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Electrostatic Forces and Stored
Energy for Deformable Dielectric
Materials
An isothermal energy balance is formulated for a system consisting of deformable dielec-
tric bodies, electrodes, and the surrounding space. The formulation in this paper is
obtained in the electrostatic limit but with the possibility of arbitrarily large deformations
of polarizable material. The energy balance recognizes that charges may be driven onto
or off of the electrodes, a process accompanied by external electrical work; mechanical
loads may be applied to the bodies, thereby doing work through displacements; energy is
stored in the material by such features as elasticity of the lattice, piezoelectricity, and
dielectric and electrostatic interactions; and nonlinear reversible material behavior such
as electrostriction may occur. Thus the external work is balanced by (1) internal energy
consisting of stress doing work on strain increments, (2) the energy associated with
permeating free space with an electric field, and (3) by the electric field doing work on
increments of electric displacement or, equivalently, polarization. For a conservative
system, the internal work is stored reversibly in the body and in the underlying and
surrounding space. The resulting work statement for a conservative system is considered
in the special cases of isotropic deformable dielectrics and piezoelectric materials. We
identify the electrostatic stress, which provides measurable information quantifying the
electrostatic effects within the system, and find that it is intimately tied to the constitutive
formulation for the material and the associated stored energy and cannot be independent
of them. The Maxwell stress, which is related to the force exerted by the electric field on
charges in the system, cannot be automatically identified with the electrostatic stress and
is difficult to measure. Two well-known and one novel formula for the electrostatic stress
are identified and related to specific but differing constitutive assumptions for isotropic
materials. The electrostatic stress is then obtained for a specific set of assumptions in
regard to a piezoelectric material. An exploration of the behavior of an actuator com-
posed of a deformable, electroactive polymer is presented based on the formulation of the
paper. �DOI: 10.1115/1.1940661�
Introduction
The subject of electrostatics is the study of the effect of forces

generated between charges. Therefore, when electric fields are
present simultaneously with mechanical loading in a material, it
seems obvious that the influence of electrostatic forces should be
accounted for when stresses in the material are calculated. How-
ever, stresses due to electrostatic effects are often second order
compared to those due to other purely mechanical effects �1� and
therefore electrical forces are often neglected even as electric
fields are analyzed. An example of this is the linear theory of
piezoelectrics �2�, where electric fields induce strain but stress due
to electrostatic forces, being quadratic in electric field, is ne-
glected. On the other hand, finite strains, nonlinear material be-
havior, the lack of mechanical loading, and other effects can lead
to situations in which electrostatically induced stresses are com-
parable with forces from other sources. Such cases have been
addressed for dielectric materials by several authors, beginning
with the pioneering contributions of Toupin �1� and Eringen �3�.
Beyond those examples given above, new reasons for the need to
include the effect of electrostatically induced loading in the analy-
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sis of stress continue to emerge. For example, the analysis of
cracks including the effects of cohesive zones requires a consis-
tent treatment of electrically induced forces across cracks �4�. Ac-
tuators composed of electrically active polymers are emerging as
important devices �5� and these components function due to the
electrostatic forces generated in them. Thus, the question of the
electrostatic contribution to stress continues to increase in impor-
tance.

As noted above, treatments of electrostatic contributions to
stress have been provided previously �1,3�. In these papers, a se-
ries of electric fields is identified and added together to form the
total field. One field is that which would exist if the dielectric
material was not present and a second one is due to the effect of
polarization charge in the material and on its surface. These two
fields together compose the classical Maxwell-Faraday electric
field. To this is added what is designated as the local electric field
that is considered to be a function, through a constitutive law, of
the material’s strain and polarization. In addition, the electrostatic
forces �i.e., the Maxwell stress �6�, whose divergence is the elec-
trical body force and whose surface tractions are the electrical
forces per unit area acting on interfaces� are taken to have a spe-
cific relationship to the electric field and consequently the formu-
lation is seemingly restricted. Apparently, no allowance is made
for the possibility that experiments will show that for different
classes of material the electrostatic forces and the Maxwell stress
will have some other relationship to the electric field and the
polarization than the one assumed. It should be noted that this
may not be an insurmountable restriction, since it is well known
that there is some arbitrariness in how stress is divided up into

electrical and material contributions �1�. Therefore, any discrep-

JULY 2005, Vol. 72 / 58105 by ASME



ancy with experiment as far as the Maxwell stress is concerned
may be compensated for by adjustment to the constitutive law for
the material stress, presumably leading to nonlinear electrostric-
tive contributions. However, the structure just described is at the
very least inconvenient due to the restrictions on the permitted
Maxwell stress and due to the formalities used to construct the
electric field.

In the current paper, a different formulation of the problem is
presented, though one in which the basic physics is no different
from that used in Refs. �1,3�. However, the structure of the electric
field is taken to have a simpler form than used in Refs. �1,3� since
we make no attempt to identify different contributions to it such as
an external field, a depolarization field, or a local field. Instead, a
single electric field is utilized throughout and it is assumed to be
connected to material strain and polarization by a constitutive law.
Furthermore, no general prejudgment is made of the relationship
between the electrostatic forces �i.e., the Maxwell stress or alter-
natively the electrostatic stress� and the electric field and polariza-
tion. Instead, it is assumed that the electrostatic stress is measur-
able in experiments either directly through characterization of
stress and electric fields or through measurement of the constitu-
tive properties of the material. We note that our approach parallels
that used by Landau and Lifschitz �6� but we do not restrict our-
selves to infinitesimal elastic strains of isotropic materials and
piezoelectric materials. It is our belief that this formulation is
more versatile than what has been presented in the past and that it
is more suitable for incorporation into modern methods such as
finite element analysis.

Balance of Energy for a Deformable Dielectric Material
Consider a system consisting of dielectric materials, perfect

conductors, and free space. In the current configuration, the sys-
tem occupies the volume V as shown in Fig. 1. The system is
considered to be isolated so that there is no interaction between
electrical charges residing in the system and those outside. For-
mally, this implies that the volume of interest is shielded electri-
cally from its exterior or that the extent of the system is infinite,
since charges interact with each other over very long distances.
However, when practical calculations with approximations are at-
tempted, this formality can be ignored. The perimeter of the sys-
tem plus interfaces within it are designated S in the current con-
figuration. The internal interfaces separate the dielectric materials,
the conductors, and free space from each other. In addition, sec-
tors of dielectric with homogeneous or heterogeneous properties
may be separated by surfaces included within S, as may sectors of
free space.

