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Abstract 

In this paper, the design, modelling and performance characteristics of electrostatically driven vacuum-encapsulated polysilicon 

resonators are addressed. A one-port configuration is preferably employed for excitation and detection of the vibration. 

Mechanical instability (pull-in) is discussed on the basis of the energy minimum principle. An expression for the pull-in voltage 

of a beam is given. The electromechanical behaviour in a limited frequency regime around the fundamental resonance is 

accurately modelled by an electric circuit consisting of a (static) capacitor shunted by a series (dynamic) RLC branch. The 

d.c. bias dependence of the circuit components and of the series resonance frequency has been experimentally investigated 

and is compared with the theory. The large-amplitude behaviour is discussed as well. The plate modulus and residual strain 

of boron-doped polysilicon are estimated from the resonance frequencies of microbridges of varying lengths. The feasibility 

of their application as resonant strain gauges is investigated. The 210 m long beams typically have an unloaded fundamental 

frequency of 324 kHz, a gauge factor of 2400 and an uncompensated temperature coefficient of -135 ppm ‘C-‘. 

Keywords: Electrostatic excitation and detection; Polysilicon resonators; Vacuum encapsulation; Equivalent circuit; Pull-in; Hard spring effect 

1. mroduction 

In the field of mechanical sensors, resonant sensors 

have proved to offer the highest resolution, performance 

and long-term stability at present [l-6]. They have 

traditionally been used in high-precision applications. 

The main feature of a resonant sensor is its frequency 

(shift) output, which is readily converted into a digital 

output signal. The central part of the sensor is a vibrating 

mechanical element called the resonator, which provides 

the frequency shift output. In order to eliminate res- 

onance frequency shifts due to physical (e.g., mass 

loading, dust, vapour adsorption) and chemical (e.g., 

corrosion) interactions of the resonator with the sur- 

roundings and, further, to attain a high mechanical 

quality factor, the resonator must be housed in an 

evacuated cavity. Recent work on local sealing, whereby 

the resonator is placed inside an evacuated microcavity, 
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defines a novel trend in the future development of 

resonant mechanical sensors [4,7-131. The resonator 

together with the surrounding shell can be considered 

as a resonant strain gauge, which replaces the more 

conventional piezoresistance strain gauge. 

In this paper, the design, theory and performance 

characteristics of vacuum-encapsulated polysilicon res- 

onating beams are described. The resonators are pref- 

erably operated in a one-port configuration based on 

electrostatic drive and detection mechanisms [14-191. 

As opposed to earlier designs [3-lo], this scheme does 

not suffer from disturbing frequency shifts due to ther- 

mally induced axial loads, it can be represented by a 

very simple equivalent circuit, it leads to a homogeneous 

resonator, thus eliminating built-in static moments, and 

to a minimum number of interconnecting wires (i.e., 

two) along with a rather simple layout structure. This 

paper forms Part II of a set of two papers dealing with 

electrostatically driven vacuum-encapsulated polysilicon 

resonators. Here, theory and performance issues are 

09&l-4247/94/$07.00 0 1994 Elsevier Science S.A. All rights resewed 
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mainly addressed, whereas Part I [20] focuses upon 

details of the fabrication process. 

high signal-to-noise ratio and a small influence of 

parasitic loads. 

2.2. Fabrication 

2. Design and fabrication 

2.1. Design 

A cross section of the basic structure of the resonator 

is shown schematically in Fig. 1. The resonator consists 

of a prismatic beam with a rectangular cross section 

and is housed in an evacuated cavity. Electrostatic 

excitation and detection is employed [14-191. From an 

electric viewpoint, the structure defines a four-terminal 

device. Both the one- [16,18,19] and two-port [7,9,14, 

15,171 approaches can be used for excitation and de- 

tection, as indicated by the driving schemes of Table 

1. In the one-port configuration either one of the two 

air-gap capacitors, as depicted in Fig. 1, can be used. 

In this configuration, a d.c. polarization voltage V, and 

an a.c. drive voltage v(t) are superimposed and applied 

to the resonator, while the other capacitor plate is 

grounded. In a two-port configuration, the resonator 

will be connected to the d.c. polarization voltage. Either 

the substrate or the cap can be used as the respective 

excitation or detection electrode. At the excitation site, 

an a.c. drive voltage is applied, while at the detection 

site an a.c. current is measured. It turned out that 

resonators configured as a one-port according to scheme 

Ia (see Table 1) gave the best results in terms of a 

Fig. 1. Schematic cross section of a vacuum-encapsulated flexural 

beam resonator depicted as a four-terminal device. 

Table 1 

Electrical driving schemes, indicating the terminal voltages of the 

structure depicted in Fig. 1, for both one-port and two-port config 

urations. The ‘null’ indicates the low-voltage terminal of the impedance 

measurement system and ‘gnd’ stands for ground potential. Further, 

VP indicates the d.e. polarization voltage and v(t) the ax. driving 

voltage 

Terminal One-port Two-port 

Ia Ib Ic Id IIa IIb 

1 VP++) null null Vp+v(t) gnd v(t) 
2 vP+V(t) Vp+V(L) null null VP VP 
3 null VP + v(t) V, + v(t) null v(t) gnd 

4 gnd Vp+v(t) VP++) gnd v(r) gnd 

Surface micromachining was used for fabrication. 

The resonators are 210-510 pm long, 100 pm wide 

and 1.5 ,um thick, with a gap spacing of approximately 

1.2 pm. The thickness of the sealing cap is approximately 

2.6 pm. Fine-grained polysilicon grown by low-pressure 

chemical vapour deposition (LPCVD) was used as a 

structural material and undoped plasma-enhanced 

chemical vapour deposition (PECVD) oxides were used 

as the sacrificial-layer materials. The conducting areas 

of the capacitor plates were defined by (local) boron 

implantation of the silicon substrate, the polysilicon 

beam and the cap. The electrodes are mutually insulated 

through thin LPCVD silicon nitride layers. Following 

removal of the sacrificial layers in HF and appropriate 

rinsing, freeze drying from cyclohexane was used to 

prevent sticking of the beams to the substrate (or to 

the cap). Evacuation of the cavity was achieved through 

reactive sealing with LPCVD silicon nitride. It is noted 

that the sealing material must have good insulating 

properties, otherwise the electric terminals labelled 1, 

2 and 3 in Fig. 1 will be short circuited. An SEM 

photograph of a sealed polysilicon resonator is shown 

in Fig. 2. Details of fabrication are presented in the 

accompanying paper [20]. 

3. Theory of the electrostatic one-port resonator 

A theoretical model is derived for resonators con- 

figured as one-port according to one of the schemes 

Fig. 2. SEM photograph of a sealed polysilicon resonator, 410 /.un 

long, 100 q~ wide and 1.5 q thick. The three bonding pads for 

electrical connection with the cap (upper), the bottom (lower) and 

the beam (right) are clearly visible. 
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Ia, Ib, Ic or Id of Table 1. The resonator is assumed 

to be a beam that is initially flat, prismatic, homogeneous 

and wide (i.e., b>%, where b is the beam width and 

h the beam thickness). A sketch of the resonator 

configured as a one-port type is shown in Fig. 3. The 

resonant beam is composed of a conducting material 

and defines the upper electrode. The lower electrode 

is stationary, has a rectangular shape and is concentric 

with the beam surface. It is noted, that, although the 

theory is developed for a one-port resonator, most of 

the results are directly applicable to two-port resonators 

as well. 

3.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStatic behaviour and @&in’  

A d.c. polarization voltage causes an attractive elec- 

trostatic force between the capacitor electrodes that is 

inversely proportional to the square of the gap spacing. 

