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Abstract: 

 The electrostatically embedded many-body expansion (EE-MB), previously applied to the total 

electronic energy, is here applied only to the electronic correlation energy (CE), combined with a    

Hartree–Fock calculation on the entire system.  The separate treatment of the Hartree–Fock and correlation 

energies provides an efficient way to approximate correlation energy for extended systems.  We illustrate 

this here by calculating accurate MØller-Plesset second-order perturbation theory (MP2) energies for a 

series of clusters ranging in size from 5 to 20 water molecules.  In this new method, called EE-MB-CE, 

where MB is pairwise additive (PA) or three-body (3B), the full Hartree–Fock energy of a system of N 

monomers is calculated (i.e., the many-body expansion is carried out to Nth order), while the EE-MB 

method is used to calculate the correlation energy of the system.  We find that not only does this new 

method lead to better energetics than the original EE-MB method, but that one is able to obtain excellent 

agreement with full MP2 calculations by considering only a two-body expansion of the correlation energy, 

leading to a considerable savings in computational time as compared to the three-body expansion.  

Additionally, we propose the use of a cutoff to further reduce the number of two-body terms that must be 

calculated, and we show that if a cutoff of 6 Å is used one can eliminate up to 44% of the pairs and still 

calculate energies to within 0.1% of the net interaction energy of the full cluster. 
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1.  Introduction 

 The application of post-Hartree–Fock correlated levels of electronic structure 

theory (e.g., second-order MØller-Plesset perturbation theory, MP2,1 coupled cluster 

theory with single and double excitations, CCSD,2 or CCSD with quasiperturbative 

connected triple excitations, CCSD(T)3) to systems containing tens to hundreds of atoms 

provides a grand challenge to the chemical community because of the rapid scaling of the 

computational cost of such methods with respect to system size.  For example, CCSD(T), 

CCSD, and MP2 scale as N7, N6, and N5, respectively, where N is the number of atoms.4  

To meet the challenge of calculating the correlation energy of large systems, there has 

been considerable interest in trying to develop methods to make the problem more 

tractable.  One approach is to reduce the scaling by using localized molecular orbitals.  

Such methods include the natural scaling coupled-cluster,5 divide-and-conquer methods,6 

cluster-in-molecules methods,7 as well as many others (See, for example, Refs. 8-12 and 

references within.).  Another is to break up a large system into a great number of smaller 

and more manageable subsystems as in the fragment molecular orbital,13, 14 systematic 

molecular fragmentation,15, 16 and conjugated caps methods.17-19 

 In past work we have presented our own fragmentation-based method, the 

electrostatically embedded many-body (EE-MB) method,20 for calculating the energies of 

large molecular clusters.  The EE-MB method calculates the total energy of a large 

cluster by taking a linear combination of the energies of monomers and dimers (in the 

case of the EE-PA method, where PA denotes pairwise addititve) or monomers, dimers, 

and trimers (in the case of the EE-3B method, where 3B denotes a three-body 

approximation), with a key element being that each monomer, dimer, or trimer is 
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embedded in a field of point charges representing the other N – 1, N – 2, or N – 3 

monomers.  (A monomer can be defined as a single molecule or as a collection of 

molecules, and the method can be extended to allow monomers to be portions of large 

molecules, such as the monomers of a polymer. In the examples discussed in the present 

paper, a monomer will be a single water molecule.)  Using the EE-MB method we were 

able to reproduce the absolute correlated interaction energy of a cluster of 21 water 

molecules to within 2%, by using the EE-PA method, and to within 0.2% when the 

EE-3B method was used.20  In the present article we present an extension of the 

electrostatically embedded many-body method, to be called electrostatic embedding of 

the many-body correlation energy, to predict the MP2 correlation energy for a series of 

water clusters ranging in size from 5 to 20 water molecules.  Because MP2 is the simplest 

of the correlated methods it provides a good starting point for testing this new method, 

and since it is the least expensive of the post-Hartree–Fock methods it allows us to 

compare our results directly to the MP2 energy for clusters containing 10 – 20 water 

molecules; this would not be possible for the more expensive post-Hartree–Fock 

methods. 

