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Abstract

This paper presents an advanced study including the design, characterization and theoretical

analysis of a capacitive vibration energy harvester. Although based on a resonant

electromechanical device, it is intended for operation in a wide frequency band due to the

combination of stop-end effects and a strong biasing electrical field. The electrostatic

transducer has an interdigited comb geometry with in-plane motion, and is obtained through a

simple batch process using two masks. A continuous conditioning circuit is used for the

characterization of the transducer. A nonlinear model of the coupled system

‘transduce-conditioning circuit’ is presented and analyzed employing two different

semi-analytical techniques together with precise numerical modelling. Experimental results

are in good agreement with results obtained from numerical modelling. With the 1 g amplitude

of harmonic external acceleration at atmospheric pressure, the system transducer-conditioning

circuit has a half-power bandwidth of more than 30% and converts more than 2 μW of the

power of input mechanical vibrations over the range of 140 and 160 Hz. The harvester has also

been characterized under stochastic noise-like input vibrations.

Keywords: vibration energy harvesting, electrostatic transduction, MEMS, mechanical

impedance, VEH, e-VEH, eVEH

(Some figures may appear in colour only in the online journal)

1. Introduction

Vibration energy harvesters (VEHs) catch mechanical energy

trough a spring–mass system and then convert the largest

possible fraction of this energy into electrical power.

To this end, electromagnetic, piezoelectric or electrostatic

transduction can be used, and sometimes a combination of

these. VEHs with electrostatic transduction (e-VEHs) display

interesting features that can make a difference with the

other transduction mechanisms. They are particularly suitable

for fabrication using silicon-based microelectromechanical

4 Author to whom any correspondence should be addressed.

systems (MEMS) technologies through a full batch fabrication

process [1–3]. Moreover, bulk crystalline silicon displays

repeatable elastic properties even under strong deformations

[4]. It can be used for the fabrication of nonlinear springs for

wideband VEHs. The main drawback of e-VEHs is that unlike

electromagnetic and piezoelectric VEHs they need to be pre-

charged in order to initiate the conversion process. Therefore,

in order to obtain a totally battery-free system, an electret or a

piezoelectric layer needs to be added [5, 6].

One of the main issues when designing a VEH is to

take into account a possible variability of the power spectral

density in time and frequency. However, many VEHs are

based on linear spring–mass systems and are optimized to
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work at specific frequencies. In such structures, power is

maximized only near the resonance frequency while vast

majority of applications require a wideband conversion of

vibration energy. The self-tuning of the operation frequency

has been proposed in [7–9]. These solutions are quite efficient

but require additional power for an active conditioning circuit

(CC). Oscillator arrays with different resonance frequencies

can also be used to obtain an overall response covering a larger

frequency interval. However, this will drastically decrease

the power density of a harvester [10–12]. Energy harvesting

employing multi-mass oscillators has also been investigated

in [13]. There is another approach that allows one to

extend the frequency bandwidth of MEMS-based resonators;

it consists in adding nonlinearities into their structure.

Nonlinearities can be of different origins: mechanical spring

softening/hardening at large oscillation amplitudes [3, 15–18],

multistable potential fields [14, 19–23], electrostatic

nonlinearities [24] or nonlinearities due to impact [25]. All

these techniques are particularly efficient for harvesting energy

from stochastic vibrations.

In 2006 we presented the first MEMS e-VEH based on

the in-plane overlap-plate geometry [1, 26]. This previous

design, in which silicon has been partially etched between

the electrodes to reduce the parasitic capacitance, is now

commonly used for e-VEH employing an electret layer.

This paper presents a new silicon-based e-VEH whose

variable capacitor is made of in-plane gap-closing (IPGC)

interdigited combs. The IPGC architecture was initially

proposed by Roundy [27], but we present here the first

device able to harvest a significant amount of power in

realistic conditions, i.e. moderate vibration frequency, level

of acceleration and bias voltage. In addition, due to the

combination of nonlinearities induced by mechanical stoppers

and by the high electromechanical coupling arising from an

applied bias voltage required for electrostatic transduction,

energy harvesting from wideband vibration is obtained. A

large half-power bandwidth of 30% has been measured, with a

roughly constant converted power of about 2 μW cm−2 below

200 Hz, all this for moderate bias voltage of 30 V and

acceleration of 1 g.

The paper is organized as follows. Section 2 presents

the results of the characterization of the capacitive

transducer. Section 3 discusses the analysis of the

coupled system ‘transducer-CC/mechanical resonator’, and

section 4 presents the measurements of the electrical

power converted by the system from the mechanical

domain.

2. Description of the MEMS variable capacitor

The studied e-VEH is a conventional silicon spring–mass

system with one degree of freedom [28, 29]. A movable

mass is attached to a rigid frame by four linear serpentine

springs. The electrostatic transducer is made of a gap-closing

interdigited comb. Mechanical stoppers between the mass and

the frame prevent the system from short circuits between

fixed and movable comb fingers. The fabrication process is

presented in figure 1. It is a full batch process that requires

Figure 1. Main process steps.

Figure 2. Front side and back side scanning electron microscope
(SEM) views of the silicon substrate after the DRIE. A lateral etch
of 0.8% is observed, leading to a trapezoidal shape of silicon beams.

only two lithography masks. An aluminum layer is sputtered

on a silicon wafer and then patterned by photolithography. It is

used as a hard mask to etch the movable part by deep reactive

ion etching (DRIE)–Bosh process in a 380 μm-thick doped

silicon wafer. Silicon etching is performed with a small slope,

resulting in a trapezoidal cross section of the comb fingers and

of the beam springs as shown in figure 2 [29]. After DRIE, the

silicon wafer is anodically bonded onto a glass wafer that is

used only as a handle wafer. Previously, the glass wafer has

been etched by liquid hydrofluoric acid below the mobile part

in order to allow the transducer to move. After dicing, each

e-VEH is glued onto a printed circuit board that is attached to

a vibrating shaker.
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(a)

(b)

Figure 3. Pictures of the transducer. (a) 3D view from
coventoreware, (b) photos with a SEM close-up view.

Table 1. Parameters of the tested e-VEH.