Let the free charge per unit volume within V be q�xi , t� where xi

is the position of material points in the current configuration and t

Fig. 1 A dielectric body with body forces, surfaces tractions,
and free charges
is time. Free charge may be placed in free space, in which case xi
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is used to designate the position of the points occupied by free
space in the current configuration. Furthermore, let ��xi , t� be the
free charge per unit area on the surfaces S and define ��xi , t� to be
the electrical potential everywhere within the system such that it is
continuous everywhere in space. Note that we will consider only
the electrostatic limit so that t plays the role of a load parameter as
far as the electrical variables are concerned and no attempt will be
made to explore Maxwell’s equations relevant to the electrody-
namic limit. On the other hand, time may have a real meaning as
far as the deformation of material is concerned, as may be the case
in strain-rate-dependent response or in the acoustic limit where
inertia has to be included in the balance laws. To complete the
variables to be considered in the external work statement, we
include the velocity vi�xi , t� of material points, the surface traction
Ti�xi , t� defined as the force per unit area acting on S, and bi�xi , t�,
which is the body force per unit volume acting at points in V.
Note that the surface traction Ti and the body force bi arise from
sources other than electrical effects and, therefore, do not repre-
sent the influence of charges interacting at a distance or electrical
fields exerting forces on charges. The surface traction Ti and the
body force bi and any equivalent quantity defined in the current
state will be designated mechanical, though we do not make any
attempt to characterize how they may arise, whether they come
about by gravitational effects or other sources of force in materi-
als. To attempt to do so in too fine a detail and make distinctions
between forces that arise by electrostatic effects and forces that
arise from other effects would illuminate the arbitrariness in how
the designations electrical and mechanical are utilized in our
scheme; e.g., consider a purely ionic solid pressing against an-
other purely ionic solid to produce supposedly mechanical traction
between them. Much of the traction between the two solids in this
case will in fact be electrostatic due to the repulsion of like atoms,
although some of it will also develop due to quantum exclusion
effects. However, in any macroscopic treatment of this problem,
this interaction between the bodies when pressed together will be
represented by elasticity and the tractions thereby designated to be
mechanical.

Consider the physical laws governing the electromechanical
fields in the material. In the quasi-static limit, Maxwell’s laws
state that the electric field must be curl-free and Gauss’ law states
that the divergence of the electric displacement must be equal to
the volume density of free charge. Therefore,

�ijk
�Ej

�xk
= 0 ⇒ Ei = −

��

�xi
�1�

�Di

�xi
= q in V �2�

�Dini� = � on S �3�

Here, ni are the Cartesian components of the unit normal to the
surface S pointing from the “�” side of the surface out towards
the “�” side as shown in Fig. 1, and �ijk are the components of
the permutation symbol. Then the notation � � represents the dif-
ference or jump in the included quantity across the surface S such
that

�Di� = Di
+ − Di

− �4�

Furthermore, the electric displacement can be decomposed into
two parts such that

Di = �0Ei + Pi �5�

where �0 is the dielectric permittivity of free space and Pi are the
Cartesian components of the material polarization.
Conservation of mass implies that for a given material volume
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d

dt�
V

�dV = 0 ⇒
d�

dt
+ �

�vi

�xi
= 0 �6�

where ��xi , t� is the mass density of the material. The principles of
conservation of linear and angular momentum are stated as

�
V

�bi + bi
E�dV +�

S

�Ti + Ti
E�dS =

d

dt�
V

�vidV �7�

and

�
V

�ijkxj�bk + bk
E�dV +�

S

�ijkxj�Tk + Tk
E�dS =

d

dt�
V

��ijkxjvkdV

�8�

Here the components of the electrical body force bi
E and surface

traction Ti
E have been introduced. These forces arise directly from

electric fields acting in the material and are in addition to the
mechanical body force and surface traction. Furthermore, it is
assumed that the electrical body force can be derived from the
Maxwell stress tensor �ij

M such that

bi
E =

�� ji
M

�xj
in V �9�

where the electrical body force is the effect of charges interacting
at a distance or, equivalently, the force per unit volume arising
from electric fields acting on charges. The traction relationship for
Maxwell stress is then

Ti
E = nj�� ji

M� on S . �10�

Then, in order to satisfy the principle of conservation of linear
momentum for a small surface element, the Cauchy stress in the
material, �ij, must balance the total surface traction such that
along with Eq. �10�

Ti + Ti
E = − nj�� ji� ⇒ Ti = − nj�� ji + � ji

M� �11�

where again Ti�xi , t� is the nonelectrical �i.e., mechanical� surface
force per unit area acting on S. This statement has an equivalent
meaning to Eq. �10�. The Cauchy stress difference across a surface
must balance both the electrical and mechanical surface tractions.
Note, however, that the result in Eq. �11� illustrates why it is
difficult, if not impossible, to separately measure the Cauchy and
Maxwell stresses, since it shows that any traction measured by
mechanical means �i.e., by the only method available� is related to
their sum. Since there are no experiments that can separate the
effects of the Cauchy and Maxwell stresses unambiguously
�1,3,6�, it is generally more profitable to consider their sum and
not to try to identify them separately. The sum will be termed the
total true stress.

Next, application of Eqs. �6�, �9�, and �11� within the principles
of conservation of linear and angular momentum and recognition
that the resultant integrals must be valid for any arbitrary volume
yield

�� ji

�xj
+

�� ji
M

�xj
+ bi = �

dvi

dt
in V �12�

and

� ji + � ji
M = �ij + �ij

M in V �13�

Thus, for the balance of angular momentum to be satisfied, the
total true stress must be symmetric. This requirement reflects the
fact that moments due to mechanical body forces and inertia can
be assumed, as usual, to be second order �7,8�, but we must allow
for the possibility that electric effects induce first-order moments,
e.g., due to electric fields acting on dipoles in the material �1,3�.
Since only the total true stress in the material must be symmetric,
it is possible that both the Maxwell and Cauchy stress tensors can

be nonsymmetric.

Journal of Applied Mechanics
Now consider the rate of work by agencies external to the sys-
tem. This external work rate is

dW

dt
=�

V

bividV +�
S

TividS +�
V

�
d

dt
�qdV� +�

S

�
d

dt
��dS�

�14�

Note that this statement conforms to the usual definition of elec-
trical work, i.e., an increment of electrical work is given by the
electric potential � multiplied by the increment of charge �Q. For
example, ���qdV� is the work done by external agencies to bring
the charge ��qdV� from infinity to the point where the potential is
�. The interpretation of the mechanical work done by the body
forces and surface tractions is obvious.