2.  Theory 

 By using the electrostatically embedded many-body expansion, the energy of a 

system of N interacting particles (monomers) can be written as:  

 
  
V = V1 +V2 +V3 +L+VN  (1) 

where  

 V1 = Ei
i

"  (2) 

 V2 = Eij " Ei " E j
i> j

#  (3) 
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V3 = [Eijk "
i> j>k

# Ei " E j " Ek " (Eij " Ei " E j )

                " (Eik " Ei " Ek ) " (E jk " E j " Ek )]
 (4) 

and so forth, where Ei, Eij, and Eijk are the energies of monomers, dimers, and trimers 

that are embedded in a sea of point charges representing the other N – 1, N – 2, or N – 3 

monomers, and Vn (with n > 1) denotes the difference between the n-body approximation 

and the (n – 1)-body approximation.  If the series in equation 1 is truncated after the 

second term one is said to have made the electrostatically embedded pairwise additive 

approximation, and the total energy of the system can be written as 

 

  

EEE"PA = Eij
i> j

# " (N " 2) Ei
i

#  (5) 

where N is the number of particles in the system, and Ei and Eij have the same meaning 

as above.  If no embedding charges are used the subscript on the left side of equation 5 

can be changed to PA and one is said to have made the pairwise approximation.21  If one 

also considers the three-body terms, the electrostatically embedded three-body energy 

can be written as  

 

  

EEE"3B = Eijk
i> j>k

# " (N " 3) Eij
i> j

# +
(N " 3)(N " 2)

2
Ei

i

#  (6) 

where Ei, Eij, and Eijk have the same meanings as in equations 2 – 5.  As in the case of 

the EE-PA energy, if no point charges are used one can write the subscript on the left 

hand side of equation 6 as 3B, and one is said to have made the three-body 

approximation. 

 The electronic energy for any correlated level of electronic structure theory can be 

written as 

 
  
EX = EHF + "Ecorr,X  (7) 
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where EX is the electronic energy of correlated method X (X = MP2, CCSD, CCSD(T), 

etc.), EHF is the Hartree–Fock energy of the system, and ΔEcorr,X is the correlation 

energy for method X.  Since the nth term of the many body expansion of equation 1 is 

simply a linear combination of energies for the 1- to n-body clusters, Vn can be rewritten, 

using equation 7, for any correlated level of theory as 

 
  
Vn =Vn,HF + "Vn,corr  (8) 

As a consequence of equation 8 the total energy of the system can be written as  

 
    

V = (V1,HF +V2,HF +V3,HF +L+VN ,HF )

        + ("V1,corr + "V2,corr + "V3,corr +L+ "VN ,corr )
 (9) 

where the first term in parentheses is the many-body expansion of the Hartree–Fock 

energy, and the second term in parentheses is the many-body expansion of the correlation 

energy. 

 The Hartree–Fock energy contains electrostatic and inductive terms that can be 

long-range (e.g., the electrostatic interaction between dipolar monomers dies off only as 

R–3, where R is the distance between monomers, and the charge–induced dipole 

interaction dies as R–4), whereas the terms due entirely to correlation energy are known 

to decay as R–6, which is a medium-ranged interaction.   However, the inclusion of 

correlation energy does change the dipole moment of a monomer, leading to changes in 

the long-range dipole-dipole interactions, which, as mentioned above, die off as R-3.  But, 

if the change in dipole moment between the correlated level of electronic structure theory 

and Hartree–Fock theory is small, then this effect is also “small,” despite being 

long-range in nature.  Höffinger et al.22 have tested the accuracy of a series of electronic 

structure methods, including both wave function methods and density functional methods 
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with a variety of basis sets, for predicting dipole moments for a test set of small 

molecules (N2, CO2, SO2, HF, HCl, H2O, NH3, PH3).  They found that, on average, the 

dipole moments of these molecules change by 5 – 11% when one goes from Hartree–

Fock theory to MP2, with the largest mean percent changes using the aug-cc-pVDZ and 

aug-cc-pVTZ basis sets (11% and 10%, respectively).  If one looks only at the water 

molecule, it was found that for any of the five basis sets tested the percent change in the 

dipole moment, as one goes from Hartree–Fock to MP2 theory, is never more than 5%.  

