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Electrostatics and the assembly of an RNA virus
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Electrostatic interactions play a central role in the assembly of single-stranded RNA viruses. Under physi-
ological conditions of salinity and acidity, virus capsid assembly requires the presence of genomic material that
is oppositely charged to the core proteins. In this paper we apply basic polymer physics and statistical me-
chanics methods to the self-assembly of a synthetic virus encapsidating generic polyelectrolyte molecules. We
find that (i) the mean concentration of the encapsidated polyelectrolyte material depends on the surface charge
density, the radius of the capsid, and the linear charge density of the polymer but neither on the salt concen-
tration nor the Kuhn length, and (ii) the total charge of the capsid interior is equal but opposite to that of the
empty capsid, a form of charge reversal. Unlike natural viruses, synthetic viruses are predicted not to be under
an osmotic swelling pressure. The design condition that self-assembly only produces filled capsids is shown to
coincide with the condition that the capsid surface charge exceeds the desorption threshold of polymer surface
adsorption. We compare our results with studies on the self-assembly of both synthetic and natural viruses.
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I. INTRODUCTION

Electrostatics plays a pivotal role in the formation of a
virus. A first indication comes from the fact that the recon-
stitution of an (infectious) viral particle under in-vitro condi-
tions from an aqueous solution containing the viral protein
and RNA molecules only succeeds for a certain salinity
range and salt composition [1,2]. Structural studies provide
more detailed information concerning the role of electrostat-
ics. A virus consists, minimally, of a protein shell (or
“capsid”) that protects the enclosed RNA or DNA genome.
The proteins (or “subunits”) that constitute the capsid carry,
under physiological pH conditions, a typical positive electri-
cal charge of 11 to 13 on a section of the protein that faces
the interior (usually, but not exclusively, near the amino ter-
minal [3]). Negative charges tend to be located on the exte-
rior surface of the capsid. The number of proteins per capsid
(N) equals 60 times the “T number,” a structural index for
viral capsids that adopts certain integer values such as 1, 3,
4, and 7, so the total positive charge of a virus can be sub-
stantial. The focus of this paper will be on small (i.e., T=3 or
4) RNA viruses—Tlike the Polio virus—which have single-
stranded (“ss”) genomes with a typical size of the order of
3-4 kilo bases (usually partitioned among a few RNA mol-
ecules) [4]. At physiological pH, the total negative charge of
the phosphate groups of the RNA backbone is then about
twice the total positive charge of the capsid interior surface,
so the virus interior has a net negative charge of the order of
(minus) 10°. In general, viral particles carry a significant net
charge [5], which helps prevent virus-virus aggregation.

The electrostatic repulsion between charged capsid pro-
teins should inhibit viral self-assembly. This is confirmed by
studies of the phase diagram of solutions of capsid proteins
[6,7]. The fraction of capsid proteins that aggregate into
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(empty) shells, or other protein clusters, increases with salin-
ity (“salting-out”). For instance, the classical study by Aaron
Klug of the phase diagram of tobacco mosaic virus (TMV)
subunits found that under physiological conditions only
small disk-like oligomers form while for higher salt concen-
trations cylindrical aggregates appear that actually resemble
(empty) TMV capsids [6]. Viral protein aggregation can be
analysed in terms of the competition between a salt-
dependent electrostatic protein-protein repulsion and a
(largely) salt-independent hydrophobic protein-protein at-
traction [8]. In particular, a recent and quantitative study by
Ceres and Zlotnick of the self-assembly of capsid proteins of
hepatitis B virus (HBV) indicated that, under very carefully
controlled conditions, the fraction of aggregated proteins will
follow the law of mass action of equilibrium thermodynam-
ics [7]. (This seems to be true also for TMV [9].) The for-
mation free energy of the HBV capsids could be obtained
this way and was found to be of order 2,000 kzT per capsid.
The measured salt dependence of this formation energy was
found to follow the Debye-Hiickel theory of screened inter-
actions in aqueous solution, applied to a charged spherical
shell [8]. The resulting capsid surface charge density o, ob-
tained from a fit to the experimental data, was found to be
almost one net electrical charge per nm?, which agrees rea-
sonably well with the nominal “chemical” charge of about
0.4 per nm? of the capsid proteins [10].

The electrostatic self-repulsion of the genome also has an
inhibitory effect on assembly. Light-scattering and small-
angle x-ray studies have shown that viral RNA molecules in
physiological solution have a significantly lower density than
these same molecules inside the viral capsid [11]. In fact, the
nucleotide density inside a 7=3 RNA virus is comparable to
that of a (hydrated) RNA crystal [12]. The thermodynamic
work required to compactify the genome against the electro-
static self-repulsion during assembly is not known for the
case of the single-stranded (“ss”) viral RNA genomes. How-
ever, for certain DNA viruses—the bacteriophages—it has
been demonstrated that the electrostatic self-repulsion of the
genome generates an internal osmotic pressures of the order
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of tens of atmospheres [13], while the work of compaction is
of order 10°—10* kT [14], Note that this is comparable to
the formation energy of an empty HBV capsid.