Based on the standard continuum mechanics results for the ma-
terial time derivatives of field quantities and volume and surface
elements �7, pp. 211–213�, it can be shown that

d

dt
�qdV� = �dq

dt
+ q

�vk

�xk
�dV = � �q

�t
+ vk

�q

�xk
+ q

�vk

�xk
�dV �15�

and

d

dt
��Dini�dS� = �	dDi

dt
+ Di

�vk

�xk
− Dj

�vi

�xj
	ni�dS �16�

Then, applying these results along with the balance of linear mo-
mentum, Eqs. �11� and �12�, we can write the work rate as

dW

dt
=�

S

�ni	dDi

dt
+ Di

�vk

�xk
−

�vi

�xj
Dj	dS +�

V

�� �q

�t
+ vk

�q

�xk

+ q
�vk

�xk
�dV −�

S

nj�� ji + � ji
M�vidS −�

V

� �� ji

�xj
+

�� ji
M

�xj
�vidV

+�
V

�
dvi

dt
vidt �17�

Use of the divergence theorem for a collection of subvolumes
whose union is V and which are separated by the interfaces that
collectively compose S gives

dW

dt
= −�

V

�

�xi

��dDi

dt
+ Di

�vk

�xk
−

�vi

�xj
Dj��dV

+�
V

�� �2Di

�t�xi
+ vk

�2Di

�xk�xi
+

�Di

�xi

�vk

�xk
�dV

+�
V

�

�xj
��� ji + � ji

M�vi�dV −�
V

� �� ji

�xj
+

�� ji
M

�xj
�vidV

+�
V

�
dvi

dt
vidV �18�

where Eq. �2� has been used to dispose of the free charge density
q. Equation �18� simplifies to

dW

dt
=�

V


Ei

dDi

dt
+ �� ji + � ji

M − EiDj + EkDk	ij�
�vi

�xj
�dV

+�
V

�
dvi

dt
vidV �19�

where 	ij is the Kronecker delta.
Note that in regions of space without material, the electric dis-
placement is defined to be �6�
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Di = �oEi �20�

where �o is the permittivity of free space. In addition, the Max-
well stress in such regions is �6�

�ij
M = �o�EiEj − 1

2EkEk	ij� �21�

so that from Eqs. �2�, �9�, and �20�, we find that the electrical
force per unit volume is

bi
E = qEi �22�

which is consistent with the standard result that the force on a
charge is given by the charge times the electric field.

Now we recognize the material polarization Pi and use Eq. �5�
to replace Di wherever it appears in Eq. �19� to obtain

dW

dt
=

d

dt�
V

1

2
�oEiEidV +

d

dt�
V

1

2
�vividV +�

V


Ei

dPi

dt

+ �� ji + � ji
M − �̂ ji

M − EiPj + EkPk	ij�
�vi

�xj
�dV �23�

where

�̂ij
M = �o�EiEj − 1

2EkEk	ij� �24�

is thus the Maxwell stress at the specified electric field for free
space absent any material and the second integral on the right-
hand side has been obtained from the second one on the right of
Eq. �19� by use of the first form of conservation of mass, Eq. �6�.
In the derivation of Eq. �23�, the fact that

�o�
V


Ei

dEi

dt
− �EiEj − EkEk	ij�

�vi

�xj
�dV =�

V


�oEi
�Ei

�t
− �̂ij

M �vi

�xj

+
�

�xk
�1

2
�oEiEivk��dV �25�

has been used and the divergence theorem then provides

�
V


�oEi
�Ei

�t
+

�

�xk
�1

2
�0EiEivk��dV =�

V

�oEi
�Ei

�t
dV

−�
S

1

2
�o�EiEi�nkvkdS �26�

The terms on the right-hand side of Eq. �26� combine to give the
first term on the right-hand side of Eq. �23�. Note that in regions
of free space without material, the second and third integrals on
the right-hand side of Eq. �23� are both zero �given that the
Cauchy stress is zero there�, indicating that the first integral gives
the rate of energy storage in space to permeate it with the electric
field. Thus the third integral on the right-hand side of Eq. �23� is
the rate at which work is stored or dissipated in the material, other
than kinetic energy, which is, of course, accounted for by the first
integral.

Finally, we note that Eq. �23� can be converted to a principle of
virtual work; however, the details will not be emphasized here.
Equation �23� is valid for the isothermal response of any electro-
mechanical material whether the behavior is reversible or dissipa-
tive. However, the next section will focus attention on reversible
material response.

Conservative Materials
In this section we formally introduce the first and second laws

of thermodynamics for the electromechanical situation under con-
sideration. Ultimately, we will specialize the results to reversible
material behavior, i.e., conservative materials. In conservative ma-
terials, the work done by external agencies that is not absorbed by
kinetic energy is stored in the material in the form of elastic dis-
tortion, dielectric polarization, piezoelectric response, electrostric-

tive behavior, electrostatic interactions, and any other recoverable
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energy storage mechanism that is active. The balance of energy
required by the first law of thermodynamics can be stated as

dU

dt
=

dW

dt
+

dQ

dt
�27�

where U represents the stored internal energy of the material, the
electrical energy stored by free space, and the kinetic energy of
the material; dW /dt is the external work rate derived in Eq. �14�,
and dQ /dt is the rate at which heat is transferred to the system.
Note that the free space in which energy is stored is not just that
occupied by the body or bodies under consideration. Material sub-
ject to electric fields couple with the surrounding aether and per-
meate it with an electrical field. Thus, the free space being con-
sidered includes any surrounding space affected by the electric
fields associated with the body or bodies. Specifically, dU /dt and
dQ /dt are written as

dU

dt
=

d

dt�
V

�udV +
d

dt�
V

1

2
�oEiEidV +

d

dt�
V

1

2
�vividV �28�

and

dQ

dt
=�

V

�ṙdV −�
Se

q̂inidS �29�

where u is the internal energy per unit mass, ṙ is the heat input
rate per unit mass, and q̂i are the components of the heat flux
vector with the positive sense directed out of the external surface
Se of the system. Note that at all points interior to the system the
heat flux vector is taken to be continuous, eliminating the possi-
bility of surfaces acting as sources of heat. Equations �23� and
�27�–�29� can be combined and must hold for any arbitrary vol-
ume yielding a local form for the first law as