Moreover, they found that as one considers more highly correlated levels of electronic 

structure theory (e.g., MP4SDQ or QCISD) the mean percent error changes by at most 

only an additional 2%.  Therefore, since most of the change in the dipole moment due to 

correlation energy is present at the MP2 level of theory, the use of MP2 theory to test 

methods such as those presented here should provide good insights into the performance 

of other post-Hartree–Fock methods.  

 Given the differing nature of the Hartree–Fock and correlation energies, it is not 

unreasonable to treat their many-body expansions differently by considering more terms 

in the many-body expansion of the Hartree–Fock energy (in order to better account for 

the long-range electrostatic and inductive terms) than in the expansion of the correlation 

energy.  Fortunately, since Hartree–Fock theory formally scales as N4, where N is again 

the number of atoms, it is less computationally demanding to consider larger clusters with 

Hartree–Fock theory than it is for the correlated methods.  In practice, one can use 

Hartree–Fock theory for the calculation of moderately sized systems (up to a few hundred 

atoms) with a large basis set at an affordable cost.23  Therefore, we propose to calculate 

the complete Hartree–Fock energy for the system (i.e., to carry out the many-body 
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expansion to Nth order) and calculate only the correlation energy of the system by using a 

truncated many-body series.  If the many-body expansion is used for the correlation 

energy without the presence of point charges, the result is denoted MB-CE, where MB is 

PA if the first two terms in the series are kept, and MB is 3B if the first three terms are 

kept.  If the electrostatically embedded many-body expansion is used for the correlation 

energy, the results are denoted EE-MB-CE, where MB has the same subcases as above. 

3.  Computational Methods 

 In order to test the accuracy of the new methods described in Section 2, a series of 

water clusters ranging in size from 5 to 20 water molecules were taken from the 

Cambridge Cluster Database.24  These clusters are the global-minimum-energy structures 

at the HF/6-31G(d,p) level of theory.25  Since water clusters are known to exhibit large 

many-body effects26, 27 this set of clusters should provide a good test of the different 

methods described here.  Eight different many-body methods were applied these systems: 

PA, 3B, EE-PA, EE-3B, PA-CE, 3B-CE, EE-PA-CE, and EE-3B-CE, where each method 

has been described in the previous section.  The full cluster calculations were performed 

using the Gaussian 03
28 software package.  All many-body calculations were carried out 

with the MBPAC 0729 software package, which uses Gaussian 03 to perform all electronic 

structure calculations.  For the EE-MB and EE-MB-CE calculations, point charges of      

–0.778 and 0.389 were used for the oxygen atoms and hydrogen atoms, respectively, as in 

Ref. 20. 

4.  Results and Discussion 

 Table 1 shows the mean errors and mean percent errors for the eight different 

many-body methods as compared to the full MP2 calculations.  One of the striking results 
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of Table 1 is the improvement of the EE-PA method as compared to the PA 

approximation.  The inclusion of point charges changes the mean unsigned error from 

15.95 kcal/mol to only 0.80 kcal/mol, which is consistent with previous results.20 

Considering that the binding energies range from 33.52 to 196.02 kcal/mol with an 

average of 105.46 kcal/mol, a mean unsigned error of 0.80 kcal/mol is an impressive 

result.  One can also see that inclusion of the three-body terms improves the energy by 

only 0.5 – 0.6 kcal/mol.  Since the trimer calculations are the most numerous and most 

expensive calculations in the many-body expansion the EE-PA may be sufficient for 

many applications.   

 The second significant result is the large reduction in error between the PA and 

PA-CE methods.  The mean unsigned error is reduced by a factor of 72 by including the 

full Hartree–Fock energy!  The other methods show a much smaller change in their mean 

errors when the full Hartree–Fock energy is included, with changes of a factor of 3, 8, 

and 1.5 for the 3B, EE-PA, and EE-3B methods, respectively.  The EE-PA-CE method is 

the most accurate method with a mean unsigned error of only 0.10 kcal/mol, which 

represents a mean percent unsigned error of only 0.09% of the net interaction energies. 

