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Electrostatic Analogy for Surfactant Assemblies 
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(Received: November 13, 1991) 

We develop a concept of frustrating charges to create a theory of self-assembly. In particular, we note that the constraints 
of stoichiometry frustrate ordinary phase equilibria and lead to self-assembly of systems such as oil-water-surfactant mixtures. 
Further we note that at long wavelengths, the constraints of stoichiometry are isomorphic to the constraints of charge neutrality 
in a specific electrostatic analogy. We expand upon this analogy, first noted by Stillinger, and show that it can be used to 
derive useful analytical estimates. In addition we use the analogy to create a new model for frustrated systems, and we present 
Monte Carlo results for this charge frustrated Ising system that exhibits varied behaviors of self-assembly. The Monte Carlo 
calculations are made possible through the development of an algorithm which permits cluster moves. 

1. Introduction 
The physics of self-assembly in surfactant-il-water mixtures' 

is intimately c o ~ e c t e d  with that of frustration.2 Recent computer 
simulations of Smit and co-workers illustrate this p o i ~ ~ t . ~ . ~  In 
particular, consider a system which separates into one phase rich 
in component A and another phase rich in component B. The 
phase equilibrium can be "frustrated" by constraining an excess 
of species A to reside in the rich B phase (or by constraining an 
excess of B to be in the A phase). The frustration can be ac- 
complished physically by forming A,B, molecules from a fraction 
of the A and B particles. This formation is, in fact, what Smit 
and co-workers do with a small percentage of simple fluid particles. 
The bound A,B, species are the surfactants in that system. After 
enough such surfactants are introduced, the interface becomes 
saturated, and the remaining surfactants are forced into one of 
the two bulk phases. The stoichiometric constraint therefore forces, 
for example, excess B particles into the rich A phase. The resulting 
system organizes into assemblies-micelles, bilayers, and the like. 

In this paper, we focus attention on the role of stoichiometric 
constraints. We argue that at  long distance scales, the role of 
those constraints are isomorphic with that of electroneutrality in 
a system of free charged particles. Specifically, one may associate 
a charge with some fraction of A particles, and an opposite sign 
charge with a similar fraction of B particles. It is clear that the 
Coulombic interactions in such a system will oppose and frustrate 
a system that would otherwise simply phase separate. The con- 
nection between charge-charge interactions and the constraints 
of stoichiometry are not, however, obvious. Nevertheless, the 
connection can be made, as Stillinger has noted before  US,^ pro- 
vided care is taken in identifying the magnitudes of the charges. 

The motivation and specification of the electrostatic analogy 
is given in section 2. The analogy is then used in section 3 to 
develop a qualitative scaling theory of self-assembly. This de- 
velopment provides some feeling for how models based on this 
picture will work. Additional insight may be gleaned from lattice 
simulations-though our ultimate reason for considering this class 
of models is to devise analytical off-lattice theories. In section 
4, a frustrated king model based on the electrostatic analogy is 
introduced and studied in two dimensions by Monte Carlo sim- 
ulation. It is shown that the model does indeed exhibit the 
phenomena of self-assembly. The implication, therefore, is that 
the long-wavelength manifestation of stoichiometric constraints 
and its competition with phase equilibria provide a sufficient 
mechanism for self-assembly. Further microscopic detail is not 
intrinsic to the phenomena. We conclude in section 5 with a brief 
discussion. 

Present address: Cavendish Laboratory, Madingley Road, Cambridge 
CB3 OHE, UK. 

*Visiting the University of California from Koninklijke/Shell-Laborato- 
rium, Amsterdam (Shell Research B.V.), P.O. Box 3003, 1003  AA Amster- 
dam, The Netherlands. 

2. Development of the Model 

as characterized by the matrix of correlation functions:6 
Consider the intramolecular structure of a surfactant molecule 

(2.1) 

The pointed brackets indicate equilibrium ensemble average, and 
is the position of atom CY of a tagged molecule. The atoms 

or groups can be partitioned according to whether they are oil-like 
or water-like-A or B, respectively. The structure functions ac- 
cording to those classifications are 

&(k) = (exp[ik.(r(") - d y ) ) ] )  

with small wavevector expansion 

Gij(k) = ninj - k2Ai?/2d + ... (2.3) 

where ni is the number of atoms of type i (=A or B) in a sur- 
factant, d is the dimensionality, and 

Ai: = (lr(a) - r ( Y ) l z )  (2.4) 
a€irO 

Asymptotically, the matrix inverse is therefore 

(1) Mittal, K. L., Lindman, B., Eds. Surfactants in Solurion; Plenum: 
New York, 1984. 

(2) Connections between surfactant assemblies and the frustration of 
competing interactions, such as those in the ANNNI  model, are found in the 
lattice formulation of Widom, B. J .  Chem. Phys. 1986, 84, 6943. Aspects 
of this are explicitly analyzed by: Dawson, K. A. Phys. Rev. A 1987,36, 3383. 
Dawson, K. A.; Lipkin, M. D.; Widom, B. J .  Chem. Phys. 1988,88, 5149. 
A recent review of lattice models for self-assembled systems is given by: 
Gompper, G.; Schick, M. Lattice theories of microemulsions. In Modern 
Ideas and Problems in Amphiphilic Science; Gelbart, W. M., Roux, D., 
Ben-Shaul, A., Us.; Springer Verlag: New York, 1992. Also see: Hurley, 
M. M.; Singer, S. J.  J .  Phys. Chem. 1991, 96, 1938. 

