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. Vario~s proces~es such as electron transfer reactions, redox reactions at electrodes, and electronic excita

t~o~ of d1~solved wns m~~ proceed by way of intermediate states whose electrical polarization is not in equi
libnum w1th ~he fie]~ ansmg ~rom th_e charges present. The usual expressions for the electrostatic free energy 

and_ ~or _the dtfferen~Ial equatwn satisfied by the potential assume that the polarization and the field are in 
eqmlibnum. _Accordmgly! these equat_ions are of but limited applicability to these processes. In the present 
paper equatwns are denved for varwus properties of systems having such nonequilibrium electrostatic 

configuration:. These properties include the fre~ energy, _energy, and entropy of the nonequilibrium system, 
and the spacial dependence of the electrostatiC potential. The free energy for example will be used to 

calculate the probability of formation of nonequilibrium states in certain pr~blems of phy~ical interest. 

INTRODUCTION 

I N recent years processes such as electron transfer 
reactions, redox reactions at electrodes, and elec

tronic excitation of ions in the solid state and in solu
tion have been the subject of considerable interest. 
These processes appear to involve intermediate states 
having nonequilibrium electrostatic configurations in 
the sense that the electrical polarization may not be 
that which would be predicted in the usual manner 

from the known charge distribution. For example, 
when a dissolved ion absorbs light, the electron is 
raised to an excited state almost instantaneously. A 
considerably longer time is required for the solvent's 
dipoles to readjust themselves to this new configuration. 
Thus, for some brief time after the absorption act, the 
electrical polarization of the system will not be in 
equilibrium with the charge distribution. This concept 
served1 as a basis of a theory of the absorption spectrum 
of various halide ions in solution. In a different fashion, 
related considerations may apply to the other processes 

mentioned. 
The results obtained in the present paper for the free 

energy and for other properties will later be applied 
to develop a quantitative theory of certain oxidation
reduction reactions. A knowledge of the free energy 
of nonequilibrium states is of use in calculating the 
probability of their formation, as intermediates, in 
certain cases. The usual expressions given for the elec
trostatic free energy and energy cannot be used for 
this purpose. Similarly Poisson's equation for the elec
trostatic potential is not applicable in its commonly 
written form. Each of these equations assumed in their 
derivation that the electrical polarization at each point 
in the system was in equilibrium with the electric field 

there. 
In the present paper, equations for these properties 

of nonequilibrium states are derived. However the 
' treatment of systems containing electrodes will be 

reserved for a later communication. Such systems 
involve certain additional complexities arising from the 
presence of charges induced in the electrodes by the 
medium itself. 

THEORETICAL 

The electrical field in an equilibrium system is 
generally described in terms of two vectors, the electric 

field strength E and the dielectric displacement. The 
first is the negative gradient of the electrostatic poten
tial and the second is defined in terms of the charge 
distribution, and is expressible in terms of E by an 
equation involving the dielectric constant of the me
dium. In contrast, it is the state of polarization of the 
medium rather than the dielectric constant itself which 
defines the behavior of a nonequilibrium state. Ac
cordingly, the dielectric displacement vector is not 
useful in describing such states and will not be used 
here. However, the electrostatic potential and its nega
tive gradient, E, retain their significance and usefulness. 

Three vectors instead of two will be used to describe 
a nonequilibrium state, the additional vector being 
required since these states have an extra degree of 
freedom (the polarization of the medium is no longer 
that dictated by the local value of the electric field 
strength). The three vectors chosen for this purpose 
will be the electric field strength, the polarization, and 
a quantity, Ec, the electric field strength which the 
charge distribution would exert if it were in a vacuum 
rather than in a polarized medium [see Eq. (19)]. 
We proceed now to define the state of polarization of a 
nonequilibrium state more fully. 

U- and E-Type Polarization 

*This research was supported by the Office of Naval Research 
under Contract No. Nonr 839(09). Reproduction in whole or in 
part is permitted for any purpose of the United States Govern

In general the electrical polarization is considered to 
be the sum of electronic, atomic, and orientation con
tributions. The time required for each of these to adjust 

Volume itself to some rapid change in the charge distribution is ment. 
1 R. Platzman and J. Franck, L. Farkas Memorial 

the order of 10-15, lQ--13, and 10-11 sec, respectively. (Oth Cooperative Printing Press, Haifa, 1952). 

979 



Downloaded 15 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

980 R. A. MARCUS 

Thus, in a very brief instant after a change in the 
charge distribution only the electronic polarization 
will adjust itself to the change in charges, while the 
other contributions will be those characteristic of the 
original charge distribution. A nonequilibrium situa
tion will therefore temporarily prevail. Various other 
physical situations, such as certain types of fluctuations 
of the electrical polarization of a medium, can be 
imagined, in which one or more contributions to the 
polarization are in equilibrium with the charge distribu
tion while the remaining contributions are not. These 
fluctuations will be discussed in greater detail in a paper 
on the theory of electron transfer reactions. 

In the present paper the electrostatic free energy 
will be calculated for those nonequilibrium states whose 
polarization consists of two types, which will be termed 
the U-type and theE-type: 

(i) The U-type polarization is not in equilibrium 
with the given charge distribution and is quite inde
pendent of it. The contribution of this type to the total 
electrical polarization at a point in the system will be 
denoted by a vector, P u(r), defining the magnitude and 

direction of this polarization. The coordinates of the 
point are designated by the vector r drawn from any 
arbitrary origin to the point. 

(ii) The E-type polarization, denoted by P.(r), is in 
equilibrium with the electric :field arising from the 
charge distribution and from the U-type polarization. 
That is, the polarization P.(r) can be calculated from 
the electric :field strength at the point r in the usual way. 

The total polarization P(r) at the point r is the vector 
sum of these. 

P(r)= P ,(r)+ P.(r). (1) 

In most nonequilibrium systems of physical interest, 
the E-type polarization will be electronic and the 
U-type, atomic and orientation polarization. However, 
the following treatment is quite general in this respect, 
and is applicable regardless of which contributions 
make up each type of polarization. 