Parameters Value/Unit

Proof mass (m) 66 mg

Elastic spring stiffness (km) 68 N m−1

Mechanical resonance ( f 0) 162 Hz

Active area (mass + springs) 1.1 mm2

Initial gap between fingers (d0) 43.5 μm
Stopper location (Xlim) 36 μm
Load resistance (RL) 5.4 M�

Device thickness (hf) 380 μm
Fingers length (lf) 1.97 mm
Fingers width (wf) 30 μm
Fingers number (Nf) 142
Aspect ratio of sidewalls (α) 0.013

The design of the e-VEH is represented in figure 3(a). Its

main parameters are summarized in table 1 and some of them

are reported in figure 4 that shows a close-up schematic view

of the interdigited combs. The variable capacitance is obtained

by varying the gap between the movable and the fixed combs.

The movable comb is made of 142 fingers that are 2 mm long

with 1.97 mm overlap between the fixed and mobile fingers.

The designed transducer gap (at the mask level) is 40.5 μm

when no external acceleration is applied. Mechanical stoppers

are placed to contact the movable mass after its displacement

reaches 36 μm. The mobile mass is estimated to be equal to

Figure 4. Schematic of the transducer geometry.

66 × 10−6 kg, and the total area and volume of the active

parts (i.e. the area of the mass, springs and the comb fingers)

are 1.1 cm2 and 0.042 cm3 respectively. Pictures of the device

are shown in figure 3(b).

At this stage, it is possible to estimate the maximum

power of vibrations that can be converted by this

resonator independently of the electromechanical transduction

mechanism. This fundamental limit on power in the case of a

harmonic excitation is given by the formula [30, 31]:

Pmax = 1
2
AextωmXlimm (1)

where ωm is the frequency of vibration (rad s−1), Xlim is the

maximum amplitude allowed for the mobile mass and defined,

in our case, by the location of the stoppers (36 μm here),

m is the mobile mass and Aext is the acceleration amplitude

of external vibrations. Taking ωm = 2π × 150 rad s−1, and

Aext = 1 g (the limit used in this study), one obtains 11 μW.

This is the absolute limit achievable with the use of a

harmonic lossless resonator having an ideal electromechanical

transducer. It should be emphasized that equation (1) does

not define the input power of the system. This formula only

predicts the maximum power that can be transferred into the

resonator from the external vibrating frame. Note that if the

mechanical impedance does not match optimally, the injected

power will be below this value. We also note that the injected

power is ‘split’ into two parts: mechanical dissipation on the

resonator (squeeze film damping, thermoelastic losses, etc)

and mechanical power converted into electricity.

2.1. Dynamic capacitance measurement

Assuming negligible fringe fields and a constant slope due to

the DRIE undercut, a first approximation for the capacitance

of the transducer can be obtained by the integration of the

expression for the capacitance of a symmetric parallel-plate

capacitor whose gap is non-constant over one dimension [24]:

C(x) = N f

(∫ h f

0

εl f dh

d(h) − x
+

∫ h f

0

εl f dh

d(h) + x

)

=
εN f l f

2α
ln

[

(d0 + 2h f α)2 − x2

d2
0

− x2

]

(2)

where the sum in the parentheses is the capacitance between

one movable comb finger and its two adjacent fixed comb
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fingers, Nf is the total number of movable fingers, ε is the

dielectric permittivity of air, hf is the height of the silicon

substrate, lf is the length of the overlapping part of the

comb fingers, d0 is the gap between the fixed and movable

fingers measured in the non-deformed device at the top of the

comb, α is the ratio of the silicon undercut by DRIE. x is

the instantaneous displacement of the mobile electrode (with

regard to the non-deformed device shape). d(h) = d0+2hα

is the gap between the movable finger and fixed fingers for

an non-deformed structure: because of the undercut, it is a

function of the coordinate h defined in the direction orthogonal

to the substrate plane. With a minimum gap on top of 4.5 μm

corresponding to the stopper location, the theoretical nominal

maximum and minimum values of Cvar are 121 pF and 41 pF.

If the electrode edges were parallel with the nominal gap d0,

the maximum and minimum capacitances would be 221 pF

and 46 pF respectively.

The goal of the experiment is to measure the evolution

of the transducer capacitance over time when the device

is subjected to external vibrations. The extreme values of

the transducer capacitance Cmax and Cmin are of particular

interest for electromechanical energy conversion [1]. In the

considered device, the capacitance is minimal for the non-

deformed device (given that there is no misalignment of the

interdigited comb fingers). The measurement is carried out by

dynamical detection of the phase shift in a series RCvar circuit

to which a 200 kHz/1 V peak-to-peak ac signal is applied. The

capacitance is calculated as [1]:

Cvar =
1

tan(θ )Rω
, (3)

where ω is the angular frequency of the source signal, θ is the

phase shift between the voltage across the capacitor and the

voltage generated by the source. R and ω must be chosen to

maximize the accuracy of the Cvar measurement, i.e. with a

phase shift around π/4. The relative error of Cvar is given by

[1]:

�Cvar

Cvar m

= −2
Tsω

sin
[

2a tan
(

1
ωRCvar m

)] (4)

where Ts is the sampling period of the oscilloscope and Cvar_m is

the mean value of Cvar. According to the setup parameters (Ts =
10 ns, R = 5.6 k�), the mean value of the relative error of Cvar is

7%.

The capacitance variation measured at the external

acceleration amplitudes of 0.25 gpeak (at 160 Hz) and 1 gpeak (at

150 Hz) is shown in figure 5. For the lower acceleration,

the device has been excited close to its natural resonance

frequency, which is found to be 162 Hz. At 1 g, we measured

the capacitance in the middle of the band of interest as we will

see in the last section. At 0.25 gpeak, using a microscope, we

can optically validate that the stoppers do not reach the rigid

frame. The ratio Cmax/Cmin∼60 pF/50 pF. At 1 gpeak, while the

mobile mass strongly hits the frame (it can also be seen under

the microscope), the ratio increases to ∼98 pF/50 pF. These

given Cmax and Cmin values include the parasitic capacitance

of the packaging and the measurement set-up (Cp = 10 pF).

Since the stoppers hit the frame at high acceleration, the

exact amplitude of the mobile mass displacement is known.

Figure 5. Capacitance variation with time of the transducer for an
external acceleration of 0.25 gpeak (at 160 Hz) and 1 gpeak (at 150 Hz).