(3) Smit, B. Computer Simulation of Phase Coexistence: From Atoms 
to Surfactants. Ph.D. Thesis, Rijksuniversiteit Utrecht, The Netherlands, 
1990. 

(4) Smit, B.; Hilbers, P. A. J.; Esselink, K.; Rupert, L. A. M.; van Os, N. 
M.; Schlijper, A. G. Nurure 1990, 348, 624-625. Smit, 9.; Hilbers, P. A.  J.; 
Esselink, K.; Rupert, L. A. M.; van Os, N. M.; Schlijper, A. G.  J.  Phys. Chem. 
1991, 95, 6361-6368. Smit, B.; Esselink, K.; Hilbers, P. A. J.; van Os, N. 
M.; Szleifer, I. Preprint, 1991. 

(5) Stillinger, F. H. J .  Chem. Phys. 1983, 78, 4654-4661. 
(6) Chandler, D. Equilibrium theory of polyatomic fluids. In The liquid 

state of matter: Fluids, simple and complex; Montroll, E. W., Lebowitz, J.  
L., Eds.; North-Holland Publishing Company: Amsterdam, 1982; p 275-340. 
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mean square length of the surfactant molecule. 
In the opposite limit 

3 J k )  - S,n,, k -+ m (2.6) 

p,(r) = ( l /V)Cp i (k )~k"  (2.7) 

Consider now the implications for densities in a volume V: 

k 

At low concentrations p = (pA(r))/nA = (pB(r))/nB, small de- 
viations from homogeneity are governed by the Gaussian free 
energy functional 

where kBT = is the temperature times Boltzmann's constant. 
In particular, with eq 2.8, it follows from Gaussian statistics (or 
the principle of equipartition) that the statistical weight, exp(- 
pFG), yields 

v1 (it(-kM,(k)) = pGJ,(k)  (2.9) 

which is consistent with eqs 2.2 and 2.7 in the low concentration 
limit. Equation 2.8 is therefore consistent with the correct second 
moment at  small p. In view of eqs 2.5 and 2.8, we see that the 
free energy cost for fluctuations at  small k is prohibitive unless 

(2.10) 

Equation 2.10 is the constraint of stoichiometry. The strength 
of the coupling which enforces this constraint is kgTGl;'(k). Its 
inverse k2 dependence is the same as the Fourier transform of a 
Coulomb potential. Indeed, precisely the same free energetics 
govern the small-k Fourier components in a Coulombic model: 

Fc = (1/2U?C C 4.rr[P,(k)/n,l[~,(-k)/n,lzlz,/k2 (2.11) 

where 

lim [pA(k)nB - pB(k)nA] = 0 
k-O+ 

k r j=A.B 

ZA = ( 4 ~ / 3 p A ~ / d ) - " ~  = -zB (2.12) 

For the Coulombic model, fluctuations that violate charge neu- 
trality are quenched. 

Notice that in the Coulombic model, it is natural to group all 
the A particles within each surfactant and to refer to the density 
of such groups, pA(r) = pA(r)/nA. Similarly, it is natural to group 
B particles referring to pB(r) = pB(r)/nB. 

This connection between the constraints of stoichiometry and 
the constraints of charge neutrality has been noted by Stillinger 
in a remarkable but generally overlooked paper.5 Stillinger 
identified essentially the same charges zA and z ~ ,  eq 2.12, and 
incorporated their interactions into a free energy functional for 
surfactant-oil-water mixtures. The Coulombic nature of O-'(k)  
is found either explicitly or implicitly in earlier work pertaining 
to pair correlations of interaction site models of molecular 
Its utility in thinking about surfactant systems, however, originates 
with Stillinger. 

In the absence of constraints, the statistics of a two-component 
mixture might be described by free energy functionals of the form 

c j d r j d r '  pi(r) cij(lr - r'l) p,(+) (2.13) 
i j = A , B  

wheref&(r)] is a nonlinear but local free energy density, and 
ci,(r) is a short-ranged effective interaction (in units of -ken. 
In the long-wavelength limit, the nonlocal contributions of the 
latter can be replaced by a square gradient term. A free energy 
functional F[pA(r),pB(r)] determines the weights in the partition 
function: 

(7) Chandler, D. J .  Chem. Phys. 1977, 67, 1 1  13. Sullivan, D. E.; Gray, 
C. G. Mol. Phys. 1981, 42,443. Cummings, P. T.; Stell, G. Mol. Phys. 1982, 
46, 383. 

" \ \ \ \  

- L -  

( a )  (b) 
F i e  1. (a) Phase-separated system of unconstrained A and B particles. 
(b) Assembled A-B clusters deep within the rich B phase. 

With F = FM, it will exhibit phase transitions. For example, a 
fluid phase rich in component A can separate from one rich in 
component B provided the temperature is low enough and/or there 
is sufficient asymmetry among the cij(r)'s, thereby favoring A-A 
and B-B interactions over those between A and B. 