As mentioned previously, the ability to consistently calculate total energies that are 

within less than 0.1% of the full cluster calculation by only having to consider two-body 

terms represents a significant savings in the total computational time needed to carry out 

the calculation.  For example, if one assumes that the time needed to calculate the energy 

of a water monomer, dimer, and trimer at the MP2/aug´-cc-pVTZ level of theory is 

30 seconds, 2 minutes, and 5 minutes respectively, then the total time needed to calculate 

the MP2 correlation energy for a cluster of 20 water molecules is 6.5 hours with the 
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EE-PA-CE method as compared to 4.2 days to calculate the correlation energy with the 

EE-3B-CE method.  The fact that good energetics can be determined using only a 

two-body approximation is consistent with other fragment-based methods that have been 

proposed in the literature.13, 18, 30 

 The result that the EE-3B-CE method has a larger average error than the 

EE-PA-CE method is somewhat surprising, as one might expect the EE-3B-CE method to 

give a smaller average error than the EE-PA-CE method since it contains more terms in 

the many-body expansion.  If the errors for each individual structure are examined, one 

finds that of the sixteen structures considered, eight have a larger error at the EE-3B-CE 

level that at the EE-PA-CE level.  Similarly, four of the sixteen structures have larger 

errors at the 3B-CE than at the PA-CE level, despite the 3B-CE method having a lower 

average error.  Since the EE-MB-CE methods use embedding and the MB-CE methods 

do not, the use of embedding cannot be the sole source of this error.  In fact, if the 

many-body expansion given in equation 1 is not truncated, the result is exact and is 

independent of whether or not embedding is used.  We can also exclude double counting 

as a source of error.  At the EE-PA-CE level we account accurately for the two-body 

terms and approximate the higher order many-body terms, then, at the EE-3B-CE level, 

we subtract the two-body terms with approximate three-body effects, and we treat the 

three-body terms (and lower-order terms) exactly and estimate the higher-order terms.  

This continues at higher orders so that the method is free of any double counting.  The 

source of the errors for both the EE-3B-CE and 3B-CE methods would be an interesting 

topic for further study, however, for now we proceed with examining the EE-PA-CE 

method. 
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 If one is interested in trying to further decrease the cost of the calculation one 

could consider implementing a cutoff to reduce the number of pairs that one must 

calculate.  Since correlation energy is typically short-ranged as compared to the   

Hartree–Fock energy (see the Background section for more discussion of this point), it 

may be reasonable to assume that for a dimer with a large inter-molecular distance the 

contribution of the correlation energy to the two-body term might be very small.  In order 

to determine a reasonable cutoff for water, we next examine the magnitude of the 

two-body contribution to the energy (V2) as a function of distance.  In order to examine 

this, the global-minimum-energy structure of the water dimer was optimized at the 

CCSD(T)/aug-cc-pVTZ level of theory and was separated along the vector connecting 

the centers of mass from 4 to 10 Å in intervals of 1 Å.  For each of these seven 

geometries, as well as at the optimized geometry, an MP2/aug´-cc-pVTZ single-point 

calculation was carried out, and the V2 term was calculated.  Figure 1 shows the plot of 

V2 as a function of this separation, for both the HF/aug´-cc-pVTZ energy and the 

MP2/aug´-cc-pVTZ correlation energy.  Figure 1 clearly shows that the V2 term for the 

MP2 correlation energy goes to zero much more rapidly than for the Hartree–Fock 

energy.  In fact, by ~ 4.5 Å the V2 term for the MP2 correlation energy is approximately 

zero.  While this plot does not take into account any type of rotational averaging, and any 

one orientation cannot be fully representative, it does suggest that considering a cutoff 

between 5 and 6 Å might be a reasonable starting point. 

 Table 2 compares the mean errors obtained using cutoffs of 5 and 6 Å for the V2 

term to the mean errors if no cutoffs are used.  If a cutoff of 5 Å is used, at least one pair 

can be disregarded in 13 of the 16 structures studied, however, one must go up to clusters 
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of 10 water molecules before a significant number (5 or more) of pairs can be ignored.  If 

a cutoff of 6 Å is used one must consider structures containing 11 water molecules or 

more before a significant number of pairs can be ignored; however, by the time 20 water 

molecules are present only 56% of the total number of pairs need to be considered.  

