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Abstract: Understanding and controlling the nonlinear coupling in micro/nanomechanical resonators 
are of great importance to the exploitation of advanced devices. The recently observed electrostatic 
nonlinear parametric coupling is a very interesting topic. However, the theoretical model of the 
electrostatic parametric coupling still remains unclear. This paper explicitly derives the model and the 
electrostatically induced dispersive parametric coupling which reveals the ability of tuning the 
bifurcation topology of capacitive resonators is analyzed based on the multiple-time-scale method. A 
novel displacement-to-frequency transduction scheme based on this electrostatic dispersive parametric 
coupling effect is proposed. The transduction sensitivity is theoretically given, which indicates that this 
electrostatic dispersive transduction scheme can provide even more design freedoms than the existing 
displacement-to-frequency transduction scheme based on tension modulation. In addition, a bifurcation 
reversal effect is predicted in the strong actuated states of the dispersive parametric coupled system, 
which reveals the ability of tuning the bifurcation topology of capacitive resonators. 

Keywords: MEMS resonator, Modal coupling, Electrostatic nonlinearity, Multiple-time-scale method, 

Dispersive parametric coupling 

1. Introduction 

Micro- and nanomechanical resonators are widely used as the cores of timing [1,2], sensing [3–5], 
information processing [6,7], and quantum experiments [8,9], because of their abundant mechanisms of 
coupling with various physical fields. The mutual inter-actions between different degrees of freedom in 
micro and nanomechanical resonators have attracted great attention in recent years. Understanding and 
efficiently manipulating modal coupling effects are very important for developing novel devices and 
improving performance of the existing devices [7,9–12]. Modal coupling effects exist in many different 
mechanisms, such as mechanical linkages, dielectric coupling, tension-induced parametric coupling, 
internal resonance, electrostatic coupling and so on [13–19]. Modal interactions induced by nonlinear 
effects are of special interest, which take tension-induced parametric coupling as the typical 
representative [20,21]. Among the vibrating mechanical resonators with tension generated, the 
displacement of one mode can affect the others’ dynamics resulting from the stiffness hardening 
characteristic. The couplings usually consist of dispersive parametric coupling and dissipative 
parametric coupling, which corresponds to the affected resonant frequency and damping ratio, 
respectively.  

The dispersive parametric coupling caused by displacement-induced tension in resonators with 
clamped-clamped topology has been extensively studied. Ref. [13] demonstrated that the displacement-
induced tension coupling in a doubly-clamped beam resonator can detect the displacement of any other 
mode by measuring the response of one mode. Ref. [15] engineered a strain-coupled nanomechanical 
beam with a high degree of linearity between the frequency shift of the coupled modes. Ref. [18] 
revealed the emergence of both dispersive parametric coupling and dissipative parametric coupling in a 
micromechanical resonator embedded with a nanomechanical resonator. Ref. [23] realized 
mechanically induced transparency and mode cooling in a phonon cavity on account of strain-induced 
parametric coupling with a sufficient rate, simulated by solving the coupled-Van der Pol−Duffing 
equations numerically based on rotating frame approximation. Ref. [24] analyzed the bifurcation near 
the fixed points and derived the threshold of vibration coupling between the second and third modes of 
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an electrically actuated clamped–clamped microbeam caused by geometric nonlinearity. Though the 
aforementioned tension-induced parametric coupling is usually limited to clamped–clamped or thin 
film resonators and always negligible for most centrally anchored or bulk-fabrication-process 
resonators, they can provide great enlightenment for the research of other kinds of modal coupling. 

With the well-known stiffness-softening characteristic, electrostatic nonlinearity often occurs in most 
capacitive micromechanical resonators. Due to the existence of shared capacitance in these devices, the 
response of any mode (oscillator) can affect the electric potential energy of the whole system, so 
different modes (oscillators) might interact with each other. Recently, electrostatic-nonlinearity induced 
parametric modal coupling effect in a capacitive microelectromechanical ring resonator was observed 
[19], which also showed that the mode coupling strength can be dynamically tuned with great flexibility in 
the control of the coupling stiffness. This kind of nonlinear parametric coupling is regarded as a very 
efficient coupling and does not have topology restriction of the resonator, which is even more 
widespread than the tension-induced one. The following-up researches indicate that the same coupling 
can also be found on other kinds of capacitive resonators [25,26]. They analyzed the direction and 
range of the frequency shift as well as the location of the frequency hopscotch in the employed tuning 
fork resonator. Though the experimental results are substantial, the detailed theoretical model, more 
precise physical pictures, and potential intriguing applications are yet to be given for this electrostatic-
induced nonlinear parametric modal coupling. 

