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Abstract: 

 The use of background molecular charge to incorporate environmental effects on a molecule or 

active site is widely employed in quantum chemistry.  In the present article we employ this practice in 

conjunction with many-body expansions.  In particular, we present electrostatically embedded two-body 

and three-body expansions for calculating the energies of molecular clusters.  The system is divided into 

fragments, and dimers or trimers of fragments are calculated in a field of point charges representing the 

electrostatic potential of the other fragments.  We find that including environmental point charges can 

lower the errors in the electrostatically embedded pairwise additive (EE-PA) energies for a series of water 

clusters by as much as a factor of ten when compared to the traditional pairwise additive approximation, 

and that for the electrostatically embedded three-body (EE-3B) method the average mean unsigned error 

over nine different levels of theory for a set of six tetramers and one pentamer is only 0.05 kcal/mol, which 

is only 0.4% of the mean unsigned net interaction energy.  We also test the accuracy of the EE-PA and 

EE-3B methods for a cluster of 21 water molecules and find that the errors relative to a full 

MP2/aug´-cc-pVTZ calculation to be only 2.97 and 0.38 kcal/mol, respectively, which are only 1.5% and 

0.2% respectively of the net interaction energy. This method offers the advantage over some other 

fragment-based methods that it does not use an iterative method to determine the charges, and thus provides 

substantial savings for large clusters.  The method is convenient to adapt to a variety of electronic structure 

methods and program packages, it has N2 or N3 computational scaling for large systems (where N is the 

number of fragments), and it is easily converted to an O(N) method, and its linearity allows for convenient 

analytic gradients. 
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1.  Introduction 

 Many computational chemistry applications require one to calculate accurate 

energies for very large molecules such as proteins, for large molecular clusters or 

nanoparticles that have hundreds or even thousands of atoms, or for condensed-phase 

extended systems (such as liquid solvents or high-pressure solids in the earth’s mantle).  

Such requirements have led to research on developing quantum mechanical electronic 

structure methods to efficiently and accurately describe large systems.1–45  Correlated 

quantum mechanical methods, such as post-Hartree–Fock wave function theory46 (WFT) 

or density functional theory47 (DFT), while able to give highly accurate results, are 

limited — in their original computational formulation — to relatively small systems 

containing only tens, or in the case of DFT, hundreds or a few thousand atoms.  If one is 

interested in studying a system with tens or hundreds of thousands of atoms, conventional 

quantum mechanical methods are useless, and for systems with only 50 – 100 atoms, they 

are often so computationally demanding as to be impractical with the time and resources 

available for a given project.  Molecular mechanics,48,49 on the other hand, while able to 

handle the large number of atoms present in extended systems does not provide the 

predictive quantitative accuracy needed to investigate many of the questions of interest, 

such as chemical reactions or phase equilibria under conditions (for example, the high 

pressure phases of the earth’s mantle) where there is not enough data for a specific 

parameterization. 

 Perhaps the simplest of all approximations that is frequently invoked is to expand 

the system as a sum of many-body terms, and then to truncate the series after only a few 

terms.  If the sum is truncated after inclusion of the two-body terms (interactions of two 
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monomers) one is said to have made the pairwise additive approximation, while if 

three-body terms are also included one is said to have made the three-body 

approximation.  The benefit of making such approximations is that the total energy of the 

system can be written as a combination of the energy of all the fragments (called 

monomers), dimers, and, in the case of the three-body approximation, trimers within the 

structure.  This reduces a single very large and expensive calculation to a large number of 

small and computationally efficient calculations, and it can allow quantum mechanics 

methods to be used for large systems where it would be otherwise impractical.  

