations in the applied voltage and the concen-

tration of gelatin led to the transition of fiber shape from round to flat/ribbon. The formation of flat-shaped fibers

was attributed to rapid evaporation of the solvent (formic acid) from the fibermatrix with increasing the applied

voltage and gelatin concentration. On the other hand, round fibers were due to the steady evaporation of formic

acid throughout the cross-section offibers.WAXS analysis revealed that the loss of triple-helical crystalline struc-

ture in gelatin after the electrospinning process. The gelatin fibers were cross-linked through treatment with tol-

uene 2,4-diisocyanate (TDI) in a mixed solution of acetone and pyridine, and XPS confirmed the cross-linking of

the fibers over an increased carbon content on the elemental composition of the fiber surface due to the incorpo-

rated TDI moieties. Overall, this study focuses on morphological tuning of gelatin electrospun fibers towards a

flat/ribbon-like structure by variation of electrospinning parameters and polymer concentration, and thus, the

proposed concept can be adapted towards flattened/ribbon-like fibers of other protein-based systems by

electrospinning.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Gelatin is a polyampholyte that is derived from the hydrolysis of na-

tive collagen fibers [1,2]. It thus carries many intrinsic characteristics of

collagen, including biocompatibility, biodegradability and mechanical

strength, through its amino acid composition and peptide mimicry [3].

These distinct advantages of gelatin make it an ideal component to de-

velop proteinaceous constructs of various forms with mechanical

strength and durability that are comparable to those of extracellular

matrix (ECM) [4–6]. In this context, electrospinning has been validated

to be an efficient route to produce nano-/microfibrous materials from

numerous synthetic and natural polymers [7] andnon-polymeric supra-

molecular system [8]. In literature, electrospinning of gelatin was also

performed to producefibers from its solutions by using different solvent

systems [9–12]. The cross-linking of gelatin fibers could be achieved

using various chemicals, including glutaraldehyde [13], genipin [14],

D, L-glyceraldehyde [15], or with an exposure to reactive oxygen

species, which were generated using a plasma cleaner [15]. Although

gelatin preserves many intrinsic characteristics of collagen, it suffers

from poor solubility in cold or lukewarm water due to the presence of

strong intra- and intermolecular interactions between the polypeptide

chains. However, gelatin can be employed after hydration with hot

water using particularly designed electrospinning setups, capable of

hot-water circulation during the solution feeding [16]. Beyond such par-

ticular setups, gelatin was also electrospun using their solutions in acids

or binary solvent systems; e.g., Choktaweesap et al. (2007) reported gel-

atin electrospun fibers using either acetic acid (A.A.) or mixed solvent

systems (i.e., A.A./2,2,2-trifluoroethanol (TFE), A.A./dimethyl sulfoxide

(DMSO), A.A./ethylene glycol (EG), and A.A./formamide (FA)) [17].

The authors used a fixed voltage at 7.5 kV and varied the concentration

of gelatin. They observed the formation of fibers in the concentration

range of 21–29% (w/v). Huang et al. (2004) and Ki et al. (2005) were re-

spectively used TFE and formic acid to generate gelatin fiberswith circu-

lar cross-sections [11,18].

Electrospinning technique can produce fibers in various shapes and

textures, such as uniform, beaded, branched, porous, core-shell, Janus,

hollow and flat/ribbon, with dimensions down to nanoscale [11,19–

21]. Particularly, the fabrication of flat/ribbon shaped electrospun fibers

is a rather challenging task when compared to round fibers. Various pa-

rameters like polymer concentration, conductivity of the solutions, and
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the solvent evaporation are involved in the formation of such fiber

structures [22,23]. Flat/ribbon-like fibers were previously reported for

various polymers, including α-elastin polypeptides in water [24], poly-

styrene in DMF [23], and poly(ether imide) in hexafluoro-2-propanol

[23]. Further, gelatin flat-shaped fibers were reported by the

electrospinning of gelatin in 2,2,2-trifluoroethanol (TFE) by Rajzer et

al. (2014) [25]. However, the authors did not perform any further re-

search to understand the formation of such morphology. In this study,

we studied morphological tuning of gelatin fibers towards flat/ribbon-

like with variations in the electrospinning process parameters (i.e., ap-

plied voltage and flow rate) and gelatin concentration (Fig. 1). Since

the gelatin fibers are hydrophilic, and can disintegrate rapidly on con-

tact with water [26], they were also cross-linked through toluene 2,4-

diisocyanate (TDI) in a mixed solution of acetone and pyridine.