Despite all this, electrostatics in general—specifically the
electrostatic attraction between capsid and genome—
provides the thermodynamic driving force for viral self-
assembly, at least for ss RNA viruses [15]. It is important to
distinguish at this point specific from nonspecific interac-
tions. Klug showed [6] that the disklike TMV oligomers that
form under physiological conditions actually will assemble
into fully infectious TMV viruses once viral RNA molecules
are added to the solution. Assembly is initiated by the spe-
cific affinity of a certain hairpin-shaped RNA sequence along
the viral genome—the so-called “packaging signal”—for the
oligomers [16]. After formation of this initial nucleo-protein
complex, subsequent assembly of the virus is driven by non-
specific affinity between the viral RNA molecule and the
capsid proteins. Similar RNA-driven assembly scenarios,
where a specific initial RNA-oligomer assembly involving
either hairpin packaging signals [12] or tRNA-like structures
[17] develops into a fully formed infectious virus, driven by
non-specific affinity, are encountered also for spherical vi-
ruses, though assembly intermediates are somewhat harder to
isolate [18]. The nonspecific affinity is usually, though not
always, electrostatic attraction between the positive charges
of the subunits and the negative charges of the genome [19].
The importance of a purely nonspecific, electrostatic thermo-
dynamic driving force for viral assembly was demonstrated
early on by the classical studies of Bancroft and collabora-
tors who showed that capsid proteins of certain viruses, such
as those of the Cowpea Chlorotic Mottle Virus (CCMV),
Brome Mosaic Virus (BMV) and Broad Bean Mottle Virus
(BBMV), actually will package alien RNA molecules—
including purely homopolymeric RNA—and even generic
polyelectrolytes [4].

This counterpoint between electrostatic repulsion and
electrostatic attraction clearly plays an important role during
viral assembly. Apparently, under the right conditions, elec-
trostatic repulsion between subunits is able to prevent assem-
bly of empty capsids while electrostatic attraction between
subunits and genome molecules is strong enough to over-
come this repulsion and allow filled and not empty capsids to
assemble. The aim of this paper is to apply methods bor-
rowed from polymer physics and the statistical mechanics of
self-assembly to examine just what exactly the “right condi-
tions” should be to allow this balancing act. Knowing these
conditions should offer a guide for the laboratory synthesis
of artificial capsids designed to carry a polymeric cargo. In
particular, we would like to establish a theoretical limit on
the amount of material that can be encapsidated purely by
spontaneous self-assembly as well as the amount of encapsi-
dated material that minimizes the free energy. We will focus
here solely on the equilibrium thermodynamics of viral as-
sembly. As mentioned, specific interactions dominate forma-
tion kinetics whereas nonspecific electrostatic interactions
dominate the thermodynamic driving force for the growth of
the subunit/genome aggregates. The advantage of this focus
on the nonspecific thermodynamic driving force is that we do
not need to concern ourselves with the secondary structure of
the RNA molecules and specific packaging signals. To that
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effect, we will focus on the encapsidation in saline solution
of a “toy genome” consisting of flexible, negatively charged,
soluble, homo-polymeric polyelectrolyte material by posi-
tively charged “protein” units that can aggregate into shells
of fixed radius R and surface charge density o. The study by
Bancroft and co-workers [4] of the encapsidation of ho-
mopolymeric RNA by CCMV capsid proteins would provide
a specific realization of the model.

The main results of our investigation are as follows.

(i) If the capsid is permeable to the polyelectrolyte mate-
rial, and if the co-assembly takes place under condition of
full chemical equilibrium, then the mean internal concentra-
tion ()" of encapsidated polyelectrolyte material should
equal 60/ aR with a the number of charges per Kuhn length,
depending neither on the salinity of the solution nor on the
Kuhn length of the polyelectrolyte. The concentration profile
is characterized by power-law behavior. The total charge of
the assembly is approximately equal but opposite to the
charge of the empty capsid.

(ii) If the capsid is impermeable to the polyelectrolyte
material, but permeable to water and to salt ions, then a
range of packing concentrations (¢) different from (¢)” is
possible. If assembly proceeds sufficiently slowly, then the
mean concentration is expected to lie in the interval 1/2(¢)"
to {(¢)". The maximum possible concentration of packaged
polyelectrolyte material consistent with spontaneous self-
assembly is of order o/ VRd, with d<R the so-called “ex-
trapolation length.” The concentration profile is character-
ized by a uniform ‘“core” and a surface layer of enhanced
monomer concentration with a width of order the correlation
length é<R.

(iii) The competition between the electrostatic contribu-
tions to the formation free energy, coming from protein-
protein repulsion, polyelectrolyte self-repulsion, and protein-
polyelectrolyte attraction, leads to interesting reentrant phase
behavior as is shown in Fig. 4. Plotted are the critical protein
concentration for the onset of aggregation of empty and filled
capsids as a function of the ambient salt concentration [c,]
for the optimal case (¢)=(¢)". Assembly of empty capsids
characterizes section (A) of the diagram; section (B) is char-
acterized by the absence of aggregates and section (C) by
filled capsids. The effective border between the regions of
filled and empty capsids is determined by a polyelectrolyte
desorption condition.

In Sec. IT we begin by generalizing the equilibrium as-
sembly model for charged capsid proteins that was used ear-
lier to explain the salt (and temperature) dependence of
empty HBV capsid assembly [8] to describe capsid assembly
with a polyelectrolyte cargo. Next, in Sec. III, we discuss the
free energy for the adsorption of a generic, oppositely
charged, flexible polyelectrolyte onto the inner wall of a fully
formed capsid shell. In Secs. IV and V we separately discuss
the concentration profiles under conditions of full, respec-
tively, restricted equilibrium of the trapped polyelectrolyte
molecules. In Sec. VI, we combine the results of Secs. II
through V to obtain assembly phase diagrams for full and in
restricted equilibrium. The implications and limitations of
our results are discussed in Sec. VII where we compare our
results with the Bancroft study of coassembly of CCMV and
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FIG. 1. (a) Schematic model of capsid self-assembly: protein
monomers (left) are in equilibrium with fully formed virus capsids
of fixed radius R (right). Upon assembly, hydrophobic patches of
total area ay per monomer are shielded from contact with water.
The assembly process brings together the charged surfaces of the
proteins, with a total area of a. per protein. (b) In swollen capsids,
or in capsids with holes, polymer molecules may freely enter and
leave a formed capsid (left). The polymers inside the capsids are
then in full equilibrium with the bulk polymer solution. In restricted
equilibrium this is not the case and a fixed amount of polymer is
trapped inside a capsid (right).

homopolymeric RNA. We conclude with a brief discussion
of key differences between polyelectrolyte encapsidation and
viral assembly.