In this paper, we provide the thorough theoretical model for the electrostatic-nonlinearity induced 
parametric modal coupling effect. The explicit expressions of the frequency responses of the coupled 
modes are given. Numerical analyses based on those expressions are provided as well. The 
electrostatically-induced dispersive parametric coupling effect are perfectly simulated numerically. A 
novel displacement-to-frequency transduction scheme based on this electrostatic dispersive parametric 
coupling effect is proposed, and the transduction sensitivity is given theoretically. The ability of 
electrostatic dispersive parametric coupling to tune the bifurcation topology of capacitive resonators is 
shown by demonstrating a bifurcation reversal effect. This paper is organized as follows. In Section 2, 
the theoretical model for the electrostatic nonlinear coupling is developed, which is then solved based 
on the multiple time scale analysis. In Section 3, the electrostatic nonlinear coupling effect is analyzed 
based on the theoretical model, and a novel electrostatic dispersive parametric transduction scheme is 
proposed. A bifurcation reversal effect is predicted as well. Finally, this work is ended with a 
conclusion and outlook in Section 4. 

2. Theoretical Model for Electrostatic Nonlinear Parametric Coupling 

2.1. Coupling Model 

To introduce the electrostatic nonlinear parametric coupling that occurs in capacitive micro-electro-
mechanical resonators, we consider models depicted in Figure 1. Figure 1(a) shows two mechanical 
oscillators sharing a common capacitor biased with a constant voltage V0. The two oscillators can 
represent two distinct mechanical resonators [27], or two individual normal modes in a common 
resonator [19]. For the latter case, the modulation of the capacitive distance is equal to the 
superposition of the displacements of the two normal modes. In Figure 1(b), a flexible electrically-
charged micro/nano-scale rod, beam, or wire resonator [28–30] is placed near an oppositely-charged 
rigid base electrode. The charge on the resonator is approximately constant q. The superposed 
displacements of different normal modes in the resonator modulate the capacitive distance. 
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Fig. 1 Schematic of the micro/nano-mechanical systems that exhibit electrostatic nonlinear parametric 
coupling. (a) Two oscillators sharing a common capacitor biased with a constant voltage V0. The 
displacements of both oscillators will affect the capacitive distance and the direction of the arrow just 
indicates the positive direction we artificially specify. (b) Flexible electrically-charged micro/nano-
scale rod, beam, or wire resonator near an oppositely-charged rigid base electrode. The superposed 
displacements of different normal modes in the resonator modulate the capacitive distance. 
 

Here, we consider a two-modes system. The effective stiffness and mass of each mode are 
represented by kj and mj, where j = 1, 2 indicates the mode label. d0 is the capacitive distance at 
equilibrium when the capacitor is not charged. Xj indicates the effective displacement of the mode j. 
For the systems that the biased voltage is kept constant in Figure 1(a), the additional electrostatic 
potential energy is given by [19] 

 
( )

2
0 0

0 1 2
,

2
A V

d X X
−

+ +


      (1) 

where A is the effective area of the common capacitor, є0 is the permittivity of the vacuum. We suppose 
the resonators are characterized at high vacuum environment. For the systems that the charge is kept 
constant in Figure 1(b), the electrostatic potential energy is given by [31] 

 
( )

2

0 0 1 24
q

d X X

κ

π
−

+ +
，


 (2)  

where κ is a numerical factor of order unity that is related to the dimensions and shapes of the resonator 
and electrode. Here, we can just express the electrostatic potential energy in a general form 

 
0 1 2

C

d X X
−

+ +
， (3) 

where the factor C is given by Aє0V
2 
0 /2 for the constantly biased case or κq2/4πє0 for the constantly 

charged case. 
The Lagrangian of the coupled-two-modes system is given by 

 2 2 2 2
1 1 2 2 1 1 2 2

0 1 2

1 1 1 1 0.
2 2 2 2

C
L m X m X k X k X

d X X
= + − − + =

+ +
   (4) 

Substituting into the Lagrange’s equation, we obtain the dynamical equations of motion, 

 
( )

1 1 1 1 2
0 1 2

0,C
m X k X

d X X
+ + =

+ +

  (5) 

 
( )

21 2 2
2

2
0 1

0.C
m X k X

d X X
+ + =

+ +

  (6) 

When the electric voltage or charge are applied, a steady electrostatic force will cause an offset for the 

equilibrium position of the resonator. The new equilibrium positions X * 

j  of the two modes are given by 

 
( )

* *
1 1 2 2 2* *

0 1 2

.C
k X k X

d X X

= = −

+ +
 (7) 
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We define the new displacements from the new equilibrium positions xj = Xj − X
* 

j  and denote the 
capacitive distance at new equilibrium d1 = d0 + X

* 

1 + X
*  

2 . The nonlinear electrostatic restoring forces 
in (5) and (6) can be expanded into the Taylor series with respect to X1 and X2 at the new-equilibrium 
positions. By introducing damping and actuation terms, the equations of motion are further given by 
 ( ) ( ) ( )

2 32 1
1 1 1 1 1 2 1 2 1 2 d13 4 5

11 1 1 1 1 1

2 3 4 cos ,FC C C
x x x x x x x x t

mm d m d m d
γ ω ω+ + − + + − + =   (8) 

 ( ) ( ) ( )
2 32 2

2 2 2 2 2 1 1 2 1 2 d23 4 5
22 1 2 1 2 1

2 3 4 cos ,FC C C
x x x x x x x x t

mm d m d m d
γ ω ω+ + − + + − + =   (9) 

where ωj = (kj − 2C/mjd
3 
1 )1/2 indicates the angular resonant frequency considering the electrostatic- 

negative-stiffness effect, γj represents the damping rate of mode j. Fj and ωdj are the amplitude and 
angular frequency of the external force independently applied upon mode j. ωdj is very close to ωj. The 
above equations of motion with nonlinear coupling terms can fully describe the parametric coupling. 