This makes the force dependent on the deflection, 

leading to non-linear behaviour. For a beam subjected 

to a (tensile) axial force N, tbe static deflection profile 

w”(x) is governed by the following non-linear differential 

equation of equilibrium: 

gz d4wo(x) _N d~Yw) 
dx4 

- = qo(wO(x), K.-> 
dl? 

where g =E/(l - v’) is the plate modulus, and E and 

v are Young’s modulus and Poisson’s ratio of the beam 

material, respectively, Z is the second moment of inertia 

of the beam cross section, qo(wo(x),Vp) denotes the 

static electrostatic force per unit beam length as a 

function of position x and the d.c. polarization voltage 

V,, d is the zero-voltage gap spacing, e. is the dielectric 

constant of vacuum, S&y) is the spatial distribution 

function describing the active electrode area, i.e., the 

electrode overlap, and the integral limit b indicates 

that the integral must be evaluated over the entire 

beam width. To eliminate torsional deformations, the 

electrode overlap function S(x,y) is limited to symmetric 

patterns with respect to the x-axis. This allows one- 

dimensional modelling of the beam behaviour. An an- 

alytical closed-form solution of the above equation 

cannot be found and approximate methods have to be 

used. This can be done in several ways. One way is 

to solve the differential equation numerically based on 

an iterative process. Details of this procedure have 

been published elsewhere [19]. Other methods are based 

on the principle of stationary potential energy, also 

known as the energy minimum principle [21]. Tbe 

Rayleigh-Ritzmethod is such a method. An approximate 

solution Go(x) to the differential Eq. (1) is constructed 

in the form of a linear combination of admisstble trial 

functions: 

rio(x) = i$lai&(x) (4 

where ai are coefficients to be determined and g,(x) 

are admissible trial functions. The principle of stationary 

potential energy selects the ai of the a ssume d dis- 

placement field so as to superpose various trial functions 

in a way that most nearly satisfies the differential 

equation of equilibrium. The trial functions can be 

polynomials, mode shape functions, trigonometric func- 

tions, etc. The next step is to derive the total potential 

mergy and render it stationary in order to obtain the 

equilibrium position. If the non-linear energy term due 

to large deflections is ignored, the total potential energy, 

denoted by II, can be expressed as 

II=II(u,, 02 ,..., a,)=U,+U,+V,, (3) 

where U, and U,,, are the strain enero terms due to 

bending and to membrane stretching, respectively, and 

V,, denotes the potential energy of the electrostatic 

force qo(x, VP): 

Fig. 3. Schematic drawing of a beam (length 1, width b and thickness h) configured as a one-port resonator. The lower (stationary) electrode 

has a rectangular shape (length 1. and width b.) and is placed concentric with the beam surface. The beam itself is homogeneous and is 

composed of a conducting material. 
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(4) 

I 

=- ss SCGY) 

0 b d -t&U’i(~) 
4 C-LT (6) 

where I denotes the beam length. The principle of 

stationary potential energy now requires that at equi- 

librium XI/&z,=0 for all i. This yields values for the 

coefficients (I~, and using Eq. (2) the static deflection 

profile can be determined. More details can be found 

in [12]. 

The attractive electrostatic force qo(wo(x),V,) is in- 

versely proportional to the square of the gap spacing. 

The restoring force is formed by the bending and the 

membrane (or stretching) stiffness of the beam. At 

equilibrium, the electrostatic force is counterbalanced 

by the restoring force and the net force equals zero. 

An increase of the polarization voltage results in an 

increase of the electrostatic force, leading to an increase 

of the beam deflection and thus a decrease of the gap 

spacing. The latter decrease will lead to an additional 

increase of the electrostatic force. Or in other words, 

this is a system with positive feedback. As in any other 

system with positive feedback, a chance for instability 

exists which can be described as follows. If the po- 

larization voltage exceeds the so-called pull-in voltage 

VP,, the restoring force is no longer able to counter- 

balance the electrostatic force and the gap spacing 

immediately goes to zero; the system has become me- 

chanically unstable. Whether an equilibrium is stable 

or unstable is determined by the second variation of 

the total potential energy [21]. For a stable equilibrium, 

the total potential energy must be at a (local) minimum, 

implying that the second variation must be positive 

definite. If this condition is not satisfied, the equilibrium 

is unstable. As long as VP < VP,, the second variation 

is positive definite at the equilibrium position. If VP > VP,, 

the second variation ceases to be positive definite. The 

pull-m voltage is clearly a critical value. The second 

variation ceases to be positive definite exactly when 

VP = VpI. Thus, pull-m is defined as the condition where 

the second variation of the total potential energy equals 

zero. If the series expansion is truncated to one term, 

i.e., rt”(x>=algl(n), this condition can be expressed as 

a%Bl,= = 0. 

At the onset of pull-in, both the first and the second 

variation of the total potential energy are zero. If the 

series expansion is truncated to one term, i.e., 

a’(x) =ulgl(x), a straightforward analysis using the con- 

ditions all/&z, =0 and ~~II/&z~~=O, in conjunction with 

Eqs. (3)-(6), yields the following expression of the pull- 

in voltage [12]: 

I I 

1 
1R 

(7) 

J 

where a comma followed by the space coordinate x 

indicates partial differentiation with respect to x and 

nyr denotes the coefficient at pull-in, which can be 

obtained from the ‘following implicit equation: 

aI ss S(X,Yk lw  

[d-w&)13 dy dr 
1 S(%Y)&) -- 
2 Id-wM 

dy &=O*a,=a;’ (‘3) 

Note that the pull-in voltage not only depends on the 

axial force and the bending stiffness, but also on the 

active electrode area described by the function S&y). 

In general, it is found that the pull-in voltage increases 

with decreasing electrode area (see also Fig. 4), with 

increasing tensile axial load and with increasing bending 

stiffness. 

3.2. Admissible m’al functions 

Admissible trial functions are functions that are 

ditferentiable half as many times as the order of the 

system and satisfy the geometric boundary conditions 

of the problem [21,22]. If the natural boundary con- 

ditions are satisfied as well, the trial functions are better 

in the sense that fewer terms in the series expansion 

are needed to achieve a close agreement with the exact 

shape. Trigonometric functions turn out to be very 

convenient in solving the problem of a clamped-clamped 

beam. If the problem is restricted to symmetric electrode 

configurations with respect to the centre (x=1/2) of the 

beam, the following functions provide a suitable set of 

trigonometric trial functions: 

g&) = 1 - cos(Z?rx/!) Pa) 

Another convenient set of trial functions in solving the 

problem of a clamped-clamped beam is the mode shape 

functions or eigenfunctions of the beam, evaluated for 
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zero axial load (i.e., N=O) [11,12,21,22]: 

g,(x) = 1.259(coS(kiX) - cosh(k$) 

+ cOS(k,Q - cosh(kil) 

sinh(k,l) - sin(k,l) 
[sin(k,x) - sinh(k$)]} (9b) 

where the ki denote constants that are determined by 

the order of the mode (e.g., k,l= 4.730 for a clamped- 

clamped beam) [II], and the coefficient 1.259 is in- 

troduced for scaling purposes, such that g1(1/2)=2. 

3.3. Rectangular electrodes 

The analysis of a homogeneous (clamped-clamped) 

beam resonator with a rectangular electrode, having a 

length 1, and width b,, which is concentric with the 

beam surface, is of particular practical importance. For 

the special case where the active electrode area is given 

by the entire beam surface, i.e., l,=l and b,=b and 

thus S&y) = 1, the theoretical analysis is greatly sim- 

plified. If in addition the expansion given by Eq. (2) 

is truncated to a single term, the pull-in equations as 

expressed by Eqs. (7) and (8) apply. Simultaneously 

solving this set of equations leads to the following 

expressions for the pull-in voltage VP10 (the subscript 

zero indicates a uniform electrode) and the corre- 

sponding coefficient a:“: 

for l,=l and b,=b 

and 

w 

a:“ =c,d for l,=l and b,=b (11) 

where cl, c1 and cg are constants, depending on the 

choice of the trial function g,(x). Taking the trigono- 

metric shape given by Eq. (9a) as a trial function, the 

values are: c, = (1.92~0.6)1~ = 1.220, c2 = l/47?= 0.0253 

and c,=O.200. If the mode shape given by Eq. (9b) is 

used as a trial function, the following values for the 

constants are obtained: c, = 1.199, cz= n/12 = 0.0246 

(where y1 = 0.295 Ill], see also Eq. (21)) and c, =0.199. 