II. THERMODYNAMICS OF CAPSID SELF-ASSEMBLY

In order to substantiate the claims made in the Introduc-
tion, we start by defining the model (see Fig. 1). A dilute
solution contains both single protein subunits (or oligomers
such as dimers or pentamers if that happens to be appropri-
ate), which can aggregate into capsid shells containing N
subunits each, as well as negatively charged flexible poly-
electrolytes. We will assume the solvent conditions to be
good. The protein contribution to the free energy density of
the solution is then

flkgT=c,,In wc,,— c,, +c.In Qc.—c.+ c AG. + xC,,Pp-

(1)

The first four terms are the ideal solution free energy densi-
ties of free and aggregated monomers respectively, with c,,
the concentration (number density) of free protein subunits
(or oligomers) and c, that of the capsids; the parameters w
and () can be viewed as interaction volumes per protein,
respectively, per capsid. We assume that only one type of
protein subunit and only one type of N-subunit capsid are
present in the solution. The two concentrations are linked by
the condition that the total protein concentration, c, is fixed,

¢+ Ne.=c. (2)
In the fifth term of Eq. (1),

AGCZAG0+AGP, (3)
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represents the formation free energy of a capsid from N in-
dividual subunits. At the level of a Debye-Hiickel (DH)
theory of linearized electrostatic interactions, AG, can be
written as the sum of AG,, the free energy of formation of
capsids in the absence of polyelectrolyte, and a contribution
from the polyelectrolyte, AG,. As argued elsewhere (8], a
plausible form for AG, is

AGy/N = — yyay + °Nghpac, (4)

where 7y is the free energy gain per unit area (in units of
kgT) resulting from the removal of the water-exposed hydro-
phobic patches of the capsid protein subunits from an aque-
ous to a dielectric environment, and ay the total hydrophobic
area of a single monomer buried during aggregation, of the
order 10 nm? [7]. (See Fig. 1.) It provides the principle driv-
ing force of (empty) capsid assembly. The hydrophobic in-
terface energy vy does not depend on salinity, at least to a
first approximation, but it is an increasing function of tem-
perature [20].

The second term in Eq. (4) originates from the electro-
static self-repulsion of a uniformly charged shell with surface
charge density o, obtained within the Debye-Hiickel ap-
proximation. Here, \p=e?/4mekyT is the Bjerrum length of
water at a temperature 7, with e the unit charge, ¢ the dielec-
tric constant of water, \p=1/87-10°\zN4[c,] the Debye
screening length, with [c,] the molar concentration of 1-1
salt and N, Avogadro’s number, and finally a. the charged
area of a capsid protein facing the inner surface of the shell
(approximately 20 nm” for a T=4 virus [8]). For water at
room temperature, A\z=~0.7 nm and \,~0.3/ [c,] nm. The
Debye screening length \p is assumed to be small compared
with the capsid radius R. Equation (4) was used in reference
[8] to fit the self-assembly thermodynamics of HBV capsids
in solution, allowing the determination of o and .

Finally, the last term of Eq. (1) describes the attractive
electrostatic interactions between the remaining free protein
monomers in solution and the polyelectrolyte material at a
monomer concentration ¢y in terms of a (negative) Flory y
parameter, which is discussed below.

After minimization of the free energy density with respect
to the capsid concentration c,,, subject to the constraint of
Eq. (2), one obtains the law of mass action for the problem in
hand:

exp-AG,, (5)

with AG.=AG,.—Nxcg. In the relevant limit N> 1, the frac-
tion of proteins f=Nc./c in aggregate form is given by a
classical relation of equilibrium self-assembly:

1-c'le, ¢>c"
fz

0, c<c".

[l

(6)

The threshold concentration ¢ may be considered as a criti-
cal subunit concentration, or CSC, in analogy to the well-
known critical micelle concentration for self-assembling
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surfactant molecules [20]. The CSC is controlled by the
capsid free energy according to:

AG
* —1 c
c = w  exp N ( )

Using Eq. (4) in Eq. (7) gives the CSC for formation of
empty capsids if we set AG, and x equal to zero. Equation
(7) predicts that—for empty capsids—the CSC rapidly de-
creases if we increase the concentration of added salt or if we
strengthen the apolar character of the hydrophobic patches of
the capsid proteins by raising the temperature [8]. Experi-
ments on HBV confirm this conclusion [7].

III. POLYELECTROLYTE ENCAPSIDATION

We now specify the nature of the polyelectrolyte cargo of
the capsid. The (effective) linear charge density along a flex-
ible polyelectrolyte of M monomers, or Kuhn segments, of
length [, will be presumed to be of the order =1 per Kuhn
length, as for instance appropriate for homopolymeric ss
RNA. Under these conditions, we can ignore the dependence
[ on the salinity of the solution [21]. The electrostatic self-
repulsion of the flexible chains is accounted for by an ex-
cluded volume v acting between any two Kuhn segments.
Let U(r)=(e/4mer)exp—r/\p be the DH point charge poten-
tial. The electrostatic contribution to the excluded volume is
then [22]

. U
V:Jd3r(1 —exp(— azﬂ» 2477012)\37\%), (8)
kgT

assuming that the electrostatic energy per Kuhn segment is
less than the thermal energy [23].