�
du

dt
= �� ji + � ji

M − �̂ ji
M − EiPj + EkPk	ij�

�vi

�xj
+ Ei

dPi

dt
+ �ṙ −

�q̂i

�xi

�30�
The second law of thermodynamics states that the entropy pro-

duction rate must be equal to or exceed the rate of entropy input to
a region, i.e.,

d

dt�
V

�sdV 
�
V

�ṙ

�
dV −�

Se

q̂ini

�
dS �31�

where s is the entropy per unit mass of the material and � is the
absolute temperature. Equation �31� can be manipulated by appli-
cation of the divergence theorem to the last term on the right-hand
side and then required to be valid for any arbitrary volume to yield
a local form of the second law as

�
ds

dt



�ṙ

�
−

1

�

�q̂i

�xi
+

q̂i

�2

��

�xi
�32�

Then, defining � as the Helmholtz free energy per unit mass, we
have

� = u − �s �33�

and in combination with Eq. �30�–�33�, Eq. �32� can be rewritten
as

�� ji + � ji
M − �̂ ji

M − EiPj + EkPk	ij�
�vi

�xj
+ Ei

dPi

dt
− �s

d�

dt
− �

d�

dt

−
q̂i

�

��

�xi

 0 �34�

For a conservative electro-active material it is assumed that in
general � is a function of the deformation gradient, polarization,

and temperature, i.e., �=��Fij , Pi ,��. Note that for material
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points, xi designates their positions in the current configuration
and a mapping

xi = xi�Xj,t� �35�

associates these points at time t with their positions Xi in the
reference configuration �7�. The components of the deformation
gradient are given as

Fij =
�xi

�Xj
�36�

Then, using

dFik

dt
=

�xj

�Xk

�vi

�xj
�37�

we can modify Eq. �34� to


�� ji + � ji
M − �̂ ji

M − EiPj + EkPk	ij� − �
��

�Fik
Fjk� �vi

�xj

+ 
Ei − �
��

�Pi
�dPi

dt
− 
�s + �

��

��
�d�

dt
−

q̂i

�

��

�xi

 0 �38�

Following the methods of Coleman and Noll �9�, we postulate that
�38� must hold for every admissible process. First, consider pro-
cesses where the deformation gradient, polarization, and tempera-
ture are spatially homogeneous but arbitrary functions of time.
Such processes can be thought as being controlled by the appro-
priate applications of body forces, charge densities, and heat sup-
ply. For spatially homogeneous temperature distributions the last
term on the left-hand side of �38� vanishes. If dPi /dt and d� /dt
are taken to be zero and �vi /�xj is arbitrarily chosen, then �38� is
satisfied only if

� ji + � ji
M − �̂ ji

M − EiPj + EkPk	ij = �
��

�Fik
Fjk �39�

If d� /dt and �vi /�xj are zero and dPi /dt is chosen arbitrarily, then
�38� implies

Ei = �
��

�Pi
�40�

If �vi /�xj and dPi /dt are zero and d� /dt is arbitrarily chosen, then
�38� yields

s = −
��

��
�41�

Finally, consider spatially homogeneous and time-independent
distributions of the deformation gradient and polarization, and
spatially inhomogeneous but time-independent distributions of
temperature. Such processes and Eq. �38� then imply the heat
conduction inequality

− q̂i
��

�xi

 0 �42�

The requirements of objectivity �7� place restrictions on the
forms that the constitutive laws can take. This leads us to con-
clude that the Helmholtz free energy per unit mass at fixed tem-
perature must have the form

� = ��Uij,
i� �43�

where 
i are the components of the rotation invariant polarization
defined as


i = PjRji �44�

where Rji is the orthogonal transformation arising from polar de-
composition of Fij into a pure deformation and a pure rotation �7�

as

Journal of Applied Mechanics
Fij = RikUkj �45�

Finally, Uij are the components of the right stretch tensor.
Note that the choice we have made for the functional depen-

dence of � in terms of a polarization measure is not the only one
possible that would satisfy objectivity. However, we find it to be
of the most convenience. In general, to satisfy the requirements of
objectivity, the Helmholtz free energy density can depend on any
measures of polarization and strain that in turn depend only on the
rotation-invariant polarization and the right stretch tensor. Since
their evaluation does not require the solution of an eigenvalue
problem, it is common to define the relevant polarization measure
as IPi=
 jUji= PkFki and the strain measure as �ij = �UikUkj

−	ij� /2= �FkiFkj −	ij� /2. However, the form IPi for the polariza-
tion measure is somewhat convoluted since it is affected by both
electrical polarization and the stretch of the material element.
Hence, for the purposes of this work the polarization measure will
be taken as the rotation invariant polarization 
i, which is inde-
pendent of the material stretch, and the strain measure will be
taken as the Green-Lagrange strain �ij mentioned above and re-
peated below as

�ij = 1
2 �FkiFkj − 	ij� �46�

Using these polarization and strain measures, we find more con-
venient forms of Eqs. �39� and �40� to be

Ei = �Rij
��

�
 j
�47�

� ji + � ji
M = �

��

��lm
FilFjm + � jiklPkEl + PjEi − PkEk	ij + �̂ ji

M

�48�

where

� jikl = Fjm
�Rkn

�Fim
Rln �49�

The derivative of the rotation tensor is given by �10�

�Rik

�Fjl
=

1

�
��Vmm	ij − Vij��Unn	kl − Ukl�

− �VmmRil − Fil��VnnRjk − Fjk�� �50�

with

� = Det�Vkk	ij − Vij� = Det�Ukk	ij − Uij� �51�

in which Vij is the left stretch tensor given by a polar decompo-
sition in the form �7�

Fij = VikRkj �52�

Thus

� jikl =
1

�
Vjm�Vnn	mp − Vmp��Vqq	ir − Vir��	rk	pl − 	rl	pk� �53�

Furthermore, it can be shown that �10�

� jiklPkEl + PjEi = �ijklPkEl + PiEj �54�

and this confirms that the total true stress � ji+� ji
M is symmetric as

required by conservation of angular momentum. In fact, as long as
the free energy density is objective, then the law of conservation
of angular momentum, Eqs. �8� and �13�, will be satisfied auto-
matically �1�.