The Charging Process 

The free energy of a nonequilibrium state of the 
system can be calculated if a reversible path for reaching 
for reaching that state can be found. The electrostatic 
free energy is generally defined as the reversible work 
done along this path. It is the difference in the electro
static free energy of two states which is the property 
used in problems of physical interest, regardless of 

whether these states are equilibrium or nonequilibrium 

in nature. For example, the difference in free energy 

arising from electrostatic interactions, between any 

two states which do not differ in the number of each 

species of charged particles present, is given by the 

difference in work done in charging up each of the states. 

Accordingly, in any state the contribution to the free 

energy arising from the electrostatic interaction of 

charges with each other and with the polarized medium 
may be calculated by subtracting from the electro
static free energy, F, the work, Wiso, required to charge 
up the state in a vacuum when the charges are infinitely 
distant from each other. 

The reversible charging process employed to create 
the type of nonequilibrium state described earlier will 
be performed in two stages: 

(i) In the first stage the final value of the U -type 
polarization, P u 0(r) say, will be produced in a reversible 
manner by the formation of some appropriate charge 
distribution. Meanwhile the E-type polarization as
sumes some value, P,0 say. 

(ii) In the second stage the polarization P,0(r) will be 

held fixed but the charge distribution will be reversibly 
altered until the :final charge distribution is obtained. 
During this process the E-type polarization changes 
from P.0 (r) to some function, P.(r) say, whose value 
will be dictated by the charge distribution and by 
p ,o(r). 

In this manner a system has been produced having 
the polarization, P .(r)+ P , 0 (r), where P,0(r) is not, 

but P,(r) is, in equilibrium with the :field. 
The reversible work performed in this charging 

process can be calculated if the potential 1/;(r) is known 
during each stage at each point of the system. Accord
ingly, an expression for 1/;(r) will :first be given. 

Equation for the Electrostatic Potential 

A polarized volume element dV, having a polariza
tion P, exerts the same potential2 as does a dipole of 
moment PdV. This is true regardless of whether the 
polarization has a value dictated by the local electric 
:field, or whether it is quite independent of it. That is, 

this equivalence of polarization and dipole moment is 
applicable regardless of whether or not the system is an 
equilibrium one electrostatically, in the sense defined 

earlier. 
The potential of a system consisting of a collection of 

charges and of dipoles can be written as the sum of con
tributions from each of these. A system consisting of 
charges and polarized volume elements can, therefore, 
be treated in a similar manner. Consequently, an expres
sion for the electrostatic potential which treats a system 
in this way can be used for the present nonequilibrium 
case. Such an expression for the potentiaP 1/;(r') at a 
point r' of the system is given by Eq. (2). 

J

p(r)dV Ju(r)dS 
1/;(r')= --+ --

1 r- r'! l r- r'J 

+JP(r)·V'r l dV, (2) 
lr-r'l 

2 See G. Joos, Theoretical Physics (Blackie and Son, Ltd., 
London, 1934), p. 267. 

sM. Mason and W. Weaver, The Electromagnetic Field (Uni
versity of Chicago Press, Chicago, 1929), p. 67; compare refer
ence 2. 
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where p(r) is the charge density per unit volume at the 

point r of the system and u(r) is the charge density per 

unit area at a surface element dS of an interface of the 

system. The surface integral is over all interfaces in 
the system. The polarization P is sum of the E- and 

U-types and is given by Eq. (1). The subscript r of the 

gradient operator V' r indicates that the differentiation 
involved in V' is with respect to the coordinates of r, 

and not of r'. In later expressions where this subscript 
is omitted it will nevertheless be tacitly implied. 

The Electrostatic Free Energy 

Equation (2) for the potential will now be applied 

to calculate the work done in each step of the two-stage 

charging process. 

(a) Stage I 

The U-type polarization P,0 (r) can be induced by 

charging up the system reversibly, such that the end 

of this stage of the charging process the charge density 

is p0 (r) and surface charge density is u0 (r), say. Expres

sions are given later for determining the p0 and u0 

needed to produce any specified polarization function, 

P u0 (r). 

When, during the course of this charging process, 

the charges have a fraction A. of their final charge at the 

end of this stage, the corresponding charge distributions 

will be denoted by pX(r) and uX(r). That is, 

(3) 

Similarly if;X(r) and if;0(r) will denote the potential 

at the stage A. and at the end of Stage I of this process, 

respectively. If no electrical saturation occurs,4 that is 

if at equilibrium each type of polarization is propor

tional to the local value of the electric field strength, 

then it can readily be shown that 

(4) 

To establish this equation the equilibrium relation

ships between P ., P u and E, which prevail during Stage 

I, will first be defined. If EX denotes the electric field 

strength, - "Vif;\ and if a. and au denote the polarizabili

ties associated with each type of polarization, then4 

(5) 

The same relation between P e and E will prevail in 

Stage II, but not that between P u and E. 

It follows from Eqs. (1), (2), (3), and (5) that the 

potential y;x is given by Eq. (6). 

4 Electrical saturation will be assumed to be absent, in the 
interest of simplicity. However, the two-stage charging process 
used here could presumably be applied to treat this more com
plicated case. A modification which treats one system ha'IJing local 
regions of saturated dielectric is described in a forthcoming paper on 
the theory of election transfer reactions. 

f 
A.p

0
d V f Xu

0
dS 

if;X= --+ --
1 r-r'l I r-r'l 

-f (a.+au)V'if;X · V-
1
--dV. 

lr-r'l 

Dividing by X we have 

if;X p0dV u0dS 

~=flr-r'l+ flr-r'l 

(6) 

-J(a.+au)v(y;x) · v-
1
-dV. (7) 

A. I r-r'l 

At the end of Stage I of the process, A.= 1 and if;=if;0• 

Thus, when A. equals 1, Eq. (7) becomes 

f 
p

0
dV J u0

dS 
y;o(r)= --+ --

J r-r'J J r-r'J 

-f(a.+au)\lif;0·V-
1
-dV. (8) 

Jr-r'J 

Now the electrostatic potential is a unique6 function 
of position. However, both if;X/A. and if;0 are seen from 

Eqs. (7) and (8) to be that potential which would be 

produced by the charge distribution, p0 and uO, in a 

system whose polarizability in the volume element dV 

is (a.+au). According to the uniqueness theorem, 5 

y;x /A. and 1/;0 must be equal. Equation ( 4) has therefore 
been established. 