Additionally, one can see that for the EE-PA-CE method the use of a cutoff of 6 Å is able 

to reproduce the accuracy obtained when no cut-off is used.  Based on the timing 

arguments presented in the second paragraph of this section it would take only 

approximately 3.6 hours to calculate the EE-PA-CE correlation energy for a cluster of 20 

water molecules with a cutoff of 6 Å. 

 Figure 2 shows a plot of the two-body correlation energy versus the 

center-of-mass separation for each of the 190 dimers in the 20-mer.  Based on this figure 

it is clear that the two-body correlation energy for this cluster goes to zero at 

approximately 6 Å, as opposed to the gas-phase water dimer, which becomes negligible 

at about 4.5 Å.  As mentioned previously, consideration of the gas-phase water dimer was 

used as a guide to approximate where an appropriate cutoff might be; however, it is clear 

from Figure 2 that while such a rudimentary example can give some insight into the 

choice of cutoff one may still need to consider several cutoffs, or carry out a full analysis 

on a large cluster to obtain the best possible cutoff for the system of interest.   

 Figure 3 shows a plot of the electrostatically embedded two-body correlation 

energy versus the center-of-mass separation of the same cluster as in Figure 2.  A 

comparison of Figures 2 and 3 shows that the addition of the embedded charges does not 

change the range of the interaction — both decrease to zero at approximately 6 Å; 

however, it is evident that the addition of the point charges does introduce some of the 
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higher-order many-body terms as the magnitude of the two-body term in the range of      

~ 3 – 6 Å are noticeably different between the two plots, particularly in the region of the 

plot from 3.9 to 4.2 Å.  If one considers the cluster shown to be a series of cubes stacked 

on top of each other, all the dimers in the region from 3.9 to 4.2 Å are pairs of water 

molecules that form diagonals across the faces of these cubes.  The different orientations 

and distances between the water molecules give rise three clusters of points in Figure 2.  

However, all of these dimers are a part of larger tetrameric clusters, making up the faces 

of the cubes, which have cooperative hydrogen bonding around the cycle, leading to large 

many-body effects.  Addition of the embedded point charges helps to mimic these effects, 

making the series of dimers converge to a smoother envelope of points in Figure 3. 

 The last issue we would like to discuss is the efficiency with which gradients can 

be calculated since gradients are necessary for carrying out geometry optimizations or 

molecular dynamics calculations.  In previous work20 we discussed the linearity of the 

original EE-MB method and the ease with which gradients could be implemented.  For 

example, the gradient of the EE-PA energy can be written as 

 

  

"EEE-PA = "Eij
i< j

N

# $ (N $ 2) "Ei
i

N

# . (10) 

where an analytic gradient for the EE-PA method is available for any method that has 

analytic gradients for the monomer and dimer calculations, provided the program allows 

for fractionally charged point charges as pseudo-nuclei.  For the EE-MB-CE methods 

presented here, the total energy can still be written as a linear combination of energies.  

For example, the total energy at the EE-PA-CE level, using correlated method X, is given 

by  
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EEE"PA"CE = EHF + #EEE"PA,corr

                    = EHF + #Eij,corr

i< j

N

$ " (N " 2) #Ei,corr

i

N

$

                    = EHF + (Eij,X " Eij,HF )
i< j

N

$ " (N " 2) (Ei,X "
i

N

$ Ei,HF )

 (11) 

Because the gradient is a linear operator, the gradient of the energy given in equation 11 

can be written as  

 

  

"EEE#PA#CE ="EHF + ("Eij,X #"Eij,HF )
i< j

N

$ # (N # 2) ("Ei,X #"
i

N

$ Ei,HF ) (12) 

and it is again true that the method will have analytic gradients so long as the electronic 

structure methods used have analytic gradients.  A key point here is that the values of our 

point charges are fixed.  Since the magnitude of these charges are fixed, the embedding 

charges are like fractionally charged nuclei with no basis functions and so the only 

extension of the usual gradient routines that is required is to allow fractionally charged 

“nuclei”.  This is an important advantage of the present method over some alternative 

many-body schemes. 