We note that Eqs. �47� and �48� are together equivalent to con-
cepts developed by Landau and Lifschitz �6� who studied these
issues for infinitesimally strained isotropic elastic materials and
piezoelectric systems through the use of a free energy. We believe
that we have therefore placed these ideas into a more general

framework.
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Dielectrically Linear, Isotropic, Conservative Materials
Consider now a material in which the stored energy per unit

reference volume is the sum of an isotropic function of the defor-
mation plus a term quadratric in the polarization. Thus

� = �e +
1

2��0

i�ij

−1
 j �55�

where �e depends only on the deformation and �ij is the electrical
susceptibility of the material, which is assumed to be dependent
on the strain but independent of polarization. Since the material is
assumed to be isotropic, �e and �ij will be functions of the invari-
ants of the Green-Lagrange strain or, equivalently, the right or left
stretch tensors �7�. Possible forms of interest for the elastic re-
sponse would include neo-Hookean, Mooney-Rivlin, Blatz-Ko,
and Ogden formulations �7,11–16�, but allowance should be made
for compressibility of the material to ensure consistency with any
dilatancy that is assumed in association with the electrical behav-
ior. The susceptibility tensor is symmetric and must be isotropic in
the limit of zero strain so that the unstrained material is electri-
cally isotropic. Due to strain �ij can become anisotropic �6�.

The electric field can now be deduced from Eq. �47� to be

Ei =
1

�0
Rij� jk

−1PlRlk �56�

which is thus a linear relationship between the components of
electric field and polarization modified by the effects of straining
and rotation of the material. Note that in the limit of zero strain,
this relationship is consistent with what is expected for isotropic
dielectrics since then the susceptibility is

�ij
−1 =

1

�̃
	ij �57�

where �̃ is the isotropic susceptibility of the unstrained material.
The relationship in Eq. �56� then becomes

Ei =
1

�o�̃
Pi �58�

The result for stress obtained from Eq. �48� is

� ji + � ji
M = Fjk��

��e

��kl
−

�o

2
Rmn

��np

��kl
RqpEmEq�Fil

+ �oRjk�klRmlEmEi −
�o

2
Rkl�lmRnmEkEn	 ji

+ �o� jiklRkm�mnRpnElEp + �̂ ji
M �59�

where

��

��lm
FilFjm = − �	ij �60�

has been utilized and the inverse of Eq. �56� has been used to
eliminate the polarization. In Eq. �59�, the term containing the
derivatives of �e can be considered to be the elastic stress and the
remainder of the right-hand side of the expression can be taken to
be the electrostatic stress as in the usage of Landau and Lifschitz
�6�. However, this does not imply that the Maxwell stress and the
electrostatic stress are identical, since the Cauchy stress, �ij, can
have a constitutive relationship that allows it to depend quadrati-
cally on the polarization independently of whatever electrical be-
havior is associated with the Maxwell stress. Because of the dif-
ficulty of measuring the Cauchy and Maxwell stresses separately,
it is probably impossible to resolve this question experimentally.
Therefore, we will focus on the elastic stress

� ji
e = Fjk�

��e

��kl
Fil �61�
and the electrostatic stress
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� ji
es = −

�o

2
FjkRmn

��np

��kl
RqpFilEmEq + �0� jiklRkm�mnRpnElEp

+ �oRjk�klRmlEiEm −
�o

2
Rkl�lmRnmEkEn	 ji + �̂ ji

M �62�

without attempting to separately identify the Cauchy and Maxwell
stresses. Of course, the sum of the elastic and electrostatic stresses
is equal to the sum of the Cauchy and Maxwell stresses and both
sums are equal to the total true stress.

Linear, Isotropic, Conservative Materials at
Infinitesimal Strain

For illustration, now consider the case where the strain is in-
finitesimal, so that to first order in the infinitesimal strains, eij, the
susceptibility can be written �6�

�ij = �̃	ij +
�1

�o
eij +

�2

�o
ekk	ij �63�

where �i are constants. With terms of higher order in strain ne-
glected, the expression for the electric field in Eq. �56� becomes
identical to Eq. �58�, which is the usual relationship for isotropic
dielectrics. When the strains are infinitesimal and higher order
terms in strain are neglected, Eq. �59� shows that the total stress is
given by

�ij + �ij
M = 2Geij + �B −

2G

3
�ekk	ij + ��̃ −

�1

2
�EiEj

−
1

2
��̃ + �2�EkEk	ij �64�

as identified for this situation by Landau and Lifschitz �6�. In Eq.
�64�, G is the shear modulus, B is the bulk modulus, and �̃ is the
dielectric permittivity of the unstrained material such that

�̃ = �1 + �̃��o �65�
so that the relationship between the electric displacement and the
electric field during infinitesimal straining is given by

Di = �̃Ei �66�
Note that, as observed by Landau and Lifschitz �6�, the resulting
total stress in Eq. �64� is symmetric and therefore the conservation
of angular momentum is satisfied. Furthermore, consistent with
the usage of Landau and Lifschitz �6�, the elastic stress is

�ij
e = 2Geij + �B −

2G

3
�ekk	ij �67�

and the electrostatic stress is

�ij
es = ��̃ −

�1

2
�EiEj −

1

2
��̃ + �2�EkEk	ij �68�

However, there is no implication that the electrostatic stress and
the Maxwell stress are identical.

Conservative Materials that Remain Dielectrically
Isotropic During Straining

Now return to the general case of arbitrarily large deformations
but assume that, upon straining, the susceptibility remains isotro-
pic and thus objectivity is assured. The susceptibility will be per-
mitted to depend on the material density and thus is given by

�ij = ����	ij �69�

Note that the material density obeys �=�o /Det�Uij�, where �o is
the density of the material in the reference state. Thus the depen-
dence of the susceptibility on the density represents a contribution

to the dependence of the Helmholtz free energy on the right
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stretch tensor, as stated in Eq. �43�. Given Eq. �69�, Eq. �56� then
simplifies to

Ei =
Pi

�0����
�70�

The total true stress from Eq. �59� is then given by

�ij + �ij
M = Fik

1

J

��e

��kl
Fjl + ��EiEj −

1

2
EkEk	ij� +

1

2
�

d�

d�
�0EkEk	ij

�71�

where � is the possibly density-dependent dielectric permittivity
given by

� = �1 + ���o �72�

so that

Di = �Ei �73�

To obtain Eq. �71�, use was made of the fact that �ijklEkEl=0. As
expected, the total true stress is symmetric, reflecting the fact that
the balance of angular momentum is satisfied. From Eqs.
�70�–�73� it can be seen that through measurement of the elastic
response and the dielectric susceptibility, possibly a function of
density, the properties of this type of material can be fully char-
acterized. The combined true stress can then be calculated for a
given strain and electric field. When the susceptibility remains
isotropic during deformation, the electrostatic stress thus becomes