2.2 Multiple Time Scale Analysis 

We solve those equations using multiple time scale method [32]. First, we define dimensionless 
variables T=ω1t*, u=x1/d0, v=x2/d0. a dimensionless small parameter є is introduced additionally. Most 
applicable micro or nano resonators usually possess high quality factors (Q = ω1/γ1) to obtain better 
performance. Q >> 1 holds for most of the cases. Thus, we can define є = 1/Q = γ1/ω1. The equations of 
motion (8) and (9) are nondimensionalized as 

 ( )2 2 2 2 2 3 2
1 1 1 1 1 d1( ) ( ) cos ,D u Du u v u v v u v f Tη α β+ + + + + + + = Ω      (10) 

 ( )2 2 2 2 2 2 3 2
2 2 2 2 2 2 d2( ) ( ) cos ,D v Dv v u u v v u v f Tη α β+ + Ω + + + + + = Ω      (11) 

where D = d/dT and D2 = d2/dT2 denote the differentiation operators, Ω2 = ω2/ω1, Ωd1 = ωd1/ω1, Ωd2 = 
ωd2/ω1, η1 = ω1/γ1, η2 = γ2ω1/γ 2 

1 , α1 = −2C/m1d
3 
1 γ 2 

1 , α2 = −2C/m2d
3 
1 γ 2 

1 , β1 = 3Cd0/m1d
4 
1 ω1γ1, β2 = 

3Cd0/m2 d
4 
1ω1γ1, ν1 = −4Cd

2 
0 / m1d

5 
1 γ 2 

1 , ν2 = −4Cd
2 
0 / m2d

5 
1 γ 2 

1 , f1 = F1/ m1 d0γ 2 
1 , f2 = F2/ m2 d0γ 2 

1 . 
Then, we define multiple time scales T0 = T, T1 = єT, T2 = є2T, ···. The solutions of the equations (10) 

and (11) can be expressed in the forms 

 ( ) ( ) ( )2
0 0 1 2 1 0 1 2 2 0 1 2, , , , , , ,u u T T T u T T T u T T T= + +    (12) 

 ( ) ( ) ( )2
0 0 1 2 1 0 1 2 2 0 1 2, , , , , , .v v T T T v T T T v T T T= + +   (13) 

Based on the Chain Rule, we have D = D0 + єD1, D2 = D
2 
0 + 2єD0 D1 + є2(2D0 D2 + D

2 
1 ). The higher 

order terms about є have been neglected. D
n 

m  (m = 0, 1, 2, n = 1, 2) denotes the n-th order 
differentiation operators with respect to Tm. Substituting (12) and (13) into (10) and (11), and then 
equating the coefficients of the like powers of є on both sides, we obtain 
Order є0 
 2

0 0 0 0D u u+ = , (14) 
 2 2

0 0 2 0 0D v v+ Ω = . (15) 
Order є1 
 ( )

22
0 1 1 0 1 0 1 0 02 0D u u D D u u vβ+ + + + = , (16) 

 ( )
22 2

0 1 2 1 0 1 0 2 0 02 0D v v D D v u vβ+ Ω + + + = . (17) 
Order є2 

 

( )
( )( ) ( ) ( )

2 2
0 2 2 0 1 1 0 2 1 0 1 0 0 1 0

3
1 0 0 1 1 1 0 0 1 d1

2 2

2 cos ,

D u u D D u D D D u D u v

u v u v v u v f t

η α

β

+ + + + + +

+ + + + + = Ω  (18) 
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( )
( )( ) ( ) ( )

2 2 2
0 2 2 2 0 1 1 0 2 1 0 2 0 0 2 0

3
2 0 0 1 1 2 0 0 2 d2

2 2

  2 cos .