The work done in changing the charge density of a 
volume element dV by an amount dpx is y;xdpxdv, and 

in changing the surface charge density of an area ele
ment dS by an amount dux is y;xduxds. The total work W 

done in either stage of the two-stage charging process 

may be found by integrating this over the entire system 

and over the change in the charges in that stage. Ac

cordingly, W is given by Eq. (9). 

w=J Jy;x~xdv+J Jy;x~~dA.dS. 
XV dA XS dA. 

(9) 

Introducing into this equation, Eqs. ( 4) and (3) for 

if;\ p\ and a\ and integrating it from A.=O to A.= 1, 
we obtain for the work done W r in the first stage of the 
charging process : 

W 1 =! J if;0p0dV+! J if;0u0dS. (10) 

(b) Stage II 

In this stage the charge distribution is changed from 

its value at the end of Stage I, p0 and u0
, to the value at 

the end of Stage II, which will be denoted by p(r) and 

5 Compare reference 3, pp. 100, 146. 
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u(r), say. At any stage X of this half of the charging 
process, the charge distribution will be designated as 
p"(r) and u"(r), given by Eq. (11). 

p"=po+X(p-po), 

u"=u0+X(u-u0
). 

(11) 

The fraction X increases from 0 to 1 during Stage II. 
The U-type polarization is held fixed at p u0(r) through
out Stage II. The E-type polarization P."(r) at the 
stage X is related to the electric field strength -'ill/;\ 
as in Eq. (5). 

Introducing these quantities into Eq. (2) for 1/; we 
obtain as the value of 1/; during Stage II 

f

PO+X(p-pO) JuO+X(u-uO) 
1/;"(r')= dV+ dS 

I r-r'l I r-r'l 

+f(Pu0-a.W")·'il-
1
-dV. (12) 

lr-r'l 

This potentiall/;" can be shown to depend linearly on 
X in the following way: We subtract Eq. (8) from Eq. 
(12) and observe that P u0 equals -au 'ill/1°. Dividing the 
resulting equation by X we obtain 

1/1"-1/lo f p-po f u-uo 
--= --dV+ --dS 

X lr-r'l lr-r'l 

(

1/;"-1/;0) 1 
- fa.'il -- · 'il--dV. (13) 

X lr-r'l 

Setting X= 1 in this equation it follows that 

1/1-1/lo=f p-po dV+f u-uo dS 

I r-r'l I r-r'l 

-Ja.'il(l/;-l/;0)·'il-
1

-dV. (14) 
lr-r'l 

It is seen from these equations that both (1/;"-1/;0)/X 
and (1/;-1/;0) are the potential which would be produced 
by the charge distribution, (p- p0

) and (u- u0), in a 
system whose polarizability in the volume element dV 
is a •. According to the uniqueness theorem these poten
tials are therefore equal. 

(15) 

Introducing Eqs. (11) and (15) into Eq. (9), inte
grating the resulting equation from X=O to X= 1, we 
obtain for the work done during Stage II, WII, 

WII=! f (1/1+1/IO)(p-pO)dV 

+! J (1/1+1/1°) (u--u0)dS. (16) 

The electrostatic free energy F is the total work done 
in the over-all charging process and is given by Eq. ( 17). 

F=Wr+WII 

This expression for F can be converted into a more 
useful form, giving F in terms of the properties of the 
final state of the system only, namely in terms of 
Pu0(r), E(r) and the field strength Ec(r) directly due 
to the charges. To do this we use an equation established 
in Appendix I 

where i denotes either the superscript 0 or no super

script, and j has a similar significance. The dot in the 

integrand indicates the dot product of the vectors. 
The quantity - E/ is the gradient of the potential 

directly resulting from the charges that is, it is the 
electric field strength which the charges would exert if 

they were in a vacuum rather than in a polarized 
medium: 

. [fpi(r')dV' fui(r')dS'] 
Ec 1(r)=-'ilr + , 

I r- r'l I r- r'l 
(19) 

where the integration is, as indicated by dV' and dS', 
over the coordinates of r' and not of r. From Eqs. (17) 
and (18) we obtain for F 

where P0 and P are given by 

(21) 

(22) 

Inasmuch as Ec0 and E0 are not characteristic of the 
final state of the system, but rather of the state of the 
system at the end of the first half of the charging 
process, it is desirable that they be eliminated from 
Eq. (20). To do this the following equation, established 
in Appendix II, will be used. 

(23) 
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Rearranging the terms of this equation we obtain 

f (P·Ec0-P0 ·Ec)dV 

= f (P·Eo_P0 ·E)dV 

= J { (P u0+a.E) ·Eo_ (P,.0+a.E0
) • E}dV 

(24) 

Remembering that E0= p u0/au, the desired equation 

for F can be obtained from Eqs. (20) and (24): 

f{ Ec·Ec (Pu )} 
F=l ---P·Ec+Pu· --E dV, 

471" Ciu 

(25) 

where P is given by Eq. (22) and the superscript 0 has 

been dropped from P u0
• 

Thus, the electrostatic free energy of a nonequilib

rium state having U-type and E-type polarization is 

given by the preceding equation. The expression is seen 

to depend on the known Pu(r) and Ec(r), and also 

upon E(r). The vector point function Ec(r) is calcu

lated from the known charge distribution according to 

Eq. (19). The electrostatic potential, and hence its 

negative gradient E, may be calculated with the aid of 

Eq. (2). To do this it is convenient to convert this 

integral equation for 1/; into a differential equation, and 

to specify the boundary conditions. This is done in a 

later section. 
In each problem of physical interest the U-type 

polarization function P u(r) must be computed by some 

method in order to calculate the electrostatic free energy 

according to Eq. (25). The method of computing P u 

will generally depend in part upon the nature of the 

particular problem. In some cases, for example, it will 

be shown that P u will appear as a solution of an equa

tion arising from the maximization of the free energy 

expression subject to certain restraints. This subject 

will be discussed in detail in later papers which will 

apply Eq. (25) to various physical and chemical 

problems. 
A more intuitive but less rigorous derivation of Eq. 