�ij
es = ��EiEj −

1

2
EkEk	ij� +

1

2
�

d�

d�
�0EkEk	ij �74�

Now we may explore the implications of different assumptions
of how the dielectric permittivity depends on the material density.
If we take the susceptibility to be independent of the density (or
equivalently that the stored polarization energy per unit current
volume is proportional to the square of the magnitude of the po-
larization vector but insensitive to the density, see Eq. �55�), the
electrostatic stress from Eq. �74� becomes

�ij
es = ��EiEj − 1

2EkEk	ij� �75�

a form commonly seen in the literature as an expression for the
Maxwell stress in a dielectric �6�. The body force per unit volume
associated with the electrostatic stress given in Eq. �75� is

�� ji
es

�xj
= �

�Ej

�xj
Ei = qEi �76�

where Eqs. �2� and �73� have been used to establish the free
charge density. Thus the body force associated with this particular
electrostatic stress in this particular material is the load per unit
volume due to the electric field acting on the free charges, reflect-
ing the fact that an electric field applies a unit force on a unit
charge �6�. This would seem to be a reasonable choice as a pos-
tulate for the electrical body force and it is often seen as such in
the literature. However, there is no implication in our approach
that the electrostatic stress in Eq. �75� is the Maxwell stress, nor
that the electrical body force is the expression given in Eq. �76�.
Indeed, there is no need to adopt any particular postulate for the
electrical body force and the Maxwell stress, since the total true
stress is in equilibrium with the mechanical body force whatever
the form of the electrical body force and the Maxwell stress and
this is all that is needed for a complete formulation of the behavior
of the material in response to electric field and strain. Further-
more, the electrical body force and the Maxwell stress cannot be
determined from measurements of the total true, elastic, or elec-
trostatic stress, neither in terms of their body forces nor their
interface or surface tractions.
Another possible assumption for the susceptibility is that

Journal of Applied Mechanics
� =
��1

�o
�77�

where �1 is a constant. This means that the polarization energy per
unit mass of the dielectric is proportional to the square of the
dipole moment per unit mass, i.e.,

�P =
�o

2�0�1
�Pk

�
��Pk

�
� �78�

where �P is the polarization energy per unit mass of the material
and the term in parentheses in Eq. �78� is clearly the dipole mo-
ment per unit mass. This relationship for the stored energy of
polarization is often assumed to be the correct one for a linear,
isotropic, dielectric material �1,3�. The result for the electrostatic
stress from Eq. �74� is then

�ij
es = �EiEj − 1

2�o�EkEk	ij = PiEj + �̂ij
M �79�

This is another form that can be found in the literature �1,3� as an
expression for the Maxwell stress. The body force per unit volume
arising from this electrostatic stress in this material is given by

�� ji
es

�xj
= qEi + Pj

�Ei

�xj
�80�

where the free charge has been obtained from Eqs. �2�, �5�, and
�73�. The expression in Eq. �80�, as a postulate for the electrical
body force per unit volume, has a provenance based on molecular
models for the electrical response of a lattice �3� and therefore
lends credence to Eq. �79� as an expression for the Maxwell stress
in this particular material. In this case, the body force is the effect
of the electric field acting on free charge plus the net force acting
on induced dipoles because of a gradient in the electric field. The
latter effect is due to the different force magnitude on the positive
and negative charges of the dipole because of the different electric
field acting upon them. However, as before there is no implication
in our approach that the electrostatic stress in Eq. �79� is the
Maxwell stress, nor that the electrical body force is the expression
given in Eq. �80�. As we have emphasized already, there is no
need to adopt any particular postulate for the electrical body force
and the Maxwell stress.

A third possibility is that the isotropic susceptibility is inversely
proportional to �, which leads to an electrostatic stress given by

�ij
es = ��EiEj − EkEk	ij� + 1

2�oEkEk	ij = PiEj − PkEk	ij + �̂ij
M

�81�

The body force per unit volume from this particular expression for
the electrostatic stress in this particular material is given by

�� ji
es

�xj
= qEi −

�Pj

�xi
Ej �82�

where, as before, the free charge has been obtained from Eqs. �2�,
�5�, and �73�. These forms, Eqs. �81� and �82�, as a postulate for
the Maxwell stress and the electrical body force, seem to be ab-
sent from the literature. However, they can be rationalized as giv-
ing a body force that accounts for the electric field acting on free
charges but that also provides for an effect in which the gradient
of dipole density produces a force opposite to the direction of the
gradient. The latter action can be understood as being due to the
electric field in association with a surplus of positive charges over
negative charges �or the opposite� at a given point in the material
when there is a gradient of polarization. However, as before, there
is no implication in our approach that the electrostatic stress in Eq.
�81� is the Maxwell stress, nor that the electrical body force is the
expression given in Eq. �82�. As we have emphasized already,
there is no need to adopt any particular postulate for the electrical

body force and the Maxwell stress.
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Quasi-Linear Piezoelectric Materials
To illustrate results in the context of a piezoelectric material, we

write down a stored energy given by

� =
1

2�o
�ijcijkl�kl −

1

�

ihijk� jk +

�o

2�o�2
i�ij
−1
 j �83�

where cijkl is a constant linear elasticity tensor at fixed polariza-
tion, hijk is a constant tensor of piezoelectric coefficients, and �ij
is a constant susceptibility tensor denoting the response at zero
strain. We note that in light of Eq. �43�, � in Eq. �83� is objective.
The choice of the form in Eq. �83� is somewhat arbitrary in the
sense that the piezoelectric coefficients and the susceptibility ten-
sor are fixed. By making such choices, we have eliminated the
possibility that the susceptibility and the piezoelectric coefficients
can experience a change of axiality during strain. On the other
hand, in devising Eq. �83� we have utilized the notion that the
stored energy per unit mass should depend on the polarization
through the dipole moment per unit mass, an assumption that is
fairly common in the literature.