Next, the electrostatic interaction between the polyelec-
trolyte material and the proteins is included via a surface
energy:

[’

FyA~— aef dzU(2) p(z). 9)

0

Here, ¢(z) is the number of Kuhn segments per unit volume
at a distance z from the (charged) protein surface, and U(r) is
as before the electrostatic potential but now of a double-layer
with (uniform) surface charge density o. (See also Fig. 1.)
Within the DH approximation, for a flat plate [22]:

eU(r)
kT

=4mAphg exp(— z/\p), (10)

which is appropriate in the thin double-layer limit, Ap <<R. If
the polyelectrolyte monomer concentration does not vary
significantly over the Debye length, then Eq. (9) reduces to

FylA = — d4machphhh(0) = — y(0). (11)
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Here, 7:477&0')\3)\12) is a measure of the strength of the sur-
face attraction, while ¢(0) is the monomer concentration at
the surface. If we apply Eq. (11) to free protein subunits in
the bulk polyelectrolyte solution, then we must equate ¢»(0)
with the bulk monomer concentration ¢g. Equation (11) then
defines an effective Flory parameter y=—+ya for the electro-
static attraction between the proteins and the polymer in the
bulk solution, with a. the appropriate charged area of one
subunit [see Eq. (1)]. If we apply Eq. (11) to a completed
capsid then A is the inner capsid surface area (A=~ Nac). In
the next two sections, we will apply the methods of polymer
physics to obtain ¢(0) for this case.

IV. FIXED CHEMICAL POTENTIAL: FULL EQUILIBRIUM

In this section we will assume that the polyelectrolyte
material inside the capsid is in full chemical equilibrium with
a semi-dilute polyelectrolyte bulk solution. Full chemical
equilibrium requires the capsid wall to be permeable to the
polyelectrolyte molecules (see Fig. 1). This limit is not ex-
pected to apply to actual viruses, apart from certain special
cases such as, perhaps, CCMV capsids at high pH, or the
“fenestrated” HBV capsids permeable to short RNA se-
quences. However, the regime of full chemical equilibrium is
important for setting a conceptual framework for the next
section where we discuss impermeable capsid walls.

Under conditions of full chemical equilibrium, the poly-
electrolyte contribution to the formation free energy equals
[24]

AG,= f d*{él%v ¢+ %v(qbz = bp) — (- ¢B>}
r<R

~ 4R Y5~ bp). (12)

Here, ¢(r)= @d(R-z) is the monomer concentration as a func-
tion of the radial distance r=|r|=R~-z from the center of the
capsid, so ¢g=¢@(r) for r=R or z=0 is the surface concen-
tration. Equation (12) is—apart from the last constant—the
classical mean-field adsorption free energy of an inhomoge-
neous, semi-dilute polymer solution in the limit that the
number of polymer segments M is very large and the
“ground-state approximation” holds [24]. The first term de-
scribes the entropic free energy cost of an inhomogeneous
density profile. The second term is the free energy density
due to electrostatic self-repulsion of compressed polyelectro-
Iyte material, expressed in the form of a second virial expres-
sion (we subtract the corresponding bulk solution term
present before assembly in the same volume). The third term
is the chemical work associated with the introduction of the
excess polyelectrolyte material from the bulk into the capsid
volume; up= vy is the polyelectrolyte chemical potential of
the bulk solution. The last term describes the electrostatic
attraction between the protein capsid and polyelectrolyte ma-
terial. Again, we subtract the corresponding electrostatic at-
traction between individual subunits and polyelectrolyte ma-
terial in solution (the Flory y term).

Minimization of this free energy is, as usual, carried out
conveniently in terms of the “wave function” (r) = ¢'(r).

061928-4



ELECTROSTATICS AND THE ASSEMBLY OF AN RNA VIRUS

It produces a nonlinear Euler-Lagrange equation
1
V= — ). (13)

Outside the capsid, in the uniform bulk solution, ¢ equals
W=\ g/ v="¢g. Linearization of Eq. (13) around this uni-
form solution value shows that the “healing length” ¢, de-
scribing the relaxation of deviations from the uniform state is
given by
2 L
& 3vdy (14)

Physically, & corresponds to the “blob size” [24] such that on
length scales less than &, the polyelectrolyte material can be
treated as an individual chain, characterized by power-law
correlations while correlations are screened on length scales
large compared to &.

Demanding this free energy to be stationary with respect
to the surface concentration produces one of the boundary
conditions for Eq. (13):

Layp _6y_1

godr|,x P d (15)

Here, d=1?/67 is the extrapolation length mentioned in the
Introduction. The other boundary condition states that the
concentration at the center of the shell must be a minimum,
i.e., diy/dr=0 for r=R. Inserting Eqgs. (13) and (15) in Eq.
(12), we can write the polyelectrolyte contribution to the
formation energy as