5. Summary and Conclusions 

 We have presented here an extension of the electrostatically embedded 

many-body method that calculates the full Hartree–Fock energy of the system and applies 

the EE-MB method only to the correlation energy of the system.  We have found that for 

MP2 correlation energies the inclusion of the full Hartree–Fock energy reduces the error 

of the standard pairwise additive approximation by a factor of 72, and the error of the 

EE-PA method by a factor of eight.  We have also found that one can accurately calculate 

the energies of clusters containing up to 20 water molecules to within 0.09%, on average, 

of the net interaction energy by considering only the two-body terms for the correlation 
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energy.  Since the calculations needed to evaluate the three-body terms in many-body 

expansion are both the most numerous and most expensive, this constitutes a substantial 

savings in time. 

 Finally, we have demonstrated that the use of a cutoff for evaluation of the 

two-body term can reduce the number of dimer terms that need to be calculated 

substantially, without having a large impact on the accuracy of the EE-PA-CE method.  

Using a cutoff of 6 Å we are able to reproduce the total energy of a cluster of 20 water 

molecules to within 0.1% of the net interaction energy by calculating the correlation 

energy of only 106 of the 190 possible pairs of water molecules.  In the future we hope to 

extend this work both to larger systems and to other levels of correlated electronic 

structure theory. 
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Table 1: Comparison of Mean Errorsa (kcal/mol) and Mean Percent Errorsb (%) 
for Different Many-Body Methods, as Compared to Full Cluster Calculationsc 
 MSE MUE RMSE MPSE MPUE RMPSE 
PA 15.95 15.95 17.55 15.40 15.40 15.47 
3B 0.55 0.56 0.71 0.69 0.69 0.88 
EE-PA 0.80 0.80 0.84 0.82 0.82 0.83 
EE-3B -0.34 0.35 0.51 -0.24 0.26 0.33 
PA-CE 0.22 0.22 0.24 0.22 0.22 0.23 
3B-CE -0.05 0.17 0.24 0.01 0.15 0.18 
EE-PA-CE -0.10 0.10 0.11 -0.09 0.09 0.10 
EE-3B-CE -0.23 0.23 0.34 -0.16 0.17 0.21 
a MSE, MUE, RMSE denote mean signed, mean unsigned, and root mean squared errors 
respectively 
b MPSE, MPUE, RMPSE denote mean percent signed, mean percent unsigned, and root 
mean percent squared errors respectively. 
c All calculations correspond to the MP2/aug´-cc-pVTZ level of theory 
 
 
 
Table 2: Comparison of Mean Errorsa (kcal/mol) for PA-CE and EE-PA-CE 
methods with Rcut = 5 Å,  Rcut = 6 Å, and Rcut = ∞ 

 Rcut = 5 Å Rcut = 6 Å Rcut = ∞ 

 MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE 
PA-CE 0.58 0.58 0.71 0.38 0.38 0.46 0.22 0.22 0.23 
EE-PA-CE 0.31 0.33 0.46 0.02 0.07 0.09 -0.09 0.09 0.10 
a MSE, MUE, RMSE denote mean signed, mean unsigned, and root mean squared errors 
respectively 
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Figure Captions 

 

Figure 1.  Two-body energy versus center-of-mass separation for the water dimer.  The solid line is the HF/aug´-cc-pVTZ result, the 

dashed line is the result for the MP2 correlation energy also using the aug´-cc-pVTZ basis set. 

 

Figure 2. Two-body energy versus center-of-mass separation for the 190 dimers of (H2O)20 structure shown.  Each circle represents 

the MP2/aug´-cc-pVTZ two-body correlation energy for one of the dimers.  In Figs. 2 and 3, many of the circles cannot be seen 

because they are obscured by other circles. 

 

Figure 3. Plot of the electrostatically embedded two-body energy versus center-of-mass separation for the 190 dimers of (H2O)20 

structure shown.  Each circle represents the electrostatically embedded MP2/aug´-cc-pVTZ two-body correlation energy for one of the 

dimers. 
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Fig. 2 
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Fig. 3 