2. Experimental section

2.1. Materials

Gelatin (from porcine skin, type A), formic acid (N99%), toluene 2,4-

diisocyanate (TDI, 95%) acetone (≥99.5%) and pyridine (≥99%) were

purchased from Sigma-Aldrich (Germany). All chemicals were used as

received.

2.2. Electrospinning of gelatin fibers

Gelatin powder was dissolved in concentrated formic acid (N99%)

under continuous stirring for at least one day. The solutionswere loaded

into 1 mL syringes fitted with blunt metallic needles (18G × 11/2″,

TERUMO Europe NV). The syringes were placed horizontally on a sy-

ringe pump (KDS 101, KD Scientific). The feed rate was varied in the

range of 0.83–30 μL/min. A high voltage power supply (Matsusada, AU

series) was used to apply voltages of several amplitudes (10–22 kV).

Randomly oriented fibers were deposited on a grounded stationary

rectangular metal collector at 15 cm distance covered by a piece of alu-

minum foil. The electrospinning was performed at ca. 25 °C (±2) in an

enclosed Plexiglas chamber. The concentration of gelatin was expressed

as % (w/v).

Gelatin fibers were cross-linked with TDI (57 mM) in a mixed solu-

tion of acetone (10 mL) and pyridine (1–5% (v/v)) for 2 h. Thereafter,

the fibers were rinsed with acetone for several times to remove un-

bound chemicals from the fiber surface.

2.3. Rheological analysis

The viscosity experiments were conducted between the parallel

plates of rheometer (Physica MCR 301, Anton Paar) equipped with a

Peltier device for temperature control. The upper plate (parallel plate,

diameter 25mm)was set at 500 μmprior tomeasurements. The viscos-

ity of gelatin solutions was recorded as a function of shear rate in the

range of 0.01–100 s−1. During rheological measurements, a solvent

trap was used to prevent the evaporation of formic acid.

2.4. Dynamic light scattering (DLS)

Gelatin was treatedwith concentrated formic acid over time.Within

certain time intervals, few microliters were taken from this solution,

and diluted with water at a final concentration of 0.1% (w/v). The sizes

of gelatin polypeptides were measured by a photon correlation spec-

troscopy using a Malvern Nano ZS ZEN3600 (Malvern Instruments

Inc., US) at the fixed scattering angle of 173°. Glass cuvettes were used

for the measurements in water. The data were analyzed by Zetasizer

software (Malvern). The presented data are average values of three

measurements. The dynamic light scattering (DLS) measurements

give a z-average (or cumulant mean) value, which is an intensity

mean and the polydispersity index (PDI). The cumulant analysis has

the following form;

ln g 1ð Þ tð Þ
� �

¼ −Γt þ μ2t
2 þ… ð1Þ

where g(1) is the first order correlation function, Γ is the average decay

rate and first cumulant, and μ2 is the second cumulant. The value μ2=Γ
2

is known as PDI.

2.5. Scanning electron microscopy (SEM)

Themorphology of electrospun gelatin fibers before and after cross-

linking was explored with SEM (Quanta 200 FEG, FEI). The mean fiber

size (bDN) and their size distributions were calculated by analyzing

ca. 100 fibers from SEM images by ImageJ software (NIH, Bethesda,

MD, US).

Fig. 1. A cartoon illustration of a typical electrospinning setup used for the fabrication of gelatin fibers with the respective SEM images, which show the formation of round and flat/ribbon

fibers depending on the gelatin concentration used for the electrospinning (25 and 35% (w/v), respectively).
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2.6. Wide-angle X-ray scattering (WAXS)

WAXS experiments were performed using a PANalytical X'Pert Pro

MPD, which was powered by a Philips PW3040/60 X-ray generator

and fitted with an X'Celerator detector. X-rays were generated from a

Cu anode supplied with 40 kV and a current of 40 mA. The data were

collected over the range of 5-80° of 2θ using a scanning X'Celerator de-

tector. All scans were carried out in ‘continuous’ mode, and the data

were later analyzed by PANalytical High Score Plus software (version

2.0).