AG,=- 1VJ S - ¢p) + 4mR> vy, (16)
2 r<R

It is helpful to consider here the magnitudes of the various
length scales: the capsid radius R, the correlation length &,
the extrapolation length d, the Debye Screening length Ap,
and the Kuhn length I. The screening length is of order 1 nm
under standard conditions. For ss RNA or ss DNA ho-
mopolymers, the Kuhn length / also is of the order of 1 nm,
at least under physiological conditions [25]. For a typical
capsid surface with a net surface charge density o of
0.1—1 charge per nm?, d is of order 0.1 nm. As discussed in
more detail in Sec. VII, this small value of d makes the
theory qualitative even for homopolymeric polynucleotides,
but should arguably provide a more precise description for
other, less strongly charged polyelectrolyte cargo. The capsid
radius R on the other hand is much larger, of order
10-30 nm. Finally, the correlation length ¢ is in determined
by the bulk polyelectrolyte concentration ¢y. Depending on
¢p, it could vary from the Kuhn length / at high bulk con-
centrations to the radius of gyration of a single chain at the
lowest concentrations. For a homopolymeric ss RNA chain
of 2—4 kilo bases the radius of gyration would exceed the
radius of a T=3 capsid. We will be interested in the regime
of low bulk concentrations, so we will focus on the case that
& is large compared the extrapolation length d (i.e., the
“strong-adsorption limit”) though not necessarily larger than
the capsid radius.
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We now turn to the solution of Eq. (13). Two regimes of
interest, that we will denote as the “exponential,” respec-
tively, the “power-law” domain, are determined by the ratio
of the correlation length and the capsid radius.

(i) Exponential domain: d < £<R. In this regime, the con-
centration profile consists of a central core region, where the
monomer concentration equals the bulk concentration, sur-
rounded by a layer of enhanced concentration covering the
interior surface of the capsid. In terms of the distance z=R
—r from the capsid surface, the solution of Eq. (13) can be
approximated by [26-28]

(z) = Y coth(%), (17)
for z<<R. This is the classical concentration profile of a se-
midilute solution of polymers surface-adsorbed on a flat
plate (systematic corrections for curvature can be included
but do not significantly affect our results [28]). Near the wall,
the polyelectrolyte concentration exhibits a power-law diver-
gence for z+d values small compared to the correlation
length &,

e D5
d(z) = hlz) L+ (18)
Here,
2
¢s=¢(0)=3vd2 (19)

is the polyelectrolyte concentration at the capsid surface.
Note that for /<<d, this surface concentration approaches
1/v, the density of a melt, which means that our virial ex-
pansion becomes inaccurate. The degree of surface enhance-
ment ¢g/ pp=E/d? is determined by the ratio of the corre-
lation length & and the extrapolation length d.

In the opposite limit, with z+d large compared to &, ¢(z)
approaches exponentially the bulk concentration ¢y consis-
tent with the role of £ as a healing length [24],

() pg=1+4 exp—2z/&

for z=R—-r> ¢&-d. See also Fig. 2. The total surface charge
0, per unit area of excess absorbed polyelectrolyte material
equals

(20)

o,= af dz((z) — ¢p) = agsd =20, 21

0

using (in the last two steps) Egs. (8), (12), and (17). Accord-
ing to Eq. (21), polyelectrolyte adsorption effectively pro-
duces a charge-reversal of the adsorbing surface, a well-
known result from polymer physics [21,22]. Within our
approximate theory, which presumes the adsorbed layer to be
much thicker than a Debye length, it comes about because
only polyelectrolyte charges that are within a Debye length
from the surface charges actually interact with them. Other
charges along the polyelectrolyte chain that are in the ad-
sorbed layer as a result of chain connectivity but that are
further away than a Debye length, do not interact with them
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),

FIG. 2. Polymer monomer concentration profiles ¢(r) inside the
capsid cavity as a function of the radial distance r. Curve (a) shows
the exponential regime where the correlation length £ is less than
the capsid radius R and curve (b) shows the power-law regime
where the correlation length exceeds R. In both regimes, most
monomers are confined to a surface region with a thickness of order
the extrapolation length d and a concentration of order ¢s.

and it is their presence that leads to the surface-charge inver-
sion.

Alternatively, define (¢) to be the mean excess polyelec-
trolyte concentration inside the capsid. From Eq. (21), it then
follows that

3pd P 60

3 (*
<¢>z1—ejo dz¢(z)%7%ﬁza, (22)

provided again that the correlation length & is small com-
pared to R. Remarkably, the mean excess polyelectrolyte
concentration depends only on the surface charge density and
the radius of the capsids, and is independent of the salt
concentration. This would not have been the case if we had
fixed the electrical surface potential instead of the surface
charge [29].

(ii) Power-law domain: £€>R>d. If we lower the bulk
concentrations to the point that the correlation length ex-
ceeds the capsid radius, then the central core disappears. The
power-law behavior Eq. (18) previously confined to the vi-
cinity of the surface now extends throughout the capsid; see
Fig. 2. Using a series expansion solution of Eq. (13), it is
easy to show that for small r, i.e., near the center of the
capsid, the solution must have the form

W) = H0) + IO WOP = )+ O().  (23)

On the other hand, near the inner surface of the capsid at r
=R, we must recover a power-law divergence of the form of
Eq. (18). Specifically, we demand that ¢(r) o 1/(ry—r) with
ro some constant. A trial function that is accurate in both
small and large r regimes is then
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—
=
—

1- rzlrg ’ @4

(r) =
with 2 and r, constants to be determined. These we fix by
considering the behavior of our ansatz Eq. (24) near r=0 and
near r=R. From the boundary condition Eq. (15), it follows
that

Rlrg=1-6 (25)

with 6=d/R<1. From the small r expansion, Eq. (23), we
find

2)
B2~ ¢B(1 +3]%). (26)

Note that the concentration at the center of the capsid now
exceeds the bulk concentration. Note further that the surface
concentration obeys

i
ﬁ—12
—_—

T(-RUR? 48

In the limit £&/R> 1, this reduces to ¢/ pp=~(3/4)E/d>,
which means that Eq. (19) for the surface concentration ap-
proximately holds in both regimes.