This example illustrates that the choice of the trial 

function has little influence on the resulting constants. 

It is evident that the maximum deflection w:, occurs 

at the centre of the beam and is given by wOmpX=2n,. 

Hence, the above indicates that pull-in occurs if the 

centre deflection approaches O&i. 

It is pointed out that more accurate results are 

obtained if more than one term is included in the series 

expansion. However, this implies tedious mathematics 

in order to reach a solution. The fact that the results 

obtained with the energy method using a single term 

in the expansion are in close agreement with the results 

obtained from a numerical iterative solution of the 

differential equation of equilibrium [19] justifies the 

truncation to a single term. Moreover, in the following 

section it will turn out that the theory based on a single 

term in the expansion and the experiments are in very 

close agreement. 

3.4. Dynamic behaviour 

For small motions about the equilibrium position, 

w(x,t) *d-w”(x), and for small a.c. voltages, v(t) *VP, 

the following linearized equation of motion can be 

derived [12]: 

1 
= - Eo 

2 

(12) 

Eqs. (lo)-(11) were derived for the special case where p denotes the specific mass of the beam material, 

where the active electrode area is given by the entire A= bh denotes the area of the beam cross section, 

beam surface, i.e., l,=l and b,=b. For partially over- w&t) denotes the deflection about the equilibrium 

lapping electrodes the results change (slightly). Fig. 4 position defmed by w”(x), v(t) denotes the a-c. excitation 

illustrates the effect a partial rectangularly shaped voltage and c the viscous drag parameter, which is used 

concentric electrode has on the pull-in voltage and on to represent damping. Viscoelastic material damping 

the maximum deflection at pull-in. The graph clearly is also easily accounted for by making Young’s modulus 

Id - 

Fig. 4. The normalized pull-in voltage, ,/bbcVPl/\lbVPlh and the nor- 

malized maximum deflection at pull-in, WD,.&d, w. the fractional 

electrode length 1,/l. It is noted that the maximum deflection at pull- 

in is independent of the fractional width be/b of the electrode. The 

results are obtained using trigonometric trial functions given by Eq. 

(9~4) and truncating the expansion of E?q. (2) to a single term. 

illustrates that the pull-in voltage increases with de- 

creasing electrode area. Further, at pull-in it is found 

that if 1, approaches zero, the normalized maximum 

deflection approaches l/3, i.e., the normalized deflection 

of a simple spring-mass system at pull-in [14,19]. 
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complex [ 121. This will not change the following analysis 

significantly and as a matter of convenience will be 

omitted here. The first term on the right represents 

the actual electrostatic driving force, whereas the second 

term represents an ‘enhancement force’ that is due to 

the electromechanical coupling. The effect of the en- 

hancement force is similar to the effect of the restoring 

force of an elastic foundation with a negative foundation 

modulus. 

3.5. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfundamental frequency: Rayleigh’s quotient 

The fundamental series resonance frequency o, can 

be obtained from Rayleigh’s quotient as follows [21,22]: 

2_ -0 

% - I 

s 

(13) 

P&,2(x) dx 
0 

where 4i(x) denotes the eigenfunction or mode shape 

function of the fundamental mode and Y denotes the 

linear differential operator associated with Eq. (12): 

(14) 

where k(x) denotes a spring constant that is clearly 

defined by the equation above. It is pointed out that 

the term -k(x) is added to the usual differential operator 

of the beam as a result of the electromechanical coupling. 

Further, it is noted that the eigenmodes are the 

solutions to the special eigenvalue problem [12,21,22] 

-E”[+(x)] =A&(x), where A denotes the eigenvalue 

corresponding to the eigenfunction 4. Using the bound- 

ary conditions of a clamped-clamped beam and intro- 

ducing Eq. (14) into Eq. (13), the Rayleigh quotient 

can be written as follows: 

(15) 

An exact value for the fundamental frequency is difhcult 

to obtain, since this requires an exact expression for 

the fundamental mode shape. It can be shown that 

Eq. (15) gives a good approximation for the fundamental 

frequency if, in place of 41(~), a function 6, is used 

that on the one hand satisfies the boundary conditions 

and on the other hand reasonably resembles the fun- 

damental mode shape [21,22]. Thus by using 4, in the 

Rayleigh quotient, an approximate frequency 0, is 

obtained. Further, it can be shown that 4 always 

provides an upper bound, i.e., &..o, [21,22]. 

3.6. The electric admittance equivalent circuit 

If the resonator is operated in a one-port configu- 

ration, the dynamic behaviour is fully described by the 

electric one-port admittance Y&J), where o denotes 

the driving frequency of the sinusoidal drive: v(t)=v 

exp(jwt>. The solution to the equation of equilibrium 

(12) is conveniently obtained using modal analysis [22]. 

Based on such an analysis, an expression for the ad- 

mittance can be obtained [12,18]. In a narrow frequency 

regime around the fundamental series resonance, Y(jo) 

can be approximated as 

where 

Co= ss EO ~ WY) dx dy 
d-w’(x) 

(17) 

:18) 

~OVPW) 

1 
2 

[d -w” (x)]’  
S(x,,y) b dy 

c,= ( 

ws2 

s 
d412(4 h 

0 

Co and C, denote the static and motional capacitan Ices 

(associated with the fundamental mode), respectively, 

and Q, denotes the quality factor associated with the 

fundamental series mode. The admittance given by Eq. 

(16) can be represented by the equivalent circuit shown 

in Fig. 5 (the inlIuence of an external parallel capacitor 

C, will be discussed in Section 3.7). Note that this 

same circuit is also used to model quartz crystals. The 

newly introduced circuit components are given by 

W’b) 

The static capacitance Co is a true electrical capacitance, 

whereas the R,L,C, series branch represents the me- 

chanical behaviour. In effect, the motional capacitance 

C1, the inductor L, and the resistor R, are functions 
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ift) ------------7 

l___________- 

Resonator 

Fig. 5. Equivalent circuit representation of the electrostatic one-port 

resonator applicable in a narrow frequency regime around the fun- 

damental mode. The capacitor C, represents an external parasitic 

capacitor. The static capacitance CO is truly electrical in nature and 

represents the capacitance of the (air)gap capacitor. The i&L1 C, 

series branch represents the motional behaviour associated with the 

fundamental mode. In effect, the motional capacitance C,, the inductor 

L, and the resistor RI are functions of the mechanical compliance 

of the resonator, the resonator mass and the mechanical losses, 

respectively 1121. 

of the mechanical compliance of the resonator, the 

resonator mass and the mechanical losses, respectively 

[12]. The subscript s stands for series, as opposed to 

parallel. Series resonance occurs if the inductor Li and 

the capacitor C, form a short circuit. The conductance 

(i.e., the real part of the admittance) displays a maximum 

at w= w,. As a consequence of C,, a parallel resonance 

frequency wP exists at a slightly higher frequency than 

0,. At o=o,> o, the resistance (i.e., real part of the 

impedance) displays a maximum. The parallel resonance 

frequency o,, is given by (in the absence of external 

parallel loads) 

(20) 

Oscillator circuitry can be designed to excite either 

resonance mode (series or parallel). It will be explained 

in the next section that the series resonance frequency 

is preferred as the frequency used to characterize the 

resonator. 

More precisely, the existence of two resonance fre- 

quencies is due to the electromechanical coupling. The 

mechanical characteristics are not solely determined 

by the mechanical parameters, but also by the conditions 

at the electric port. In this context, the series resonance 

frequency is the resonance frequency defined for con- 

stant-v (also indicated as ‘short-circuited’) conditions 

at the electric port (i.e., voltage drive), while the parallel 

resonance frequency is defined for constant-q (also 

indicated as ‘open-circuited’) conditions at the electric 

port (i.e., current drive), where q denotes charge. As 

a matter of fact, for the system considered here, three 

fundamental resonance frequencies can be defined: oP, 

W, and wl, where w1 is the resonance frequency of the 

system without electromechanical coupling (VP = 0), 

given by [11,12] 

where (Y, and y1 are constants that are determined by 

the boundary conditions (ol = 4.730 and y1 = 0.295 for 

a clamped-clamped beam). For a parallel-plate ca- 

pacitor, w1 and wP are the same and the number of 

fundamental resonance frequencies reduces to two. A 

more extensive discussion dealing with the effects of 

electromechanical coupling can be found in [12]. 