D v v D D v D D D v D v u

u v u v v u v f t

η α

β

+ Ω + + + + +

+ + + + + = Ω  (19) 
The general solutions of (14) and (15) can be written in the form  
 ( ) ( ) ( ) ( )0 1 2 0 1 2 0, exp , exp ,u M T T iT M T T iT= + −  (20) 
 ( ) ( ) ( ) ( )0 1 2 2 0 1 2 2 0, exp , exp ,v N T T i T N T T i T= Ω + − Ω  (21) 
where M, N ∈ ℂ. The bar indicates the complex conjugation. Substituting (20) and (21) into (16) and 
(17) leads to 

 

( ) ( ) ( )

( ) ( )

2 2 2
0 1 1 1 0 1 0 1 2 0

1 2 0 1 2 0

2 2
1 1

2 exp exp 2 exp 2

2 exp 1 2 exp 1

2 | | 2 | |  c.c.,

D u u iD M iT M iT N i T

MN i T MN i T

M N

β β

β β

β β

+ = − − − Ω

   = − + Ω − − Ω   

= − − +  (22) 

 

( ) ( ) (

( ) ( )

2 2 2 2
0 1 2 1 2 1 2 0 2 0 2 2 0

2 2 0 2 2 0

2 2
2 2

2 exp exp 2 exp 2 )

2 exp 1 2 exp 1

2 | | 2 | |  c.c.,

D v v i D N i T M iT N i T

MN i T MN i T

M N

β β

β β

β β

+ Ω = − Ω Ω − − Ω

   = − + Ω − − Ω   

= − − +  (23) 
where c.c. denotes the complex conjugation of the terms in front. Suppose 1 + Ω2 and 1 − Ω2 are far 
from both 1 and Ω2, so they will not contribute the secular terms. Elimination the secular terms of (22) 
and (23) yields 
 12 0,iD M− =  (24) 
 2 12 0,i D N− Ω =  (25) 
which means that M and N are functions of only T2. We can further obtain the particular solutions of u1 
and v1 from (22) and (23) after the secular terms have been eliminated. We substitute the particular 
solutions of u1 and v1 and the general solutions (20) and (21) into (18) and (19), and eliminate the 
secular terms gives 

 ( ) ( )

2
2 2

2 1 1 1 2 2
2 2 2 2

2
2 1

1 2 1 1 12
2 22

2 22 2
32 2

2 22 3 6 exp 0,
1 2 1 2 24

MNN MNN M M
iD M D M i M

fM M MNN MNN
v M M MNN i T

η β

β β σ

 
− − − − + +  Ω − Ω Ω + Ω 
 

− + + − + + =  − Ω + Ω− Ω 
 (26) 

 ( ) ( )

2
2 2

2 2 1 2 2 2 2
2 2 2

2
2 2

1 2 2 2 12 2 2
2 2 2 2 2

2 22 2
1 2 1 2 3

2 22 3 6 exp 0,
24 1 2 2

MNM MNM N N
i D N D N i N

fN N MNM MNM
v N N MNM i T

η β

β β σ

 
− Ω − − Ω − + +  − Ω + Ω Ω 

 
− + + − + + =  Ω − Ω − Ω Ω + Ω 

 (27) 

where the detuning parameters σ1 and σ2 are introduced according to Ωd1 = 1 + єσ1 and Ωd2 = Ω2 +єσ2. 
Based on (24) and (25), we have D 2 

1 M=0 and D 2 
1 N=0, which can be further used to simply (26) and 

(27). 
To obtain the approximative solution, the secular conditions of the first order (24) and (25) and those 

of the second order (26) and (27) should hold simultaneously. We can expand those equations into the 
time scale of T, and combine (24) with (26) and (25) with (27), which gives 

 

( )

( )

2
2 2 2

1 1 2 2
2 2 2 2

2
2 2 2

1 2 12
2 22

2 1
1

2 22 2
32 2

2 22 3 6
1 2 1 24

exp 0,
2

MNN MNN M M
iDM i M

M M MNN MNN
v M M MNN

f
i T

η β

β β

σ

 
− − − + +  Ω − Ω Ω + Ω 

 
− + + − +  − Ω + Ω− Ω 

+ =

 

 

   (28) 
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( )

( )

2
2 2 2

2 2 2 2 2
2 2 2

2
2 2 2

1 2 22 2 2
2 2 2 2 2

2 2
2

2 22 2
1 2 1 2 3

2 22 3 6
4 1 2 2

exp 0.
2

MNM MNM N N
i DN i N

N N MNM MNM
v N N MNM

f
i T

η β

β β

σ

 
− Ω − Ω − + +  − Ω + Ω Ω 

 
− + + − +  Ω − Ω − Ω Ω + Ω 

+ =

 

 

   (29) 

We introduce polar notation to the complex amplitude of the first-order approximation 

 ( )1
| | exp ,
2
u

M iϕ=  (30) 

 ( )2
| | exp ,
2
v

N iϕ=  (31) 

where |u|, |v|, φ1, φ2∈ℝ. |u| and |v| are the first-order approximations of the nondimensionalized 
amplitudes of the working modes, φ1 and φ2 are the first-order approximations of the 
nondimensionalized phases of the working modes. Substituting (30) and (31) into (28) and (29), and 
separating the result into real and imaginary parts, we obtain 

 2 2
1 1

d | |sin 2 | |,
d

u
f u

T
ηΦ = +   (32) 