Many-body expansions are applicable both to covalently connected monomers, such as 

the peptide residues in a protein, and to noncovalently connected monomers, such as 

water molecules in ice, liquid water, or water clusters.  Additionally, these methods can 

be highly parallelized because each fragment can be calculated on a separate processor, 

making the calculation quite fast.  Unfortunately, while the pairwise additive 

approximation may give qualitatively correct results it does not give good quantative 

results, even for small clusters with highly accurate pair potentials.50  While the inclusion 

of the three-body terms helps to improve quantitative accuracy,51 the results may still be 

insufficiently accurate for systems in which many-body effects play an important role, 

such as water clusters.52 

 As a result of these shortcomings, some workers have tried to modify the pairwise 

and three-body approximations by adding additional terms to the monomer, dimer, or 

trimer Hamiltonian that account for the electrostatic field of the other atoms in the 

system.16,17  These methods, which include the pair interaction molecular orbital 

method16 (PIMO) and the fragment molecular orbital method17,24,29,30 (FMO) of 
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Kitaura et al., add terms to the fragment and dimer Hamiltonians that account for the 

electrostatic potential of the other fragments in the system.  These methods involve an 

iterative procedure to determine the electrostatic potential that occurs in the fragment, 

dimer, and in some cases trimer, Hamiltonians.  In this procedure one divides the system 

into the fragments and provides an initial guess for the electron distribution of each 

fragment.  The Schrödinger equation is then solved for all fragments in the system to 

obtain both the fragment energies and also a new electron density distribution.  The new 

guess is plugged back into the Hamiltonian, and the cycle is repeated until the electron 

density distributions are converged.  FMO calculations in which a unit of two consecutive 

peptide residues are treated as a monomer have been shown to reproduce ab initio 

molecular orbital energies of polypeptides to within 2 kcal/mol; however, one might 

wonder if there is a way to attain similar accuracy without the use of an iterative 

procedure, particularly for noncovalently connected monomers where one can easily 

separate the system into fragments without having to cut through any covalent bonds.  

Some approximations to the electrostatic potential have been made24 in which the 

electrostatic potential was treated using a system of Mulliken and fractional point 

charges, depending on the separation of the fragments, and the expression for the total 

energy was written in terms of a density difference matrix so that only the net 

contribution of the electrostatic energy was included.  Since this method led to no 

significant loss of accuracy when compared to the original FMO method, it prompts one 

to wonder if there is a simpler way to approximate the electrostatic potential, without 

sacrificing accuracy. 
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 Recent work by Jiang et al.43 has modified the molecular fragmentation with 

conjugated caps (MFCC) method of Zhang et al.25,26 so that the energy of each fragment 

is calculated in a field of point charges representing the other charge centers.  Their 

method, called electrostatic field-adapted molecular fragmentation with conjugated caps 

(EFA-MFCC), shows errors within a few millihartees of the ab initio energy for a set of 

model peptides and biological molecules.  In the EFA-MFCC method the total energy is 

written as the sum of the energies of the capped fragments minus the energy of the 

conjugated caps (see references 25, 26, and 43).  In light of the discussion of many-body 

expansions presented in the introduction, one could consider the energy expression of 

MFCC and EFA-MFCC to be an electrostatically embedded one-body expansion of the 

total energy.  In light of the good results obtained with the by Jiang et al. one might ask 

whether using higher order many-body expansions (i.e., pairwise additive or three-body) 

in simple electrostatic fields would be even more accurate, particularly in light of the 

work of Kitaura et al.29, 30 who have successfully used a many-body expansion with 

more complicated ways of representing the electrostatic potential (see previous paragraph 

and references 24, 28–30). 

 In this work, inspired by the successes of the many-body expansions within a 

self-consistent field representing the electrostatic potential of the other particles in the 

work of Federov and Kitaura29,30 and similar in some respects to the work of Jiang et 

al.43 in which a simpler electrostatic embedding is applied to fragments, we combine the 

use of a many-body expansion with the use of prespecified point charges to represent the 

electrostatic field of the other molecules.  In order to assess the accuracy of the method 

we have used it to calculate the binding energies of a series of water clusters ranging in 
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size from trimer to pentamer.  Because water clusters are known to have very large 

many-body effects,52 this should provide a good test of the capabilities of the method. 

2.  Theory 

 Consider a system of N interacting units, called monomers.  In the present paper 

we limit the treatment to noncovalently connected monomers, but, like the fragment 

molecular orbital method,29 it can be extended to covalently connected monomers. 

 Without any approximation, the total energy of the system can be written as: 

 
  

! 

V =V1 +V2 +V3 +L+VN  (1) 

where 

 

! 

V1 = Ei
i

N

" , (2) 

 

! 

V2 = (Eij " Ei " E j )
i< j

N

# , (3) 

 

! 