3.7. Dependence on d.c. bias 

The dependence of the series resonance frequency 

w,, the static capacitance Co and the motional capac- 

itance C, on the polarization voltage VP is expressed 

by Eqs. (15), (17) and (18), respectively. These expres- 

sions can be simplified and will become more math- 

ematically tractable if the polarization voltage is much 

smaller than the pull-m voltage. In this case, the static 

deflection w”(x) can be neglected compared to the gap 

spacing d. Assuming a rectangular electrode, which is 

concentric with the beam surface (see Fig. 3), leads 

to the following simplified expressions for the series 

resonance frequency w,, the static capacitance Co (only 

evaluated for the special case when the active electrode 

area is given by the entire beam surface, i.e., l,=r and 

b,= b) and the motional capacitance C,: 

for VP 4 VP,, I,=1 and b, =b (23) 

EoJ’P~A, 2 

= c c12p4 4 O'PK,,)' & for v < v 
-- 

w aI4 bl (c&JuJ x3 ’ ‘I 
(24) 

C, is defined by C,= e&d and A, denotes the active 

capacitor area, given by 

A,= 
ss 

W Y) dr dy -  b,k (23 

xl, x2 and x3 are shape factors, respectively given by 
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(26) 
(I + k)L2 

&W(X~Y) ‘-IX dy- I’ $ &w dx 
= (l-k)/2 

(27) 

where the surface integrals are evaluated over the entire 

beam surface and the expressions following the arrows 

are obtained for a concentric rectangularly shaped active 

electrode as shown in Fig. 3. The d.c. bias dependence 

is graphically illustrated in Figs. 6 and 7(a,b) for the 

series resonance frequency o,, the static capacitance 

C,, and the motional capacitance C1, respectively. As 

the approximate mode shape, Cl(x), the eigenfunctions 

of a clamped-clamped beam with zero axial load (N= 0) 

a_nd no electromechanical coupling (k(x) = 0) were used: 

+&)=g1(x)/1.259, where g,(x) _js given by Eq. (9b). 

Note that for this choice of 41(x) the shape factor 

1.0 - 

t 

s 0s. 

a 
0.6 
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I t (W 
l&0.1,05 

0 0.2 0.4 0.6 0.8 1.0 

VP/VP1 - 

Fig. 7. Normalized capacitances vs. the normalized polarizationvoltage 

VP/VP, with the normalized electrode length 1,/l as parameter. The 

dashed curves represent the approximations given by Eqs. (23) and 

(24); as an appmximate mode shape, b,(x), the eigenfunctions of 

a clamped-zkmped beam with zero axial load (N=O) and no elec- 

tmmechanical coupling were used: &(x)=g,(x)/l.259, where g,(x) is 

given by Eq. (9b). The solid cutves are obtained from a numerical 

solution of E!qs. (17) and (X?), using the same approximate mode 

shape for &(x) as before, and for the static deflection profile the 

trigonometric trial function was used: w”(x)=g,(x) where g,(x) is 

given by Eq. (9a). The reference capacitance is given by Cm = E&J./ 

d, and the pull-in voltage can be obtained from Fig. 4 in combination 

with Eq. {IO)). (a) The normaliid static capacitance C,/C,. The 

dashed cmve represents the approximation given by Eq. (23). The 

solid curves are obtained fmm a numerical solution of Eq. (17). (b) 

The normali motional capacitance C,/C,. The dashed cmves are 

obtained using the approximate expressions given by Eq. (24). The 

solid curves are obtained from a numerical solution of Eq. (18). 

"0 0.2 0.4 0.6 0.8 1.0 

VPIVN - 

Fig. 6. Predicted normalized series resonance frequency w/o1 vs. 

the normalized polarization voltage VpiVpl computed for a 

clamped-clamped beam and three diRerent electrode lengths 1,; w, 

denotes the fundamental resonance frequency of the beam without 

electromechanical coupling, i.e., V, = 0 (see also Eq. (21)). Note that 

the curves for the different electrode lengths practically coincide. 

The dashed curves represent the approximations given by Eq. (22), 

whereby as an approximate mode shape, &), the eigenfunctions 

of a clamped-clamped beam with zero axial load (iV=O) and no 

electmmechanical coupling were used: &(x) =g&)/1.259, where g,(r) 

is given by Eq. (9b). The solid curves are obtained from a numerical 

solution of Eq. (U), using the same approximate mode shape for 

&(.r) as before, and for the static deflection profile the trigonometric 

trial function was used: w”(x)=g&), where g,(x) is given by Eq. 

(9a). 

x3 = 1. For the static deflection profile, the first term 

of the series given by Eq. (2) using the trigonometric 

shape functions given by Eq. (9a) is used. The solid 

lines are obtained from a numerical evaluation of Eqs. 

(1.5), (17) and (18). The dashed curves indicate the 

approximations expressed by Eqs. (22), (23) and (24) 

which are only valid for small polarization voltages. It 

is seen in Fig. 6 that the series resonance frequency 

decreases with increasing VP. This effect has been 

recognized and experimentally observed by many au- 

thors in the past [9,14-16,18,19]. Both the motional 

capacitance C, and the static capacitance C, increase 

with increasing polarization voltage. If the polarization 

voltage equals the pull-in voltage, the series resonance 
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frequency is exactly zero and the motional capacitance 

C1 approaches infinity. 

In Fig. 6, the curves computed for the different 

electrode lengths I, practically coincide. In this context 

it is pointed out that the pull-in voltage is a function 

of 1, (see Fig. 4), which is reflected as a resealing of 

the horizontal axis. It is further pointed out that the 

parallel resonance frequency w,, given by Eq. (20) also 

decreases with increasing polarization voltage (not 

shown). The effect that V, has on the parallel resonance 

frequency is smaller, however. For a parallel-plate 

capacitor (and in the absence of any external parallel 

loads in addition to CJ there is even no influence of 

VP on oP at all. This suggests that the parallel resonance 

frequency would provide a better output signal for a 

sensing device than the series resonance frequency. 

The series resonance frequency, however, is less sus- 

ceptible to parasitic loads than the parallel resonance 

frequency. Note that w, (see Eq. (19a)) is independent 

of the parallel capacitors C, and C,, where the latter 

denotes a parasitic parallel capacitance (see Fig. 5). 

The only parasitics that affect the series resonance 

frequency are series loads, but these loads are easily 

kept very small, and are therefore ignored. The only 

parasitic loads that are of importance for the elec- 

trostatically driven resonator are parallel loads. The 

parallel resonance frequency is partly determined by 

the capacitance C,. This is easily seen from Eq. (20) 

by replacing C, by C,+C,. In effect, this means that 

in the case C, * C, and for small polarization voltages, 

the bias dependence of the parallel resonance frequency 

practically follows the bias dependence of the series 

resonance frequency, thus removing the advantage of 

the lower susceptibility of the parallel mode to the 

polarization voltage. In addition, if a parallel-mode 

oscillator is employed, the variations in parasitic parallel 

capacitances must be kept to a minimum in order to 

avoid an erroneous frequency output. The above dis- 

cussion clearly indicates that the series resonance fre- 

quency is generally preferred as the most suitable 

characteristic resonance frequency of the electrostat- 

‘For the special case of a parallel-plate capacitor, the following 

relations can be derived: 

and yz= %*( 1 -k,,2) 

where 

is the electromechanical coupling factor [12]. Tbe above equations 

indicate that in the absence of external loads (C,=O), the parallel 

resonance frequency equals the resonance frequency 0, of the system 

without electromechanica1 coupling, whereas for vety large parasitics 

(C, l C,) the three characteristic frequencies approach each other 

with a relative magnitude y<% <u,. 

ically driven resonator, in particular if the latter is 

employed as a resonant strain gauge for sensing ap- 

plications. 