 2 2 3 2 2
1 1 1 1

1 1 dcos | | | || | 2 | | ,
4 4 d

f u u v u
T

σ
Φ 

Φ = − Λ − Π − − 
 

     (33) 

 2 2
2 2 2 2

d | |sin 2 | |,
d

v
f v

T
ηΨ = Ω + Ω   (34) 

 2 2 3 2 2
2 2 2 2 2

1 1 dcos | | | | | | 2 | | ,
4 4 dT

f v u v v σ
Ψ 

Ψ = − Λ − Π − Ω − 
 

     (35) 

where Φ = єσ1T − φ1, Ψ = єσ2T − φ2, and 

 
2

1 2 1
1 1 12 3 2

2 1 0 1

2 2 123 3 ,
34

C
v v

m d

β β β

γ
Λ = − − − ≈ − ≈

− Ω
 (36) 

 
2 2

1 1 1 2 1 2
1 1 12 2 3 2

2 22 2 2 2 1 0 1

4 4 4 4 246 6 ,
1 2 1 22 2

C
v v

m d

β β β β β β

γ
Π = − − − − − ≈ − ≈

− Ω + ΩΩ − Ω Ω + Ω
 (37) 

 
2

1 2 2
2 2 22 2 3 2

2 2 2 0 1

2 2 123 3 ,
4 1 3

C
v v

m d

β β β

γ
Λ = − − − ≈ − ≈

Ω − Ω
 (38) 

 
2 2
2 2 1 2 1 2

2 2 22 2 3 2
2 2 2 2 2 2 2 0 1

4 4 4 4 246 6 ,
1 2 1 2 2 2

C
v v

m d

β β β β β β

γ
Π = − − − − − ≈ − ≈

− Ω + Ω Ω − Ω Ω + Ω
 (39) 

The approximations in above expressions are made based on the assumptions that d1 ≈ d0 and the 
electrostatic frequency tuning is much smaller than the resonant frequencies, ω 2 

j ≫2C/mj d
1 
3 , which is 

true in practice. We can conclude that the third-order nonlinearity coefficients are dominant in this 
system. The steady-state response corresponds to d|u|/dT = d|v|/dT = dΦ/dT = dΨ/dT = 0, which 
corresponds to the solutions of 

 2 2
1 1sin | |,f uηΦ =   (40) 

 2 2 3 2 2
1 1 1 1

1 1 ,cos | | | || | 2 | |
4 4

f u u v u σΦ = − Λ − Π −     (41) 

 2 2
2 2 2sin | |,f vηΨ = Ω   (42) 

 2 2 3 2 2
2 2 2 2 2

1 1cos | | | | | .| 2 | |
4 4

f v u v v σΨ = − Λ − Π − Ω     (43) 

All the frequency responses of the coupled modes are described by (40)-(43). In this paper, we only 
interested in the amplitude-frequency responses. Eliminating the phase variables Φ and Ψ in (40)-(43), 
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we obtain the amplitudes |u| and |v| as implicit functions of σ1 and σ2. Then, transforming the 
dimensionless parameters to the practical ones, we obtain the displacement amplitudes of the modes 
|x1| and |x2|, which are implicitly given by 

 
22

2 3 22 21
1 1 1 1 1 2 1 1 1 12 5 5

1 1 0 1 0

3 6 2 ,F C C
x x x x x

m m d m d
ω γ γ ω δ

 
− = + +  

 
 (44) 

     
22

2 3 22 22
2 2 2 2 2 1 1 2 2 22 5 5

2 2 0 2 0

3 6 2 ,F C C
x x x x x

m m d m d
ω γ γ ω δ

 
− = + +  

 
 (45) 

where δ1 = ωd1 − ω1 and δ2 = ωd2 − ω2 are the detuning parameters of the driving forces. The 
amplitude-frequency responses of the coupled nonlinear modes can be simulated by calculating |x1| and 
|x2| with different values of ωd1 and ωd2. It should be noted that the results of frequency responses may 
contain unstable branches, which can be handled with various common methods [18,33,34]. Based on 
above results, the resonant frequency of one mode can be modulated by the vibration of the other mode. 
The frequency shifts of one mode caused by another mode can be explicitly given. We rewrite 
equations (44) and (45) into the forms of 

 
2

3 2 22 21
1 1 1 1 1 1 2 1 1 15 5 2

1 0 1 0 1

3 62 ,FC C
x x x x x

m d m d m
γ ω δ ω γ= − − ± −  (46) 

 
2

2 3 22 22
1 2 2 2 2 2 1 2 2 25 5 2

2 0 2 0 2

3 62 .FC C
x x x x x

m d m d m
γ ω δ ω γ= − − ± −  (47) 

