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Abstract: The number of cancer patients is rapidly increasing worldwide. Among the leading causes
of human death, cancer can be regarded as one of the major threats to humans. Although many new
cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays
being developed and used for testing purposes, results show limited efficiency and high toxicity, even
if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia
is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic
properties and other characteristics, are used in many clinical trials as one of the solutions for cancer
treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor
tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally
friendly method is the fabrication of various types of functional nanostructures by adding magnetic
additives to the spinning solution in the electrospinning process, which can overcome the limitations
of this challenging treatment process. Here, we review recently developed electrospun magnetic
nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted
drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.

Keywords: magnetic hyperthermia; electrospun magnetic nanofiber mats; magnetic nanomaterials;
targeted drug delivery; cancer treatment; magnetic nanofibers

1. Introduction

According to statistical data from the International Agency for Research on Cancer,
the number of cancer deaths worldwide in 2020 was estimated at around 9.96 million, and
new cancer cases were estimated at around 19.3 million [1]. The number of global cancer
cases is projected to increase to 28.4 million by 2040, representing an increase of nearly 50%
in the next 20 years [2], making the disease a great threat to human beings worldwide [3,4].
However, various treatment modalities such as hyperthermia, radiotherapy, chemother-
apy, photodynamic therapy, hormone therapy, immunotherapy, stem cell transplantation,
surgery, biomarker testing, etc., are currently being developed and tested to address this
global issue [5–8]. Among these, chemotherapy, radiotherapy, and hyperthermia have
proved to be successful treatment methods that can kill cancer cells [8–10]. Nevertheless,
toxicity and side effects are very high in chemotherapy and radiotherapy methods [11,12].
For this reason, hyperthermia is the most attractive and effective recent treatment method
that does not have toxicity to healthy tissues [13–15]. Specific hyperthermia therapy com-
prises three treatment modalities: whole-body hyperthermia, regional hyperthermia, and
local hyperthermia. If cancer cells are detected in the initial stage, local hyperthermia is
applied; if the affected area is larger than the tumor, regional hyperthermia is applied to a
complete tissue or organ; if cancer is detected in the final stage, the affected cells are dis-
tributed throughout the body, and whole-body hyperthermia should be applied [16]. In the
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final case, the treatment process can be more complicated and harmful and can sometimes
damage healthy tissue [17–19]. Therefore, it is very important to detect tumor cells in their
early stages. During hyperthermia treatment, heat is generated in the tumor area to kill the
affected cells by introducing external substances into the tumor [20]. Affected cancer cells
die as soon as the temperature exceeds 42 ◦C because cancer cells are more sensitive than
healthy cells [21–23]. Healthy cells, in contrast, can survive at this temperature [24]. Several
methods for energy transfer with external devices are used to generate temperature in the
target tissue [25]. For this process, laser, ultrasound, induction heating, electromagnetic
waves, radio frequency, microwaves, infrared radiation, etc., are usually used to generate
heat [26–28]. However, the traditional hyperthermia procedure has some limitations and
challenges due to insufficient penetration of heat waves into tissues when using lasers,
ultrasound, and microwaves, overheating of healthy cells, and severe side effects occurring
as a result of combustion. Recently, medical scientists, in collaboration with materials
scientists, have developed magnetic nanostructures to generate heat for this purpose using
magnetic nanomaterials, especially iron oxide nanoparticles with superparamagnetic be-
havior, as these materials can generate heat under an alternating magnetic field [29–31]. In
addition, magnetic hyperthermia is more effective and less harmful to healthy cells, and it
can also help overcome the limitations of the traditional hyperthermia process. In contrast,
therapeutic and diagnostic materials, such as theranostic devices, have recently become
a very interesting research area in the medical field to enable faster and more effective
cancer treatment, imaging, and diagnosis [32–34]. Figure 1 shows a graphical abstract of
the production of electrospun magnetic nanofiber mats, which can also be conditionally
loaded with drugs for use in therapeutic and diagnostic procedures for cancer treatment.
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Figure 1. Graphical abstract showing the use of electrospun magnetic nanofiber mats in therapeutic
and diagnostic methods for cancer treatment.