Imagine such a phase separation does occur and consider adding 
to eq 2.13 the free energy Fc[pbf)(r),pg)(r)]. Here, pj")(r) refers 
to the density of a subset of all the particles of type i ,  those which 
carry the zj. The presence of these charges will frustrate the 
phase-separated system in essentially the same way as the stoi- 
chiometric constraints described in the Introduction. Thus, we 
are led to consider the free energy: 

where pj(r) - pj")(r) is the density of the uncharged or free groups 
of ni particles of type i .  Stillinger's free energy functionalS is of 
this form. Provided no further detail is required concerning 
stoichiometric constraints other than its long-wavelength mani- 
festation, this free energy functional should represent a class of 
models for surfactant assemblies. We explore this possibility in 
the next two sections of this paper. 

3. Scaling Argument 
Here we use the concept of Stillinger's frustrating charges to 

develop a scaling theory of self-assembly. The discussion is of 
an illustrative nature and confined to the simplest possible case. 

Assume the conditions are such that the mixture of uncon- 
strained A and B particles phase separates as illustrated in Figure 
la. Far from its critical point, the only appreciable density 
fluctuations at  large length scales are those of the interface with 
energy -Ld-'u. The parameter u is the surface tension of the 
A-B interface, d is the dimensionality, and Ld is the volume. 

To this system, we add symmetric surfactant molecules A,B, 
at  a concentration p. At large length scales, the effect of this 
addition is the same as introducing particles possessing the iso- 
morphic frustrating charges: 

(3.1) ZA = -Zg = Z (1 /BpA2)I/' 

One such particle with charge zA is on 34 particle representing, 
in a field theoretic sense, the n A particles of a surfactant molecule. 
Similarly, each 8 particle represents n B particles of a surfactant. 
(A and 8 refer to fictitious particles used as an aid in visualizing 
density fields of the n A and n B particles per surfactant molecule. 
A and B are used to indicate particle types and phases.) 

Due to the requirement of electroneutrality, these special 34 
and 8 particles must exist together in reasonably close proximity. 
Therefore, assuming their fraction is more than infinitesimal, both 
34 and B charged particles will then exist in, for example, the 
B phase. Their concentration will be p. The forced presence of 
A particles in the B phase frustrates the phase with a free energetic 
cost of roughly npLde. Here, ne is the energy we associate with 
moving n A particles from the A phase to the B phase. If the 
special particles can assemble into large structures, however, the 
free energetic cost may be lower. 
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Imagine self-assembly does occur in the form of micelles as 
depicted in Figure 1 b. In that case, the free energy for placing 
the isomorphic charged particles in phase B is 

F(R) - Esurface + Echarge 

Esurface - NuRd-‘ - pLdAdu/R 

Echarge - NRd+2(6p)2 - P L ~ A ~ ( ~ ~ ) ~ R ’  

(3.2) 

(3.3) 

(3.4) 

where 

Here 

N -  

is the number of micelles, R is the typical diameter of a micelle, 
and 6p is the magnitude of the effective charge density within a 
micelle. We arrive at  (3.2)-(3.4) as follows: Each micelle creates 
an A-B surface of size -Rd-’ and hence an energy uR“’ where 
u is the surface tension of the ordinary A-B interface. Further, 
according to Coulomb’s law, the packing of charges within a 
volume Rd leads to the energy Rd+’(6p)’ where 

(no. of charged particles) X (vol of a charged particle) 
(vol of a micelle) 

6 p  - z / A d  (3.5) 

Here, we are assuming a structure consistent with Figure l b  in 
which one sign change is distributed uniformly in a shell sur- 
rounding a nucleus of opposite sign change. The length of a 
surfactant, -A, is also roughly the diameters of A and B groups. 
Further, A - n“l where I is the diameter of a single A or B particle. 
For a linear chain, v = 1; for a Gaussian chain, v = ‘ /2 .  

Notice that Esurface per cluster resists growth of clusters, in 
accord with nucleation theory. On the other hand, for a fixed 
volume, Ld, this energy favors large clusters over small clusters. 
This trend competes with that of Echarge. 

The free energy per unit volume, F(R)/Ld,  is a minimum at 
R = R* - [ u / ( ~ P ) ~ ] ’ / ~ .  Comparison of F(R*)/Ld with the 
counterpart for a nonassembled system, -npe ,  indicates that the 
assembled system is to be preferred when npc 2 Adpu2/3(6p)2/3. 
By making use of eqs  3.1 and 3.5, we therefore predict a crossover 
in stability at  

p - ( p 2 / , 3 ) , ( d - ’ ) Y - 3 $ / p  (3.6) 

The actual critical micelle concentration will be higher than 
this density since translational entropy, neglected in this analysis, 
favors dissociation over assembly. Equations 3.2-3.4 account for 
intramicelle energetics. Interactions between different micelles 
are neglected, and entropic effects other than those due to stoi- 
chiometry are ignored. 

Generalizations of this discussion may be developed for asym- 
metrical systems and for assemblies more complex than spherical 
micelles. With the inclusion of translational entropy contributions, 
such results should be of use in understanding trends such as the 
molecular size and temperature dependences of critical assembly 
concentrations and assembly size. The shortcomings of such 
analyses, however, is that they do not account for fluctuations. 
We exhibit the nature of these fluctuations in the next section. 