Having obtained approximate solutions to Eq. (13) for the
regimes of interest, we can compute the polyelectrolyte con-
tribution to the capsid formation energy using Eq. (16). The
functional form of the polyelectrolyte contribution to the for-
mation energy is, to leading order, the same in the two re-

gimes:
~ v’ d

Asz—Ad%(l+0<?)), (28)
with the surface concentrations given by Eq. (19), respec-
tively, Eq. (27). The formation energy is thus directly pro-
portional to surface area A of the capsid. Note that the term
v¢§ has the form of the second viral free energy density in
the surface layer with an effective thickness d except that the
sign is negative. The negative sign means that, under condi-
tions of full chemical equilibrium, the presence of the poly-
electrolyte material promotes the formation of capsids.

| |

os (27)

V. FIXED PACKING DENSITY: RESTRICTED
EQUILIBRIUM

We now turn to the case where capsids that are not per-
meable to the polyelectrolyte material. How the polyelectro-
lyte material is captured, i.e., the assembly pathway, will be
left outside our considerations for reasons discussed in the
Introduction. We will focus entirely on the question whether
or not polyelectrolyte encapsidation lowers the free energy of
the system. We will assume here encapsidation of just a
single, long polyelectrolyte molecule (in the Conclusion, we
will discuss the case of multiple captures). The number of
monomers M is assumed sufficiently large so the radius of
gyration of the polymer is large compared with the capsid
radius R. The polyelectrolyte material trapped inside the
capsid will again be treated as a semi-dilute solution but the
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correlation length is no longer pre-determined. Instead of the
chemical potential, we now must fix the mean concentration
(¢p)=M/V, with V the capsid volume. Because the shell is
now impermeable to the polyelectrolyte, but not to the sol-
vent, we must expect there in general to be an osmotic pres-
sure difference AII across the capsid wall. Similarly, since
capsid walls are permeable to small ions, there also should
be an electrical potential difference of the Donnan type
across the capsid wall.

The work required to compress the polyelectrolyte mol-
ecule into the capsid volume—in other words, the change in
free energy—now equals

~ 1 1
AG,= J & *{—F(V #'%)* + —v¢2} — 4R yebs.
r<rR 6 2
(29)

We actually still should have subtracted a term correspond-
ing to the free energy of the polyelectrolyte molecule in free
solution but under the stated conditions this term is negli-
gible. We must minimize Eq. (29) subject to the condition
that the mean concentration {(¢)=M/V is fixed. The resulting
Euler-Lagrange equation for the concentration profile is
again Eq. (13), in terms of the wave function = ¢'%, except
that the chemical potential wz now must be viewed as
Lagrange multiplier. To avoid confusion, we will denote the
Lagrange multiplier by w. The approximate solutions we
found in the last section carry over to the present case and we
again must distinguish the exponential and power-law re-
gimes.

(i) Exponential domain: d<<&£<R. First assume that the
polyelectrolyte material inside the capsid is characterized by
the profile Eq. (17), with ¢ replaced by w/v. The concen-
tration is again uniform in the center of the capsid. The
Lagrange multiplier is fixed by the condition of mass conser-
vation,

() = 'L—:+%J dz(Mz)z—L:). (30)
0

Inserting Eq. (17) in Eq. (30) gives

(@~ 3% 0 61

with g the surface concentration Eq. (19). Next, inserting
Eq. (17) in the polyelectrolyte contribution to the formation
free energy, and eliminating the Lagrange multiplier, using
Eq. (31), gives

2 2
A6y =-ad"Eav?(@-30a] . @
2 R

where we require that () > ()" =3d¢s/R. Note the sepa-
ration in surface and volume contributions (A is again the
capsid surface area and V the capsid volume). The surface
term is, to leading order, equal to the formation free energy
at fixed chemical potential [see Eq. (28)]. The volume term
represents the energy cost produced by the electrostatic self-

repulsion of the excess polyelectrolyte cargo when (@) ex-
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ceeds (¢)". The condition {(¢p)>{¢)" follows because the
correlation length,

I l
= D)

has to remain less than the capsid radius R if we want the
exponential regime to be valid.

As a function of {¢), the free energy Eq. (32) has a mini-
mum at {¢)=(¢)" right at the border of the range of validity
of the exponential regime. On the other hand, the maximum
packing density (@)« that possibly can be achieved by self-
assembly is defined by the condition that the attractive
protein-polymer attraction exactly balances the polymer self-

(33)

repulsion in the core region, i.e., that Aépzo. This happens

when
1 [R\ .
(B = (1 ! 5\/£)<¢> . (34)

This maximum packing density considerably exceeds the op-
timal packing density by a factor of order VR/d> 1, though
it still is much less than the surface concentration ¢y
z%((b)mx\f‘R/ d. The minimal healing length at this maxi-
mum packing density equals &, =d(R/d)"*.