Thus, the measured value can be compared with theoretical

given by equation (2). The obtained net values of the transducer

capacitance (88 pF/40 pF) are less than those predicted by

the design (121 pF/41 pF). The error is particularly large

for Cmax. This is explained by the strong sensitivity of the

transducer capacitance with respect to x when x is close to

d0. The observed discrepancy with the theory for Cmax values

suggests that one of the geometric parameters is not achieved

fairly during the device manufacturing process. For example,

if the initial gap d0 is 3 μm larger than that was designed

(43.5 μm instead of 40.5 μm), the theoretical values given

by equation (2) are 90.1 and 39 pF (Cp not included), which

is very close to the values obtained by the measurement. It

corresponds to an additional undercut of 1.5 μm at the DRIE

mask level, and is a very plausible hypothesis. We keep this

corrected value of d0 for the simulation presented in the next

section.

The presented measurement of the transducer capacitance

was made using low voltage electronics. However, the

experiments involving electromechanical conversion require

high voltage (HV) electronics. HV electronic equipment

introduces a higher input parasitic capacitance. We estimate

Cp in these HV experiments about 20 pF: this value is used in

all simulations we present in the next sections.

3. Continuous-mode conditioning circuit

The role of a CC is to implement cyclic charging and

discharging of the capacitive transducer Cvar as required for

electromechanical conversion. In this work, the e-VEH has

been evaluated with a continuous mode CC. It consists of

a constant voltage source U0 permanently connected to one

terminal of Cvar while the other terminal is connected to

a resistive load [32] (cf inset in figure 10). In practical

harvesters, the voltage source is provided by a large pre-

charged reservoir capacitor (few microfarads), whose voltage

remains constant during an exchange of electrical charges with

a small transducer capacitance. Since the charge–discharge
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process is cyclic and the overall charge is conserved in the

circuit, on average, no energy is consumed from the reservoir.

For practical reasons, our experiments were done with a

voltage source: this substitution has no impact on the system

behavior. Due to the dc biasing of the RloadCvar circuit, the

variation of the transducer capacitance induces an ac charge

flowing through the load that dissipates the energy converted

from the mechanical domain. Depending on an application,

the resistor may be replaced by an electronic circuit that

will transform the harvested electrical energy into a form

appropriate for a load supply (e.g., as in [32–34]).

3.1. Behavior of the conditioning circuit

Below we give a discussion that provides an understanding of

the operation of this CC depending on the value of the load

resistance.

3.1.1. Rload = 0. This is an extreme case that corresponds

to an electrostatic transducer biased by a constant voltage.

Such a system has been thoroughly studied in the literature.

The transducer is equivalent to a nonlinear spring whose force-

displacement characteristic is given by the following equation:

Ft =
1

2
U2

0

∂Cvar(x)

∂x
. (5)

This force is added to the mechanical spring force. For a

gap-closing transducer, Ft increases with the displacement x

faster than linearly. Ft is attractive and acts in opposition to

the restoring mechanical spring force. Consequently, Ft leads

to an effective softening of the resonator spring and therefore

to a negative shift in the resonance frequency. The softening

effect depends on the vibration amplitude and is stronger if the

vibration amplitude increases.

When the capacitance changes from Cmin to Cmax, there is

an average current flowing though the transducer at each half

of the oscillation cycle. It is equal to:

Iav max =
2U0(Cmax − Cmin)

Te

(6)

where Te is the period of the transducer capacitance variation

(note that it can be different from the period of external

vibrations). Iav_max is the upper limit of the average transducer

current which can only be reached when Rload = 0. However,

the average converted power is zero for Rload = 0 since there

is no voltage variation across the capacitor.

3.1.2. Rload is small such that Iav max Rload ≪ U0. In the case

when Rload is such that Iav_maxRload ≪ U0, the voltage drop

across the resistor is negligible compared to U0. The voltage

across the transducer terminals can be considered equal to

U0. The power dissipated by the resistor is proportional to

the resistance value. From the mechanical point of view, the

context is exactly as in the previous case. However, since there

is a real power dissipated by the resistor, the converted power is

non-zero, although small. This electromechanical conversion

has a small impact on the mechanical dynamics of the system.

3.1.3. Rload is large such that Iav max Rload is of the same order

of magnitude as U0. This is the case of interest for energy

harvesters: a non-negligible amount of mechanical energy is

converted into the electrical domain and is dissipated through

Rload. As we shall see in the next section, the equation that

describes the system cannot be solved analytically for this

case. The real part of the transducer mechanical impedance

increases, and so does the converted power. In this case, the

presence of the resistor cannot be neglected in the analysis of

the mechanical behavior of the system.

3.1.4. Rload increased toward very large values. This is

another extreme case. The current through the resistor

decreases, and the charge flow between Cvar and U0 is impeded.

If Rload is extremely large, there is no current, the converted

power is zero and the transducer operates in constant charge

mode. In this case, the only influence of the CC on the

transducer is a frequency shift in the mechanical resonance

due to a phenomenon known as nonlinear electrostatic spring.

The electrostatic force is now given by:

Ft (x) =
1

2

Q2
0

C2
var(x)

∂Cvar(x)

∂x
. (7)

Here Q0 is the bias charge of the capacitor. In this context, Ft

is defined from the transient process described by the model

presented in the next section.

We note that the electrostatic force given by equations (5)

and (7) depends on the geometry of a transducer. For example,

for a gap-closing transducer with parallel walls, equation (5)

gives a non-zero function while equation (7) gives zero.

Since the studied device has a transducer with a geometry

resembling an ideal gap-closing transducer, we expect similar,

although not exactly equivalent, behavior. This is confirmed

by numerical simulations presented in the next section.

3.2. Modeling of the system

Similarly to all CCs for e-VEHs [33–35], the continuous

mode CC shown in figure 10 is nonlinear. The corresponding

ordinary differential equation (ODE) cannot be solved in

closed form and can only be studied using an ODE

solver (Matlab, Scilab, VHDL-AMS, VerlogA or other).