4. Charge Frustrated Ising System 
4.1. Spin Model. The Ising spin system is the simplest model 

for the physics of phase separation. At each lattice site, repre- 
senting a microscopic volume, is assigned a spin for which a +1 
value indicates the presence of A, and a -1 value indicates the 
presence of 9. Its partition function is 

Q = C exp{PJ C Sisj + ( B P / ~ ) C S J  (4.1) 

where Cij(M) indicates the sum over nearest-neighbor pairs. This 
partition function can be cast in the form of (2.14) through the 
Hubbard-Stratonovich transformation.* For positive J and low 

{$/=*I i j (nn) I 
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enough temperatures, the system phase separates with the relative 
chemical potential, fi ,  determining which of the two phases, rich 
in A or rich in 3, is observed. In this section, we modify this 
standard model by adding frustrating isomorphic charges. 

In particular, we consider the Ising model for which a randomly 
assigned but fixed number of spins carry frustrating charges, f z .  
The positive and negative charges are assigned to spin up and spin 
down particles, respectively. The condition of neutrality coincides 
with the stoichiometry of surfactants. By fixing the total number 
of charges (Le., by employing a canonical ensemble for the sur- 
factant species), we set the value of z in accord with eq 2.12. If 
we employed an ensemble that allowed the number to fluctuate, 
the value of z would have to be determined self-consistently in 
terms of the average surfactant number Ldp. 

The interaction energy of the modified king system is 

where rij is the distance between Ising spins i and j ,  and ti  = 1 
or 0 depending upon whether or not the king spin is charged or 
not. The function u(r) is the inverse Fourier transform of 4*/k2 
(Le., l / r  for d = 3, and -2 In r for d = 2). The configurations 
of this model are sampled by summing over all si = f l  and all 
ti  = 0, 1 such that 

is the total number of surfactants, and 
o = Ctisi 

i 
(4.4) 

is the constraint of neutrality. 
To simplify this model, we focus specifically on self-assembly, 

and we consider temperatures well below the critical temperature 
of the standard Ising model (Le., the z = 0 model) and a choice 
of fi  that places the system well within the spin up phase (Le., the 
B phase). In that case, the only pertinent fluctuations are those 
associated with the frustrating particles-the special spins that 
carry Stillinger’s frustrating charges f z .  A lattice site which is 
not occupied by a special spin is always a standard Ising up spin. 
As a result, to within an additive constant and single particle terms, 
the interaction energy can be reduced to 

W { € i l )  = -8 C €i€ j (€ i  - - 1) + z’C€i€jv(rij) (4.5) 
ij(nn) i> j  

where Si = 0, 1, -1 (indicating whether site i contains no special 
spin, a special up spin, or a special down spin) and Q = 2J ex- 
presses the difference between short-ranged “hydrophobic” and 
‘hydrophilic” interactions of the unconstrained A and 3 groups. 
The energy parameter Q is of the order of nc used in the scaling 
argument of section 3. The number of special spins is 

2M = CQ (4.6) 
i 

and the constraint of neutrality or stoichiometry is 

0 = C€i (4.7) 
I 

We have examined the behavior of this model (4.5)-(4.7) by 
performing a series of Monte Carlo runs for two-dimensional N 
X N square lattices. The nearest-neighbor lattice spacing, A, 
corresponds to the length A, i.e., the typical spacing between A 
and B particles within a surfactant. Periodic boundary conditions 
are employed, and the Ewald sums9 associated with 

are performed initially to high precision and stored as an N(N 
- 1)/2 array. We have found that Monte Carlo trajectories 
performed without Ewald sums exhibit artifacts such as layering 

(8) Itzykson, C.; Drouffe, J.-M. Statistical Field Theory; Cambridge 
University Press: New York, 1989. 

(9) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; 
Clarendon: Oxford, 1987. 
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commensurate with the minimum image truncation distance. For 
certain choices of parameters, the charge-frustrated Ising model 
does exhibit layering, but not of this artificial type. 

4.2. Monte Carlo Moves. To obtain reproducible well-equil- 
ibrated results, such as layered structures as well as micellar 
assemblies, it also proves important to utilize various kinds of 
moves in the Monte Carlo sampling. With conventional one- and 
twespin Metropolis moves, the system does assemble quickly, but 
once an initial structure is formed, no appreciable movement 
follows. 

The particular Monte Carlo moves that we have employed in 
our simulations are single-spin displacements, 'dipole" moves, 
swapping of positive and negative charges, and cluster moves. 
Whether a particle move is performed during every Monte Carlo 
pass depends on the thermodynamic conditions of the system. For 
example, at  low surfactant concentrations, where the frustrating 
charges are very large in magnitude, the charges of opposite sign 
are tightly connected to the tails. As a result, the probability of 
a successful single-spin move becomes very small, and it is im- 
portant to perform other types of moves. 

Single spin moues: In this move, one attempt is made to swap 
each of the charged spins with one of its eight neighbors. This 
randomly selected neighbor can be another charged spin or an 
uncharged spin (solvent site). Note that the solvent fluctuations 
are ignored, the uncharged spins can simply be regarded as empty 
sites. 