2.7. X-ray photoelectron spectroscopy (XPS)

XPS spectra were recorded by using an X-ray photoelectron spec-

trometer (Thermo Fisher Scientific, U.K.). As an X-ray source, Al K-alfa

X-ray monochromator (0.1 eV step size, 12 kV, 2.5 mA, spot size 400

μm) was used at an electron take-off angle of 90° from the sample sur-

face. For all samples, survey spectra were taken 5 times with 50 ms

dwell time (pass energy 200 eV). All narrow N1s, O1s and C1s spectra

were taken 10 times with 50 ms dwell time (pass energy 30 eV). The

binding scale was referenced to the aliphatic component of C1s spec-

trum at 284.85 eV.

3. Results and discussion

The viscosities of gelatin solutions were measured as a function of

shear rate (γ) in a range of 0.01–100 s−1 (Fig. 2a). Fig. 2b shows zero-

shear viscosities (η°) of the respective gelatin solutions where the solu-

tions with low gelatin concentrations (b25% (w/v)) have η° values

lower than 2 Pa·s (~20 P). On the other hand, at high gelatin concentra-

tions, a significant rise in η° was observed, suggesting the presence of

intra- and intermolecular associations among gelatin chains. Polypep-

tides are highly sensitive to acidic environments, particularly against

strong acids, which cause rapid hydrolysis over the cleavage of proteins

into peptide fragments. Weak acids, for example, formic or acetic acids,

can also be employed for the digestion of gelatin polypeptides, and in

this regard, previous researches on polypeptides showed that the

acid-mediated degradation first takes place over aspartic acid residues

[27]. Gelatin powder was dissolved in concentrated formic acid, and

kept for 9 days. Over time, a significant decrease in the viscosity of gel-

atin solution was visually observed. Hydrodynamic diameters of gelatin

polypeptidesweremeasured byDLS tomonitor the degradation process

on the molecular scale. Fig. 2(c, d) shows changes in the hydrodynamic

diameter (D) of gelatin over time, where slow hydrolysis of the poly-

peptides during treatment with formic acid was observed. After one-

week exposure to concentrated formic acid, hydrodynamic diameter

(D) decreases from ca. 35 to 9 nm, demonstrating rapid hydrolysis of

gelatin under acidic conditions. This also implies the significance of

the storage time of polypeptides in formic acid prior to the

electrospinning; i.e., the electrospinning of polypeptides in acidic solu-

tions will show variations over time. Thus, throughout this article, gela-

tin solutions were electrospun after one-day exposure to formic acid.

Electrospinning is a process that involves electrical forces to form fi-

bers from awide range of molecules, including numerous synthetic and

natural polymers [28,29], and as well as small molecules like cyclodex-

trins [8] and cyclodextrin-inclusion complexes [30]. Thus, it is expected

that the strength of electrical field should lead to structural variations in

electrospun fibers where higher applied voltage leads to thinner fibers

due to rapid electrospinning of polymer solution [7,19]. In most cases,

the electrospinning produces fibers with circular cross-sections, but in

some cases, deviations from circular fibers can be observed. Fig. 3

shows the SEM images of the electrospun gelatin nanofibers (cgel =

Fig. 2. (a) Viscosity-shear rate profiles and (b) zero-shear viscosities (η°) of gelatin solutions in concentrated formic acid. (c) Hydrodynamic diameters (D) of the single-chain polypeptides

in formic acidwere recorded over 7 days by considering thefirst peak appeared in the smallest size range. (d) The size-distribution plots of the gelatin polypeptides after exposed to formic

acid over time.
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20% (w/v)) at various flow rates (2.5–10 μL/min) and applied voltages

(10–20 kV). For all conditions, bead-free nanofibers were produced.

However, with increasing the applied voltage from 10 to 20 kV, a clear

shape transition from round to the flat/ribbon was observed (Fig. 3(d–

f)). On the other hand, variations in the flow rate did not cause such

morphological change on the fibers (Fig. 3(a–c)).