V3 = [(Eijk "
i< j<k

N

# Ei " E j " Ek ) " (Eij " Ei " E j ) " (Eik " Ei " Ek ) " (E jk " E j " Ek )], (4) 

with higher-order terms defined analogously, and where 

! 

Ei , 

! 

Eij , 

! 

Eijk , … are energies of 

embedded monomers, embedded dimers, embedded trimers, and so forth.  By an 

embedded n-mer, we mean one whose energy is calculated in a field representing the  

N – n other particles.  If one retains only the first two terms of equation 1, the total energy 

of the system can be approximated as: 

 
  

! 

EEE-PA = Eij " (N " 2)
i< j

N

# Ei
i

N

#  (5) 

where EE-PA denotes the electrostatically embedded pairwise additive method.  If one 

includes the first three terms in equation 1, the total energy becomes: 
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! 

EEE-3B = Eijk " (N " 3)
i< j<k

N

# Eij +
(N " 2)(N " 3)

2i< j

N

# Ei
i

N

#  (6) 

where EE-3B denotes the electrostatically embedded three-body method.  (EE-MB 

denotes an electrostatically embedded many-body approximation of unspecified order.)  

If one calculates the energies using equations 5 and 6 without the presence of the point 

charges, one gets the conventional pairwise additive (PA) and three-body (3B) energies, 

as discussed in the introduction.  We emphasize that if the series of equation 1 is not 

truncated, the result is exact and is independent of whether or not embedding is 

employed; however, we will show that the rate of convergence of the series (i.e., the 

accuracy if one truncates after a given order of many-body terms) depends strongly on 

embedding.  

 In the present study, the electrostatic embedding is carried out by using point 

charges, as in ref. 43, to represent the other N – n particles for each n-mer.  Two possible 

ways to obtain the set of point charges needed for these methods are considered in this 

work: 

A. Determine a charge representation for the entire cluster; then, for each 

monomer, dimer, or trimer, represent the other N – 1, N – 2, or N – 3 water 

molecules with the charges from this full-system charge calculation. 

B. Determine the charges for a gas-phase monomer, and, for each monomer, 

dimer, or trimer, represent the other N – 1, N – 2, or N – 3 monomers with the 

gas-phase monomer point charges.  

In order to compare method A to method B we have used the AM153 Mulliken charges54 

to carry out both (denoted AM1 and AM1M for methods A and B, respectively).  Since 

for a very large system the calculation of the charges for the entire cluster may become 
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very expensive we are especially interested in method B (monomer charges), and test the 

monomer-based charge scheme, using three other choices for the monomer charges: 

B3LYP55–57/6-31G*58 Mulliken charges (denoted B3LYPM), B3LYP/6-31G* class IV 

charges59 (denoted CM4M), and TIP3P61 molecular mechanics charges (denoted TIP3P).  

(Note that Mulliken charges are class II charges and CM4 is a class IV charge model.60)  

All AM1 calculations were carried out using the Gaussian0362 software package, while 

the B3LYP/6-31G* CM4 and Mulliken charges were calculated using the MN-GSM 

software program, version 6.063 (Note that the B3LYP Mulliken charges can be 

calculated with any electronic structure package employing B3LYP that can calculate 

Mulliken charges.)  

 The procedure for the electrostatically embedded many-body method can be 

summarized as follows: 

1. Determine the partial atomic charges for all N molecules in the cluster by one of 

the methods described in the previous paragraph. 

2. Calculate the energy of each n-body cluster in the expansion (for EE-PA, one has 

n = 1 and 2; for EE-3B, one has n = 1, 2, and 3) by representing the atoms of the 

other N – n molecules with nuclear-centered point charges corresponding to the 

partial atomic charges determined in step 1. 

3. Calculate the total energy of the system using the appropriate equation 

(i.e., equation 5 for EE-PA, equation 6 for EE-3B). 

 We note that the internal geometries (O-H bond distances and H-O-H bond 

angles) of the monomers for those clusters taken from simulations vary within the cluster, 

and in some cases they are also quite different from those clusters obtained from 
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gas-phase optimizations (the bond lengths and angles for the optimized clusters tend to be 

similar).  Thus in principle, many of the monomers in these clusters have slightly 

different charges, and indeed when one uses method A the charges are different.  One 

could also laboriously calculate all the slightly different monomer charge sets, but when 

we use the monomer charges we use a simpler procedure – all charges correspond to the 

equilibrium structure of the monomer (taken to have the O-H distances of 0.9572 Å and a 

bond angle of 104.52 degrees). 