The mathematical model we used for this study is suitable

for VHDL-AMS/Eldo based simulation [36]. The system

dynamics are described in a three-dimensional state space

where the state variables are the instantaneous transducer

charge q, the displacement x and the velocity v. The differential

equations are derived from the mesh law describing the

voltages in a single mesh of the CC and from the Newton

law written for the resonator, when no impact occurs between

the mobile mass and the stoppers:
⎧

⎪

⎨

⎪

⎩

q̇ =
(

U0 − q

Cvar(x)

) /

Rload

v̇ = Aext(t) − k
m

x − μ

m
v + 1

m
Ft (x, v)

ẋ = v

(8)

Cvar(x) given by equation (2), Aext(t) is the time evolution of

the acceleration of external vibrations, m, k and μ are the

resonator lumped mass, stiffness and damping respectively. Ft

5
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is the force generated by the transducer on the mobile mass,

which can, in general, depend on the displacement, the velocity

and the transducer charge. The damping factor μ is related to

the intrinsic quality factor of the resonator connected to a zero-

biased transducer:

μ =
√

km

Q
(9)

where Q is the quality factor of the resonator. It should be

noted that our structure is tested under atmospheric pressure,

and the main origin of the damping is squeeze film damping of

the air layer between the transducer electrodes. In this model,

damping is supposed to be linear, but in reality it depends on

the amplitude of vibrations: the higher is the amplitude, the

stronger is the damping since the smallest is the gap between

the electrodes at the maximum displacement. In the analysis

presented in this section, we will give the value of an ‘effective’

quality factor for each simulation of model equation (8) by

fitting the model with the measurements. We have estimated

that Q ≈ 8.5 for small vibration amplitudes. For high vibration

amplitudes, the squeeze film damping is strong and the system

is nonlinear: hence, the quality factor notion is not applicable

to the system. However, we estimate the effective quality factor

of an ‘equivalent’ linear resonator to be Q ≈ 4.5: it provides

a correct prediction of the resonator vibration amplitude for

strong input acceleration, as it will be shown in figure 14.

In the absence of contact with the stoppers, the transducer

force Ft depends only on x and on the transducer charge q:

Ft (x) =
1

2

q2

C2
var(x)

∂Cvar(x)

∂x
. (10)

However, because of electrostatic instability, it is difficult

to use this model ‘as is’: during the transient process, an

amplitude overshoot may induce the pull-in phenomenon

forcing the simulation to crash. Hence, the stopper effect

should be modeled at least to limit the displacement of the

mobile mass and, ideally, to model the dynamics of the

impact process correctly. In our stimulations, we have used

the following model for the rebound force applied by each

stopper to the movable mass:

Fstop(x, v)

=
{

−kstop(d0 − dstop − x)sign(x) − μstopV, abs(x) > d0 − dstop

0 otherwise
(11)

where dstop is the minimal gap allowed between the transducer

electrodes by the stoppers, μstop and kstop are the damping

and stiffness of the stoppers. The dstop value is defined by the

structure design and is known a priori. Several studies have

addressed the estimation of μstop and kstop, and the fitting of

approximated analytical models appears to be the mainstream

technique [25]. We used 1 Ns m−1 for μstop and 104 N m−1 for

kstop.

3.3. Prediction of the optimal load and the harvested power

The power dissipated by a resistive load can be calculated as:

PRload =
1

t2 − t1

∫ t2

t1

U2
load

Rload

dt (12)

where Uload is the voltage on Rload related to the charge

q in equation (8) as Uload = q̇Rload. It is not possible to

calculate the integral in equation (8) in closed form. However,

this expression can directly be used for an experimental

measurement of the converted power. The output voltage

Uload is, in general case, alternating and non-harmonic. Two

techniques that we discuss below can provide an insight into

the link between the system parameters and the converted

power: mechanical impedance approach and charge–voltage

diagrams.

3.3.1. The mechanical impedance approach. The analysis

based on the mechanical impedance describes the dynamic

behavior of a mobile mass in the mechanical domain

by analyzing the mechanical contribution of a transducer

coupled with a CC accounting for nonlinear features of

these components [37]. The mechanical impedance of an

electromechanical transducer associated with a given CC can

be defined in the context of energy conversion systems. If the

mobile terminal of the transducer displays sinusoidal motion

with the amplitude X, and the transducer generates a periodic

electrostatic force with the same frequency but not obviously

sinusoidal (the transducer is nonlinear in general case), the

mechanical impedance of the transducer 
 t is given by [37]:

ψt = −
Ḟω

t

V̇
= −

Ḟω
t

jωmẊ
(13)

where Ḟω
t is the complex amplitude of the first harmonic

of the transducer force at a frequency ωm of the mobile

terminal displacement and the dotted X and V are the complex

amplitudes of the displacement and the velocity of the mobile

terminal respectively. It is very important to remember that,

since the system is nonlinear, 
 t depends on the amplitude X.

When the transducer is associated with a mechanical system (a

resonator), the actual complex amplitude of the mobile mass

vibration is given by the second Newtonian law expressed by

the following nonlinear algebraic equation [37]:

Ḟext = − [ψt (X ) + ψr] jωmẊ (14)

where Ḟext is the complex amplitude of the inertial force applied

to the mobile mass because of external vibrations [38] and 
r

is the mechanical impedance of the resonator.

If the amplitude of the resonator vibrations is known,

the converted power is immediately calculated through the

transducer mechanical impedance [37]:

Pconverted = 1
2
(ωmX )2 Re (ψt ) (15)

where ωm is the angular frequency of mechanical vibrations,


 t is the transducer impedance and X is the amplitude of

the mobile mass displacement. Note that equations (12) and

(15), which allow one to calculate the converted power in

the electrical and mechanical domains respectively, provide

identical value of converted power.

Figure 6 shows the charts of transducer mechanical

impedance calculated for three values of the bias voltage U0 for

the maximum amplitude allowed by the stoppers (36 μm)

when the resistance of the load changes from 100 k� to

500 M�. Several conclusions can be made based on the

analysis of the mechanical impedance:

6
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Figure 6. Mechanical impedance chart of the transducer-
conditioning circuit block versus load resistance. X = 36 μm,
R = 100 k�, . . . ,500 M�.

• The value of the impedance is linearly scaled as the square

of U0.

• As is expected, the imaginary part of the impedance

responsible for the electrostatic spring softening

phenomenon is positive. It is large for low values of the

load resistance and decreases at high values of the load

resistance.