Dipole moues: When the frustrating charges are such that spins 
with opposite charge are strongly connected, single spin 
moves-those which result in a separation of these charges-will 
have a low acceptance ratio. However, when both charges are 
moved at the same time, the probability of acceptance will be much 
higher. 

In this type of move, which we call dipole move, we first identify 
a dipole and subsequently displace the two spins. This can be done 
by randomly selecting a spin, and randomly selecting one of its 
eight nearest or next-nearest neighbors. If this neighbor has an 
opposite charge, a dipole is formed; otherwise, the move is rejected. 
Next an empty site is selected at  random; if one of the randomly 
selected neighboring sites is empty, an attempt is made to move 
the dipole to these two empty sites. The usual acceptance rules 
have been used for this type of move. At some conditions, it is 
favorable to use a form of configurational biased Monte Carlo.Io.l1 
This algorithm is described in the Appendix. 

Swapping of plus and minus charges: When clusters of charged 
spins are formed during a simulation, it is important to allow for 
fluctuations in the polar moment or in the total charge of a cluster. 
These fluctuation can occur if we swap a plus and minus charge 
which are in the same cluster or in different clusters respectively. 

Cluster moues: Once the charged spins have self-assembled 
into clusters, it is extremely time consuming to move these clusters 
via the single-spin moves. Such slow or glassy motion is to be 
expected for a frustrated system. Our method to circumvent this 
problem is to utilize collective moves in which we attempt to move 
an entire cluster. Our algorithm can be viewed as a generalization 
of that due to Swendsen and Wang,I2-I4 who developed a Monte 
Carlo procedure for obviating the critical slowing down problem 
as it occurs in spin systems undergoing phase transformations. 
The Appendix provides specific details. 

4.3. Results of the Simulations. Figure 2 shows typical con- 
figurations for a system with M = 125 at four progressively higher 
surfactant densities, pA2. In the progression, the isomorphic charge 
and the temperature remain fixed with 8z2/A = 5 and 88 = 5 .  
The critical temperature of the ordinary two-dimensional Ising 
model-the z = 0 system-coincides with p& = 1. Thus, the 
system is indeed within the B phase. Only the special spins are 
pictured in the figure. The black circles represent up spins which 
carry the positive isomorphic charge, and the open circles denote 

The Journal of Physical Chemistry, Vol. 96, No. IO, 1992 

( I O )  Siepmann, J. I.; Frenkel, D. Mol. Phys. 1992, 75, 59. 
( 1  1) Frenkel, D.; Mooij, G. A. M.; Smit. B. J .  Phys. Condens. Marter, in 

(12) Swendsen, R. H.; Wang, J . 4 .  Phys. Reu. Leu. 1987, 58, 86-88. 
(13)  Niedermayer, F. Phys. Reu. Lerf. 1988, 61, 2026-2029. 
(14) Li, X.-J.; Sokal, A. D. Phys. Reu. Left .  1991, 67, 1482-1485. 
(15) Edwards, R. G.; Sokal, A. D. Phys. Reu. A 1988, 38, 2009-2012. 
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(a) p =  0.05 

& '* 
(c) p =  0.2 (d) p =  0.3 

Figure 2. Snapshots of some typical configurations of the charge frus- 
trated Ising system. The open spheres (0) represent the .A (-) spin; 
the black spheres (O) ,  the B(+) spin. For clarity the solvent spins (B  
spins without a charge) are not drawn. The number of charged A,B 
spins is 125, the isomorphic charge z = 2.24 (X/@)'12, and hydropho- 
bic-hydrophilic interaction 8 = 5/@. In (a) the length of the box is L 
= SOX and the corresponding density is p = 0.05/X2; in (b), L = 35X and 
p = 0.10/X2; in (c), L = 25X and p = 0.20/h2; and in (d), L = 20X and 
p = 0.31/X2. 

(b) 
Figure 3. Two snapshots of the system separated by 200 Monte Carlo 
passes. The system is identical to the one of Figure 2c. 

the down spins which carry the negative isomorphic charge. 
Roughly speaking, therefore, regard the black and white particles 
as the head and tail groups in a surfactant assembly. This per- 
spective is not literally true, however, since these pictures depict 
a field theoretical model. Averages of the spatial patterns observed 
in these pictures do coincide with the average behavior of the head 
and tail density fields. As such, the observer should not be dis- 
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(a) 
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(b) 
a 

m 

& a  

Figure 4. Snapshots of some typical configurations of the charge-frustrated k ing  model for various surfactant concentrations. The temperature 
corresponds to @S = 3.75, the isomorphic charge is z = (0.088X/,9p)'/2, and the length of the simulation box is L = 50X. The concentration of charged 
A,.B particles is in (a) p = 0.02/X2, in (b) p = 0.04/X2, in (c) p = 0.08/X2, and in (d) p = 0.12/Xz. 

h 

f 0,001 

0 000 

0 10 20 0 i o  PO 30 -- 
i I 

i I h  

0 IO 20 0 10 20 30 

m m 
Figwe 5. Concentration, c(m), of clusters containing m A particles (i.e., 
m charged negative spins). The thermodynamic conditions of panels 
(a-c) are as those in Figure 4. These concentrations were obtained by 
averaging over at least loo00 Monte Carlo passes. 

tressed to see small length scale fluctuations that would seem to 
violate the stoichiometric connectivity of surfactant particles (as 
opposed to fields). 