(25) for the electrostatic free energy is given in Ap

pendix IV. 
The derivation of Eq. (25) for the electrostatic free 

energy assumes that all contributions to the U-type 

polarization were originally in equilibrium with the 

same charge distribution. A less common case would 
be one where one contribution to the U-type polariza

tion was originally in equilibrium with one charge 

distribution, while the other contribution (if any) to 
the U-type polarization was originally in equilibrium 

with a different distribution. This problem can readily 
be handled, a three-stage charging process being used 

instead of a two-stage process, but appears to be of less 

physical interest and will not be treated here. 

In the application of Eq. (25) it is useful to express 

the polarizabilities, a. and au, in terms of dielectric 

constants. The polarization of an equilibrium system 
satisfies2 Eq. (26). 

D=E+47rP, (26) 

where D, the dielectric displacement, equals DE, D 

being the dielectric constant. It follows from this that 
P and E are related according to Eq. (27). 

47rP= (D-l)E. (27) 

Since P=aE, it follows that 

47ra=D-1. (28) 

When the electric field is either steady or slowly vary

ing, then D becomes the static dielectric constant, D,. 

Further, according to Eq. (5), under these conditions 

P= P u+ P e= (au+a.)E 

so that a of Eq. (28) becomes au+a •. Thus we have 

47r(au+a.)=D.-1. (28a) 

If, instead, an electric field alternates with a very 

high frequency, only the electronic polarization can 

follow the electric field. In that case, D of Eq. (28) 

becomes Dop, the optical dielectric constant, i.e., the 

square of the refractive index in the visible region of the 

spectrum, say. Further, P=P.=a.E then, so that a 

of Eq. (28) becomes a •. Thus we have 

47ra.= Dop-1. (29) 

On the other hand, when the E-type polarization is 
electronic plus atomic then Dop should be replaced by 

D;r, the optical dielectric constant in the infrared region 

of the spectrum, and we obtain 

(30) 

In the case of water, we have6 at 25°C D.= 78.5, 

Dop= 1.8, and D;r= 5.5. 

6 Collie, Hasted, and Ritson, Proc. Phys. Soc. (London) 60, 145 
(1948). 

t Note added in proof.-The charge distribution at the end of 
Stage I of the charging process, denoted by p0 and u", is a fictitious 
distribution used to produce the specified U-type polarization, 
Pu(r). By contrast, the charge distribution at the end of Stage II 
is the actual distribution of charges on the ions of the system. 
The complete charging process is performed at fixed configuration 
of these ions, though they may be uncharged in Stage I and 
charged up in Stage II. Thus the reversible work given by Eq. 
(25) was also performed at fixed configuration of these ions. 
There is therefore an additional free energy term which should 
be considered, namely the entropy term associated with the pre
liminary formation of this given uncharged configuration of the 
ions from a random configuration. Let ei, Ci(r), and c;0 denote the 
charge, the concentration, and the average concentration of ions 
of the ith species which make up the continuous volume charge 
distribution p(r); p(r) equals ~ieiCi(r). Then, this additional 
entropy term associated with the formation of the given con
figuration from a random one is the well-known excess entropy 
of mixing and is given by Eq. (25a): 

- k~.Jc;(lnc; 0 -lnc,O)dV. (25a) 

The total electrostatic contribution to the free energy includes 
this term and F given by Eq. (25). It is the sum of these two 
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Energy and Entropy of N onequilibrium Systems 

The form of the expression for the electrostatic energy 
and entropy of these nonequilibrium states will depend 
upon the nature of the U-type and E-type polarization. 
In most problems of physical interest theE-type polar
ization will be electronic and the U-type, atomic plus 
orientation. In the interest of brevity, the energy and 
entropy expressions will be derived for this case alone. 
Other cases offer no difficulty, however. It may again 
be remarked that it is the difference in electrostatic 
energy and entropy of two states which is of physical 
interest. 

When the E-type polarization is electronic, the 
U-type is atomic plus orientation polarization. There
fore, no rearrangement of atoms occurs during Stage II 
of the charging process since P u is held fixed. Since the 
process is performed at constant temperature, no change 
in the momentum distribution of the nuclei occurs 
either. There will therefore be no entropy change in 
Stage II. The corresponding energy change is therefore 
equal to the free energy change, Wn, and is given by 
Eq. (16). 

In Stage I, the system is of the conventional type 
electrostatically, and the electrostatic energy and 
entropy can be calculated in the usual way. Since Wr 
is the electrostatic free energy of an equilibrium system 
at the end of Stage I, the usual thermodynamic formulas 
can be applied, giving the energy and entropy in terms 
of derivatives of the free energy with respect to tem
perature. Accordingly, the electrostatic energy U I and 
entropy SI at the end of Stage I are given by Eq. (31). 

Ur= (aWr/T) SI= _ (aWI) 
a1jT Ec: aT Eco' 

(31) 

where E.0 is held constant in the differentiation. 
It is concluded therefore that the electrostatic energy 

U and entropy S are given by Eqs. (32) and (33), 
respectively. 

(
aWr/T) (awi) U= -- +WII=F-T -
a1/T Ec0 aT Ec 0 

(32) 

(
aWI) 

S=- aT E/ (33) 

where F is given by Eq. (25), WI is given by Eq. (10). 

terms, rather than F alone, which is the electrostatic free energy, 
F., say 

F.=F+kn;Jc;(lnc;-lnc;0)dV, (25b) 

where F is given by Eq. (25). In a very dilute solution c; equals c;0 

and F. equals F. 
Similarly the total electrostatic contribution to the entropy is 

the sum of the term in Eq. (25a) and of S given by Eq. (33) in 
the following section. In Eq. (32a) therefore the energy remains 
unaffected. 

The variation process performed in the subsequent section 
"The Equilibrium State" is performed at a given ionic configura
tion. 

With the aid of Eq. (18) this equation for WI can be 
converted to Eq. (34). 