In the square roots, the amplitudes of modes should satisfy |x1| ≤ F1/m1ω1γ1 and |x2| ≤ F2/m2ω2γ2. When 
both modes are at resonance, which indicates that amplitudes of both modes reach the maximum, the 
frequency shifts can be obtained by calculating the detunings δ1 and δ2 in equations (46) and (47) and 
applying the resonance conditions |x1| = F1/m1ω1γ1 and |x2| = F2/m2ω2γ2. The maximum frequency shift 𝛿መଵ of mode 1 caused by resonance of mode 2 and that 𝛿መଶ of mode 2 caused by resonance mode 1 are 
given by  

 
2 2

1 2
1 5 2 2 2 2 2 2

1 1 1 0 1 1 1 2 2 2

23ˆ ,
2

F FC

m d m m
δ

γ ω ω γ ω γ

 
= − +  

 
 (48) 

 

 2
2 1

2 2

2 2

2 5 2 2 2 2 2
1 0 2 1 12 2 1

23ˆ ,
2

F FC

m d m m
δ

γ ω ω γ ω γ

 
= − +  

 
 (49) 

respectively. 

3. Dynamical Analyses of the Electrostatic Dispersive Parametric 
Coupling 

3.1. Frequency Responses Analysis 

In this Section, we analyze the electrostatic nonlinear parametric coupling in typical capacitive 
electromechanical systems shown in Figure 2 based on the theoretical model of (44) and (45). Figure 
2(a) exhibits the schematic transient pattern of simultaneously actuated normal mode 1 and mode 2 of a 
resonator, a ring resonator is shown here for instance. Their displacements affect the capacitive gap in 
superposing form. Dispersive parametric modal interaction occurs when a nonlinear electrostatic 
potential is applied [19]. Figure 2(b) shows a more apparent example. Two oscillators actuated 
independently share a common capacitor that is biased with a constant voltage V0 produces dispersive 
parametric coupling as well. During above-mentioned cases, the vibrational displacement of one mode 
(oscillator) can influence the resonant frequency of the other mode (oscillator). 
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Fig.2 Typical systems that can produce electrostatic dispersive parametric coupling. (a) Schematic 
transient pattern of the simultaneously actuated modes 1 and 2 of a ring resonator [19]. (b) Schematic 
pattern of two distinct mechanical oscillators actuated independently sharing a common capacitor 
biased with a constant voltage. displacements of both modes (oscillators) contribute to the variation of 
the capacitive gap. Dispersive parametric interaction occurs when a nonlinear electrostatic potential is 
applied 
 

For instance, we consider a pair of modes (oscillators) labelled by 1 and 2 with typical parameters as 
follows: the resonant frequencies ω1 = 2π × 135,000 Hz and ω2 = 2π × 165,000 Hz, the corresponding 
damping rates γ1 = 2π × 1 Hz and γ2 = 2π × 2.5 Hz, and modal masses m1 = 5.8×10−9 kg and 
m2=4×10−9 kg. The electrostatic factor is given by C = Aє0V

2 
0 /2, where V0 = 30 V and the capacitive 

area is given by A = 5.65× 10−9 m2 [19].  
The two modes (oscillators) are actuated simultaneously. For the case considering different modes in 

a single resonator (Figure 2(a)), the co-excitation of two modes can be realized by applying two driving 
signals. The frequency of each signal should near the resonant frequency of the corresponding mode. 
Each signal should be applied to electrodes located at the non-node deforming parts of the 
corresponding mode to guarantee actuation efficiency. For the case considering different oscillators 
sharing common capacitor (Figure 2(b)). The co-excitation can be easily realized by independently 
actuating the two oscillators. Suppose the two modes are actuated by two electrostatic forces described 
by 

 

( ) ( ) ( )

( )

2 2d 0 d 0
d 0 0 d2 2

0 0

d 0 0 d
2
0

cos cos cos
2 2
2

cos ,

j j

j j dj dj dj j

j j

dj

A A
F t V V t V V t

d d

A V V
t

d

ω ω ω

ω

   = + − −   

=

 


 (50) 

where j = 1, 2. Vdj is the amplitude of the alternating current driving voltage applied to mode j. Adj is 
the effective area of the driving capacitive electrode of mode j. In the following analyses, we assume 
Adj = A for simplicity.  

If mode j is actuated while the other mode k is in free, which indicates that Fj ≠ 0 and Fk = 0. There 
is no frequency response in mode k because |xk | ≤ Fk/m kω kγ k = 0. While the frequency response of the 
mode j is given by 

 

22
2 32 2

12 5
0

,3 2j

j j j j j j j

j j

F C
x x x

m m d
ω γ γ ω δ

 
 − = +
 
 

 (51) 

which is the ordinary Duffing solution [32]. The amplitude-frequency responses of the solely driven 
modes 1 or 2 are depicted by Figure 3(a) or (b), respectively. Under the influence of the electrostatic 
potential, both modes show stiffness-softening Duffing responses, which just verifies the validity of the 
solutions obtained by the perturbation technique. 
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Fig.3 Amplitude-frequency responses of the solely driven (a) mode 1 or (b) mode 2 with different drive 
voltages simulated based on (51) 
 

3.2. Interaction Analysis and Electrostatic Dispersive Parametric Transduction 
Scheme 

Here, we study the simultaneously actuated cases. First, we consider the condition that both modes 
are weakly actuated so that both of them are not driven into the bifurcation condition [35]. Assume Vd1 
= 1 mV and Vd2 = 3 mV, the amplitude-frequency responses of modes 1 and 2 are functions of 
detunings δ1 and δ2, as shown in Figure 4(a) and (b), which are simulated based on (44) and (45), 
respectively.  