During the electrospinning process, the shape and size of a fiber are

mainly defined by two major factors; (i) jet ejection from the tip of

metal needle once the critical voltage is reached, and (ii) the whipping

of jet because of the jet bending instability [31]. In the first stage, the

diameter of the jet rapidly decreases, and is followed by the whipping

of electrified liquid jet, causing thinner fibers [32,33]. The evaporation

of solvent molecules takes place at this stage. Therefore, the amplitude

of electrical field affects the formation of gelatin fibers with different

shapes, which possibly accelerates the evaporation of solventmolecules

and also causes rapid electrospinning of polymer solution [23]. Further,

formic acid has rather high conductivity (5500 μS/cm) compared to

other weak acids, such as acetic acid, which has conductivity of 318

μS/cm, and as well as much higher than distilled water (0.04 μS/cm)

(Table S1, in the Supporting information). The solution conductivity

Fig. 3.The representative SEM images of the gelatinfibers producedat 20% (w/v) in formic acid at various conditions. (a–c) Thedistance between the tip andmetal collectorwas 15 cm, and

the applied voltage set to 15 kV. The flow rate varied between 2.5 and 10 μL per min. (d–f) Bottom row shows the variation in the applied voltage from 10 to 20 kV while keeping the

distance between the tip and metal plate constant at 15 cm and the flow rate at 5 μL/min.

Fig. 4. SEM images of the gelatin fibers produced at 25% (w/v). The tip to collector distance was 15 cm, and the flow rate set to 5 μL per min. Electrospinning voltage increased from 10 to

22 kV; (a) 10 kV, (b) 12.5 kV, (c) 15 kV, (d) 20 kV and (e) 22 kV. Insets show the size-distribution plots of the respective fibers.
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has a direct effect on the fiber structure where increasing conductivity

reduces fiber size [34]. In that sense, high conductivity of formic acid

may assist the formation of flat-shaped fibers from gelatin solutions

during the electrospinning.

For better understanding the effect of electrical field on fiber mor-

phology, gelatin concentration was increased from 20 to 25% (w/v)

and the applied voltage from 10 to 22 kV. Fig. 4 shows SEM images of

the fibers with a clear shape transition from round to the flat-like with

a voltage rise from 10 to 22 kV, where the fiber size increased from

0.78 μm to 1.45 μmby almost two-time increase in fiber size. Intriguing-

ly, with an increase of the applied voltage, a combination of flat and

round-shaped fiberswas obtained. This high voltage-driven shape tran-

sition is generic for gelatin solutions (in formic acid) as observed for 20%

(w/v) gelatin (Fig. 3(d–f)). The influence of electric field on the flat/rib-

bon-shaped fiber formation was obvious and could be attributed to

rapid electrospinning of gelatin solution [23]. Likewise, flat-shaped

Nylon-11 fibers were previously reported at the applied voltage of

20 kV in formic acid [35].

Unlike the applied voltage, the variations in the flow rate did not

cause any notable change on the fiber structure. For instance, increasing

theflow rate from2.5 to 30 μL permin did not lead to any visible change

on the morphology of the fibers produced at 25% (w/v) (Fig. 5). This

shows that the flow rate does not have any role in the formation of

thin/flat-type structure, particularly at low concentrations of gelatin.

The effect of theflow rate at the constant voltage of 20 kV and gelatin

concentration at 35% (w/v) was investigated through SEM analysis of

the electrospun fibers. Fig. 6 shows the SEM images of the gelatin fibers

produced at various flow rates (0.83–5 μL/min) where the formation of

fiberswithflat and round shapedmorphologywas observed at low flow

rates. Whereas, above 5 μL/min, flat/ribbon like fibers were dominant.

Gelatin fibers were produced at two different gelatin concentrations

(25 and 35% (w/v)), where SEM analysis revealed only flat/ribbon-like

fibers at high gelatin concentration (Fig. 7). On the other hand, at low

gelatin concentration, round-shaped fibers were obtained. Although

there is no clear change in the fiber shape by increasing gelatin concen-

tration from20 to 25% (w/v), a further concentration increase to 35% led

to the formation of flat-shaped fibers (Fig. 7 (b)). Thismight be attribut-

ed to a substantial increase in viscosity; the zero-shear viscosity (η°) of

20% (w/v) gelatin solution is 2 Pa·s while it increases to 11 Pa·s for 35%

(w/v) gelatin solution.