WI=-! f (Pu+a.E0 -EN41r) ·ENV. (34) 

In calculating U and S from Eqs. (32) and (33), a 
knowledge of E.0 is necessary. If the charge distribution 
with which P u was in equilibrium is given, then Ec0 can 
be determined from Eq. (19). Otherwise it can be calcu
lated from the known Pu(r) and the known a. of each 
volume element. To do this the intensity of the field 
E0 (r) with which P u would be in equilibrium is calcu
lated from the relation E0=Pu/au. Next, the volume 
charge density p0 and the surface charge density u0 are 
calculated7 from this known E0 (r). The quantity E.0 

can then be determined from p0 and u0 using Eq. (19). 
Of particular interest in the application of these 

expressions to certain problems is the calculation of the 
difference in energy of two states, which differ in their 
charge distributions but have the same Pu(r), the same 
polarizabilities, and the same physical boundaries. This 
energy difference will generally consist of two contribu
tions: (1) a difference in internal electronic energy of 
the charged (ionic) particles and (2) a difference in the 
electrostatic energy of interaction of the charged parti
cles with each other and with the medium. It is the 
second difference which will be calculated here. This 
difference is the difference in the value of u r in the two 
states, where U r is the electrostatic energy of each state, 
as defined in Eq. (32), relative to the value it would have 
if the charged particles of that state were isolated and 
in a vacuum. If Wiso is the work required to charge up 
the state when it consists of charged particles in a 
vacuum, then Wiso is temperature independent and the 
electrostatic energy of that state, (aWiso/T)/(01/T) 
simply equals Wiso itself. Thus the quantity Uris given, 
according to Eq. (32), by the relation 

Ur=U-Wiso=F-T(aWI) -Wiso· (32a) 
aT Ec0 

In charging up systems to produce each of the two 
polarized states by the charging process used here, it is 
seen that WI will be the same in each case, since WI 
depends only on P u ( r). Accordingly, the difference in 
the (relative) electrostatic energy U r of two states 
having the same P u(r) but different charge distribu
tions is given by Eq. (35). 

.6Ur=.6F-.6Wioo• (35) 

The Equilibrium State 

It is of interest to verify that Pu(r) assumes its equi
librium value, auE(r), when the free energy expression 

7 The quantities p0, u", E0, and Pu are in "electrostatic equi
librium" with each other, so that the usual expressions for p0 and 
u" can be used. We have, for example,p0 = 'i7 ·Eo;4n-D=- 'i72,f'/4trD. 
Similarly, u" can be calculated from the surface divergence of E0 

at the interface. Compare reference 2, p. 254. 
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is minimized with respect to the vector point function 
P ,(r). A method which is somewhat similar to that 

described below will later be used in a theory of electron 
transfer reactions to determine the most probable con

figuration of various intermediate states. 
Using Eq. (25), the variation oF is first calculated and 

set equal to zero. The variation, performed at fixed 

charge distribution, i.e., at oE.= o, is given by 

Introducing the value of oP obtained from the variation 

of Eq. (1), 

oP(r) = oP ,(r)+oP .(r)=oP ,+a.OE, (36) 
we have 

oF=t J {(:"-Be-E) ·oPu 

-(a.Ec+Pu)·oE}dV=O. (37) 

However, oP" and liE are not independent variations, 

and are related in the following way. In Appendix III 

it is shown that 

f P·o(E-Ec)dV= f(E-E.)·oPdV, (38) 

where liE.=O in the present case. Introducing Eq. (36) 
for oP into this equation and rearranging terms we 

obtain as the relation between oP u and oE, 

Using this equation, Eq. (37) for oF becomes 

oF=! f (2
:." -2E) ·oPudV=O. (40) 

Since this equation must hold for all possible varia

tions of P u in each volume element it follows that in 

each volume element the coefficient of oP,. is equal to 

zero. That is, at equilibrium we find 

P,=a,E. 

Field Equation and Boundary Conditions 

(a) Field Equation 

(5) 

Using Green's theorem, Eq. (2) for the electrostatic 

potential'if;(r') can be rewritten as8 

f
p-V'·P Ju+P,. 

f(r')= ----dV+ ---dS, 
I r- r'l I r-r'l 

(41) 

where P,. is the component of P which is normal to the 
surface element dS, the normal being directed from the 

medium to the surface. 

8 Compare reference 3, p. 57, Eq. (44). 

A differential equation for the electrostatic potential 

1/;(r') may be obtained from Eq. (41) by operating on 

that equation with the operator v'r-2
• The subscript r' 

indicates that V' r'
2 involves differentiation with respect 

to the coordinates of r'. In this manner we obtain9 

\721f;= -41r(p- V'. P). (42) 

Introducing the relation P=P,.-o:.V''if;, we obtain the 
desired differential equation. 

(1 +47ra.)V2f= -41T(p- V' · Pu). (43) 

This equation reduces to Poisson's equation, V'21f; 
= - 41rpf D, when P u assumes its equilibrium value 

-a,. V''if; (for 1 +41Ta,+41rau equals D, according to 
Eq. (28a)). 

(b) Boundary Condition at an Interface 

1\.t any surface the boundary condition may be in
ferred from Eq. (41) by available methods. It is found 

to be10 

of of 
-+-=47r(o+Pnl+Pn2), (44) 
onl an2 

where 01/1/ on1 and Pn1 are the normal components of- E 

and of P, respectively, along a normal to the surface, 

the normal being directed from medium 1 to the surface. 

The corresponding quantities in medium 2 are desig

nated by the subscript 2. 
This equation can now be expressed in terms of the 

normal component of Pu in media 1 and 2, Pu,n1 and 

Pu,n2, say. We first observe that the relation between 

Pn1 and Pu.n1 is given by Eq. (45). 

Pn1 =Pe.n1+Pu,n1 

of 
(45) 

= -a.l-+ P u.n1 

anl 

where a:e1 is the value of a. in medium 1. An analogous 

equation exists for medium 2. Introducing these equa

tions into Eq. (44) we obtain the desired boundary 

condition, 

of 01/1 
(1 +41Taoi)-+ (1 +41Ta.2)-

onl on2 

=41T(o+Pu,nl+Pu,n2). (46) 

9 Compare reference 3, p. 93. In the expression given there, p' 

is to be replaced by 411"(p- V · P), 71
1 by 411"(cr+ P n), and JJ

1 is to be 
set equal to zero in order to obtain Eq. (42) of the present paper 
from Eq. (68) of that text, p. 96, using the method outlined there 
for differentiating twice under the integral sign. 