3.8. Large-amplitude effects 

The resonance frequencies of a beam with rigidly 

fixed ends increase with increasing amplitude of the 

vibration: an effect known in the literature as the ‘hard 

spring effect’ [11,23,24]. Assuming a single degree of 

freedom, the amplitude of vibration W, at resonance 

can be obtained from the maximum (centre) static 

deflection w:, as follows: 

VW 

or 

y zQ,$; 
PW 

PI 

where v denotes the amplitude of the a.c. harmonic 

driving voltage and $ denotes the sensitivity of w”,, 

to changes in VP, defined by 

(30) 

Using a trigonometric trial function of the form given 

by Eq. (9a) and truncating the expansion of E!q. (2) 

to the first term, it follows that for small polarization 

voltages and for a uniform electrode (&=I and b,=b), 

the sensitivity + can be expressed as [12] 

2 WO 

llr= v,lv,,,Y (314 

I - ; c,z(vPlv,,,)* 

(3Ib) 

1 VP Z - c12 - 
4 VP10 

(31c) 

for VP 4 VpIo, I,=1 and b,=b. Both the ‘exact’ and the 

approximate forms of Eq. (31b,c) are shown in Fig. 8. 

For a uniform electrode (I= = I and b, = b), the amplitude 

of vibration at resonance can conveniently be expressed 

in terms of the resonance frequency o1 as follows (from 

Eqs. (lo), (21), (29b) and (31~)): 

w,, = 0.37Q,d F2 
PI0 

= 1.312,~ --& for I,=1 and b,=b (32) 
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Fig. 8. Sensitivity rj as detined by Eq. (30). The solid lines indicate 

the sensitivity obtained from a numerical routine for three different 

values of the electrode length. For the static deflection profile a 

trigonometric trial function was used, given by w”@)=gI(x), where 

g,(x) is given by Eq. (9a). The dashed lines indicate the approximate 

expressions given by Eqs. (31b,c), which were derived for the special 

case where the active electrode area is given by the entire beam 

surface, i.e., [.=I and b,=b. 

From the analysis presented in [ll] in conjunction 

with Eq. (29b), the dependence of the resonance fre- 

quency on the a.c. driving voltage v can be derived, 

yielding, 

(33) 

where &r denotes the resonance frequency without 

electromechanical coupling, but including the large- 

amplitude effect, ~=N/(l?l+) denotes the axial (tensile) 

strain and the coefficient B, = pl( 1 - v”) represents the 

amplitude stiffening effect [ll] (& = 0.528 for a prismatic 

clamped-clamped beam with a rectangular cross sec- 

tion). Eq. (33) indicates that the amplitude stiffening 

is more severe for a high quality factor, a high d.c. 

polarization voltage and high a.c. driving voltages. Large 

axial strains make the resonator less susceptible to the 

stiffening effect. This dependence is graphically illus- 

trated in Fig. 9. 

3.9. Influence of the surrounding gas in the narrow gap 

The characteristics of an air-gap resonator are partly 

determined by squeeze-film effects of the gas present 

in the gap. Three effects can be distinguished: (1) 

squeeze-film dumping, leading to a lowering of the me- 

chanical quality factor and an apparent (rather small) 

decrease of the resonance frequency; (2) gap stiffening, 

leading to an increase of the resonance frequency; (3) 

mass loading, leading to a decrease of the resonance 

frequency. All three effects are strongly dependent on 

the gap spacing and the surrounding gas pressure. In 

general it can be said that the effects will only be 

significant for small gap spacings (i.e., (much) smaller 

than the lateral dimension of the resonator) and at 

1.02 

1 

0 0.2 0.4 0.6 0.8 1.0 

Q.wh)pwVPl)--- 

Fig. 9. Predicted dependence of the natural frequency on the amplitude 

of the a.c. driig voltage, with e(@z)* as parameter (see Eq. (32)). 

The curves are computed for r=O, 8, -0.528 and y, -0.295. Note 

that the effect of a partial active electrode area (l,, b,) is accounted 

for in the sensitivity I/I and the pull-in voltage V,. 

sufficiently high pressures. Squeeze-film damping can 

be significant in a broad pressure range, varying from 

the molecular regime to the viscous regime. Measured 

data on the quality factor were reported in the ac- 

companying paper [20] and have clearly demonstrated 

this effect. Gap stiffening is due to the spring-like 

behaviour of the trapped gas in the (narrow) gap. The 

additional (air)-spring raises the resonance frequency 

as compared to the resonance frequency in vacuum. 

This effect will be more pronounced at higher fre- 

quencies. This is easily conceived if one thinks in terms 

of the time that is allowed for the gas molecules to 

escape from underneath the gap. At high frequencies 

the escape time is short, which leads to compression 

of the gas and thus to an added stiffness. Mass loading 

is a result of ambient gas moving with the resonator, 

leading to an apparent increase of the resonator inertia 

or mass. Mass loading is to a certain extent independent 

of the gap spacing and only depends on the specific 

density (and thus pressure) of the surrounding gas 

molecules. 

The above effects are not considered in further detail 

in this paper. This is justified by recalling that the 

surrounding gas pressure ( = 0.1-0.2 mbar [ZO]) is very 

low. The only clearly noticeable effect is the lowering 

of the quality factor as compared to the predicted value 

for a resonator in free space. The emphasis in this 

paper, however, is on the resonance frequencies. Mea- 

sured data of the resonance frequencies have not re- 

vealed any significant pressure dependence below pres- 

sures of 1 mbar. Similar observations were made by 

Andrews et al. [25]. They have studied both theoretically 

and experimentally the effects of squeezed films of gas 

on the dynamic characteristics of a microstructure con- 

sisting of two plates vibrating normal to each other. 
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4. Experiments and discussion 

4.1. General 

The experimental data presented in this section are 

extracted from resonators configured as a one-port 

according to scheme Ia (see Table 1). The frequency 

responses were measured using an HP4194A gain-phase 

analyser. The mechanical quality factor of a one-port 

resonator can be extracted from the measured Bode 

plot and is easily understood after an inspection of 

Eq. (16) and Eq. (19b) [12]. Data of the Q-factor 

dependence on geometry and pressure are presented 

in the accompanying paper [20]. 

The resonator behaviour is considered to be linear 

if the resonator stiffening due to the hard spring effect 

can be neglected. In general this is achieved if the a.c. 

drive voltage v and the d.c. polarization voltage V, are 

not too high (see Eqs. (31~) and (33)). In this context, 

a compromise is sought between the maximum ac- 

ceptable distortion as a result of the hard spring effect 

and the noise level. Further, in the previous section 

it was shown that gap stiffening and mass loading can 

be ignored. 

4.2. Typical frequency response 

Fig. 10 compares a typical measured admittance plot 

of a resonator (with code A210) having a length of 

210 ,um with the model of Fig. 5. The conductance is 

slightly negative far away from the resonance frequency. 

This is due to noise generated in the sample and to 

light acting as an external energy source. It is found 

1.6 1.6 

0.2 - - 0.2 

_0,2 / -0.2 

317,000 320,250 323,500 326.750 330,000 

Frequency [Hz] 

Fig. 10. Measured and calculated responses of microbridge A2.10, 

having a length of 210 pm, a width of 100 w, a thickness of 1.50 

,um and a gap spacing of 1.18 pm. The interconnection is according 

to scheme Ia of Table 1. llre d.c. polarization voltage was equal to 

6.0 V and the ax. drive voltage was equal to 0.01 V. The dashed 

lines indicate the response function of the one-port network of Fig. 

5 using the foll&ng parameter values: C, = 1.4252 fF, L, = 169.64 

H, R,=582780 161 and C,,+C,=O.39 pF. 

that apart from this discrepancy, the equivalent circuit 

accurately models the electromechanical behaviour of 

the resonator. The parameters of the one-port model 

used to calculate the response were obtained from a 

best fit of the predicted and the measured responses. 