The mean size of flat fibers produced at 35% (w/v) gelatin was mea-

sured as 2.2 μm, and the ratio of axial diameters (long/short) was calcu-

lated as high as 7.4 (Fig. 7b, inset). This is much higher than the fibers

with circular cross-sections, which should have the corresponding

ratio as ca. 1. This ratio of axial diameters (long/short) suggests that

the fiber surface is significantly enhanced with a transition from round

to flat/ribbon-like. Even though the electrospinning of gelatin in formic

acid was previously reported, only fibers with circular cross-sections

were observed at low concentration of gelatin (i.e., 7% (w/v)) [18]. In

this article, we used very high gelatin concentrations varying between

20 and 35% (w/v). The most probable pathway for the formation of

such fiber structure could be ascribed to rapid evaporation of formic

acid during the electrospinning of gelatin solution with increasing the

applied voltage and gelatin concentration [23,36]. Rapid jetting of gela-

tin solution may also assist to the formation of such morphology. The

mixed fibers of ribbon and circular were previously reported for aque-

ous solutions of elastin-like polypeptides, and the authors observed

that higher electrospinning voltage led to smaller fibers [37]. Flat-like

fiber structure was also reported for Nylon-11 fibers, which were

electrospun in formic acid [35]. They observed circular fibers at 10%

(w/v) of the polymer, while the formation of flat-fibers was observed

once the concentration was boosted to 20% (w/v). Koski et al. (2004)

has shown a significant effect of the molecular weight on the formation

of flat-shaped fibers for poly(vinyl alcohol) (PVA) [38]. Once themolec-

ular weight range for PVAmolecules increased from amolecularweight

range of 13–23,000 to 31–50,000 g/mol, an obvious shift from circular to

flat fibers was observed. Similarly, flat-like fibers were also obtained

with a concentration increase of PVA. Ghorani and co-workers reported

Fig. 5. SEM images of the gelatin fibers produced at 25% (w/v). The distance between the tip and metal plate was 15 cm and the electrospinning voltage set to 15 kV. The flow rate varied

between 2.5 and 30 μL/min; (a) 2.5 μL/min, (b) 5 μL/min, (c) 20 μL/min and (d) 30 μL/min.
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ribbon-like fiber morphology for cellulose acetate in acetone [39]. The

formation of such fiber structure was credited to rapid evaporation of

the solvent from the fiber matrix [39]. This in line with the report of

Rajzer et al. (2014) on flat type gelatin fibers, in which the formation

of such morphology was attributed to rapid evaporation of solvent

from the surface of the stream during the electrospinning process [25].

On the other hand, the steady evaporation of formic acid is most likely

the cause of the fibers with circular cross-sections (Fig. 7a) [40]. In

other words, the homogenous shrinkage of the jet leads to the fibers

with circular cross-sections.

The gelatin fibers having flat/ribbon morphology was cross-linked

by TDI in acetone solutions having an increasing pyridine concentration.

TDI is a hydrophobic cross-linker with highly reactive free isocyanate

groups at both sides, fusedwith benzene in themiddle. Before the addi-

tion of TDI linkers, the fibrous webs were first exposed to acetone. SEM

images of the gelatin fibers after acetone treatment for one day are

shown in Fig. 8a and Fig. S1, where no significant change on the fiber

morphology was observed, demonstrating the stability of gelatin fibers

in acetone. However, the fibers were partially swollen and turned into

round fibers due to the long-term exposure with acetone. Thereafter,

TDI linkers at the concentration of 1% (w/v) and various pyridine con-

centrations from 1 to 5% (v/v) was used. Pyridine is generally used to

as a catalyst for isocyanate reactions. TDI-based cross-linking in the

presence of pyridine occurred very fast, and the fiber structure upon

Fig. 6. SEM images and the size distribution plots of the gelatin fibers produced at 35% (w/v). The distance between the tip andmetal platewas 15 cm and the applied voltage set to 20 kV.

The flow rate varied between 0.83 and 5 μL per min.

Fig. 7. SEM images of the gelatin electrospun fibers at the concentration of 25 (a) and 35% (w/v) (b). The distance between the tip andmetal plate was 15 cm. The flow rate was 5 μL/min.