The Monte Carlo trajectories have been carried out to sufficient 
length to convince us that the exhibited patterns are indeed 
representative of equilibrium in these finite systems. As evidence 
we show in Figure 3 two additional configurations at  the reduced 
density p = pXz = 0.2. The two configurations in Figure 3 are 
displaced by 200 passes. In all cases, we equilibrate the system 
for at  least 10 000 passes. 

The progression in Figure 2 begins at a low density where simple 
micellar assemblies are apparent. It is evidently above the critical 
micelle concentration. As density increases, the structures of these 
assemblies elongate, and at reduced density p = 0.4, one observes 
bilayers in equilibrium with micelles. At yet higher densities, these 
bilayers form what appears to be a lamellar structure (with de- 
fects). The simulated system, however, is relatively small. Due 
to long-wavelength fluctuations that must exist in this two-di- 
mensional system, it may be that the orientation of these aligned 
patterns does not persist to long length scales. 

Figure 4 shows representative configurations at  a temperature 
86 = 3.75 and densities ranging from p = 0.02 to p = 0.12. The 
isomorphic charge is decreased with increasing p so as to coincide 
with an isothermal compression with @z2/X = O.O88/p (see eq 3.1). 
The cluster size distributions corresponding to these configurations 
are shown in Figure 5 .  The distribution of Figure 5W exhibits 
the signature of micellar assembly. The irregular shape of the 
distribution curves is caused by the underlying lattice. In a 
continuum version of the model, the distributions would be more 
regular. Figures 4a and Sa show the results for p = 0.02, which 
is below the critical micelle concentration. 

At very low concentrations, the strength of the frustrating 
charge becomes very large. In this regime on a square lattice, 
we find that head-tail dipoles bind as dipolar pairs to form a 
rarified gas of quadrupoles (an indication of this dipole pairing 
can be seen in Figures 4a and Sa). The binding-unbinding 
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transition which is present in this system at extremely low p occurs 
in regions of parameter space that do not seem relevant to the 
phenomena of large length scale assembly. 

The spontaneously assembled structures observed in Figures 
2-4 are much like those found in nature. They are remarkable 
in light of the underlying model’s simplicity. Accounting for 
stoichiometric constraints a t  only the longest length scales frus- 
trates the normal king system with competing Coulombic in- 
teractions. These interactions alone are sufficient to produce the 
observed self assemblies. 

Due to screening, the charge-charge correlations need not be 
long ranged. In the random phase approximation or Debye- 
Hiickel theory, the inverse screening length is ( l / @ p ~ ~ ) ’ / ~  - A, 
Le., the size of the surfactant molecule or the nearest-neighbor 
spacing of the lattice model. The Debye-Hiickel estimate is not 
accurate for the highly correlated systems we have simulated. 
Further, correlations along surfaces will be long ranged. Nev- 
ertheless, it would appear from Figures 2-5 that the actual 
screening lengths (normal to surfaces) are relatively short. 

By adding real charges along with the frustrating charges, the 
picture we have drawn herein can be broadened to include ionic 
surfactants. At extremely low ionic strength, the resulting long 
screening length may qualitatively alter the behaviors of the system 
we have thus far examined. At moderate to high ionic strength, 
however, the solvent averaged interactions between surfactants 
will be reasonably short ranged. In that case it may be that the 
primary effects of ionic interactions is to make the energy pa- 
rameter, 6, a function of ionic strength. 
5. Discussion 

In this paper, we have developed the concept of frustrating 
charges. We have shown that this concept provides a convenient 
framework for making qualitative estimates pertaining to self 
assembly. Further, we have used the concept to motivate a new 
model-the charge frustrated king system-and we have carried 
out simulations of the model by employing a novel procedure of 
cluster moves. It is apparent that the charge-frustrated Ising 
system exhibits rich behavior. It remains to be seen how many 
features of self-assembly can be understood accounting for only 
the longest wavelength aspects of these systems. Further study 
of the charge-frustrated Ising model in both two and three di- 
mensions will be helpful in this regard. Ultimately, however, we 
believe the most important virtue of the perspective we call at- 
tention to herein is the possibility that it will provide a convenient 
basis for off-lattice theories of self-assembling fluid systems. 

Concerning the possible scaling theories, the argument employed 
in section 3 might be extended to treat block polymers. That case, 
however, will probably require a somewhat more complete ac- 
counting of entropic effects than the one we have illustrated. An 
extended treatment of entropic effects may also become pertinent 
if one attempts to use these arguments to treat assemblies more 
complex than spherical micelles. 

In view of the Monte Carlo results of section 4, however, it is 
perhaps wise to remain skeptical with regard to predictions derived 
from these mean-field arguments. The Monte Carlo simulations 
exhibit a high degree of polydispersity and variation in cluster 
shapes. A complete theory should account for these fluctuations. 
We hope that charge-frustrated models will provide a simple 
enough framework that this accounting can be made. 
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Appendix: Dipole and Cluster Moves 

for the dipole moves and cluster moves. 

following steps: 

root spin is called i l .  
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In this Appendix we describe the algorithms that we have used 

Dipole Moves. The algorithm we have used consists of the 

(1) An A or fB spin is selected at random. The position of this 

Wu et al. 