As noted already, an osmotic pressure All=
—dA(E,,/dV| u.y s exerted on the capsid wall under condi-
tions of restricted equilibrium. When taking here the deriva-
tive of the free energy with respect to the volume, it is im-
portant to keep both the number of enclosed polyelectrolyte
monomers M and the number of capsid subunits N fixed. For
instance, the mean packing density {(¢)o1/Vo1/R? is in-
versely proportional to V under these conditions. Since the
total capsid charge Ao—with o the capsid surface charge
density—is fixed it follows that o 1/A so that the extrapo-
lation length d=1/0xA xR’ Hence, the surface density
drops with R as ¢¢x1/d*>=1/R*. Keeping these conditions
in mind, we find

A_H~l(<> X )2 2
ot 2\ 3Rds) =3

d
2
SR (35)

In order to interpret this result, we note that osmotic pres-
sure inside a spherical container produces a tension 7T
=AIIR/2 on the wall. In our case, this tension must be ab-
sorbed by the interaction potential that holds the subunits
together (e.g., the electrostatic and hydrophobic forces dis-
cussed in Sec. II). The first term of Eq. (35) is the osmotic
pressure of the uniform core region where the monomer con-
centration equals (p)—3(d/R) ¢s. The second term is a con-
tribution coming from the surface layer with enhanced
monomer concentration [see Eq. (27)]. Since the wall tension
equals 7=AIIR/2 and since this term is inversely propor-
tional to R, we can interpret it as an effective negative wall
tension AT=—%kBTVd¢§, which must be absorbed by the
bending rigidity of the capsid wall. The physical reason for
this negative tension is that by reducing the wall surface area
at a fixed number of surface charges, the polymer/capsid
binding energy is increased. If we divide the polyelectrolyte
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AG,
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FIG. 3. Coassembly free energy AG), of a capsid as a function of
the mean polyelectrolyte monomer concentration (¢) inside the
capsid. Capsid-polyelectrolyte coassembly requires AG,, to be nega-
tive. At the free energy minimum AG , where filling concentratlon
equals {(¢)", the correlation length § is comparable to the capsid
radius R.

material between a “surface” and a “bulk” part, and consider
the capsid wall plus the surface-adsorbed part as constituting
an effective interface, then we can view the first term of Eq.
(35) as a positive osmotic pressure exerted on this effective
interface. However, even at the maximum packing density,
the fotal osmotic pressure

AHmax — l Zg

T VP (36)
still is negative and of the form of a negative contribution to
the wall tension. Self-assembly is apparently not able to
“load” a capsid to the point that the capsid wall is under a net
positive tension.

(ii) The power-law domain: £€>R>d. If we reduce the
length of the captured polyelectrolyte molecule, we enter the
power-law regime, where we must use Eq. (24) in Eq. (29).
The Lagrange multiplier is fixed by the condition that the
average concentration must equal {¢):

352

(p)=— dr r(r)* =~ L (37)

0

Here, d=d/R, which again follows from the boundary con-
dition Eq. (15). The formation energy becomes

~ 4 R® 2w R*

AG ~-—IXp)— + ). 38
) == TG+ A (38)
The validity condition for Eq. (38) is that ¢>R, or,

equivalently, that {¢) <(¢) =3d¢ps/R. Note that the depen-

dence on the capsid radius R no longer separates into surface
and volume terms, which is due to the extended, power-law

density profile. This form of Aép has a minimum near (¢)
=(¢)", i.e., at the border of the validity range of the power-
law regime. Comparing Eq. (38) with Eq. (32), we find that
the free energy gain of encapsidation is maximized at the
crossover point between the exponential and power-law re-
gimes, i.e., when the correlation length & is comparable to
the radius R of the capsid (see Fig. 3). Note that the forma-

tion free energy at the minimum, Aép%—Advqbé/ 6, where
Egs. (32) and (38) match, coincides with the capsid forma-
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tion free energy under conditions of full chemical equilib-
rium. The osmotic pressure, obtained from Eq. (38),

All 4ol 2 ok
PR TA L R (39)
also matches Eq. (35) at the crossover, as it should.

A physical explanation for the result that £~ R for capsids
with maximum thermodynamic stability is as follows. When
&> R, the concentration profile of the polymeric segments in
the vicinity of the surface is suboptimal since we can con-
tinue to lower the surface energy by adding polyelectrolyte
material to the capsid interior. On the other hand, for {<R
the surface concentration profile is optimal but the excess
polyelectrolyte material in the core of the capsid increases
the free energy due to electrostatic self-repulsion. When &
=~ R, the concentration profile is optimal with no excess poly-
electrolyte material in the core. The required number M~ of
monomers for optimal capsid stability is proportional to the
capsid surface area:

272
M =~ 4i7 R3< > ~ ﬁﬂ

. 22’
3 3 vd (22

By comparison, the maximum number M ,,, of monomers
scales as

47 RO

4ar
Mmdx = ?Rz<¢>mdx = ? d3/2 :

(347)

VI. CAPSID ASSEMBLY DIAGRAMS

We now return to question raised in Sec. II: what is the
critical subunit concentration CSC, denoted ¢, for the self-
assembly of a capsid with a polyelectrolyte cargo? Recall
that ¢* depends on the formation free energy per subunit as

AG, AGy+AG
c~wlexp7—wlexpo—NE. (7")

First consider that case that self-assembly takes place under
optimal conditions, i.e., under conditions of full chemical
equilibrium. The filling concentration (¢)" is in this case
fixed at

I Yox
(¢) = Ra’ (40)

expressed in terms of the surface charge density. We can use
Eq. (28) for both exponential and the power-law regimes in
Eq. (7):

In wc” = — yyay + o hghpac{l — 4(4m)>aol N\
(41)

The first two terms of Eq. (41) together equal the formation
energy per protein (in units of kz7T) for an empty capsid (see
Sec. II), while the third term represents the increased forma-
tion energy of a filled capsid [see Eq. (28)]. Note the cubic
dependence on the surface charge density. The two electro-
static contributions to Eq. (41) have a different dependence
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>
[c.]