Insets show the size-distribution plots of the fibers, and the SEM image of a flat fiber.
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such cross-linking changed. In Fig. 8(b–d), the SEM images of the fiber

after having cross-linked with TDI clearly demonstrated a transition

from the fibrous network to the bulk-material form with an increasing

pyridine content. Although the inner-parts of the mats displayed a fi-

brous matrix, the solvent-contact surfaces lost the fiber structure due

to excessive cross-linking and instant swelling. Increasing pyridine con-

tent led to significant changes on the fiber texture by forming

nanoaggregates on the fibers. This was due that the TDI linkers forms

aggregates in the solvent mixture, where pyridine catalyzed cross-

linking reactions towards nanoaggregates on the fiber surface.

For the determination of cross-linking efficiency, XPS was used to

elucidate the chemical compositions of the surfaces of the cross-linked

fibers. Fig. 8(e) shows the XPS survey spectra of the cross-linked fibers

by TDI in acetone at various pyridine concentrations. It is normally ex-

pected that the high degree of the cross-linking should increase carbon

content on the chemical composition.With increasing pyridine concen-

tration, C1s peak becomes more dominant compared to the O1s peak,

suggesting more TDI moieties bound on the fibers. Fig. 8(f) shows the

elemental compositions of the fiber surfaces where the C ratio boosted

from 67.5 to 73% with increasing pyridine concentration from 1 to 5%

(v/v).

The structural analysis of gelatin fibers before and after cross-linking

was explored through wide-angle X-ray scattering (WAXS), where

crystalline zones display sharp diffraction peaks and amorphous regions

show broader ones. The gelatin, a hydrolyzed collagen, has some

inherited crystalline segments of collagen, particularly at ~20.40° (d-

spacing: 0.43 nm) and 8.35° (d-spacing: 1.57 nm) because of the tri-

ple-helical crystalline structure of collagen renatured in gelatin (Fig. 9)

[41]. During the electrospinning process, intramolecular associations

were damaged to some extent, which induce broader and smaller dif-

fraction peaks. The structural arrangements that are driven by intra-

and intermolecular interactions in gelatin polypeptides decreased dur-

ing the electrospinning so that broad peaks at 20° and 8.35° became

nearly invisible in the corresponding ranges, and the material becomes

amorphous.

4. Conclusion

This study describes the electrospinning of gelatin solutions with

tunable fiber morphology from round to flat/ribbon. The formation of

flat/ribbon fiber structure was attributed to the applied voltage and gel-

atin concentration for the electrospinning. For instance, by increasing

the applied voltage from 10 to 25 kV in the electrospinning process,

the formation of flat/ribbon-type fibers was clearly observed. During

the electrospinning process, rapid release of formic acid at high voltages

and gelatin concentrationsmight led to flat/ribbon-like electrospun gel-

atin fibers. Whereas, the formation of fibers with circular cross-sections

can be attributed to the steady evaporation of formic acid (i.e., homog-

enous shrinkage of the jet) from the fiber matrix. WAXS analysis

Fig. 8. (a) SEM image of the gelatinfiber one day exposure to acetone. (b–d) SEM images of cross-linked gelatinfibers (i.e., produced at 35% (w/v), the applied voltage=20kV and theflow

rate=5 μL/min) at an increasing pyridine content (% (v/v)). Pyridine concentrations; (b) 1% (v/v), (c) 2.5% (v/v) and (d) 5% (v/v). Insets show the SEM images of the inner parts of thefiber

mats. (e) XPS survey spectra and (f) the compositional data of the cross-linked fibers.

Fig. 9. Wide-angle XRD patterns of the flat-shaped gelatin fibrous mat (i.e., produced at

35% (w/v), the applied voltage = 20 kV and the flow rate = 5 μL/min) and gelatin

powder. Significant peaks were shown with corresponding d-spacing values.
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revealed that the electrospinning of gelatin led to structural changes in

gelatin polypeptides. The fibers were cross-linked by diisocyanate

linkers (TDI) in a mixed solution of acetone and pyridine. This cross-

linking route was highly efficient and led to highly cross-linked fiber

mats. However, the fiber morphology was greatly influenced by the

used pyridine content. XPS analysis demonstrated the cross-linking of

the fibers with an increased carbon content of the fibers. Overall the

paper reports an initiative example of tuning of the fiber structure of a

polypeptide, gelatin as an example, and has potential applications for

other protein-based systems.
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