(2) The number of neighbors of opposite sign of the root spin 
is determined. This number is called n, .  We consider the eight 
nearest and next-nearest neighbors. If n, = 0, the move is rejected; 
otherwise one of these nl spins is selected at random. The location 
of this site is called j l .  This spin together with the root spin defines 
the dipole which will be attempted to be moved. Furthermore, 
the number of empty (solvent) sites among the eight neighbors 
is determined, this number +1 is called n:. 

(3) The energies of the spins a t  sites il and j l ,  u ( i l )  and u ( j l ) ,  
respectively, are calculated. In these energies we exclude the 
interactions between the two spins of the dipole. 

(4) An empty site, iz, is selected a t  random, and with equal 
probability the A or 23 side of the dipole is placed at this position. 
The energy of this spin is u(i2). 

(5) The number of empty neighboring sites of i2 is determined. 
This number is called n;. If ne, = 0, the move is rejected; otherwise, 
one of these sites is selected a t  random. This site is j 2  and the 
energy of the spin placed at  this position u(j2).  Note that in the 
energies u(i2) and u(j2) the interactions between the spins of the 
dipole are again excluded. In addition, the number of spins with 
of opposite charge of the spin placed at  position i2 is calculated. 
This number + 1 is n2. 

(6) This dipole move is accepted with a probability given by 

acc(ll2) = min (I,?) (A.1) 

where 
Wl = n& expl-@[u(id + uO’J1) 
wz = 46 exph9[u(i2) + uciz)l) 

(‘4.2) 
(A.3) 

We will now show that this scheme indeed samples according to 
a Boltzmann distribution of states. To do this we follow the 
development of refs 10 and 11 imposing detailed balance: 

in which r is the density of states, P( 112) is the probability of 
generating configuration 2 out of 1, and acc is the acceptance 
probability. According to the algorithm above 

~ ( 1 1 2 )  U C C ( ~ ~ )  r ( i )  = ~(211)  ~ ~ ~ ( 2 1 1 )  r (2 )  ( ~ ~ 4 )  

1 1  P(l(2) = - - 
n1 6 

in which we have ignored factors which are the same for every 
move. A similar expression can be written for P(211): 

1 1  
P(211) = - - 

n2 6 
Substituting of (A.5) and (A.6) into (A.4) and assuming that 

W2 < W, and that we sample a Boltzmann distribution, we obtain 

expI-AUf1’11 = - - exal-BUfZ)] (A.7) 
1 1 wz 

n~ n$ WI 
--- 

in which U(i) is the total energy of configuration i. Substitution 
of (A.2) and (A.3) gives 
exp(-@[uUz) + 4i2)lJ exp[-@U(l)I = 

expt-@[u0’1) + W l l  exp[-BU(2)1 (A.8) 

U(1) - U(2) = [ ~ O ’ I )  + ~ ( i d l  - [U) + u(i2)l ( A . 9  
which proves that detailed balance is obeyed since 

These dipole moves can also be achieved if we replace step 2 of 
the algorithm by simply a random selection of one orientation and 
if this is not a particle of opposite sign the move will be rejected. 
The same procedure can be used in step 4. When such a scheme 
is used, the ordinary acceptance rules apply. On the basis of simple 
estimates, one may argue that the probability of moving a dipole 
in the biased scheme, depending on the densities and assembled 
structures, is 8-32 higher than in the ordinary Monte Carlo 
scheme. At some conditions, the increase justifies the extra 
calculations necessary for the biased scheme. 

Cluster Moves. Over the last few years, significant progress 
has been made in the development of algorithms which are efficient 
for simulations of large lattice systems near criticality.l2-I5 At 
these conditions the standard, singlespin-flip Monte Carlo moves 
suffer from severe critical slowing down. These new algorithms 
reduce this critical slowing down ~ignificant1y.l~ The idea is to 
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group lattice sites which have the same spin into clusters and to 

one Monte Carlo step. As a result one can obtain large config- 
uration changes. To obtain such a change using the standard 
Monte Carlo scheme would require many sweeps through the 
lattice. In this Appendix, we generalize the approach of Swendsen 
and Wang to permit the movement of clusters. These generalized 
cluster moves can be used for lattice models and continuum 

p e r C l U S  (S) = x u(rJ (A. 17) 

Detailed balance is therefore obeyed if we choose for the ac- 
ceptance rules 

acc[c(s) (c l  I ~ B .  

acc[c'(s?lq r g ~ [ l  - p(r;)l exp[-8u(r;)ll 

generate a new configuration by flipping all spins on a cluster in @B' 

n (11 - P(f/)l exp[-8u(r,)lI 
(A.18) - - 

models. Although we refer to spins on a lattice, the same equations 
hold for particles moving in continuum space. For clarity we 
consider a pure component system consisting of empty sites and 
spins (lattice gas); the generalization to include spins of different 
kinds is straightforward. 