Moreover, the most suitable and recently developed materials, especially magnetic
nanomaterials, are used for these purposes [35]. Electrospun nanofiber mats with magnetic
additives are promising materials for biomedical applications [36,37] such as targeted
drug release in tumors and theranostic devices for cancer treatment. They have great
potential in this field due to the unique physical and chemical properties of electrospun
nanofibers, including their networks of nanoporous and microporous structures, their
large specific surface-to-volume ratio, tunable porosity, and flexible surface functional-
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ity [38–43]. Electrospinning is a very simple, cost-effective, and environmentally friendly
process for producing nanofibers from various polymers [44] and even ceramics [45]. In
addition, electrospun magnetic nanofiber mats can be produced from bio- or natural poly-
mer solutions with magnetic additives [46]. Figure 2 shows the confocal laser scanning
microscope (CLSM) images of a nanofiber mat with biopolymer lignin (10 wt% PEO and
1 wt% lignin) and a nanofiber mat with polyacrylonitrile (PAN)/magnetite (10 wt% PAN
and 5 wt% Fe3O4).
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Electrospun magnetic nanofiber mats show special characteristics with regard to mate-
rials, size and shape, and physical, chemical, and magnetic properties [47,48]. Therefore,
these newly developed electrospun magnetic nanofiber mats are not only a promising
material for magnetic hyperthermia in cancer treatment but can also be used for diagnostic
purposes such as imaging to detect early cancer stages [49,50].

There have been several studies on the use of magnetic electrospun nanofibers for hy-
perthermia in cancer therapy, but there are only a few reviews. For instance, Vilas-Boas et al.
conducted in vitro and in vivo studies to identify the parameters that affect magnetic hy-
perthermia [51], while Włodarczyk et al. focused on the challenges associated with the use
of nanoparticles in magnetic hyperthermia [52]. Additionally, Govindan et al. explored
the use of artificial intelligence in magnetic hyperthermia therapy [53]. However, these
reviews mainly focused on hyperthermia therapy without the use of nanofibers. In contrast,
the review by Soares and Borges centered on the use of magnetic nanofibers for cancer
therapy; however, they mainly discussed the magnetic nanoparticles and polymers used
in their production [54]. This particular review, on the other hand, focuses specifically
on hyperthermia treatment using magnetic nanofibers and electrospinning technologies.
It also discusses the materials used and the mechanism of magnetic hyperthermia for
cancer therapy.

This review paper outlines some of the aspects of the current and upcoming ad-
vancement in magnetic nanostructures based on electrospun magnetic nanofiber mats
and magnetic nanomaterials in cancer theranostics that are relevant to medicine and ad-
vanced materials science. In addition, it also provides a brief overview of electrospinning
technology, the mechanism of magnetic hyperthermia, electrospun magnetic nanofiber
mats used for hyperthermia, challenges and limitations, and the future perspective of
cancer theranostics.



Polymers 2023, 15, 1902 4 of 25

2. Fabrication Technique for Electrospun Magnetic Nanofiber Mats

Nanofiber and electrospun nanofiber mat fabrication technology is an interesting
research area for scientists. Various methods for fabricating nanofiber mats have been
described in the literature, such as melt electrospinning, self-bundling, multi-nozzle elec-
trospinning, bubble electrospinning, electro-blowing, cylindrical porous hollow tube elec-
trospinning, and electrospinning. Electrospinning is a very simple, easy, environmentally
friendly, inexpensive, and popular method for fabricating nanofibers [55,56]. It can be used
to produce very fine fibers or fiber mats with diameters in the nanometer range for both
academic and industrial research purposes. Depending on their application, electrospun
nanofiber mats can be made from a variety of materials, such as natural or biopolymers,
polymer composites or melts, inorganic or inorganic–organic materials, metallic nanoparti-
cles, particulates, carbon nanotubes, and even ceramics [57–59].