 

 
Fig.4 Simulated amplitude-frequency responses if the electrostatically coupled modes are weakly 
actuated. (a) Amplitude-frequency responses |x1| and (b) |x2|. 
 

It is observed that the displacement of one mode will cause a frequency dispersion to the other mode, 
which is very similar to the tension-induced parametric interaction found in the clamped-clamped 
resonator [13]. The difference is that the frequency shifts to lower values for this electrostatic nonlinear 
interaction, while the frequency shifts to higher values for the tension-induced nonlinear interaction 
[13]. In theory, this coupling is reciprocal and each one of the coupled modes can be selected to be the 
monitor or objective mode. But the mode with larger quality factor (Q = ω/γ) can possess lower line 
width and therefore higher resolution for frequency detection, so it is more appropriate for it to be the 
monitor mode. In this case, mode 1 (Q1 = 135 k) is chosen to be the monitor mode to detect the 
actuation intensity of the objective mode 2 (Q2 = 66 k) by monitoring the frequency shift. 

If we further increase the driving voltage of objective mode 2 to Vd2 = 18 mV while keep that of the 
monitor mode 1 unchanged, Vd1 = 1 mV. The simulated amplitude-frequency responses are shown in 
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Figure 5. The intensity of objective mode 2 is very clearly reflected by the resonant frequency of the 
monitor mode 1 shown in Figure 5 (a) and (c). Since the monitor mode 1 is weakly actuated, its back 
action to the objective mode 2 is relatively weaker, as shown in Figure 5 (b) and (d). These results are 
consistent with the experimental results in Ref. [19]. 

 
Fig.5 Simulated amplitude-frequency responses if mode 1 is weakly actuated while mode 2 is strongly 
actuated. (a) Amplitude-frequency responses |x1| and (b) |x2| if the driving frequency of mode 2 is 
changed from high to low. (c) and (d) are the results if the driving frequency of mode 2 is changed 
from low to high 

The aforementioned analytical results concerning electrostatic modal coupling establish foundation 
for displacement-to-frequency transduction. The theoretical model for this detection scheme is given 
based on coupling model (44) and (45). Applying the resonance condition |x1| = F1/m1ω1γ1 to the 
monitor mode 1, we have  

 
5 2

2 1 1 1 0 1
2 1 2 2 2

1 1 13 2
m d F

x
C m

ω γ
δ

ω γ
= − − . (52) 

Substituting (52) into (45), we obtain frequency modulation of the monitor mode 1 (δ1) as a function of 
the frequency detuning of the objective mode 2 (δ2) given by 

 

2 2

2

2
2 2

2

2
5 2

2 1 1 1 0 1
2 1 2 2 2

1 1 1
2

1 1 1 1
1 1 25 2 2 2

2 2 0 1 1 1
(

( )
3 2

9 2
2

)

F

m d F
m

C m
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m m d m

ω γ
ω γ

δ
ω γ

ω γ
δ γ ω δ

ω γ

+

= +− +

− −

.  (53) 

By using the weak actuation assumption of monitor mode 1 |x1| ≪ |x2|, equations (52) and (53) can be 
further simplified to 
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   
+ ≈ − − +       

. (54) 

That the equations (54) and (55) are equivalent to the Duffing solution (51) for j = 2. Above analysis 
indicates that the frequency modulation δ1 of the weakly driven monitor mode 1 is very good 
estimation of the power intensity |x2|2 of the objective mode 2. The detection sensitivity of this 
dispersive parametric transduction is given by 

 5
1 1 1 0

3
2

C
S

m dπω γ
= − , (55) 

which is calculated to be 46 Hz µm−2 for the current design. The variation range of the frequency 
modulation δ1 of the weakly driven monitor mode 1 are given by 

 
2 2 2

1 2 1
15 2 2 2 2 2 2 5 2 2 2

1 1 1 0 1 1 1 2 2 2 1 1 1 0 1 1 1

23 3
2 2

F F FC C

m d m m m d m
δ
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   
− + ≤ ≤ −      

   
. (56) 

The frequency modulation δ1 of the monitor mode 1 as function of the frequency detuning δ2 of the 
objective mode 2 with different actuation voltages are depicted in Figure 6.  
 