Following Niedemayer,I3 we assume that we connect two spins, 
labeled 1, via a bond with a probability p 

P = p(rJ (A.lO) 
where r/ is the distance between a pair of spins, and p ( r )  is a 
function which can be chosen arbitrarily, provided that 0 < p(r)  
< 1. 

A cluster is defined as the set of spins which are connected to 
each other via a path of bonds. Note that the smallest cluster 
is a single spin. The probability of obtaining a configuration of 
clusters C from a configuration S of spins is given by 

where the summation runs over all different bond configurations 
which give the same cluster configuration C. The first product 
is over all pairs of spins which form a bond, and the second product 
is over all spins which do not form a bond. Now we change the 
cluster configuration C to obtain the new cluster configuration 
C'. From this cluster configuration we can obtain a new con- 
figuration of the spins, S', by removing the bonds. Important is 
that the configuration of spins within a cluster has not been 
affected by this move. 

The acceptance rules for these moves can be derived if we 
impose detailed balance, i.e. 
r(s) P[C(S)I U C C [ C ( S ) ~ C ~  = r(s? P[C(S?] acc[c'(syq 

(A.12) 

in which r(S) is the density of states S. Detailed balance is obeyed 
if the acceptance rules satisfy (A.12). Detailed balance is certainly 
guaranteed if we demand that detailed balance is obeyed for any 
particular choice of bonding configuration, or 

~xP[-Bu(S)I /FBp(r/)/$ 1 - p ( r / )  I acc [W) I C l  = 

e x p [ - ~ c l ( s ? I ~ ~ ~ p ( r ' I ) ~ ~ ~ [ 1  - p(r'/)I occ[C'(S?ICl (A.13) 

in which we have assumed that we sample a Boltzmann distri- 
bution of states. 

We can write the energy U as the sum of contributions from 
interactions between spins which belong to different clusters and 
the interactions between pairs residing on the same cluster. Since 
the configurations of spins within a cluster have not changed while 
going from cluster configuration C to C', we have for the intra- 
molecular cluster energy 

p t r a c l u s ( S )  = p t r a c l u s ( S 9  (A.14) 
Similarly, we can write the probability of forming a cluster 
configuration as the product of forming bonds between spins which 
are in the same cluster and which are on different clusters. Since, 
the probability of forming bonds within a cluster has not changed 
while going from cluster configuration C to C', we can write 

P i l t T a C b S  [C(S)] = F"l""C'(Sf)] (A. 15) 

Using (A.14) and (A.15), we can reduce (A.13) to 

acc[c(s)lcl /g* - P h ) l  exP[-8u(rdll = 

acc[c'(sf)lcllg* - p(r;)l exp[-8W/)ll (A.16) 

where B* denotes that in the product only those pairs of spins are 
considered which belong to different clusters. Furthermore we 
have used 

There are many choices that satisfy equation (A.18), an obvious 
choice is the Metropolis form 

It is instructive to consider (A.18) in more detail. First note 
that we can recover the ordinary Monte Carlo scheme if we set 
p(r)  = 0, i.e., the probability of forming a bond is zero. (A.18) 
shows that we can move clusters instead of spins in a Monte Carlo 
procedure and still sample the Boltzmann distribution of the spins 
provided that we correct, via the acceptance rule, for the bias 
introduced by the artificial bonds. 

Consider, for example, the bond function 

1 if r < d  (A.20) 

If we use this bonding function, spins will be grouped if the distance 
between two spins is smaller than d.  (A.18) states that we must 
reject all moves that bring two spins of different clusters at a 
distance smaller than d. These moves must be rejected. For if 
two, initially separated, clusters move in such a way that they will 
have a bond between them in the next move, they will in this next 
move be considered as one cluster. It will then be impossible to 
separate them to retrieve the initial configuration. Such a move 
would therefore violate detailed balance and is thus rejected. 

In our simulations we have used the following version of the 
cluster moves: 

(1) An A spin is chosen at  random, and the cluster to which 
this charged spin belongs is determined. The site of this spin is 
i. As candidates for forming a bond, we consider only the four 
nearest neighbors; for distances further away the probability of 
forming a bond is 0. For these neighbors, we use as a bonding 
function 

P(€i€j)  = l€i€jl (A.21) 

which makes a bond between the particles i and j if both particles 
are charged spins. 

(2) An attempt is made to displace the entire cluster to one 
of the eight neighboring positions. 

(3) If the cluster is moved to one of the four next nearest 
neighbors, the move is rejected if it cause an overlap with another 
cluster. 

(4) This move is accepted with a probability (see (A.19)) 

(A.22) 

where U(new) is the energy of the new configuration. This 
equation follows directly from (A.19), if we recall that by con- 
struction the edge of the cluster in the old position does not contain 
any other charged spins and since we displace the cluster over only 
one lattice site so that in the new configuration the only possible 
contact with other clusters, which are in this case single charged 
spins, is at the edge of the cluster. From this equation it follows 
that a move will be rejected if at  the edge of the cluster another 
charged spin is located. Note that the edge is defined as the 
nearest neighbors of the spin at the border of the cluster, excluding 
those sites which are already occupied by spins belonging to the 
same cluster. 

Of course, several different choices of bonding functions and 
cluster moves can be made. 