This resulted in the following extracted parameter 

values: C, = 1.4252 fF, L, = 169.64 H, RI = 582.780 kfl 

and Co+ C,,= 0.39 pF. This gives an extracted series 

resonance frequency (i.e., the frequency where the 

conductance displays a maximum) f,=323 682 Hz and 

a quality factor QS ~592. The resonator electrome- 

chanical coupling factor k,, (= [CI/(Co+CP)]‘” is 0.06 

and its figure of merit .& is 2.16 [12]. The coupling 

factor is a measure for the electromechanical energy 

conversion. For a stable equilibrium, the coupling factor 

always has a value between zero and one: O<k,,< 1. 

A coupling factor of zero means no electromechanical 

interaction at all. The higher the coupling factor, the 

more pronounced the electromechanical interaction will 

be. At pull-in, the coupling factor approaches unity. 

Note that an external parallel capacitor C, (see Fig. 

5) will lower the coupling factor. The figure of merit 

L is strongly related to the coupling factor and can 

approximately be expressed as A=Qsk,mz [12]. It is 

seen that the figure of merit effectively combines the 

mechanical quality factor and the electromechanical 

coupling factor into a single measure. The figure of 

merit is a measure of the relative contribution of the 

motional admittance to the overall admittance [12]. 

Larger values for J mean easier detection of the 

resonance. As a rule of thumb, it can be said that a 

figure of merit greater than unity means a rather strong 

and easily detectable resonance. To facilitate the elec- 

tronics of the sustaining oscillator, however, a figure 

of merit larger than 10 is recommended. This is because 

the admittance should have a clearly distinguishable 

inductive region, i.e., a region where the susceptance 

is negative. The admittance will have an inductive region 

for M>2, otherwise its behaviour will always be ca- 

pacitive [12]. it is also pointed out that a larger coupling 

factor indeed means a strong electromechanical inter- 

action, but, if the quality factor is very low the resonance 

might still be very weak. Thus, the figure of merit is 

considered to be of more significance as a performance 

characteristic for studying the resonance characteristics 

than the quality factor or the coupling factor. For the 

electrostatically driven resonator, the figure of merit 

can be raised by increasing the polarization voltage 

and the quality factor and/or by lowering the external 

parallel capacitance [12]. The latter approach is pre- 

ferred, since increasing the polarization voltage will 

also lead to undesirable amplitude effects (see also 

Sections 3.8 and 4.5). 
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4.3. Extraction of material parameters 

The plate modulus E/(1 - v”) and the residual strain 

can be found by measuring the resonance frequency 

of microbridges of varying length. To get an idea of 

the spread across the wafer and to minimize the mea- 

surement error, the fundamental frequency was mea- 

sured on 10 locations, uniformly distributed over the 

wafer. The average value of the measured mode fre- 

quencies together with the standard deviations across 

the wafer are given in Table 2. Both the measured 

series resonance frequencyf, = W@T and the calculated 

resonance frequency fi = o,Lh (shown in parentheses) 

are given. As indicated before, it is expected that no 

corrections are necessary to account for squeezed-film 

effects. Table 2 also gives the measured pull-in voltages 

of resonators A210, A310, A410 and A510 (see also 

Section 4.4), together with the measurement error. 

Resonance frequency data of the four beams with 

different lengths are used to determine the residual 

strain and the plate modulus 1261. Two beams of different 

length are in principle enough to find the two unknowns. 

But in order to reduce the measurement error, it is 

better to use all four available beam lengths. Eq. (21) 

for the fundamental frequency is rewritten as follows: 

where E,, denotes the residual strain. The graph of CfiZ)’ 

as a function of (Jz/Z)~ is plotted in Fig. 11. The straight 

line is determined by a least-square fit. 

Eq. (34) indicates that the plate modulus can be 

obtained from the slope, and the effective residual 

strain from the zero offset. Using (or = 4.730, ‘yl = 0.295 

and p=2332 kg mm3, yields the following parameter 

values for thermally annealed (1 h at 1000 “C in a 

nitrogen ambient) boron-doped (dose = lOI cmT2, 

energy = 150 keV) LPCVD (590 “C, 50 seem Sib, 250 

mTorr) polysilicon: 

- =166GPa 
(I “,2) 

e,,(l - v2) = + 36.8 ppm (tensile) (35b) 

Assuming v=O.3, estimates of 151 GPa and of 40.4 

ppm are obtained for Young’s modulus and the residual 

strain, respectively. This value for Young’s modulus is 

73% more than that reported for boron-doped poly- 

silicon by Putty et al. [16], but within a few percent 

of the value reported by Zook et al. [4]. The value of 

the residual strain lies within the strain range as found 

from the ring- and buckled-beam diagnostic structures 

1281. 

4.4. D.c. bias dependence: pull-in 

In Section 3.2 it was explained that the fundamental 

series resonance frequency o. = 2& the static capac 

itance C, and the motional capacitance C, are functions 

of the d.c. polarization voltage V,. Fig. 12 compares 

the measured frequency dependence with the theoretical 

dependence as predicted by Eq. (22) for all four res- 

onator lengths. It is found that the model given by Eq. 

(22) shows excellent agreement with the experiments 

for small polarization voltages. 

The pull-in voltages can be determined by extrap- 

olating the above graphs to zero frequency. Another 

method is based on the d.c. bias dependence of the 

static capacitance. A graph of the static capacitance 

of beam A210 as a function of the d.c. bias is shown 

in Fig. 13. At pull-in (close to 28 V), the gap spacing 

immediately goes to a very small value, which is de- 

termined by the thickness of the nitride sealing layer. 

In general the pull-in voltage exceeds the breakdown 

voltage of the nitride layer, resulting in a short circuit. 

For all beam lengths, it was found that values for the 

pull-in voltage extracted from static measurements of 

the type shown in Fig. 13 coincide with the values 

Table 2 

Measured average resonance frequencies (f, and f,) and pull-in voltages for four different beam lengths. Tbe beam width is 100 p, the 

thickness is 1.50 m and the gap spacing is 1.18 F. The second column gives the d.c. polarization voltage. The ax. voltage is kept small 

so that the hard spring effect can be ignored. The standard deviation in the fundamental frequency& is obtained from 10 measurements 

across the wafer and for the second overtone fs from five measurements across the wafer. The values in parentheses denote the calculated 

fundamental frequencyf,, obtained after extrapolating according to IQ (22), substituting c, = 1.22, a, 54.730 and the pull-in voltage given in 

the last cohmm. The pull-in voltage was only measured on one location (i.e., resonators A210, A310, A410 and AslO) and the spread in 

the pull-in voltage is due to a measurement error. The measurement error in the mode frequencies is much smaller than the standard 

deviation and is not taken into account 

Length 

(pm) 

D.c. bias 

(V 

Fundamental frequency 

(kfw 

2nd overtone 

(kw 

Pull-in voltage 

(v) 

210 6.0 322.045 (324.214) f 2.M3 1624.092 f 6.677 27.95 rt 0.05 

310 3.0 163.215 (164.347) f 3.962 762.350 f4.729 13.78 f 0.03 

410 3.0 102.169 (103.804) f 2.791 453.390 f 4.415 9.13*0.02 

510 2.0 73.791 (74.8024) f 2.475 306.225 f 3.019 6.57rt OLE 
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Fig. 11. Plot showing f/J)’ aa a function of (/G)* for the four different 

beam lengths indicated in Table 2. The correlation coefficient of the 

least-sqoare linear fit is 0.99994. 

= 0.4’....‘.. .I....I..,.I.. .I.. 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 

Polarization Voltage M 

Fii. 12 Nomalii fundamental frequencyf./fi vs. the d.c. polarization 

voltage V, of resonators A210, A310, A410 and kilo. The dashed 

lines are computed using Eq. (22), evaluated for the poll-in voltages 

indicated in Table 2. 

o.o~~“““““““““l”“l’~*~““~i 
5 30 35 

Fig. 13. Measured static parallel capacitance (C,,+C,) vs. the po- 

lfuization voltage V, for resonator A210. Pull-in occurs between 27.9 

and 28.0 V (the step interval was 0.1 V). 

extracted from dynamic measurements of the type shown 

in Fig. 12. 