 
Fig. 6 Frequency modulation of the monitor mode 1 δ1 as function of the driving frequency detuning of 
the objective mode 2 with different driving intensities. Simulated based on (53) (a) δ1 if the detuning of 
mode 2 is changed from high to low and (b) is that from low to high 

 
The electrostatically-induced dispersive parametric coupling can be used to engineer a displacement 

transducer. The key part of this transducer is a particular designed monitor oscillator that is capacitively 
coupled to the objective oscillator. The power intensity of the objective oscillator can be measured by 
detecting the frequency modulation of the monitor oscillator. The dispersive parametric transduction 
sensitivity S given by (56) is only related to the parameters of the monitor oscillator and the coupling 
capacitance, which can be designed to obtain higher sensitivity. The dispersive parametric transduction 
sensitivity (56) can be further expanded for the constant-voltage biased or constant-charged conditions 
to SV and Sq, respectively, which are given by  

 
2 2

0 0 0 0 1
5 5

1 1 1 0 0 1

3 3
4 4V

A V A V Q
S

m d d kπω γ π
= − = −

  , (57) 
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where Q1 = ω1/γ1 and k1 =ω 2 
1 m1 are the quality factor and effective stiffness of the monitor resonator, 

respectively. 
To have a better sensitivity, the monitor resonator with higher quality factor, lower stiffness, and 

lower mass should be designed. The ideal design for the monitor resonator is the double-end-tuning-
fork, as shown by the oscillator 1 in Figure 2(b). For the constant-voltage biased condition, the 
capacitive gap should be reduced, the capacitive area should be increased, and the biased voltage 
should be increased. For the constant-charged condition, the capacitive gap should be reduced, the 
factor κ should be increased by optimizing the geometry of the monitor resonator, and the charge 
should be increased. 

3.3. Bifurcation Reversal Effect 

If the two modes are strongly excited to bifurcation states simultaneously, the characteristic of the 
coupling changes significantly, as shown in Figure 7. First, we drive mode 1 alone with a strong driving 
voltage of Vd1 = 4 mV to obtain a stiffness-softening bifurcation state, as shown by the blue curve 
corresponding to Vd2 = 0 in Figure 7(b). If we maintain the actuation condition of mode 1, while apply a 
strong drive (Vd1 = 22 mV) to mode 2 near its resonant frequency simultaneously, the amplitude-
frequency response of mode 1 changes with respect to the detuning δ2. Especially, there is a transition 
of bifurcation at the point δ2 = 0 from stiffness-softening type to the stiffness-hardening type. The curve 
ii in Figure 7(a) is depicted by the red curve in Figure 7(b), whose bifurcation is reversed compared 
with the original one (blue curve).  

 

 
Fig.7 Simulated amplitude-frequency responses of mode 1 along with the changes of driving voltage   
and detuning of mode 2. (a) shows the amplitude-frequency responses |x1| when driving voltages Vd1= 4 
mV and Vd2= 22 mV. In (b), the solid blue curve corresponds to the stiffness-softening bifurcation state 
of mode 1. Curve i is the transition point. Curve ii shows the bifurcation reversal effect of mode 1 with 
non-positive detuning δ2. The dotted lines exhibit the responses with reverse sweep. 

 
The sign transition of Duffing constant from negative to positive in Figure 7 demonstrates that by 

driving mode 2 with certain driving voltage and detuning, the nonlinearity of strongly driven mode 1 
can be restrained and even reversed. This indicates that we can extend the input range of one mode by 
driving another mode on resonance at high amplitudes, which reveals the possibility of linear 
transduction of very large amplitudes for capacitive electromechanical resonators. Similar phenomenon 
was observed by applying nonlinear electrostatic field to a stiffness-hardening clamped-clamped 
resonator [36]. This early reported bifurcation reversal effect depends on mode index and the amount of 
initial tension in a nanomechanical resonator. Here, we demonstrate that the bifurcation reversal can be 
realized by pure coupling method, which is independent of mode index. 



13 
 

4. Conclusions 

In this paper, we give the theoretical model for the electrostatic dispersive parametric coupling in 
detail. The solutions of the coupled nonlinear equations are obtained based on the multiple-time-scale 
analysis. By analyzing the amplitude-frequency responses of the coupled model, the dispersive 
parametric coupling effect is simulated. Based on this dispersive parametric coupling, a novel 
transduction scheme is explored. The sensitivity of this dispersive parametric transduction is given 
explicitly, which is only related to the design of the monitor resonator and the coupling capacitor and 
can be specially engineered according to the requirement of the sensitivity. This novel displacement-to-
frequency transduction scheme based on the electrostatic dispersive parametric coupling is totally 
different from the existing counterpart that is based on the tension modulation [37,38], which can 
provide even more design freedoms. This electrostatic dispersive parametric transduction scheme has 
the potential to be used for resonant accelerometers, gyroscopes and other MEMS devices. Moreover, 
the strongly actuated dispersive parametric coupling reveals the ability of tuning the bifurcation 
topology of capacitive resonators, and a bifurcation reversal effect is predicted. Future studies can 
investigate more detailed mechanism and experimental observations of the bifurcation reversal caused 
by electrostatic-field-induced modal interaction.  
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