3.  Results and Discussion 

 In previous work50 we have tested the ability of the pairwise additive 

approximation to reproduce full density functional calculations of binding energies of 

small water clusters ranging in size from trimer to pentamer.  The database used in that 

work consists of a set of eight trimers, six tetramers, and a pentamer; the structures are 

taken from Monte Carlo and molecular mechanics simulations of bulk water and ice, as 

well as from gas-phase optimizations.  We have chosen to use the same set of 15 clusters 

in this work, and we refer the reader to reference 50 for more information about the 

database.  All tests of the many-body and electrostatically embedded many-body results 

are tests of how well these approximations can reproduce the total energy from full 

calculations at a given level of theory, not how well they agree with higher-level 

calculations.  For example EE-PA and EE-3B calculations of the energy with 

PBE1W/6-311+G(2d,2p) monomers, dimers, and trimers are compared to full 

PBE1W/6-311+G(2d,2p) calculations on the whole cluster, which we refer to as the true 

energies. 
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 While the main subject of the present work is the use of prespecified point 

charges in a many-body expansion, one might be interested in seeing the results for 

electrostatic embedding with only the one-body term.  For the interested reader these 

results and a brief discussion have been placed in supporting information. 

 For each of the fifteen clusters we have calculated the true energies at a given 

level of electronic structure theory and basis set, the pairwise additive energies at the 

same level of theory and basis set, and the electrostatically embedded pairwise additive 

energies with that level and basis set.  For the EE-PA energies we tested the five charge 

approximations described above: AM1, AM1M, B3LYPM, CM4M, and TIP3P.  Each of 

these five energies were calculated at five different levels of theory with one or two basis 

sets.  The levels of electronic structure theory are: BLYP,55,56 B3LYP,55–57 PBE,64 

PBE1W,49 MP2.65  Four of these are methods that were also used in reference 50; they 

include three generalized gradient approximations (BLYP, PBE, PBE1W), or GGAs, and 

one hybrid GGA (B3LYP), that also includes a percentage (20%) of Hartree–Fock 

exchange.  The fifth level of theory is MP2 (second order MØller–Plesset perturbation 

theory65), both to illustrate the electrostatically embedded many-body expansion for a 

WFT method and because MP2 is known to be highly accurate for small water 

clusters.66,67  For each of the density functionals we use the MG3S basis set (which for 

water is the same as the 6-311+G(2df,2p)58 basis set), and also the basis set, different for 

each functional, that was determined previously50 to be optimal for small water clusters.  

Three of the functionals (BLYP, B3LYP, and PBE1W) use a Pople basis set,58 while one 

functional (PBE) uses an augmented Dunning basis set;68 in particular we consider the 

BLYP/6-31+G(d,p), B3LYP/6-31+G(d,2p), PBE/aug-cc-pVTZ, and 
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PBE1W/6-311+G(2d,2p) levels of theory.  For the MP2 calculations we use the 

cc-pVTZ69 basis set on hydrogen and the aug-cc-pVTZ basis set on oxygen; this 

combination will be referred to as the aug´-cc-pVTZ basis set.  All density functional and 

MP2 calculations were carried out with the Gaussian03 program.62 

 Before discussing the results, it is useful to provide some characterization of the 

clusters.  Seven of the eight trimers are bound with respect to three optimized monomers 

for all nine levels of theory tested. The net binding energies for these seven trimers range, 

depending on electronic structure level and the particular trimer, from 0.2 to 

17.3 kcal/mol, with an average of 13.0 kcal/mol. The only exception, taken from a Monte 

Carlo simulation of liquid water, is predicted to be unbound by as much as 3.2 kcal/mol 

by MP2/aug´-cc-pVTZ and to be bound at most by 2.1 kcal/mol with BLYP/6-31+G(d,p).  