• As the load resistance increases from low values to very

large values, the real part of the mechanical impedance

increases, reaches a peak value and then decreases. There

is an evident correspondence with the four typical cases

of Rload considered previously in this section (cf also

equation (15) giving the converted power).

• Since the impedance is calculated for a fixed amplitude of

the mobile terminal, the converted power is proportional

to the real part of the transducer impedance, according to

equation (15). For U0 = 30 V, it corresponds to 3.2 μW.

Figure 7 shows the real part of the transducer mechanical

impedance versus the load resistance. As can be seen from the

figure, the optimal Rload maximizing the converted power is

the same for all voltages U0 and is equal to 6 M�.

It is important to point out that the figures showing the

converted power that we present and discuss in this section

are valid under assumption that the amplitude of the mobile

electrode of the transducer is fixed and is known. Obviously,

the power calculated using this approach could increase

unlimitedly if the voltage U0 increases. This contradicts to the

realistic behavior of the system since the system, ‘transducer-

CC’ is analyzed separately from the dynamics of the resonator

in the mechanical domain. Such a ‘separate’ approach gives

an insight only into the properties of the electromechanical

conversion process. The actual displacement of the mobile

mass and the actual converted power can only be found from

equation (14) taking into account all components of the system.

3.3.2. The charge–voltage diagram approach. Charge–

voltage diagrams (QU) provide a good intuitive insight into the

Figure 7. Real part of impedance of the transducer-conditioning
circuit block versus load resistance. X = 36 μm, fm = 150 Hz, R =
100 k�, . . . ,50 M�. The resistance value corresponding to the
maximal power is 6 M�—the same for the three plots.

Figure 8. QU cycles for small (0.1 M�), optimal (6 M�),
intermediate (10 M�) and high (200 M�) values of Rload. X =
36 μm, U0 = 30 V, fm = 150 Hz. In dot lines are shown two
alternatives QU cycles which can be achieved with the same bias
voltage: constant charge (OBE) and constant voltage (OBD).

energy conversion process achieved by a capacitive transducer

[34]. Such a diagram is a trajectory of a capacitive transducer in

the space spanned by the state variables ‘charge Q’ and ‘voltage

U’. If the behavior of the system is cyclic, its QU diagram

is also a cycle whose area is equal to the energy converted

during one cycle. Figure 8 shows typical QU cycles of the

studied CC obtained assuming the maximum displacement of

the mobile mass (36 μm). The two extreme cases (Rload is very

small or very large), the maximum power case (Rload = 6 M�)

and a non-specific case for Rload = 10 M� are shown in this

figure. It can be seen that the cycles plotted for small and large

Rload (100 k� and 200 M�) are virtually degenerated into a

line, so that their area and hence the converted power is close

to zero.
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At this point, it is interesting to compare the operation of

this CC with a CC implementing a triangular constant-charge

QU cycle (e.g., as in [34]). During the constant-charge cycle,

the transducer is pre-charged to U0 when its capacitance is

maximal. Such a QU cycle is also shown in the figure 8 by

dashed lines forming the triangle OBE. It can easily be seen

that the constant-charge triangular QU cycle is much larger

than the QU cycle of the studied CC plotted for the optimal

Rload value. The power converted during the constant-charge

QU cycle is given by the formula [34]:

PconstQ =
1

2
U2

0 Cmax

(

Cmax

Cmin

− 1

)

fe. (16)

At the amplitude X = 36 μm, Cmax = 110 pF, Cmin = 59 pF

including a 20 pF parasitic capacitance, fe is the frequency

of the capacitance variation and is twice the frequency of the

mechanical vibrations fm (fm = 150 Hz for this simulation).

At U0 = 30 V, equation (16) gives 12.8 μW. The comparison

is less disadvantageous for the studied circuit if the latter is

compared to the constant-voltage triangular QU cycle also

given in figure 8 as the triangle OBD. In this case, the power

is calculated using the formula [34]:

PconstU = 1
2
U2

0 (Cmax − Cmin) fe. (17)

This formula predicts 6.9 μW of power.

For our circuit, the converted power calculated using the

real part of the impedance equation (15) at U0 = 30 V and

Rload = 6 M� (see figure 7) yields only 3.2 μW. As a result,

while the continuous mode CC is very simple to implement, its

theoretical performance is weaker comparing to other circuits

ensuring best power conversion scenarios. We note that the

power values calculated in this section are obtained without

accounting for the power available in the mechanical domain,

since the mobile mass vibration amplitude was assumed of a

given amplitude. Hence these values can be greater than one

given by equation (1), as it is the case for the constant-charge

CC.

3.4. Influence of nonlinear forces: resonator softening and

hardening behavior

In this section we discuss on the influence of mechanical

nonlinearities on the harvester behavior. The plot in figure 9

presents the typical mechanical forces acting on the mobile

mass in function of the resonator displacement. There are

three main forces: the spring return force, the stopper force

and the force generated by the electrostatic transducer. In

figure 9, we show two kinds of forces generated by the spring:

a linear restoring force (an ideal case) and a restoring force

with a third-order nonlinearity (a more realistic case). At low

displacement, these two curves are identical, and the third-

order nonlinear force becomes greater for large displacement.

This phenomenon is responsible for the resonator’s spring

stiffening effect well studied in theoretical mechanics (cf

study of Duffing resonator in [39]). The resonator stiffening

phenomena can be understood by considering that the stiffness

of the resonator is the average of the slope of the spring force on

the mobile mass trajectory (this is mathematically not correct

but roughly provides a good intuitive understanding of the

Figure 9. Typical sketch of different forces acting on the resonator.

observed phenomena). It can be seen that for nonlinear spring,

the average slope is larger than for a linear one. Moreover, the

average slope increases with the amplitude.

The stopper stiffness is much stronger than the stiffness

of the resonator spring. When the theoretical displacement

amplitude of the resonator is above the stopper location, the

spring restoring force is superposed with the bump stopper

force [25] and the average stiffness drastically increases. Then

the ‘stiffening phenomenon’ appears, leading to an increase of

the frequency of maximum mass displacement [40], similarly

to the case of the Duffing resonator.

