Electrospun Ultrafine Carbon Fiber Webs for Electrochemical Capacitive Desalination

Ming Wang,^a Zheng-Hong Huang,^{*,a} Lei Wang,^a Ming-Xi Wang,^a Feiyu Kang^{*,a} and Haoqing Hou^b

^a Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. ^b Chemistry College of Jiangxi Normal University, Nanchang 330027, China.

The CDI configuration is illustrated in Figure 1. A CDI cell consists of two parallel electrode plates separated by a 1.0 mm gap for solution flow. A sodium chloride aqueous solution was pumped into the bottom and exited from the top of the cell by a peristaltic pump with a flow rate of 6 mL/min. The voltage used in these experiments was 1.2 V. The CDI was performed in the batch mode. The solution conductivity was on-line monitored with 5 second interval by a conductivity meter (type 308A, Leici Company).

Fig. 1 Schematic of the CDI configuration with ACFs as the electrodes.

Figure 2 shows the SEM image of ACF with a smooth surface and a fiber diameter of ca. 18 µm. Figure 3 shows the isotherm of nitrogen adsorption/desorption for the ACF. The sample exhibits type I isotherm, which are the typical adsorption characteristics of microporous materials. The calculated BET surface area of ACF is $670 \text{ m}^2/\text{g}$. Figure 4 shows the SEM morphology of HNO₃ purified multi-walled carbon nanotubes with an average diameter of 17 nm. The specific surface area of activated carbon is 730 $m^2\!/g$ according to the nitrogen adsorption/desorption measurement.

Fig. 2 The SEM image of ACF

Fig. 3 The isotherm of nitrogen adsorption/desorption for the ACF.

Fig. 4 SEM morphology of multi-walled carbon nanotubes.