In general, there are two types of electrospinning processes: needle-based electrospin-
ning and needle-free electrospinning (see Figure 3).
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The standard needle-based electrospinning systems can be set up either vertically
or horizontally, while needle-free electrospinning has either rotating or stationary spin-
nerets depending on the working conditions. The production of electrospun nanofiber
mats in both types of electrospinning processes depends on some parameters, including
solution, operating and environmental parameters, etc. Needle-based electrospinning
requires a high-voltage supply and a dosing device for the spinning solution connected to
the spinnerets, an adjustable control system, and a reservoir for the polymer solution (e.g.,
a small-diameter syringe) to facilitate the production of nanofibers [60,61] (see Figure 3a).
Needle-free electrospinning, in contrast, is a self-organized process that enables the electro-
spinning of nanofibers directly from an open liquid platform (see Figure 3b). Throughout
the process, a thin layer of a polymer solution is deposited on the surface of the spinneret
and continuously rotated. This rotation creates conical peaks on the surface of the solution.
At the same time, the electrical forces create Taylor cones and thus nanofibers. During
the preparation of the electrospun solution, the polymers dissolve in a solvent and form a
polymeric electrospun solution. Materials can be added to produce modified electrospun
nanofiber mats depending on their application [62]. Most of the polymers used to fabricate
nanofibers are dissolved in harmful to highly hazardous organic solvents such as dimethyl-
formamide (DMF), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), dimethyl
sulfone, tetramethyl sulfide, and aqueous solutions of ethylene carbonate and some mineral
salts [63,64]. According to the scientific literature, most nanofibers are spun from toxic
solvents. Some of them are highly flammable, toxic, harmful to the environment, require
special disposal, can harm humans, and have high health and safety requirements [65], and
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only some papers report the use of the low-toxicity solvent dimethyl sulfoxide (DMSO).
Therefore, there is a high demand and interest in “green electrospinning” and low-toxicity
solvents, such as dimethyl sulfoxide (DMSO), that are easier to handle and do not cause
disposal problems [66–68]. Electrospun nanofiber mats can be made from natural or syn-
thetic polymers, including cellulose, gelatin, casein and alginate, chitosan, polysaccharides,
collagen, keratin, silk, tubulin, actin, fibrin, poly(ethylene glycol) (PEG), polyacrylonitrile
(PAN), poly(lactic acid) (PLA), poly(L-lactic acid) (PLLA), acrylonitrile-butadiene-styrene
(ABS), poly(lactic-co-glycolic acid) (PLGA), polyurethane (PU), polyvinyl alcohol (PVA),
polycaprolactone (PCL), and polymethyl methacrylate (PMMA). These and many other
polymers are known to be suitable for medical applications. In addition, magnetic addi-
tives, such as all ferrimagnetic iron oxides, Co, Ni, etc., can be processed into electrospun
magnetic nanofiber mats by adding them into a polymer solution for magnetic hyperther-
mia [69–74].

3. Magnetic Hyperthermia Process and Materials
3.1. Hyperthermia

Hyperthermia is a procedure used in medical science to treat cancer by heating cancer
cells, and thus killing them, using various techniques. Depending on the targeted cancer
cells, temperatures range from 39 ◦C to 46 ◦C [75–81]. Some essential components to in-
crease the temperature of tumor cells include ultrasound, radiofrequency (in the range from
100 kHz to 150 MHz), microwaves (wavelengths from 433 to 2450 MHz), hot water perfu-
sion (pipes, ceilings), infrared emitters, nanoparticles, magnetic iron oxide nanoparticles,
and resistive wire implants in a hyperthermia system [82–91].

3.2. Magnetic Hyperthermia

Research has found that magnetic hyperthermia is a novel procedure that offers a
safe, powerful, and simple treatment method to meet these complicated challenges [92–96].
In this procedure, which has recently seen rapid development, magnetic nanomaterials
can be used to improve hyperthermia efficiency compared to traditional hyperthermia
methods for the erosion of tumors [97–106]. The most significant aspect of magnetic
hyperthermia is that magnetic nanomaterials are distributed over very small areas so
that the temperature behavior of healthy cells is not affected [107–109]. For this purpose,
the highest possible saturation magnetization can be achieved with multifunctional iron
oxide-based magnetic nanomaterials used on the specific therapeutic side of cancer cells.
These magnetic nanomaterials are capable of generating thermal energy when an external
magnetic field is applied. In magnetic hyperthermia, two types of external fields are
applied: dynamic/oscillating and static [110–116]. In an oscillating field, an alternating
current source is connected to the field, which fluctuates with frequency. It is referred to as
an alternating magnetic field. Therefore, two different methods—switching the external
magnetic field and changing the direction of the magnetic field—can be used to release
this alternative magnetic field for magnetic hyperthermia [117]. Moreover, these low-
frequency alternating magnetic fields (100 kHz–1 MHz) can deeply penetrate the body
without causing significant attenuation losses [118–121]. Alternating magnetic fields with
amplitudes of tens of kA/m and frequencies of 100 kHz and 1 MHz are applied in the
target area so that the magnetic energy of the magnetic nanomaterials is directed toward
the applied magnetic field [122–126]. The magnetic energy is transformed into thermal
energy under different conditions, which can increase the temperature of cancerous tissue
and consequently cause apoptosis or necrosis in the tumor [127–131]. It is known that
iron-based magnetic nanomaterials can destroy the affected cells without being toxic, and
the aggregated nanomaterials are excreted from the body after several weeks [132–136].
The main mechanisms of heat generation under an alternative magnetic field based on the
properties of magnetic nanomaterials are as follows: i. hysteresis power loss of the magnetic
nanoparticles, ii. Néel relaxation, and iii. frictional losses due to Brownian rotation in the
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magnetic particles. Applied gradually, these mechanisms lead to a saturation of thermal
energy [137–143].