10 See reference 3, p. 97. To apply the method outlined there, 
we first note that the last term of Eq. (41) of the present paper is 
to be integrated over both sides of each surface. This term may, 
therefore, be rewritten as 

J { (u+Pn 1+Pn.)dS/!r-r'! }, 

where the integration is only over one side of the surface, either 
side, and 1 and 2 refer to the two media which form the interface. 
Equation (44) of the present paper may then be obtained by 
replacing '1 of Eq. (70), reference 3, by 411"(a+Pn1+Pn,), Their 
fJif>/8nt is our -i'Jift/<Jn1• 
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It is readily verified that this equation reduces to the 

customary equilibrium boundary condition when P u 

assumes its equilibrium value. 

(c) Boundary Condition for an Ion 

The boundary conditions and approximations com

monly used in equilibrium systems containing ions will 

first be discussed, and illustrated with a derivation of 

the free energy expression for an isolated ion and for 
interacting ions. Analogous conditions and approxima

tions will then be derived for nonequilibrium conditions. 

Ions are usually treated as spherical conductors. 

The boundary condition at the surface of a conductor 

and, therefore, at the surface of each ion is, for an equi

librium system :11 1/; is continuous at this surface, and 

further 

and 

J
ay; 

D-dS=47re 
an 

1/;= constant in each ion, 

(47) 

(48) 

where e is the ionic charge and al/;l an is the component 

of the electric field strength, E, along a normal to the 

surface, directed from the dielectric medium to the 
surface of the ion. 

When the system contains an isolated ion in a dielec

tric medium, it is readily verified that the expression 

for 1/; which satisfies the appropriate differential equa

tion in the dielectric (V'¥= 0), and which satisfies the 
above boundary conditions and the boundary condition 

that 1/; is zero at infinity, is given by Eq. (49). 

1/;(r)=eiDr, r?_a} 

1/;(r)=eiDa, r~a, 
(49) 

where a is the ionic radius. Calculating E, the negative 

gradient of 1/;, from this equation, the electrostatic free 

energy for this ionic system can then be shown to be 
given by Eq. (51), using Eq. (50) for the free energy of 

an equilibrium system. 

F=JE·EdV, 

S1rD 
(SO) 

(51) 

The usual Born12 expression for the free energy of 
solvation of an ion is then obtained by subtracting from 
this the value ofF in a vacuum, which is e2l2a according 

to Eq. (51) since the dielectric constant of a vacuum is 
unity. 

In the case of two ions which are separated by a dis
tance, R, the usual equation used for the free energy is 

e12 e22 e1e2 
F=-+-+-, 

2Dal 2Da2 DR 

11 See reference 3, p. 146. Their W>/an is our -<¥/an. 
12M. Born, Z. Physik I, 45 (1920). 

(52) 

where e1 and e2 are the ionic charges, and a1 and a2 
are the ionic radii. The first two terms are the solvation 

terms of the isolated ions [compare Eq. (51)], while 

the third term is, of course, the Coulombic free energy 

of interaction of the ions. An expression for the electric 

field strength E which yields Eq. (52) when introduced 

into Eq. (SO) is E=- V'l/;, where 1/; is given by 

e1 e2 
1/;=-+- r1?.at, r2?.a2 (53) 

Drt Dr2 

'~/;"'constant r1<a1 or r2<a2, (54) 

where 1/; is the potential at a point distant r 1 and r2 

from the centers of the ions. While this solution for 1/; 

does satisfy Laplace's equation, V'1f= 0, it will satisfy 

the boundary conditions discussed earlier only if the 

ions are essentially point charges. Clearly, for example, 

1/; given by Eq. (53) has an essentially constant value 

on the surface of the ion only when the ions are either 

very small or far apart. In fact, only under these condi

tions are Eqs. (53) and (54) mutually consistent. The 

approximation discussed here may be termed the point 

charge approximation, or perhaps more appropriately, 
the pseudo point charge approximation, since finite 

radii of the ions are used in Eqs. (53) and (54), and in 

the integration of Eq. (SO). 

It is readily verified that Eqs. (53) and (54) for 1/; 

satisfy the boundary condition given by Eqs. (47) and 

(48), when the point charge approximation is made: 

()if; I an is calculated from Eq. (53) and integra ted over 

the surface of one of the ions, ion 1 say. The contribution 

of the second term in the right-hand side of Eq. (53) 

to this surface integral is found to be zero when the ion 

is essentially a point, while the contribution of the first 

term to the integral is found to be %et/D. Adding these 

it is seen that Eq. ( 47) is satisfied. 

It follows from these considerations that the inter

action free energy of two ions is e1e2IDR only for point 
charges. 

In the treatment of ions in nonequilibrium dielectric 

media the same type of boundary conditions will be 

introduced. Integrating Eq. (46) over the surface of 

the ith ion, and observing that in a conductor Pun 

and En vanish, we obtain as the desired boundary 

condition, 

J(1+47ra,);:dS=47r(et+ JPundS) (55) 

'I/;= constant in each ion (48) 

where a., ay;l an, and Pun refer to the values of these 
quantities on the dielectric side of the iondielectric 
interface. It can be verified by using Eq. (28a) that 
Eq. (55) reduces at once to Eq. (47), when Pun assumes 
its equilibrium value, -audif; 1 an. 

For two (or more) ions interacting in a medium, the 

point charge approximation is introduced by treating 
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the surface of integration as a very small surface about 
the center of each ion, as in the equilibrium case. The 

values of dtf;/on and Pun at the surface are, as before, 
those which the medium would have if it extended up 
to the small surface. 