Now we use Eqs. �47� and �48� and specialize to infinitesimal
strain and rotation to obtain piezoelectric relationships in the form

Ei = − hijkejk +
1

�o
�ij

−1Pj �84�

and

�ij + � ij
M = cijklekl − hkijPk + 1

2 �PiEj + EiPj� + �̂ ij
M �85�

Note that the specialization to infinitesimal strain and rotation
involves neglect of terms of higher order in strain and rotation.
Complete linearization of the equations would eliminate the terms
in Eq. �85� that are products of the polarization and electric field
with the electric field. Note also that since the elasticity and pi-
ezoelectric coefficient tensors in Eq. �85� are symmetric on inter-
change of the subscripts i and j, the total true stress in Eq. �85� is
symmetric, confirming that the balance of angular momentum is
satisfied. As before, there is little mileage in attempting to separate
the Cauchy and Maxwell stresses. Instead, we will identify the
first two terms on the right-hand side of Eq. �85� to comprise the
piezoelectric stress, � ij

p , and the remainder to be the electrostatic
stress. Thus

� ij
p = cijklekl − hkijPk �86�

and

� ij
es = 1

2 �PiEj + EiPj� + �̂ ij
M �87�

The body force per unit volume associated with this electrostatic
stress in this material can be readily obtained by taking the spatial
divergence of the expression in Eq. �87�. However, the result is
not particularly revealing. In any case, as before, there is no im-
plication in our approach that the electrostatic stress in Eq. �87� is
the Maxwell stress, nor that the electrical body force is its diver-
gence. As we have emphasized already, there is no need to adopt
any particular postulate for the electrical body force and the Max-
well stress. Instead we regard the electrostatic stress tensor in Eq.
�87� simply to be an illustration of the consequences of certain
constitutive assumptions embedded in Eq. �83�.

Compliant Isotropic Dielectrics
Polymer dielectrics that have low shear moduli and are highly

deformable to stretch ratios of order 10 have been introduced
recently as actuator materials �5,11,16�. It is assumed that they are
isotropic before straining and Kofod �11� has had success fitting
their elastic response to a large strain, isotropic constitutive law
for incompressible deformations developed by Ogden �12�. Pel-
rine et al. �5,16� and Kofod �11� also show that the dielectric
permittivities of some of the polymers are unaffected or only
slightly affected by straining, though there is evidence �17� that at

least some polymers have susceptibilities that change significantly
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upon elastic deformation. The assumptions of incompressibility
and insensitivity of the dielectric permittivity to straining are con-
sistent with each other but not general. Therefore, we wish to
study these highly deformable dielectrics within our formulation
but when elastic dilatation is possible and when the permittivity
depends on the strain. Ogden �14� has formulated an elasticity law
for compressible materials that has a similar structure as his in-
compressible case; this could be used in our development and,
presumably, it would model the stress-strain response of Kofod’s
�11� material well. However, the Ogden materials, whether incom-
pressible or compressible, are somewhat complicated. Therefore,
we will use a simpler elastic formulation, as we strive only to
illustrate our approach to analyzing these materials and not to
model them to a high degree of accuracy. Consequently, we will
use a compressible form of the neo-Hookean material that is a
variant of the Blatz-Ko �14,15� constitutive law. We will find that
compressibility is essential to our ability to compute meaningful
results in specific boundary value problems.

We choose also to present the results in terms of principal
stresses and stretches as developed by Ogden �12,13�, who also
pointed out the great advantages of such an approach over formu-
lating the results in terms of the strain tensor. In particular, it is
directly applicable to the deformations of an actuator as shown in
Fig. 2, which is a slab of polymer dielectric between two planar
deformable electrodes �5,11,16�. For the polymer dielectric, we
use a compressible generalization of the neo-Hookean formulation
with an elastic strain energy density given by �14,15�

Uo =
G

2
��i�i − 3J2/3� + B�J − ln J − 1� �88�

where �i are the principal stretch ratios in the three orthogonal
principal directions of the deformation so that the ratio of volume
in the current state to volume in the reference state J=�1�2�3
=�o /�. Note that the form presented in Eq. �88� is not a Blatz-Ko
material per se because the term containing the bulk modulus B
differs from their form �14,15�. However, our form is consistent
with Blatz-Ko usage with their parameter k chosen to be unity and
is used in the spirit of simplicity. Given that the principal elastic
true stresses are given by �12,13�

�i
e =

�i

J

�Uo

��i
�no sum on i� �89�

they become

�i
e = G��i

2J−1 − J−1/3� + B�1 − J−1� �90�

Note that for polymers B /G is usually very large compared to
unity and that this effect will keep the dilatational strains very
small during deformations.

Now consider the condition of the actuator shown in Fig. 2
subject to an electric field E3=E given by the voltage difference
between the electrodes divided by the distance between the elec-
trodes in the deformed state. The thickness of the actuator is very
small compared to the in-plane dimensions so that a uniform elec-
tric field and stress state may be assumed in the dielectric and the

Fig. 2 A polymer dielectric actuator in the form of a slab with
planar deformable electrodes
effect of fringing fields at the edge can be ignored. Since we
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assume that the actuator is constrained so that it does not rotate
and that gravitational loads are negligible, the rotation tensor Rij
=	ij and the actuator remains rectilinear in shape during deforma-
tion. The susceptibility is isotropic before straining and remains at
least orthotropic thereafter because of the lack of shear strain. The
electrostatic stress from Eq. �62� in all situations for this actuator
is then given by

�11
es = − �1 + �33 + �1

2��33

��11
��o

2
E2

�22
es = − �1 + �33 + �2

2��33

��22
��o

2
E2 �91�

�33
es = �1 + �33 − �3

2��33

��33
��o

2
E2

with the shear components zero.
The electrodes are assumed to be very thin and highly compli-

ant, as they are in practice �5,11,16�, so that they offer no con-
straint on the deformation of the dielectric. Thus, the only me-
chanical loads are the tractions T33 applied through the electrodes
and that act parallel to the x3 axis or, alternatively, the tractions
T11 or T22 applied parallel to the plane of the electrodes. In addi-
tion, the stretching of the actuator parallel to the plane of the
electrodes may also be controlled kinematically.

In the first deformation we consider, the principal stretch ratios
�1 and �2 are equal to each other and, consequently, the elastic
stresses from Eq. �85� are

�11
e = �22

e = G� 1

�3
−

1

�1
2/3�3

1/3� + B�1 −
1

�1
2�3

�
�92�

�33
e = G��3

�1
2 −

1

�1
2/3�3

1/3� + B�1 −
1

�1
2�3

�
with the shear components all zero. The case we will address first
is that where the principal stretch ratios �1 and �2 are controlled
but within the constraint of being equal. The result, deduced from
Eq. �7�, that the traction T33 is balanced by the sum of the �33
components of the elastic and electrostatic stresses provides

G��3

�1
2 −

1

�1
2/3�3

1/3� + B�1 −
1

�1
2�3

� +
�o

2
E2�1 + �33 −

��33

��33
�3

2� = T33

�93�

which, in principle, can be solved for �3. When �33 is a function
of strain, its derivative will be a function of �3 in a manner that
can only be determined by experiment. Therefore, the order of Eq.
�93�, through the dependence of the susceptibility on the strain, is
indeterminate without information from such experiments. Fur-
thermore, if the potential difference between the electrodes is con-
trolled, the electric field will be a function of �3, further compli-
cating the equation order. Rather than pursue the solution of Eq.
�93�, we will consider the situation where the actuator, without
mechanical load or electric field �i.e., in short circuit�, is strained
in the planar direction to a stretch ratio given by �1=�1