3.3. Magnetic Hyperthermia Involving Magnetic Nanomaterials

Due to the magnetic and superparamagnetic properties of nanomagnetic materials,
they are becoming increasingly attractive nano-devices for medical science aiming to im-
prove diagnostic precision and the treatment of diseases, especially cancer [144–157]. The
main sources of magnetic nanoparticles are pure metals, their oxides, or metal alloys. There-
fore, due to the high magnetization and oxidation properties of pure metal, as well as their
high toxicity, metal oxide nanomaterials (such as magnetite, maghemite, and other ferrites,
including Co, Mn, Ni, Zn, and others) are preferable for biomedical applications [158–161].
Their superparamagnetic properties, biocompatibility, and chemical stability are excel-
lent characteristics for this purpose. In addition, magnetic nanomaterials respond to the
alternative magnetic field by generating thermal energy, which is effective in magnetic
hyperthermia. With a specific nanometer size of less than 20 nm, Fe3O4 is the most at-
tractive magnetic nanomaterial due to its properties, which include superparamagnetic,
high saturation magnetization, soft magnetic behavior, suitable particle shape and size,
easy synthesis, and low density [162,163]. In addition, thermal efficiency depends on the
main function of intermolecular interactions, dipolar interaction between particles, particle
size and geometry, saturation magnetization, relaxation time (Néel and Brown), magnetic
anisotropy, and superparamagnetic properties [164–166]. The generated heat is mainly due
to the energy lost in overcoming the rotational energy barrier of the alternating magnetic
field for a superparamagnetic nanomaterial smaller than the single-domain region (see
Figure 4).
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Consequently, such magnetic nanomaterials, possibly combined with polymeric mate-
rials, can be used in cancer treatment as a therapeutic device platform for drug release, as
imaging probes for cancer diagnostics, and for magnetic hyperthermia [168–172].



Polymers 2023, 15, 1902 7 of 25

3.4. Mechanism of Thermal Energy Generation Using Magnetic Nanomaterials

Normally, magnetic hysteresis losses are observed in magnetic nanomaterials when
an external magnetic field is applied [173,174]. These magnetic losses largely depend on
the magnetic features of the magnetic nanomaterials based on their size [175]. For example,
a multi-domain state is evident in bulk materials. However, the thermal energy gener-
ated using both single- and multi-domain magnetic nanomaterials is always a function of
hysteresis losses, which depends on how fast the magnetization follows the alternating
magnetic field (AMF) changes [176–181]. Moreover, the amount of magnetic energy trans-
formed into heat during magnetization reversal follows the magnetic loss in the magnetic
nanoparticles. Thus, the thermal energy generated using the magnetic nanomaterial is
approximately equal to the area of the hysteresis loop formed during one cycle of the
magnetic field (see Figure 5) [182–184].
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In addition, movement is required to overcome the friction between the magnetization
easy axis and the atomic lattices for the Néel relaxation or between magnetic nanomaterials
and their surroundings for Brownian relaxation, leading to the loss of electromagnetic
energy and the production of thermal energy [185–187].

3.5. Magnetic Hyperthermia with Electrospun Magnetic Nanofiber Mats

The potential biomedical applications of magnetic nanostructures can be enhanced
by adding magnetic nanomaterials to composite polymers [188,189]. The large surface
area of the nanomaterials, the irregular composition, and the shape of the magnetic nano-
materials lead to an imbalance in dipolar attraction and a strong interaction between
the particles [190,191]. The temperature, concentration of nanomaterials, surface charge
of nanoparticles, dielectric constant, ionic strength of the medium, presence of surfac-
tants, magnetic attraction force, high surface energy, and van der Waals forces are the
basic parameters that lead to the agglomeration of magnetic nanomaterials to the poly-
mer matrix [192,193]. Magnetic particles generate heat when exposed to an external
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alternating magnetic field by various physical mechanisms such as relaxation loss or
hysteresis loss [194–196]. All hysteresis losses occur in the hysteresis loop area of super-
paramagnetic or ferromagnetic/ferrimagnetic nanomaterials [197–201]. As the magnetic
nanomaterials are fixed inside the electrospun magnetic nanofiber mats, they generally
cannot rotate freely in the applied magnetic field. Typically, magnetic materials can ex-
perience heating through any of the four distinct mechanisms when subjected to high-
frequency magnetic fields, namely eddy currents and hysteresis loss, as well as Brownian
and Néel relaxation [202–204]. Zhong et al. have shown, for example, that for fixed mag-
netic nanomaterials in the polymer matrix, magnetic reversal losses are responsible for
heat generation. Since the magnetic nanomaterials are incorporated into the fiber mats
and thus fixed, the complete rotation of the nanomaterials (extrinsic relaxation) can be
avoided. From the hysteresis curve of the nanomaterials, a coercivity of about 80 Oe and
a relative remanence of 0.12 were determined. These values are a clear indication of a
dominant ferrimagnetic behavior of the nanomaterials in the fibers, so hysteresis will be
the main loss mechanism in magnetization reversal. Due to the size distribution of the
magnetic nanomaterials, there will also be a fraction of very small superparamagnetic
nanomaterials within the particle ensemble. Their magnetization will be reversed via Néel
relaxation [205].