More data of resonators A210, A310, A410 and A510 

are presented in Table 3, which also compares exper- 

imental data with the theoretical values (shown in 

parentheses). A good agreement (within a few percent) 

is found between the theory and the experiment. It is 

further noted that the d-c. bias dependence of C, is 

in agreement with the theory as expressed by Eq. (24). 

Discrepancies between theory and experiment are at- 

tributed to approximations made in deriving the math- 

ematical models and to uncertainties in the geometric 

and material parameters. For instance, the assumption 

of perfectly clamped edges is not true. Finite-element 

computations performed on doubly-supported beams 

with ‘step-up’ boundaries indicated values for the res- 

onance frequencies that are somewhat smaller than 

those predicted by the model assuming perfectly 

clamped edges. The deviation increases with decreasing 

beam length. For the 210 m long beam, a deviation 

of 2% was found. This means that the extracted value 

for the plate modulus as given by Eq. (35a) indicates 

a lower estimate. Similar results for step-up beams that 

were based on static deflections were found by Mullen 

et al. [27]. Errors in the thickness, length and width 

of the beams also cause discrepancies. The length in 

particular has a strong influence. For instance, choosing 

a length of 507 pm instead of 510 p results in a 

change of the predicted value for the pull-in voltage 

from 6.52 to 6.57 V, which brings the theory into 

excellent agreement with the experiments. 

4.5. Non-linear behaviour (hard spring effect) 

In the previous section, very small a.c. drive voltages 

were used. As indicated in Section 3.8, the resonance 

frequency shifts to higher values if the driving voltage 

is increased, an effect known as the hard spring effect 

[11,23,24]. The influence of the a.c. drive voltage on 

the measured conductance is illustrated in Fig. 14. The 

hysteresis interval is clearly seen and the characteristic 

jump phenomenon was clearly observed. Eq. (32) pre- 

dicts peak deflections at resonance of approximately 

24 and 71 mn for a.c. driving voltages of 10 and 30 

mV, respectively. This example illustrates that the hard 

spring effect already shows up for peak deflections that 

are much smaller (less than 6%) than the beam thickness 

(1.5 km) and the gap spacing (1.2 m). Or in other 

words, the vibrational motion will hardly affect the true 

electrical capacitance. This illustrates once more that 

the change of the electric capacitance is not responsible 

for the resonance phenomena. The latter are entirely 

due to the coupling between the electric and mechanical 

energy domains. This is easily conceived from an in- 

spection of the characteristics of the equivalent circuit 

of Fig. 5. At series resonance, the motional capacitance 
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Table 3 
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Measured and calculated parameter values of resonators AZlO, A310, A410 and A510. For all resonators the width b=b,-100 pm, thiiess 

h = 1.50 pm and zero-voltage gap spacing d = 1.18 q~. Further, the values used for the plate modulus and effective residual strain are given 

by Eq. (35a,b). The calculated values arc shown in parentheses and are based on the trigonometric trial functions given by JZq. (9a) and the 

expansion given by Fq. (2) is truncated to a single term. ‘Ihe first value in parentheses of Cl is based on the measured value of the pull- 

in voltage, while the second value uses the calculated value for the pull-in voltage 

# I 1. VP1 (v) Cl (fF) f. bw Q x 

(W (PO Es. P-Y Eq. CW  =J. W  

A210 210 180 6.0 28.0 (28.0) 1.43 (1.45, 1.45) 323.7 (322.3) 592 2.16 
A310 310 280 2.0 13.8 (14.2) 0.91 (0.98, 0.92) 161.8 (163.1) 151 0.30 
A410 410 380 3.0 9.13 (9.02) 6.81 (6.84, 7.01) 101.4 (102.4) 45 0.49 
A510 510 480 2.0 6.57 (6.52) 8.81 (7.29, 7.39) 72.38 (74.01) 30 0.36 

323.5 324.0 324.5 

Drlvlng Frequency [kHz] 

325.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 

8.C. Drive Voltago [iq 

Fig. 14. Bode plot of the conductance of a 210 pm long beam (sample Fig. 15. Normalized resonance frequency vs. the 3.e. drive voltage 

A210, see also Table 3). illustrating the hard spring effect. The for resonators A210 and A310. The d.c. polarization voltage was 2 

hysteresis is clearly seen. The d.c. voltage in all three cases was 7 V for ail data points of A310 and’for the fnst three data points of 

V and the a.c. voltage was 10 mV for the case with little visible A210.l%eotherdatapointsofA210weremeasuredtithapolarization 

hard spring effect and 30 mV for the two cases with significant hard voltage of 1 V. The dashed curves are computed using E.q. (33) (see 

spring effect. also Fig. 9), taking fit-O.528 and ~0.30. 

and inductance form a short circuit, leading to a (sharp) 

increase of the conductance. This is clearly independent 

of the static capacitance, as long as the resistance RI 

is not excessively large. As a matter of fact, the theory 

used to derive the equivalent circuit of Fig. 5 assumes 

(infinitesimal) small deflections and does not take non- 

linear effects into account. 

Graphs of the series resonance frequency as a function 

of the a.c. drive voltage for two different beam lengths 

are shown in Fig. 15. The graphs indicate that the 

theory given by Eq. (33) is qualitatively in good agree- 

ment with the experiments; the square-root behaviour 

is clearly observed. Quantitatively the agreement cannot 

be designated as being good. The discrepancy between 

the theory and the experiments will be practically 

removed, if instead of 0.528 a value within the range 

0.7-0.9 is substituted for the coefficient &. Reasons 

for the discrepancy are not quite clear at the moment, 

but possible explanations are errors in the values of 

the parameters (e.g., Q,, /T1 or d/h) of Eq. (33). 

- - -2lO~m(Thecry) 

-mm--3lO)M(Thwty) 

Y 1.01 
3 

5 
z 

1.04 

4.6. Strain sensitivity 

The strain sensitivity was measured using a micro- 

meter-driven four-point bending-beam deflection jig as 

shown in the inset of Fig. 16. A displacement instead 

of a force is applied to the load bar, since the former 

requires no knowledge about the material properties 

of the sensor beam while calculating the induced strain 

from the externally applied load. Fig. 16 shows the 

resonance frequency squared as a function of the applied 

displacement for two diierent beam lengths. The axial 

strain induced in the resonator is related to the dis- 

placement as follows [28]: 

Eq=S68~=SSs(&+S) 

where 

(36a) 

h. 1 
Sa= La (1+2u/3I#) 

8, denotes the total applied displacement, SI denotes 

the conversion factor from displacement to strain, h, 
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Strain (eatculated) lppml 

Fig. 16. Fundamental resonance frequencies squared, of 210 and 

310 m long beams, vs. the applied displacement. A four-point 

bending-beam deflection jig was used for the measurements. The 

dimensional parameters are (I = 15 mm, h. = 0.406 mm and L = 4 mm. 

The induced axial strain is related to the displacement by Eq. (36a) 

(SI- 1.93X 10e6 w-‘). The solid curves represent least-square fits 

based on second-order polynomials. Tbe fits are given by Eq. (37a,b). 

The correlation factor is equal to 0.9999 for both resonators. 

is the thickness of the sensor beam and L and u are 

as indicated in the insert of Fig. 16. The total applied 

displacement is composed of an offset S, and the 

micrometer-induced displacement S: 6, = &+ 6. The off- 

set is caused by the weight of the load bar and by 

making contact between the micrometer and the load 

bar. The offset causes shifts in the resonance frequency 

from 329.375 to 363.763 kHx and from 166.500 to 196.950 

kHz for the 210 and 310 pm long beams, respectively. 

From the frequency measured prior to placing the 

upper stamp, the residual strain Q, can be computed, 

resulting in 46.9 and 44.7 ppm for the 210 and 310 

grn long beams, respectively, The calculation is based 

on Eq. (21), using the value of the plate modulus given 

by Eq. (35a), and further, p=2332 kg/m3 and ~“0.3. 