The tetramers are all bound with respect to four optimized monomers; depending on the 

electronic structure level and the particular tetramer, the net binding energy ranges from 

1.9 to 30.8 kcal/mol, with an average binding energy of 13.6 kcal/mol.  The pentamer, in 

contrast, taken from a simulation of liquid water, is unbound by 8.8 to 16.4 kcal/mol, 

depending on the electronic structure method. 

 Table 1 shows the mean errors of the pairwise additive and electrostatically 

embedded pairwise additive energies, relative to the true energies calculated at the same 

level of theory.  We can see that even for the worst EE-PA result, the one with AM1M 

charges, the average mean unsigned error is reduced by a factor of two.  Moreover, the 

best two methods, EE-PA-B3LYPM and EE-PA-TIP3P, show a tenfold reduction in 

error.  For the EE-PA-AM1 and EE-PA-AM1M calculations we see improved 

performance of the full cluster calculation over the gas-phase monomer charges; however 
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the difference in the average mean unsigned error in the nine methods is only 

0.15 kcal/mol indicating that the use of monomer charges is sufficient for this 

application.  The best overall result comes from the use of the TIP3P charges, which were 

parameterized (along with two Lennard-Jones parameters) to improve the energetics and 

liquid density of simulations of liquid water.60  We note that Jiang et al.43 saw a similar 

result, in that while the energy obtained is not independent of the charges used, the choice 

of charge model does not greatly influence the quality of the result obtained. 

 As the two best results, EE-PA-B3LYPM and EE-PA-TIP3P, use only the 

gas-phase monomer charges, which are related by qH = – qO/2, one might be able to use 

qO as a variational parameter in order to obtain even better results.  Optimization of qO to 

minimize the average mean unsigned error of the nine methods led to qO = –0.8972.  

Table 2 compares the mean errors for the optimized charges (denoted QOPT) to the other 

EE-PA methods that use monomer charges.  We find that optimizing qO does not lead to 

significant improvement over the TIP3P charges.  In fact, the average mean unsigned 

errors over all nine methods for the EE-PA approximation with the AM1M, B3LYPM, 

CM4M, TIP3P, and QOPT charges methods are 0.80, 0.21, 0.34, 0.19, and 0.19 kcal/mol, 

respectively.  In light of the small difference in errors between the B3LYPM, TIP3P, and 

QOPT methods, and in the interest of developing a method that is generally transferable 

to other systems, we have decided to use the B3LYP/6-31G* monomer Mulliken charges 

(B3LYPM) because (unlike the TIP3P charges) they are well defined for any system of 

interest, and thus they avoid the need to optimize a new set of charges for each system of 

interest. 
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 Table 3 compares the three-body and electrostatically embedded three-body 

energies to the true energies for the tetramers and pentamer.  Based on the results for the 

electrostatically embedded pairwise additive methods we test only the B3LYP/6-31G* 

monomer Mulliken (B3LYPM) charges. In all cases we see that the EE-3B method gives 

a mean unsigned error of less than 0.1 kcal/mol; in the case of MP2/aug´-cc-pVTZ we see 

a mean unsigned error of only 0.01 kcal/mol.  Again we see a minimum of a twofold 

decrease in the error upon inclusion of the point charges, and as much as a tenfold 

improvement for MP2.  The average mean unsigned error for the nine methods is 

0.05 kcal/mol, compared to an average mean unsigned error of 0.31 kcal/mol for the 

EE-PA scheme applied to the tetramers and pentamer.  The average error of 0.05 

kcal/mol in the EE-3B energies corresponds to a relative error of 0.4% when compared to 

the average unsigned net interaction energy of the tetramers and pentamer, which is 13.6 

kcal/mol; the average mean unsigned error of 0.31 kcal/mol for the EE-PA scheme 

applied to this same set of clusters corresponds to 2.3%, which is also small enough to be 

useful for demanding applications. 

 In order to test the new methods for larger clusters, we have applied them to 

calculate the MP2/aug´-cc-pVTZ energy of a cluster of 21 water molecules (see 

Figure 1), taken from the Cambridge Cluster Database,70 which corresponds to the global 

minimum-energy structure for N = 21 with the TIP5P71 empirical potential.72  We find 

that the EE-PA method gives an error of 2.97 kcal/mol relative to the true energy, while 

EE-3B gives an error of only 0.38 kcal/mol.  These values are larger than the mean 

unsigned errors for the smaller clusters because the 21-mer has a much larger interaction 

energy, due to the large number of hydrogen bonds (see Fig. 1).  In particular the energy 
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of the 21-mer is 203.2 kcal/mol lower than 21 separated gas-phase water monomers.  The 

errors in the EE-PA and EE-3B net interaction energies are thus 1.5% and 0.2%, 

respectively. 