The magnetization dynamics of low-dimensional objects consist of many factors, e.g.,
the geometric shape, which determines the prevailing competition between demagne-
tization and exchange energy, as shown in the study by Steblinski et al. [206]. Using
electrospinning techniques, magnetic nanoparticles can be embedded into electrospun
nanofibers and other polymeric matrices to create defined magnetic and mechanical prop-
erties. The metal oxide nanoparticles have a strong tendency to form agglomerations—an
effect that, as a consequence, changes the magnetic properties of the composites. The study
by Blachowicz et al. investigated metal oxide nanoparticles such as magnetite or nickel
ferrite and their embedding into a polymer to avoid oxidation. It also investigated the
influence of agglomeration on the magnetic properties of metal oxide nanoparticles with
different diameters in non-magnetic matrices [207].

Figure 6 shows the atomic force microscopy (AFM) image of a PAN nanofiber mat
with 20 wt% Fe3O4. The nanofiber’s morphology shows bead-like shapes. A study by
Trabesli et al. detected an agglomeration of magnetite nanoparticles in the beads using
scanning electron microscopy (SEM) and energy-dispersive X-ray (EDS) spectra [208].
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Figure 7 shows scanning electron micrograph (SEM) and confocal laser scanning
(CLSM) images of the electrospun magnetic PAN nanofiber mats with 20 wt% Fe3O4. As
shown in Figures 6 and 7, different methods, such as AFM, SEM, CLSM, or a combination
of SEM and EDS, can be used to study the surface morphology of nanofiber mats [208].
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Hu et al. fabricated an electrospun magnetic nanostructure of poly(caprolactone)
PCL/Fe3O4 with 5 wt%, 9 wt%, 13 wt%, 17 wt%, and 21 wt% Fe3O4 nanoparticles. They
applied an alternating magnetic field to generate heat and reach approx. 45 ◦C, which could
then be transferred to cancerous tissue and cause cancer cells to die [209]. Molcan et al. pre-
pared electrospun magnetic nanofiber mats using polyvinyl butyral and a magnetic liquid
solution. These electrospun magnetic nanofibers with different magnetic nanomaterials
concentrations were tested under an alternating magnetic field for magnetic hyperthermia
applications and showed a temperature rise immediately after field application [210]. In
addition, Song described the effect of the thickness of the magnetic nanofiber membrane
made of γ-Fe2O3/polyurethane (PU) at different spinning times of 5, 10, 15, and 20 min.
The maximum magnetic field strength and magnetic field frequency were 12.5 Oe and
153 kHz, respectively, to generate heat for magnetic hyperthermia, and the temperature
reached was about 44.3 ◦C. However, the thickness of the electrospun magnetic nanofiber
mats had no significant effect on heat generation [211]. Sarier et al. fabricated electrospun
nanofiber mats from magnetite nanomaterials and fatty acid incorporated-poly(methacrylic
acid-ethyl acrylate) for magnetic hyperthermia application. The temperature of the targeted
materials was at approximately 40–48 ◦C [212].

In contrast, Lee et al. fabricated an electrospun magnetic nanofiber mat from the su-
perparamagnetic nanomaterials Fe3O4 (iron oxide)/PAN (polyacrylonitrile) and used it to
kill cancer cells with magnetic hyperthermia. In the experiment, they used 20 wt%, 25 wt%,
and 30 wt% magnetic nanomaterials in nanofiber mats to heat the tumor cells and achieved
temperatures of up to 46.8 ◦C, 48.8 ◦C, and 49.5 ◦C, respectively. In addition, at temper-
atures above 42 ◦C, they observed the death of cancer cells [213]. Lin et al. investigated
electrospun magnetic chitosan nanofiber composites for hyperthermia treatment of tumor
cells under an alternating magnetic field at a frequency of 750 kHz and a magnetic intensity
of 6.4 kW [213]. According to the study by Sasikala et al., the analyzed results showed
that such magnetic electrospun mats have the potential for hyperthermia treatment with
endoscopic/surgical delivery and serve as a complementary postoperative tumor removal
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debridement treatment [214]. Matos et al. reported on electrospun magnetic nanofiber mats
produced from magnetic nanomaterials with cellulose acetate membranes for magnetic
hyperthermia applications [215]. Park et al. produced magnetic nanofiber mats from
polyurethane and Fe2O3 using electrospinning technology and applied high-frequency
magnetic fields for magnetic hyperthermia. They concluded that such electrospun mag-
netic nanofiber mats have the potential to be used as a substrate for magnetic materials in
localized hyperthermia applications [216]. Electrospun magnetic nanofiber mats could be
promising nanomaterials in magnetic hyperthermia for cancer treatment in the near future.