APPENDIX I. PROOF OF THE VALIDITY OF EQ. (18) 

used instead of r'. Interchanging the order of integra
tion in Eq. (61) we obtain 

rhs of Eq. (56)= Jp(r")I(r",r')dV" 

It will first be assumed and later proved that where 

+ J O'(r")I(r",r')dS", (62) 

f _r!j}_d V + f 17 

( r )_dS 

I r- r'l I r- r'l 

=-JEc(r2.v,-
1
-dV. (56) 

471" I r-r'l 

Equation (18) can then readily be established as follows: 
Using Eq. (56), Eq. (2) for the potential becomes, 

1/;(r')= JcP-Ec/471") · v,-
1

-dV. (57) 
I r-r'l 

Thus, the left-hand side of Eq. (18) is, upon changing 
the variable there from r to r' and introducing Eq. (57) 
for 1/;(r'), 

lhs= If (Pi-Eci/471"). v,-
1
-dVpi(r')dV' 

lr-r'J 

+J J (Pi- Ec;/47r) · V ,-
1 
-dV ui(r')dS'. (58) 

Jr-r'J 

This equation may then be written as 

J 
ui(r') } 

+ --dS' dV. 
Jr-r'J 

(59) 

It is seen from Eq. (19) for Eci that- V, operating on 

the term in brackets in Eq. (59) is simply E/ so that 
Eq. (59) becomes 

lhs=- JcP;-Ec;/47r)·EcidV. (60) 

This is simply the rhs of Eq. (18). 
It now remains to establish the validity of Eq. (56) 

in order to complete the proof. Introducing the defini
tion of Ec [Eq. (19)] into the rhs of Eq. (56) we obtain 

rhs of Eq. (56)=~jv) J p(r") dV" 
471" 1 I r-r"l 

+j cr(r") dS"l.v,-
1
-dV, (61) 

lr-r"l J lr-r'l 

where in Eq. (19) the integration variable r" has been 

1 J 1 1 
I(r",r')=- V, · Vr---dV. 

411" lr-r"l lr-r'l 
(63) 

The integral I(r",r') can be readily evaluated. The 
points r= r' and r= r" are first enclosed by small 
spheres of volume ~, and Green's theorem is then ap
plied to the volume of integration r- ~ outside of these 

spheres. We let r be infinite. Thus, 

1 f 1 1 
I(r",r')=-lim V, ·\7,---dV 

411" .....o ,_, I r-r"l I r-r'l 

1 {f 1 1 =-lim \7,---·dS 
4?r'__,o Jr-r"J )r-r'J 

f 1 1 } 
- \72--dV. 

·-· I r-r"l 1 r-r'l 
(64) 

The second integral is zero in the volume r- e since 

\72(1/ I r- r'l) equals zero there. The first integral is 
evaluated over every surface present. There is no con
tribution from the various physical interfaces since the 
integrand is continuous on each of these and its value 

on one side of an interface thereby cancels its value 
on the other side during the surface integration. It also 
vanishes on the surface at infinity. On the surface of a 
small sphere about r= r" it is readily shown that its 
value tends to zero as e tends to zero. On the surface 
of a small sphere about r= r', its value can readily be 
shown to tend to 47!" / I r"- r' I as ~ tends to zero. We 
may conclude then that 

I(r",r')=l/Jr"-r'J. (65) 

Introducing this into Eq. (62) it is seen that that 
equation is the same as the left-hand side of Eq. (56). 
The latter equation has therefore been established. 

APPENDIX II. TO SHOW THAT 
fP 0 • (E-Ec)dV=fP· (E 0 -Ec0)dV (23) 

Taking the gradient of Eq. (2) for 1/; and using Eq. 

(19) for Ec we obtain 

E(r')-Ec(r')= -v,,JP(r) · Vr-
1
-dV. (66) 

lr-r'l 

This is actually the contribution of the polarization to 
the field strength, E. Similarly, 

E0(r')-Ec0 (r') =- Vr'fP0(r) · Vr-
1
-dV. (67) 

!r-r'l 
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Introducing Eq. (66) forE- Ec into the left-hand side 

of Eq. (23), we obtain, using in the latter equation the 

integration variable r' instead of r, 

lhs of Eq. (23)=-J PD(r')·Y'r' 

X { JP(r) · Y'r-
1
-av}av'. (68) 

/r-r'/ . 

Interchanging the order of integration, bringing 

ro(r'). V' r' into the integral over v, this becomes 

-JP(r) · Y'r{JP0(r') · Y'r,-
1
-dv'}av. (69) 

/r-r'/ 

According to Eq. (67) this is simply JP(r) · {E0 (r) 

- Ec0 (r) }dV, the right-hand side of Eq. (23). 

APPENDIX III. TO SHOW THAT 
fP·o(E-E.)dV=f(E-E.)·oPdV (38) 

Taking the variation of Eq. (66) it is seen that the 

left-hand side of Eq. (38) is, using the integration 

variable r' instead of r in the latter equation, 

- JP(r') · Y'r'{ JoP(r) · Y'r-1_7"dV }av'. (70) 
\r-r I J 

Interchanging the order of integration, bringing 

P(r') · Y'r' into the integral over V, this term becomes 

-joP(r) · Y'r{JP(r') · Y'r,-
1
-dv'}av. (71) 

/r-r'/ 

With the aid or Eq. (66) this is seen to be foP 
· (E-Ec)dV, the right-hand side of Eq. (38). 

APPENDIX IV. ALTERNATIVE DERIVATION OF THE 
FREE ENERGY EXPRESSION, EQ. (25) 

A more intuitive but less rigorous derivation of 

Eq. (25) for the free energy will be presented in this 

Appendix. 
The free energy of interaction of a dipole, whose 

moment is l', with an electric field of strength E is13 

-tt·E. (72) 

If this dipole is an induced dipole, the work required 

to produce it is12 

(73) 

where ao, the polarizability, is given by tt=aoE. If the 
electric field is now turned off but the dipole moment 
is held fixed then there will remain a certain free 
energy F;, stored up in the dipole, given by the dif-

13 Reference 2, pp. 272-273. 

ference between Eqs. (72) and (73). 