The electrostatic force plotted in figure 9 is calculated for

a transducer biased by a fixed voltage U0. This is not strictly

correct for our circuit, since when the resonator moves, there is

a current which produces a voltage on the load resistance, and

hence a variation of the voltage on the transducer. However,

because of its complexity, this effect is neglected in the

below explanation, providing an intuitive insight into the

device physics. It can be seen that the plotted electrostatic

force is positive and is growing for positive displacements:

it means that this force models a negative stiffness [40].

When superposed to mechanical forces, electrostatic force

contributes to a softening of the resonator.

For small displacement, the slopes of the spring and

electrostatic forces are almost constant, and the negative

stiffness of the transducer is added to the mechanical

spring stiffness: the resonator is softened. For larger

amplitude inferior to the stopper position, these two forces

become progressively nonlinear and the resonator can be

softened or hardened, depending on whose slope of force-

displacement characteristic is the highest. This depends on the

resonator/transducer geometry and on the voltage applied on

the transducer. For very large amplitude, the resonator hits

the stoppers and is hardened because the stoppers are much

‘stiffer’ than any other forces.

We can note that there is one more nonlinear force acting

on the resonator: the squeeze-damping force. It contains a

dissipative term (i.e., dependent on the velocity) and an elastic

one (i.e., dependent on the displacement) [40, 41]. Both
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terms are amplitude-dependent, and they increase nonlinearly

when the resonator mobile mass comes close to the stoppers,

so contributing to the spring stiffening effect. The elastic

term has not been taken into account in this study, as the

nonlinear amplitude dependency of the dissipating term.

Instead, as mentioned previously, an effective constant quality

factor (obtained by fitting the experimental curves) has been

introduced in the model.

The main consequence of the softening and hardening of

the resonator is a variation of the ‘average’ resonator stiffness,

and hence of the actual resonance frequency. Since, as it is

explained above, the stiffening/softening phenomena depends

on the mobile masse amplitude and bias voltage, the resonator

can respond by high amplitude vibrations at frequencies which

are different from its natural resonance frequency. Moreover,

since the resonator amplitude has an influence on the resonator

resonance frequency, the whole frequency response can be

very strongly impacted by the nonlinearities. As it was shown

in other works, typical effects of spring stiffening due to

stoppers and to high order spring nonlinearity is an increase of

the resonator bandwidth [25, 42]. As shown by the experiments

described in the next sections, this is also true for the designed

resonator.

4. Measurement of converted power

The first set of measurements has been performed at

atmospheric pressure and at two levels of the external harmonic

acceleration amplitude Aext, 0.25 gpeak and 1 gpeak respectively.

It was observed that at Aext = 0.25 g the mobile mass does not

reach the limits defined by the stoppers: we call this regime

‘non-contact mode’. At Aext = 1 gpeak, the mobile mass hits the

rigid frame. The impact of the mobile mass and the stoppers has

been both observed under a microscope and confirmed by the

measurements. The second set of measurements presents the

behavior of the system under input stochastic noise vibrations.

The main goal of the experiments is to provide the relation

between the converted power and the parameters of the

experiment: the frequency, the initial voltage U0, the load

resistance and the input vibration amplitude. The output power

is calculated using equation (12), and the voltage is directly

measured across the load resistor employing a high input

impedance voltage amplifier. Since the goal of a capacitive

transducer in the context of energy harvesting is to convert

maximum power, all power measurements are carried out at

the frequency corresponding to the maximal power, unless

otherwise mentioned.

Prior to the measurements of the converted power, the

resonance frequency of the resonator as a function of the

applied bias voltage was studied. Figure 10 shows the value

of the external vibration frequency at which the harvested

power is maximal for bias voltages varying from 0 to 40 V.

As is expected, the spring softening effect typical for gap

closing transducers occurs when U0 increases, demonstrating

the possibility to tune the harvester over a large range of

frequencies, from its natural resonance f 0 to almost half

of it. This effect comes from the shape of the relationship

between the electrostatic force and the mobile electrode

Figure 10. Frequencies of the maximum harvested power with
respect to the bias voltage. The vertical bars represent the frequency
range corresponding to more than 90% of the maximum power.

displacement which is a function of U0 [40], cf the discussion

above in section 3.4. The formula describing the shift of

the resonance frequency associated with a parallel-plate gap-

closing transducer in small-displacement mode is given by:

f = f0

√

1 −
ke

km

= f0

√

1 −
C0U

2
0

kmd2
0

(18)

where C0 and d0 are the initial gap and capacitance and km is the

linear stiffness of the mechanical spring with d0 = 43.5 μm.

For the acceleration amplitude of 0.25 gpeak, the observed curve

can be accurately fitted using equation (18).

4.1. Operation without impact with stoppers (moderate

vibration amplitude)

All measurements presented in this sub-section have been

carried out at the 0.25 g external vibration amplitude. In this

mode, the amplitude of the resonator vibrations is smaller than

the transducer gap, and there is no impact with the stoppers.

For the first set of measurements, we looked for the

optimal resistive load. Figure 11 shows the converted power

PRload versus Rload for different applied dc voltages U0. The

optimum load is almost independent on U0 and is around

6–7 M�. The experiments at U0 = 10, 20, 30 and 40 V

have been modeled by equation (8) with the quality factor

Q = 8.5 (cf Section 2). The corresponding curves are also

shown in figure 11. They are in very good agreement with the

experiment except for the curve at U0 = 40 V. In this case,

the power given by the numerical simulations is overestimated

by about 25%. This discrepancy can have two explanations.

The first one is related to nonlinear damping of the air film

in-between the transducer electrodes. Indeed, the simulations

predict a slight increase of the vibration amplitude when

the bias voltage increases (from 20 μm for U0 = 10 V to

26 μm for U0 = 40 V). As is mentioned in section 3, when

the vibration amplitude of the mobile mass increases, the

squeeze film damping increases. Since this phenomenon is not

9
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Figure 11. Measured and calculated (with Q = 8.5) harvested power
with respect to the resistive load for an acceleration of 0.25 gpeak and
various bias voltages.

Figure 12. Maximum power harvested at the optimum frequency
defined in figure 10 for an acceleration of 0.25 gpeak and 1 gpeak with
respect to the bias voltage.

incorporated into equation (8) that uses a constant effective

Q-factor instead, there is an overestimation of the vibration

amplitude and, hence, of the converted power. The second

explanation of the discrepancy concerns the uncertainty on

the electrostatic transducer geometry used in the model. This

discrepancy could be negligible for low values of U0 and

small mass displacements when the electrostatic force is not

predominant, but it is not the case for high values of U0.