4. Drug Delivery and Electrospun Magnetic Nanofiber Mats for Cancer Treatment

The controlled release of targeted drugs is one of the most important research areas in
cancer treatment, as it is one of the major challenges in medical science. Electrospinning
opens new possibilities to load nanofiber mats with drugs, including thermolabile drugs,
and release them in a controlled way. The excellent properties of nanofiber mats, e.g., their
good mechanical stability, controlled loading and release of a variety of drugs, low toxicity,
and the possibility of encapsulation, play a major role in therapy [217].

Figure 8 highlights four areas of electrospinning technology for use in drug delivery.
The preparation of nanofiber mats loaded with drugs is a simple process and allows for
the use of a variety of different polymers. For example, depending on the electrospinning
parameters, the polymers used, and other parameters, defined on-demand drug release
can be realized. Drug loading and delivery can be based on encapsulation, chemical
immobilization, and physical adsorption methods. The drug-loaded nanofibers can be
used in many fields of therapy such as gene therapy, immunotherapy or chemotherapy,
wound healing, and implants [218].
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However, magnetic nanomaterial-based drugs can also be applied in cancer treatment
using electrospun magnetic nanofiber mats under an alternative magnetic field due to the
magnetic response of electrospun magnetic nanofiber mats and some physical and chemical
properties [219–222]. This function is based on some important parameters, including the
ratio of polymer to magnetic nanomaterials, the concentration of magnetic nanomaterials,
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and the distribution of size and magnetic nanomaterials within the electrospun magnetic
nanofiber mats [223]. Due to the porous structure of electrospun magnetic nanofiber mats,
the original mechanism of drug delivery is diffusion. When an external magnetic field is
applied to the electrospun nanofiber mats, the magnetic nanomaterials try to align and
form a barrier within the nanostructure. Small drug molecules then come out of the porous
structure because the magnetic barriers limit the capacity of drug molecules with a very
low diffusion rate. When the external magnetic field is removed and the alignment of
the magnetic nanomaterials is damaged, the small drug molecules in the target tissue are
released again. Electrospun magnetic nanofiber mats can thus also be used as a drug trigger
for tumor cells when needed for cancer treatment [224–231].

The study of Miyako and Yu deals with the alternating magnetic field-mediated
wireless manipulations of liquid metal for use in therapeutic bioengineering. Therapeutic
bioengineering applications of liquid metals (LMs) in vitro and in vivo demonstrated
efficacy in magnetic cancer hyperthermia using a wireless alternating magnetic field (AMF)
as well as remote manipulation of a pill-shaped microdevice based on an LM/hydrogel
composite. In addition, AMFs were used effectively to eradicate tumors in vitro and
in vivo with EGaIn by means of heat dissipation via eddy currents. The overview of AMF-
guided spatiotemporal drug release from an LM agarose–hydrogel microdevice is shown
in Figure 9 [226].