0 and then
an electric field applied along with blocking tractions sufficient to
maintain the stretch ratios as they were before application of the
field. The resulting through thickness strain before application of
the electric field and traction conforms to a stretch �3=�3

o satisfy-
ing

G� �3
o

��1
o�2 −

1

��1
o�2/3��3

o�1/3� + B�1 −
1

��1
o�2�3

o� = 0 �94�

and the blocking tractions required to maintain these stretch ratios

are
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T33 = 
1 + �33��1
o,�3

o� − ��3
o�2��33��1

o,�3
o�

��33
��o

2
E2 �95�

A special case of this result is where all the stretch ratios are fixed
at unity. The blocking traction is then

T33 = 1
2 ��̃ − �1 − �2�E2 �96�

where the relevant value of the partial derivative of the suscepti-
bility component has been deduced from Eq. �53� and, of course,
Eq. �96� agrees with the result that can be obtained from the
theory of Landau and Lifschitz �6�, since this case is also the limit
of zero infinitesimal strains.

Note that compressibility of the material is essential to our abil-
ity to calculate a meaningful result for the problem just addressed.
If the polymer were exactly incompressible, then the kinematic
relationships would become

�3 =
1

�1
2 �97�

and

�3
o =

1

��1
o�2 �98�

Then once the stretch parallel to the electrodes of the actuator has
been established, applications of electric field and mechanical
stress are incapable of changing the through thickness strain.
Thus, actuation in the sense of thickness change for the device
becomes impossible and there is no need for a blocking traction to
suppress the actuation. All that applications of electric field and
tractions do is to modify the hydrostatic stress in the dielectric
polymer without changing the strain.

Having demonstrated that one must be careful when using an
incompressible material model, we now turn to a problem that can
be successfully and accurately assessed with a volume-preserving
constitutive law as an approximation to the true behavior when the
bulk modulus, B, is much greater than the shear modulus, G. In
this problem, the actuator is first stretched in the x2 direction with
no other tractions or constraints applied and under short circuit
conditions so that E is zero. This stretch ratio is held fixed there-
after so that �2=�2

o and due to incompressibility at this stage

�1 = �3 =
1

��2
o

�99�

An electric field is then applied and simultaneously a traction T11.
In the incompressible limit, the elastic stress is given by Eq. �90�
with J=1 and the term containing B is replaced by the negative of
a pressure p. After the electric field is switched on, the stretch
ratios must obey the relationship

�3 =
1

�1�2
o �100�

and the pressure is calculated from the condition that the sum of
the elastic and electrostatic stress in the �33 orientation is zero
because there is no traction applied in that direction. Thus

p = G
 1

��1�2
o�2 − 1� + 
1 + �33 −

1

��1�2
o�2

��33

��33
��o

2
E2

�101�

and it follows that the balance of forces in the �11 orientation
provides

G
�1
2 −

1

��1�2
o�2� − 
1 + �33 +

1

2

�1

2��33

��11
−

1

��1�2
o�2

��33

��33
���oE2

= T11 �102�

which can be solved for �1, in principle to determine the degree of

actuation. As before, the solution is complicated by the fact that
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the dependence of the dielectric permittivity on the strain �i.e., on
the stretch ratios� must be determined from experiment. Further-
more, if a fixed potential difference is applied between the elec-
trodes and a fixed load provides the traction T11, both the traction
and the electric field are functions of �1 as well, further compli-
cating the solution. A simpler situation is where T11 is the block-
ing traction which resists the effect of the electric field and main-
tains the stretch ratios at the levels given in Eq. �99� that prevailed
prior to the application of the field. The result from Eq. �101� for
this blocking traction is then
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where the electric field and the traction are simple to establish
because the thickness strain of the actuator is given by Eq. �99�.
The result in Eq. �103� predicts to within reasonable accuracy the
results of an experiment carried out by Kofod �11�. It is notable
that if the susceptibility is independent of strain, the traction pre-
dicted by Eq. �103� is compressive, reflecting the fact that appli-
cation of the electric field will cause the actuator to try to expand
parallel to the x1 axis.

Discussion
The formulation presented in this paper is general and valid for

materials in which the stress can be described by a local theory �7�
and for which couple stresses or a director theory of materials
response are not needed. In addition, the presentation is, we be-
lieve, free of unnecessary assumption in regard to the nature of the
electrical body force and Maxwell stress in electrostatic systems.
Instead, the expressions are presented in such a way that measur-
able behavior can be used to determine all the necessary functions
and constants to completely describe the material constitutive be-
havior for reversible response. Indeed, it is not necessary to know
the electrical body force or the Maxwell stress to obtain a usable
constitutive law. Instead, given the assumptions of the paper re-
garding the constitutive law, measurements of the elastic response
at zero electric field and of the material’s dielectric permittivities
as a function of strain will fully characterize the constitutive law.
If the assumptions of the paper are incorrect in the sense that the
constitutive law is more complex than that presented in Eq. �55�,
more extensive experiments will be needed to characterize the
free energy as stated in Eq. �43�, perhaps because the dielectric
response involves a nonlinear dependence of the electric displace-
ment on the electric field or that the elastic and electrostatic en-
ergy do not separate in the manner assumed in Eq. �55�.

In regard to the terminology in the paper, quibbles can be
raised, e.g., concerning what we call the Cauchy stress, which
some workers regard to be what we have called the total true
stress, i.e., the sum of what we call the elastic and electrostatic
stress. However, this would be to focus on the wrong issues, be-
cause it is the formulation that is important, not the names of the
terms. In any case we would not object to instructions to rename
our entities, although we prefer our choice of names for what we
have called the Cauchy, Maxwell, elastic, and electrostatic
stresses.
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Finally, we reemphasize the comments made in the Introduction
that the formulation we have presented is desirable for use in a
modern setting where feasibility of experiments, possible applica-
tions in finite element calculations, and the need for developments
in the fracture mechanics of electromechanically loaded compo-
nents have guided our thinking. We believe that our presentation
is not only valid, but is attractive in the context of these needs. We
have focused on conservative materials. However, all of what is
developed up to and including Eq. �34� is correct for dissipative
material behavior in the electrostatic limit, such as ferroelectric
switching �18,19�. Thus, the formulation can and will be extended
to dissipative materials in due course.
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