Figure 12 shows the maximum harvested power at optimal

Rload versus the bias voltage. As is expected, the power

increases as almost the square of U0 (actually it increases

as U0
1.9). However, at large U0 the power never exceeds some

limit which is posed by the fundamental formula equation (1).

There is a good match between the experimental figures and

the values of power predicted by numeric simulations of the

model equation (8).

The converted power measured during a frequency sweep

is shown in figure 13. With a pre-charge U0 up to 30 V, the

Figure 13. Harvested power measured for up and down frequency
sweeps at 0.25 gpeak for various bias voltages.

frequency sweep-up and sweep-down curves are identical.

But beyond 30 V, a hysteresis appears due to increasing

nonlinearities related to the electrostatic transducer. This

is a typical behavior for a Duffing oscillator. At 50 V,

irregular behavior is observed. At higher voltages electrostatic

instability takes place, and the mobile electrode sticks on the

stoppers.

4.2. Impact mode (strong vibration amplitude)

All measurements presented in these sub-sections have been

carried out at the external vibration amplitude of 1 g. With

such an input excitation, at the resonance frequency, the zero

bias voltage (i.e. only mechanical behavior is considered) and

the quality factor Q = 8.5, the theory predicts that the mobile

mass hits the stoppers. From the formula for the mobile mass

displacement:

X =
mAext

μωm

(19)

one can find that X is about 82 μm. Since the quality factor

is expected to decrease when the amplitude increases, lower

value of Q should be considered for modeling this large-

displacement mode. Therefore, the dynamics of the mobile

mass motion may be complex, and our analytical model is not

reliable anymore (in particular due to of unknown mechanical

parameters of the stoppers). Moreover, when the transducer is

biased, a nonlinear electrostatic force field is superposed on

the mechanical force field due to the resonator spring and to

the stoppers, yielding to a complex potential field [43].

Figure 14 presents the converted power versus the load

resistance at different U0. As is expected, the power increases

with the increase of the bias voltage, although there is a limit

observed at HV values, as in the similar experiment at Aext =
0.25 g. We assume that at this stage, the squeeze-film damping

provides a dominant contribution to the dissipation of power.

To take this into account, we reduced the quality factor to

4.5 in our model, and after this modification, the results of

numerical simulations fit well the experimental data for low

U0 (figure 14). Similar discrepancies between the simulation

results and the experiment as shown in figure 11 are observed

for high bias voltages.
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Figure 14. Measured and calculated (with Q = 4.5) harvested power
with respect to the resistive load for an acceleration of 1 gpeak and
various bias voltages.

Figure 15. Harvested power measured for up and down frequency
sweeps at 1 gpeak for various bias voltages.

Figure 15 shows the measurement of the converted

power when the frequency of external harmonic vibrations

is swept up and down. For small values of U0 up to

20 V, the frequency that corresponds to the maximum power

decreases when U0 increases. This may be explained by the

spring softening effect related to the presence of a biased

electrostatic transducer as is shown in figure 10 for 0.25 g

acceleration, whereas there is no impact with stoppers for

these voltages. Almost no hysteresis is observed, meaning

that the nonlinearities are not very strong: as we explained

in section 3.4, for average amplitudes, the mechanical

nonlinearity of the spring can compensate the nonlinearity

of the electrostatic transducer. Then above 20 V, the frequency

that corresponds to the maximum power increases. This, in

its turn, is explained by a spring stiffening effect, arising

from the impact with the stoppers and the effect of high

squeeze-film damping (cf section 3.4). At 30 V of applied

dc voltages, we observed a drastic increase of the bandwidth

toward high frequencies. The half-power bandwidth is 30% of

the central frequency, and the harvested power is above 2 μW

in the band. The power has roughly identical evolution when

the frequency is swept up and down, although small power

spikes are observed on the sweep-down curve suggesting the

beginning of irregular behavior of the mobile mass. From

35 V, the measured power curve becomes very irregular: it

is difficult to interpret the dynamic of the system considering

just a superposition of different factors studied above. At 50 V

almost no more power is harvested due to sticking of the

electrodes.

In the theory of nonlinear resonators (Duffing oscillators),

the softening/stiffening effects are often accompanied with

hysteresis in the frequency response. In our measurement,

virtually no hysteresis was observed up to U0 = 30 V. This is

probably due to the presence of a strong damping component

introduces by the squeeze film damping and the load resistance.

More generally, as described previously, many factors impact

on the system dynamic, and because of nonlinearities, it is

difficult to interpret their collective contributions. In particular,

two factors are difficult to model accurately: the stopper effects

and the squeeze film damping at large amplitude.

The 1 g curve in figure 10 shows the frequencies at which

the maximum power is converted. Compared to the similar

plot measured at 0.25 g, there is a range of frequencies (rather

than a point) corresponding to the maximum power. This is

because the frequency bandwidth in which the converted power

is maximal is enlarged, cf the plots in figure 15. The irregular

dynamics of the system at high bias voltages are confirmed

by the 1 g plots in figure 12. The instantaneous harvested

power varies over ± 10% for values of U0 around 30 V, as

demonstrated by the three sets of measurements.

The mechanical impedance method has been used to

validate the measurements and to theoretically predict the

converted power, rather than the model of the full system

equation (8). This choice is explained by the presence of

the impacts with stoppers: since there is no reliable model

of stoppers, equation (8) together with equation (11) cannot

accurately model the system behavior. However, since the

amplitude of the mobile mass is known at the impact mode, the

mechanical impedance method can immediately be applied.

We note that in reality, in the impact mode, the motion of

the resonator is not sinusoidal, because of the impacts with

stoppers. However, since there is a periodic external force and

a periodic motion of the resonator with the same frequency,

a hypothesis can be made on the fact that the first harmonic

dominates in the resonator motion. This allows an application

of the mechanical impedance method [37, 44]. Figure 12 shows

the estimated power using equation (15) and the maximum

values of the real part of the mechanical impedance from

figure 7. A good matching is obtained for values 10, 20 and

25 V. For 30 V the matching is less good (3.2 μW given by the

theory, 1.6–2.2 μW given by the experiment). Higher values of

the converted power predicted by the theory can be explained

by the fact that the mechanical impedance is defined for a

regular motion for a given amplitude. However, the dynamics

of the mobile mass are not fully regular at 30 V, and the

variable capacitor may not reach the maximum value at each

cycle. As a result, equation (15) provides the upper limit of

the converted power, and the difference between the measured

and calculated power is not surprising.
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Figure 16. Input excitation PSD for the experiment with stochastic
noise: band-limited colored noise with acceleration level of 1
grms distributed over a bandwidth of 160 Hz.