Bazzazzadeh et al. prepared poly(acrylic acid)-grafted chitosan/polyurethane/magnetic
MIL-53 nanofibers with a metal–organic core–sheath for simultaneous administration of
temozolomide and paclitaxel against glioblastoma cancer cells and for heat generation
under an alternating magnetic field for mild hyperthermia of cells treated with magnetic
MIL-53 fibers containing 5 wt% grafted-chitosan(GS)-g-poly(acrylic acid) (PAA)-paclitaxel
(PTX)-temozolomide (TMZ)/polyurethane (PU) for 10 min. The study results suggest that
the electrospun magnetic core–shell nanofiber mats could be used for the targeted delivery
of anticancer drugs and magnetic hyperthermia applications in cancer treatment [232].
In addition, Nejad et al. described the preparation of magnetic nanofiber mats of iron
oxide nanomaterials and the borate-containing anticancer drug Bortezomib (BTZ) using a
catechol metal binding mechanism adapted from nature. These smart magnetic nanofiber
mats show a unique conjugation of Bortezomib to their 1, 2-benzenediol (catechol) moieties
for enabling pH-dependent drug delivery with simultaneous application of hyperther-
mia [233]. Moreover, Radmansouri et al. prepared doxorubicin hydrochloride-loaded
electrospun chitosan/cobalt ferrite/titanium oxide magnetic nanofibers and investigated
controlled drug release for hyperthermia tumor cell treatment. Their investigation results
showed that these electrospun magnetic nanofiber mats can be used for localized cancer
therapy [234]. Zhang et al. produced nanoscale materials based on the self-assembly of
the mixed polymer with azo reductase-sensitive linkage (PEG-Azo-PLGA) and catechol-
modified d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) (Cat-TPGS), respec-
tively synthesized, which provided an effective strategy for oral delivery of anti-ulcerative
colitis (UC) drugs [235]. Strategies to improve the efficacy of a drug delivery system for
glioma using nanoparticles were reviewed by Li et al. [236]. Sun et al. analyzed how
differentiated proteins and selenium-modified chitosan induce apoptosis in HepG2 cells for
the food and drug industry [237]. He et al. investigated leukemia inhibitory factor (LIF), an
imperative bioactive protein that maintains stem cell self-renewal and pluripotency and is
essential for mouse embryonic stem cell (mESC) culture. MgFe-layered double hydroxide
(MgFe-LDH) nanoparticles can be used as a cost-effective and efficient replacement for LIF
in mESC culture, according to the study [238].
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Figure 9. Alternating magnetic field (AMF)-controlled spatiotemporal drug release from a liquid
metal (LM)–hydrogel microdevice. (A) Schematic illustration showing gel-sol transition of LM–
agarose gel composite upon AMF induction. (B) A 1 mL hydrogel matrix (agarose, 2% w w−1;
rhodamine B (RhB), 0.5 mg mL−1) containing LM (20 µL) in addition to 2 mL water before and
after AMF (200 A m−1, 245 kHz) exposure for 3 min. (C,D) AMF-modulated release profile (C) and
temperature change (D) of LM- or phosphate-buffered (PBS)-containing hydrogel matrix over a period
of time. The “ON” stage indicates exposure to the AMF (200 A m−1, 245 kHz), whereas the “OFF”
stage indicates the absence of AMF. (E) Depiction showing the LM/RhB-Gel microdevice consisting of
LM (20 µL), agarose (2%, w w−1, 200 µL), RhB (0.5 mg mL−1), and a polymerase chain reaction (PCR)
tube. (F) Sequential snapshots showing the LM/RhB-Gel microdevice electromagnetic levitation
induced with low-powered AMF (100 A m−1, 245 kHz). (G) Photograph showing the LM/RhB-Gel
microdevice electromagnetic levitation and RhB release behavior induced with high-powered AMF
(200 A m−1, 245 kHz). Reproduced with permission from [226].

5. Diagnostics Technology and Electrospun Magnetic Nanofiber Mats and Magnetic
Nanomaterials for Cancer Treatment

The detection technique with which cancer is diagnosed plays an important role
in cancer treatment. There are various kinds of detection processes in medical imaging
tools and techniques including photography, microscopy, ultrasound, X-rays, computed
tomography (CT) scans, magnetic particle imaging (MPI), magnetic resonance imaging
(MRI), positron emission tomography (PET), etc. All of them, especially MRI and MPI,
are very important tools for cancer treatment. On the one hand, MRI is very promising
due to the deep penetration ability and high spatial resolution achieved using contrast
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agents. However, the sensitivity of T1-weighted MRI agents is low, and in T2-weighted
MRI, the agents are challenging to detect in biological tissues. For this reason, magnetic
nanomaterials are considered more promising T2 MRI contrast agents, and iron-based
magnetic nanomaterials in particular have a longer half-life than clinically used gadolinium-
based contrast agents [239–243]. Electrospun magnetic nanofiber mats can be loaded with
a precise number of magnetic nanoparticles and implanted directly into the tumor site to
enhance diagnostics. Additionally, these nanofiber mats can be used to amplify biosensor
signals and improve the accuracy and sensitivity of bioassays. They are also suitable for
the isolation and detection of circulating tumor cells, which is a crucial diagnostic tool.
Thus, electrospun magnetic nanofiber mats are an ideal material for various diagnostic
applications [244].

For example, Illés et al. used superparamagnetic nanoparticles to develop image con-
trast for MRI diagnosis and showed the highest values of r2 relaxivity (451 mM−1s−1) for
MRI tools [245]. In addition, Khizar et al. applied magnetic cobalt ferrite nanoparticles for
the combined application of MRI and magnetic hyperthermia [246]. Moreover, Islam et al.
used Mn Fe2O4 nanoparticles in MRI and hyperthermia studies [247]. Nevertheless, MPI,
in which magnetic nanoparticles are used, has been widely used in cancer treatment in
recent times. However, the localization and concentration of magnetic nanoparticles could
provide real-time 3D imaging information and can be applied in multiple medical imaging
applications. Currently, electrospun magnetic nanofiber mats are also being developed
for detecting tumor cells using MPI [248–250]. For example, Yu et al. used superparam-
agnetic iron oxide to study the magnetic particle imaging (MPI) tracer imaging modality
and showed that the superparamagnetic iron oxide nanoparticle tracer exhibited high
image contrast [247]. However, functionalized electrospun magnetic nanofiber mats and
nanomaterials are new development materials for magnetic hyperthermia, which are simul-
taneously proving to be imaging diagnostic materials in the field of medicine [251–255].