 In order to put these results into perspective Table 4 shows FMO results for DFT 

calculations on water clusters containing 16 and 32 water molecules. 30  In general we 

see that our errors are lower than those for the FMO methods with N = 16. Federov et al. 

assume that the error scales linearly with the system size,29,30 indicating that for the same 

system size the method presented here should be more accurate than FMO.  The FMO2 

and FMO3 methods perform better for small-basis-set Hartree–Fock calculations, but we 

have not tested the EE-MB schemes for those levels of calculation, which are less 

accurate for polarization and which do not include correlation. 

 It is also interesting to note the wide range in performance that one sees in Table 4 

with respect to varying basis set.  While we see some dispersion in Tables 1 and 2, the 

spread is not as severe as what is seen in Table 4, even after adjusting for system size. 

 An important feature of the EE-PA and EE-3B methods is their favorable scaling 

in the limit of large system size.  For example, the calculation of the EE-3B energy for 

the 21-mer took only ~55 hours using a single processor on an SGI Altix, while the full 

MP2/aug´-cc-pVTZ calculation took ~86 hours using eight processors on the same 

machine (a factor of 12.5 times longer).  In theory, in the limit of large system size and 

independent of what method is used for the trimer, the EE-3B method scales as N 3 where 

N is the number of monomers.  Thus the method shows great promise for allowing 

calculations of MP2 or CCSD(T) (coupled cluster theory with single and double 

excitations and quasiperturbative connected triples73) accuracy on large systems with N 3 
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scaling, whereas conventional MP2 and CCSD(T) scale as N 5 and N 7 respectively.  The 

EE-PA method has even more favorable N 2 scaling.  If one makes a further 

approximation of including only pairs or trimers within a certain cutoff distance of each 

other (for example, only neighboring monomers), the method scales linearly in N.  The 

use of a cutoff has particular value if one is interested in using periodic boundary 

conditions, as it would allow for the study of a large periodic system with highly accurate 

quantum mechanical methods at a relatively low cost.  This further approximation was 

not made in the present work, but is an interesting topic for further study. 

 Another important issue to emphasize is simplicity.  Since essentially all modern 

electronic structure packages allow calculations in the field of point charges (or the 

one-electron part of the Hamiltonians can be easily modified to allow this), the present 

EE-PA and EE-3B methods can be carried out by writing a simple script to drive virtually 

any electronic structure package.  Furthermore, if a new variant of correlated WFT 

becomes available, for example a new coupled cluster approximation, it can immediately 

be employed for the n-mers of the electrostatically embedded many-body series without 

method-specific programming.  An additional benefit is that performing an EE-PA or 

EE-3B calculation is equivalent to carrying out a full quantum mechanical calculation on 

the system, unlike combined QM/MM models13,20,22 that treat only part of the system 

quantum mechanically. 

 Finally we emphasize the linearity of the method.  Equations 1 – 6 are all linear in 

the energies.  Thus if analytic gradients or Hessians are available for the monomers, they 

are immediately available for the EE-MB energy.  For example  

 
  

! 

"EEE-PA = "Eij
i< j

N

# $ (N $ 2) "Ei
i

N

# . (7) 
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In contrast to this simplicity, most other fragment-based methods require extra 

programming or even assumptions to obtain analytic gradients.  Fast and accurate 

gradients are essential for dynamics calculations. 