F;=J.,Z/2ao. (74) 

Consider now a system consisting of a distribution of 

charges in a polarized medium. As before, the polariza

tion will be composed of two types whose contribu

tions are Pu(r) and P.(r). The free energy of the 

system as a whole may be regarded as the sum of the 
free energies of each volume element, considered iso

lated, and the free energy of interaction of all the 

volume elements. As previously mentioned,2 the polar

ization can be treated as a dipole moment per unit 

volume. Therefore, the free energy stored up per unit 

volume in one of these isolated volume elements due to 

the production of U-type and E-type polarization is 

(Pu·Pu/2au)+ (P.·P./2a.). (75) 

This follows from Eq. (74) by successively substituting 

there the relations tt=PudV and tt=P.dV and, respec

tively, ao=audV and ao=a.dV. The relations between 
the a's follow from their definitions. For example, we 

have ao=tt/E= P .dV/E= (P./E)dV =a.dV. 
The other contributions to the free energy of the 

system as a whole arise from various interactions. For 

example, the free energy of interaction of the E-type 

polarization of a volume element dV with the field 

arising from the U-type polarization of the entire 

system (field strength Eu, say), with that arising from 

all the charges (strength Ec), and finally with that 
arising from theE-type polarization of the entire system 

(strength E., say) is seen from Eq. (72) to be 

-P.· (Eu+Ec+E.)dV. (76) 

Similarly, the free energy of interaction of the U-type 

polarization of the volume element with the fields 

E,, Ec, and E. is 

(77) 

Finally, there is the free energy of interaction of the 

charges with each other. This term is the same as the 

corresponding quantity for charges in a vacuum, since 

the terms describing the interaction of the charges with 

the polarization have already been considered. An 

examination of the usual expression14 for the interac

tion of charges in a vacuum, and the definition of E< 

given in Eq. (19), shows that this term is, per unit 

volume, 
(78) 

The expression for the electrostatic free energy of the 

system is then obtained by summing all these terms 
and integrating over the entire volume of the system. 
In performing the integration several of these terms 

should be divided by a factor of two; otherwise, certain 
interactions would be counted twice. These terms are 

14 Reference 2, p. 275. 
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We thus obtain 

f{ Ec
2 

P,} P.2 
( E,. E.) 

F= -+-+--P.· Ec+-+-
87!" 2a,. 2a. 2 2 

THE JOURNAL OF CHEMICAL PHYSICS 

(80) 

The electric field strength E is simply the sum 

CK+Eu+E.). Introducing this and the relations, 

P.=a.E, P=P.+Pu, into Eq. (80) we obtain 

which is identical with Eq. (25). 
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The infrared absorption spectrum of CD 3F has been studied. Simultaneously, the infrared spectrum of 

CHaF was reinvestigated. Fundamental vibration frequencies for CD 3F were found together with Coriolis 

coupling factors for the three degenerate vibrations in CHaF and CDaF. The fine-structure analysis gave 

reliable values for the large rotational constants of CD 3F and CH3F. The structure of the methyl fluoride 

molecule is discussed. 

I. INTRODUCTION 

A T present, fundamental vibration frequencies for 

the three pairs, CH3X, CD aX where X= Cl, Br, 

and I have been reported in the literature1 together 

with data for CH3F.2
-

4 Fundamental vibration fre

quencies for CD3F represent, therefore, a very desirable 

supplement. In an attempt to produce these data, 

CD3F was prepared and its infrared absorption was 

measured. Also, the spectrum of CH3F was reinvesti

ga ted. Values of the frequencies of the parallel vibrations 

followed by direct inspection while the localization of 

the centers of the perpendicular bands necessitated a 

thorough analysis of the fine structure. Simultaneously, 

these analyses resulted in values for the small moment 

of inertia of CH3F and CD 3F and the Coriolis coupling 

factors for both molecular species. 

II. EXPERIMENTAL PART 

A. Preparations 

CHaF and CD 3F were prepared from CH3Cl and 

CD3Cl (synthesized by the method of N oether5
) and 

high-grade AgF. 6 The state of purity of the two methyl 

chlorides was checked by control of their infrared ab

sorption. In addition, a mass spectrometer run on 

CDaCl showed the purity of the sample to be well over 

1 G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand 
Company, Inc., New York, 1945), p. 315. 

2 W. H. Bennett, and C. F. Meyer, Phys. Rev. 32, 888 (1928). 
a K. P. Yates, and H. H. Nielsen, Phys. Rev. 71, 349 (1947). 
• J. Pickworth, and H. W. Thompson, Proc. Roy. Soc. (London) 

A222, 443 (1954). 
6 H. D. Noether, J. Chern. Phys. 10, 664 (1942). 
6 Andersen, Bak, and Hillebert, Acta Chern. Scand. 7, 236 

(1953). 

90%. -0.0057 mole CH3Cl (or CDaCl) was kept heated 

with 0.032 mole AgF ( 4.0 g) for 4 hours in a 250-ml 

sealed-off glass container at 225°C. After cooling, an 

infrared spectrum of the gaseous reaction mixture was 

taken which showed that about 20% of the methyl 

chloride (I) had not reacted. Furthermore, a small 

amount of a nonidentified compound (II) was detected 

together with a surprisingly large amount of carbon 

dioxide (probably originating from a reaction between 

the glass, the silver fluoride, and the organic com

pounds). The reaction mixture was analyzed on a 

SO-em dry silica-gel column (internal diameter: 4 mm) 

and Pt-wire detector at room temperature. Peaks 

corresponding to C02, methyl fluoride, and (I) were 

clearly visible. At a subsequent separation run (I) and 

(II) were removed quantitatively as demonstrated by 

the infrared spectrum. In a second separation run 

through the column all the C02 and part of the methyl 

fluoride was removed, which produced a final ("light" 

or "heavy") methyl fluoride completely free of C02. 

In spite of the somewhat wasteful separation procedure 

the final yield of highly purified product was 35%. 

B. Spectroscopic Procedure and the Spectra 

The spectra were taken on a Beckman IR 3 instru

ment with suitable optics (NaCl and LiF). The effec

tive slit width and the pressure applied will be given 

at the top of the tables containing the experimental 

results. The cell length was constantly 10 em. The 

absolute magnitude of our frequencies may deviate 

about ! cm-1 from the true values but apart from this 

or other kinds of systematic errors (such as those 

originating from our limited resolving power) it is 