A possible explanation of the distinction in values of 

the residual strain given by Eq. (35b) and the ones 

computed above is the fact that the wafer had to be 

cleaved into strips for doing the strain measurements. 

Since the samples consist of different materials, it is 

not unlikely that a new equilibrium situation will occur, 

which is accompanied by a redistribution of strain. 

The solid lines in Fig. 16 represent least-square fits 

based on second-order polynomials. The fits are given 

by: 

131550 + 1218.24 6 + 0.66336 6’ (37a) 

for tbe 210 p long beam 

37562.9+518.934 S+O.18111 6’ 

1 for the 310 pm long beam 

(37’9 

where ffit is in kHx and S in pm. The contributions of 

the quadratic term relative to the linear term evaluated 

at full load (i.e., a-200 w), are approximately 11 

and 7% for the 210 and 310 pm long beams, respectively. 

The observed quadratic behaviour was not expected 

according to Eq. (21). The latter equation combined 

with Eq. (36a) predicts a linear relationship between 

the frequency squared and the applied displacement: 

$$_ 
[ 

1+y,(~+s,s&--v*) 
01 
f * 

0 
2 

+y&(l-vZ) f 6 (38) 

where G denotes the residual strain and f, denotes the 

resonance frequency in the absence of an external axial 

load. 

From Eqs. (35a), (36) and (38), the measured fre- 

quencies and the calculated values of the residual strain, 

the offset displacement S, can be calculated, resulting 

in approximately 27 pm for both beam lengths 

(S,= 1.93X1O-6 pm-‘). Also the coefficient of the 

linear term in Eq. (37a,b) can be calculated, resulting 

in 885 and 406 kHz2 pm-l for the 210 and 310 brn 

long beams, respectively. This implies a deviation from 

the measured value as indicated by Eq. (37) of -27 

and -22% for the 210 and 310 pm long beams, 

respectively. The gauge factor G,= (l/jJ(df,/de) eval- 

uated at the operating point defined by 6=0 can be 

calculated, resulting in 1730 and 2729 for the 210 and 

310 q long beams, respectively. These calculated values 

deviate by -28 and -24% from the measured values 

(i.e., 2400 and 3600) determined from the linear coef- 

ficient in Eq. (37a,b) for the 210 and 310 pm long 

beams, respectively. 

The model can be improved by extending the right- 

hand side of Eq. (36a) with an empirical quadratic 

term fI, St in which the coefficient t9, in general depends 

on the dimensional parameters. This will lead to a 

modified expression for the linear coefficient in Eq. 

(38), leading to more accurate predictions. 

A possible explanation for having to add a quadratic 

term in Eq. (38) is friction. Because the ridges of the 

stamps are very sharp, this may lead to a rather ‘intimate’ 

contact between the bars and the sensor beam. As a 

result, upon application of a displacement to the struc- 

ture, the sensor beam will not only bend, but will also 

experience an axial force leading to enhanced sensitivity. 

This effect will be more pronounced for large dis- 

placements, since higher contact forces between the 

stamps and the carrier beam then occur, resulting in 

more friction. To check whether this effect is indeed 

of importance, the ridges can be made blunter or could 

resemble dough rolling pins. 



82 HA.C. lilmans, R Legtenberg I Sensors and Achmtm A 45 (1994) 67-84 

4.7. Temperature dependence 

In order to measure the dependence of the resonance 

frequency on temperature, the wafer was placed on a 

Peltier element. Electric contact to the resonators was 

made using probes. The results are shown in Fig. 17 

for four different beam lengths and a temperature range 

10-70 “C. The temperature measurements gave the 

following temperature coefficients: - 135, - 202, - 380 

and -394 ppm “C-’ for the 210, 310, 410 and 510 

pm long beams, respectively. This turns out to be much 

greater than the intrinsic coefficient, which is of the 

order of -40 ppm “C-’ [14]. Possrble explanations for 

this discrepancy are found in thermally induced stresses 

due to mismatches in the thermal expansion coefficients 

of the different materials (silicon, polysilicon, silicon 

nitride, aluminium) used. Since the longer beams have 

a higher gauge factor, this would also explain the increase 

of the temperature coefficient with increasing beam 

length. Improvements in terms of a lowering of dif- 

ferential thermal effects can be achieved if the chips 

are isolated from the mount, e.g., by having the sensor 

chips hanging at their bonding wires, and/or by removing 

the aluminium layer from the backside of the wafer 

(or of the individual chips). 

5. Conclusions 

The modelling and experimental results of electro- 

statically driven vacuum-encapsulated polysilicon res- 

onators have been presented. Electrostatic excitation 

and detection was used as the driving and detection 

mechanism. Emphasis was placed on a description of 

resonators that are operated in a one-port configuration. 

The effective residual strain and the plate modulus of 

the polysilicon layer can be obtained from the resonance 

-0.020 
10.0 20.0 30.0 40.0 50.0 60.0 70.0 

Temperature PC] 

Fig. 17. Normalized resonance frequency shifts vs. temperature for 

alI four beam lengths. The frequency shift is normalized to the 

resonance frequency at 30 “C. 

frequencies measured on microbridges of varying beam 

length, yielding approximately 36.8 ppm (tensile) and 

166 GPa, respectively. The theory as described in this 

paper is in close agreement with the experiments and 

as such provides a framework for optimizing the res- 

onator performance. 

In a narrow frequency regime around the fundamental 

mode, the resonator electromechanical behaviour is 

accurately modelled by an electric network consisting 

of a capacitor in parallel with an R.LC series branch. 

The series branch represents the mechanical behaviour, 

whereas the capacitor represents a true electrical ca- 

pacitance. The dependence of the circuit components 

on the d.c. polarization voltage is modelled and was 

confirmed by experiments. The equivalent circuit pro- 

vides an aid in the analysis and design of the one-port 

resonator. For such a circuit, two characteristic reso- 

nance frequencies can be defined, one associated with 

the parallel resonance and the other with the series 

resonance. The series resonance frequency is considered 

to be the more suitable characteristic frequency since 

it is not affected by parallel parasitic loads. The the- 

oretical model accounts for the influence of partially 

overlapping electrodes. This allows optimization of the 

geometrical design of the electrodes so as to maximize 

the capacitance ratio and thus the coupling factor and 

the figure of merit. The hard spring effect or amplitude 

stiffening leads to unwanted shifts of the resonance 

frequency. This effect can be kept small by choosing 

low d.c. polarization voltages and a.c. drive voltages, 

and further by making the mechanical quality factor 

not excessively high and introducing a higher residual 

strain. 

Gauge factors indicating the sensitivity of the res- 

onance frequency to axially applied strain were mea- 

sured using a micrometer-driven four-point beam-de- 

flection jig. Based upon a linear relationship between 

the applied displacement and the induced strain, gauge 

factors close to 2400 and 3600 were estimated for 

polysilicon beams 1.5 pm thick and 210 and 310 m 

long, respectively. The temperature sensitivity turned 

out to be greater than the presumed intrinsic depen- 

dence of - 40 ppm ‘C-l and is attributed to differential 

thermal expansion. 

Summarizing, it can be said that resonators of this 

type are promising candidates for applications as res- 

onant strain gauges to replace the conventional (silicon) 

piezoresistors. It is expected that this will lead to sensors 

with improved performance. In this context, the fol- 

lowing recommendations can be made: the oscillator 

circuitry should be designed to excite the series mode; 

external series and parallel loads must be kept as small 

as possible; the d.c. polarization and a-c. drive voltages 

must be stabilized; a compromise must be sought be- 

tween the maximum acceptable level of amplitude stiff- 

ening and signal-to-noise ratio on the one hand and 
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the achievable resolution of the sensing device on the 

other hand; to achieve better temperature character- 

istics, compensation techniques such as a dual or dif- 

ferential design should be employed and/or the use of 

materials other than (poly)silicon must be avoided as 

much as possible. In order to verify their application 

in high-performance sensing applications, the resonators 

have to be refined and the short-term (frequency noise) 

and long-term (aging) frequency stability of the devices 

should be investigated. It goes without saying that the 

very important issue of packaging must receive more 

and more attention. 
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