4. Summary and Conclusions 

 We present here a many-body series called the electrostatically embedded 

many-body expansion that merges the many-body expansion, as developed extensively 

by Federov and Kitaura,29,30 with the use of prespecified point charges on fragments as 

proposed by Jiang et al.43  We have implemented it using fixed monomer partial atomic 

charges for the electrostatic embedding, and we and have demonstrated its accuracy for a 

set of water clusters ranging in size from trimer to 21-mer.  For 8 trimers, 6 tetramers, 

and a single pentamer, the electrostatically embedded pairwise additive approximation 

yields a tenfold reduction in error as compared to the conventional pairwise additive 

method, with an average mean unsigned error of approximately 0.21 kcal/mol when the 

B3LYP/6-31G* monomer Mulliken charges are used.  When three-body terms are 

included with the same set of charges, the average mean unsigned error is only 

0.05 kcal/mol, as compared to 0.17 kcal/mol if no electrostatic embedding is used, an 

improvement of more than a factor of three.  In the case of the 21-mer, the EE-PA 

approximation leads to an error in the total energy of only 2.97 kcal/mol while the EE-3B 

approximation gives an error of only 0.38 kcal/mol relative to a full MP2/aug´-cc-pVTZ 

calculation. 

 While we have only tested the method up to the three-body terms, it is easily 

generalized to include as many of the n-body terms as desired.  In the future we hope to 
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apply this method to the calculation of binding energies for much larger clusters and to 

evaluate possible choices of charge model for other types of molecular clusters. 

Supporting Information Available:  Results for truncating the many-body expansion 

after V1.  Sample scripts for carrying out EE-PA and EE-3B calculations on water 

clusters are available online at http://comp.chem.umn.edu/truhlar/. 
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Table 1. Mean Errorsa (kcal/mol) in Binding Energies for the Pairwise Additive Approximation and the Electrostatically 
Embedded Pairwise Additive Approximation with Five Point-Charge Models 
 

 PA    EE-PA                                               
                                                                                                                                                                                                                                                                                            

  AM1 AM1M B3LYPM CM4M TIP3P 
                                                                                                                                                                                                                                 

 MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE 

BLYP/MG3S 1.99 2.11 2.66 0.74 0.76 1.01 0.91 0.94 1.23 0.21 0.21 0.32 0.42 0.42 0.58 0.14 0.15 0.24 

PBE/MG3S 1.62 1.83 2.32 0.39 0.58 0.74 0.56 0.69 0.92 -0.13 0.21 0.32 0.07 0.28 0.38 -0.20 0.23 0.34 

PBE1W/MG3S 1.58 1.80 2.28 0.35 0.56 0.72 0.52 0.67 0.89 -0.17 0.24 0.35 0.03 0.28 0.38 -0.24 0.26 0.38 

B3LYP/MG3S 1.87 2.00 2.52 0.65 0.68 0.91 0.82 0.85 1.12 0.14 0.14 0.25 0.34 0.34 0.50 0.07 0.10 0.18 

BLYP/6-31+G(d,p) 1.81 1.95 2.47 0.74 0.77 1.02 0.90 0.93 1.22 0.27 0.27 0.39 0.46 0.47 0.64 0.21 0.21 0.31 

PBE/aug-cc-pVTZ 1.82 2.02 2.53 0.43 0.58 0.76 0.62 0.72 0.98 -0.19 0.25 0.36 0.05 0.27 0.37 -0.27 0.28 0.41 

PBE1W/6-311+G(2d,2p) 1.59 1.80 2.29 0.36 0.56 0.72 0.53 0.67 0.90 -0.17 0.24 0.35 0.04 0.28 0.38 -0.23 0.26 0.38 

B3LYP/6-31+G(d,2p) 1.84 1.97 2.49 0.68 0.71 0.95 0.84 0.87 1.15 0.17 0.17 0.29 0.37 0.38 0.54 0.11 0.13 0.21 

MP2/aug´-cc-pVTZb 1.93 2.04 2.55 0.65 0.68 0.88 0.82 0.85 1.10 0.13 0.13 0.20 0.33 0.33 0.45 0.07 0.09 0.13
____________________________________________________________________________________________________________________________________________________________________ 

a MSE, MUE, and RMSE denote mean signed, mean unsigned, and root mean squared errors respectively. 
b aug´-cc-pVTZ denotes using the cc-pVTZ basis set on hydrogen and the aug-cc-pVTZ basis set on oxygen. 
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Table 2. Comparison of the Mean Errors (kcal/mol) for Five Kinds of Point Charges in the EE-PA Method 