Figure 17. Power spectral density of the harvested power for the
color noise in figure 16 for various bias voltages.

4.3. Stochastic excitation

Figure 17 shows the response of the e-VEH actuated by

applying exponentially correlated noise whose characteristic

is shown in figure 16. The autocorrelation time of noise

is 0.01 s (i.e. cut-off frequency of 160 Hz). The total

acceleration level spread over this bandwidth is 1 grms, i.e.

the mean input acceleration power spectral density (PSD)

is ∼0.006 g2 Hz−1 below the cut-off frequency. At low

U0 (up to 20 V), the system behaves as a resonant mechanical

system. This can be seen from a well-defined maximum of the

converted power in the spectrum of the output electrical signal.

The peak of power occurs at the frequency roughly given by

equation (18) multiplied by 2. From 30 V, the bandwidth of

the spectral density of the harvested PSD starts increasing.

The maximum bandwidth occurs at 40 V, with the maximum

harvested power for vibrations around 50 Hz (the observed

spectrum peak frequency divided by 2). It can be seen that there

is only a small increase of the converted power between 30 and

40 V, for the same reason as in previous experiments. Figure 18

shows the total harvested power from noise vibrations at the

input (figure 16). It has been calculated as the integral of

the harvested PSD over the band [1 Hz–1 kHz] on the spectra

shown in figure 17. As expected, the converted power increases

as the square of the applied voltage, however, being very weak

Figure 18. Total harvested power with the input noise in figure 16
over the band [1 Hz–1 kHz].

(∼1 nW at U0 = 40 V). This can be explained by the fact that

only a small part of the input power belongs to the frequency

band in which the harvester is sensitive to the vibrations. In

this experiment, the mass does not touch the stoppers, and

because of the nonlinearity of the capacitive transducer, the

converted power falls dramatically when the mobile mass

amplitude decreases. The output power would be much higher

if the same total acceleration was concentrated in the effective

system bandwidth (i.e. 140–160 Hz) of the transducer.

5. Conclusion

We have presented a batch-fabricated MEMS e-VEH that has

a very large half-power bandwidth of more than 30%. This

is achieved by combining of two effects: electrostatic spring

softening induced by the bias voltage and spring stiffening

induced by the impact of the mobile mass with the rigid frame.

The device has been tested with a basic conditioning circuit.

This circuit has a complex behavior that has been studied

in detail in order to predict the optimal resistance of the

load. Our analysis is based on two methods. The first method

presented in our previous works is based on the mechanical

impedance, while the second method is based on the charge–

voltage diagram. The mechanical impedance method can be

used for any kind of VEHs with a large quality factor (>10),

while the QU cycle method is valid only for e-VEHs.

A behavioral model of the system has been used for

numerical simulations. There is a good correspondence

between numerical simulations and the experiments at

moderate external accelerations and bias voltages. However

the model becomes approximate for high acceleration

combined with high voltage. This can be explained by the

fact that two nonlinear phenomena have not been taken into

account in the model. For higher external accelerations, a more

accurate model of the MEMS geometry is required together

with a better model for nonlinear squeeze-film damping to

match simulation results with the experiment. In addition, a

discrepancy between the model and the experiment can be

explained by the irregular dynamics of the mobile mass that
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have not been included into the model and that modify the

effective magnitude of the mobile mass motion.

The MEMS device has an area of about 1 cm2. We

measured the maximum converted power of 2.2 μW at

atmospheric pressure for a 1 gpeak harmonic vibration at 150 Hz

and 30 V of bias voltage. This value is a lower than what

is predicted by the theory (3.2 μW). The device displays a

large frequency band of operation when excited with wideband

stochastic noise.

At this stage, it is interesting to see what part of the power

given by the fundamental limit equation (1) equal to 11 μW

was actually converted into electricity. As was mentioned, the

input mechanical power is split into two parts: power converted

to electricity and dissipated power. The former is 2.2 μW in our

system. The dominant dissipation mechanism is squeeze film

damping. The dissipated power can be estimated considering

viscous air damping with the measured Q-factor Q = 4.5 at

large displacements, The damping factor can then be estimated

as μ = mωm/Q = 0.014 Ns m−1, and the dissipated power is

P = 0.5(ωmXlim)2μ = 8.0 μW. We note that this estimation is

approximate, since at large vibration amplitudes squeeze film

damping cannot be considered as linear. The sum of the two

powers gives 10.2 μW, which is not far from 11 μW given by

the formula equation (1). In this way, the performance of the

presented structure is close to its fundamental limit. In order to

increase the converted power, air damping should be reduced

(the structure should be placed in vacuum), and the parameters

of the formula equation (1) should be increased, in particular,

the mass of the resonator.

Soliman [42] and Halvorsen [25] have already shown how

the impact of the mobile mass of a VEH can create a bi-stable

system and increase the bandwidth of the harvested power

toward frequencies higher than the natural resonance f 0 of the

device. A similar behavior can also be obtained using nonlinear

springs, for frequencies higher or lower than f 0 [16]. It is also

well known that applying a voltage across the electrodes of an

electrostatic transducer decreases its frequency of resonance.

In this paper, we have studied the influence of the bias

voltage on a silicon-based MEMS e-VEH with and without

contact of the mobile mass with mechanical stoppers. We have

observed that in contact mode, there is an optimum value of

the bias voltage corresponding to a drastic increase of the

bandwidth while keeping a maximum harvesting power for

both harmonic and stochastic vibrations. From U0 = 20 V, the

mobile mass enters progressively into multistable mode that

can be beneficial for harvesting power from stochastic noise.

The highest power and bandwidth are obtained for U0 = 30 V

when harmonic vibrations are applied. For the input in form of

low power colored noise, the optimal bias voltage is estimated

40 V.
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