6. Challenges and Future Research Prospective

Magnetic hyperthermia raises the temperature in cancer cells to kill them using an
external alternating magnetic field generated with magnetic nanomaterials without chem-
ical agents or severe toxicity. Although magnetic hyperthermia is the most promising
cancer treatment method in modern science, there are still some limitations [256–259]. An
often-overlooked factor that hinders clinical use is the inability to monitor temperature
accurately, leading to incorrect temperature control [260–264]. In addition, among all mag-
netic nanomaterials, superparamagnetic iron oxide nanomaterials are the most promising
materials because of their magnetic and other properties. However, these nanomaterials
show high Curie temperature, which could lead to uncontrollable and irregular thermal
energy, as above Curie temperature, the material shows a disordered state and is no longer
thermally active due to the external field. As a result, this can damage healthy body
cells [265–267]. In addition, magnetization decreases to zero when the external magnetic
field is removed, as there are no coercive forces or remanence in the superparamagnetic
nanomaterials. This helps prevent aggregation and clot formation in the bloodstream,
which could cause significant undesirable effects. The United States Food and Drug Ad-
ministration (FDA) has already approved several natural or synthetic polymers for the
production of magnetic nanofibers for other medical applications. The majority of research
studies involve only in vitro or in vivo experiments. The most significant limitation of
electrospun magnetic nanofibers is that they are still in the early stages of development to
detect cancer cells [268–272]. Nevertheless, the magnetic properties of electrospun mag-
netic nanofiber mats depend on the morphological structure of the nanofiber mats, such as
the number and distribution of magnetic particles, aggregation or agglomeration, or the
formation of beads of magnetic nanomaterials inside the nanostructure and the formation
of electrospun magnetic nanofiber mats. Thus, little can be found in the literature about
the magnetic properties of beads and electrospun magnetic nanofibers, the aggregation
and agglomeration of magnetic nanomaterials within the electrospun magnetic nanofiber
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mats, and the determination of the magnetic properties. The relationship between the
morphological structure, magnetic properties, and application in theranostics needs to
be studied in detail for a potential outcome. The reproduction of electrospun magnetic
nanofiber mats with identical morphological structures or magnetic properties is also chal-
lenging due to the agglomeration or aggregation behavior of the nanomaterials described
above. In addition, these magnetic nanostructures can be implemented into the tumor
without side effects, which can improve the image contrast in magnetic resonance and
can also be used for continuous drug release as well as magnetic hyperthermia therapy. If
medical and material scientists work together, the above challenges and limitations can
be overcome using further research in this field. Electrospun magnetic nanofiber mats
have shown promise for use in magnetic hyperthermia for cancer treatment. However,
several challenges remain to be overcome in this area. These include the need for improved
materials, better control of heating properties, and optimization of the treatment protocol.
Understanding the mechanisms behind magnetic hyperthermia and its interaction with
biological systems is also an important challenge.

7. Conclusions

The recent literature shows that significant progress has been made in the devel-
opment of theranostic approaches for the treatment of cancer. Among the developed
types of magnetic hyperthermia nanomaterials, electrospun magnetic nanofiber mats with
superparamagnetic nanomaterials are considered one of the most effective magnetic hy-
perthermia materials for the near future. In addition, they exhibit excellent properties
including thermal efficiency, which depends on the main function of saturation magnetiza-
tion, magnetic anisotropy, intermolecular interactions, relaxation time (Néel and Brown),
particle size and shape, dipolar interaction between particles, and superparamagnetic
properties. These properties of the magnetic nanomaterials are very effective in generating
heat under an alternating magnetic field for the targeted tumor area and in controlling
targeted delivery drug triggers as well as improving the contrast quality for diagonal
imaging. Furthermore, various functionalization methods and nanomaterials can be used
to improve the magnetic properties of electrospun magnetic nanofiber mats or to fabricate
magnetic nanomaterials for cancer theranostics, e.g., by mixing electrospinnable polymers
with superparamagnetic nanomaterials or by combining the thermally conductive proper-
ties of various polymers with superparamagnetic properties and other functions added
in this way. Therefore, electrospun magnetic nanofiber mats can be considered the most
promising candidates for an improved cancer theranostic platform, but further research is
needed. In this review, we present the magnetic nanomaterials and electrospun magnetic
nanofiber mats recently developed by materials scientists in collaboration with medical
researchers for magnetic hyperthermia and diagnostic nanomaterials, as well as targeted
drug delivery triggers for cancer treatment, which may represent a small contribution to
future research in the biomedical and pharmaceutical sector.
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