 AM1Ma B3LYPMb CM4Mc TIP3Pd QOPTe 
                                                                                                                                                                                               

 MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE 

BLYP/MG3S 0.91 0.94 1.23 0.21 0.21 0.32 0.42 0.42 0.58 0.14 0.15 0.24 0.07 0.09 0.16 
PBE/MG3S 0.56 0.69 0.92 -0.13 0.21 0.32 0.07 0.28 0.38 -0.20 0.23 0.34 -0.26 0.26 0.39 
PBE1W/MG3S 0.52 0.67 0.89 -0.17 0.24 0.35 0.03 0.28 0.38 -0.24 0.26 0.38 -0.30 0.30 0.44 
B3LYP/MG3S 0.82 0.85 1.12 0.14 0.14 0.25 0.34 0.34 0.50 0.07 0.10 0.18 0.01 0.08 0.13 

BLYP/6-31+G(d,p) 0.90 0.93 1.22 0.27 0.27 0.39 0.46 0.47 0.64 0.21 0.21 0.31 0.15 0.15 0.23 
PBE/aug-cc-pVTZ 0.62 0.72 0.98 -0.19 0.25 0.36 0.05 0.27 0.37 -0.27 0.28 0.41 -0.35 0.35 0.48 
PBE1W/6-311+G(2d,2p) 0.53 0.67 0.90 -0.17 0.24 0.35 0.04 0.28 0.38 -0.23 0.26 0.38 0.01 0.06 0.09 
B3LYP/6-31+G(d,2p) 0.84 0.87 1.15 0.17 0.17 0.29 0.37 0.38 0.54 0.11 0.13 0.21 0.04 0.09 0.15 

MP2/aug´-cc-pVTZf 0.82 0.85 1.10 0.13 0.13 0.20 0.33 0.33 0.45 0.07 0.09 0.13 -0.30 0.30 0.43 
a qO = –0.385115, qH = 0.1925575 
b qO = –0.778311, qH = 0.3891555 
c qO = –0.637, qH = 0.319 
d qO = –0.834, qH = 0.417 
e qO = –0.8972, qH = 0.4486 
f aug´-cc-pVTZ using the cc-pVTZ basis set on hydrogen and the aug-cc-pVTZ basis set on oxygen. 
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Table 3. Mean Errors (kcal/mol) for Three-Body and Electrostatically 
Embedded Three-Body Binding Energies 

 3B EE-3Ba 
                                                                                                       

 MSE MUE RMSE MSE MUE RMSE 

BLYP/MG3S -0.07 0.18 0.29 -0.02 0.03 0.05 
PBE/MG3S -0.13 0.18 0.32 -0.08 0.08 0.11 
PBE1W/MG3S -0.14 0.17 0.32 -0.09 0.09 0.12 
B3LYP/MG3S -0.07 0.16 0.27 -0.02 0.03 0.04 

BLYP/6-31+G(d,p) -0.06 0.17 0.27 -0.02 0.03 0.04 
PBE/aug-cc-pVTZ -0.10 0.16 0.29 -0.07 0.07 0.09 
PBE1W/6-311+G(2d,2p) -0.13 0.17 0.32 -0.08 0.08 0.12 
B3LYP/6-31+G(d,2p) -0.07 0.16 0.25 -0.02 0.02 0.04 

MP2/aug´-cc-pVTZ b -0.05 0.14 0.21 -0.01 0.01 0.01 

a based on B3LYPM point charges 
b aug´-cc-pVTZ denotes the use of the cc-pVTZ basis set on hydrogen and the 
aug-cc-pVTZ basis set on oxygen. 
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Table 4 Errors (kcal/mol) in FMO2a and FMO3b 
Approximations to True Energies for Clusters of 
N Water Moleculesc 
 N = 16 N = 32 
FMO2   
B3LYP/6-31G* -9.83 -26.27 
B3LYP/6-1++G** -6.78 -23.58 
   
FMO3   
B3LYP/6-31G* 0.51 1.85 
B3LYP/6-31++G** 3.12 14.71 
a FMO2 corresponds to the two-body fragment 
molecular orbital method with one water molecule 
per fragment 
b FMO3 corresponds to the three-body fragment 
molecular orbital method with one water molecule 
per fragment 
c All errors are taken from reference 30. 
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Figure 1:  Geometry of 21-mer Used to Test EE-PA and EE-3B for Large Clusters. 

 