FIG. 4. Self-assembly diagram of capsid proteins in the pres-
ence and absence of oppositely charged polyelectrolyte as a func-
tion of the salt concentration [c,]. The full curves mark the critical
subunit concentrations (CSC) beyond which capsid assembly takes
place. In region A, empty capsids form in the absence of polyelec-
trolyte material. In region C, capsid-polyelectrolyte co-assembly
takes place, while in region B neither empty nor filled capsids form.
When we vary the salt concentration for fixed protein
concentration—as indicated by the horizontal line—we encounter
re-entrant phase behavior: capsids assemble for high, respectively,
low salt concentrations producing empty, respectively, filled
capsids, but over an intermediate interval of salt concentrations
capsids are not stable. The intermediate interval terminates at the
maximum of the CSC for filled capsids marking the desorption
transition (vertical dashed line) beyond which polyelectrolyte mol-
ecules effectively lose their affinity for the capsid proteins.

on the salt concentration [c,]: the repulsive term scales as
Ap[c,]7"/> while the attractive term scales as A7, %[c,]™2. It
follows that at low ionic strengths the attractive
polyelectrolyte/capsid interaction dominates and at high
ionic strength the subunit self-repulsion.

Figure 4 shows the critical subunit concentrations of both
“filled” and “empty” capsids, i.e., capsids with and without a
polyelectrolyte cargo. For high salt concentrations, the two
critical concentrations nearly coincide. If the subunit concen-
tration is increased under those conditions, both empty and
filled capsids will start to assemble at about the same protein
concentration. On the other hand, at low salt concentrations,
the critical subunit concentration of filled capsids is signifi-
cantly lower than that of empty capsids. Now, mostly filled
capsids form if one raises the protein concentration. Clearly,
it is this second regime that would be the relevant one for
(synthetic) viral self-assembly. As shown in Fig. 4, the two
regimes are separated by a maximum of the critical subunit
concentration as a function of the salt concentration. The
condition for the maximum is that the surface charge density

equals
12
og=——"—1. 42
a(16m)\\5) “42)

The surface charge density of a capsid has to exceed o for
self-assembly to produce (mostly) filled capsids. The corre-
sponding critical subunit concentration equals

3
In WCax =~ — Yylyg + ZO'Z)\B)\Dac. (43)
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A physical interpretation of Eq. (42) is obtained by apply-
ing the theory of polymer desorption. A single polyelectro-
Iyte molecule in the neighborhood of an oppositely charged
surface undergoes a desorption transition when the confor-
mational chain entropy exceeds the opposing binding en-
thalpy. The condition for the desorption transition has the
same form as Eq. (42) [30]. In other words, a condition for
the self-assembly process to produce filled capsids is that the
subunit surface charge must be sufficiently high for the poly-
electrolyte molecules to adhere to the inner surface of the
assembling capsid.

We now turn to the case of restricted equilibrium with

(¢)>(¢)". Using Eq. (32) in Eq. (7) gives

In we™ = — yyay + o \ghpacil — 4(4m) 2ol A pho}

2 "
+ ?ﬂ-az)\B)\éaCR(((/)) () (44)

The new term is due to the electrostatic self-repulsion of the
excess polyelectrolyte material in the core of the capsid. The
new term depends on the salt concentration as )\éOC[cS]‘l,
which is intermediate between the salt dependence of the
subunit-subunit repulsion and that of the subunit-
polyelectrolyte attraction. This has important consequences.
Start at very high salt concentrations [see Fig. 4]. As before,
c¢" is at first dominated by subunit self-repulsion so the CSC
for assembly of empty and filled capsids is about the same.
Now start to lower the salt concentration. The electrostatic
self-repulsion of the core first grows in strength with the
result that the CSC for filled capsids exceeds that of empty
capsids. In other words, empty capsids form in preference
over filled capsids as we raise the subunit concentration. Fur-
ther lowering of the salt concentration causes the subunit-
polyelectrolyte interaction to grow in strength, which causes
a drop in ¢". The CSC for empty and filled capsids is equal
when the filling concentration equals the maximum concen-
tration Eq. (34), i.e., when

40 [6mang\;,
()= ;
al R

in terms of the original quantities. For even lower salt con-
centrations, the filling concentration is less than (), and
filled capsids form in preference over empty capsids (at least
under quasiequilibrium conditions). This result is interesting
because it means that under conditions of restricted equilib-
rium, we should expect a rather sharp transition, as a func-
tion of salt concentration, between the assembly of filled and
empty capsids namely when Eq. (34”) is satisfied. Recall that
under conditions of full chemical equilibrium, empty and
filled capsids both form at higher salt concentrations.

The case of super optimal filling, with (¢)> ()", turns
out to be quite different from that of sub optimal filling, with
() <{(¢)". Inserting Eq. (38) in Eq. (7), gives

(34")
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In (X)C* = —yyag+ 0'27\3)\Dac
4
x{ 1- 5(477)2a2R>\B>\73021-2<¢>}

1
+ 5(4w)2a2(¢>2R2aC>\§x4Dal—2 (45)

for the critical subunit concentration under conditions where
() <(¢)". Apparently, at suboptimal filling, the polyelectro-
lyte self-interaction (destabilizing the filled capsids) and the
polyelectrolyte-capsid interaction (stabilizing the filled
capsids) have the same dependencies on the concentration of
added salt. Hence, no sharp transition between empty and
filled capsid assembly should now be seen as a function of
the ionic strength of the solution.

VII. CONCLUSION

In this conclusion we will re-examine some key results of
our study, discuss their implications for self-assembly studies
of synthetic viruses such as the Bancroft e al. study [4], and
then compare our results with what is known about actual
viruses.

We found that under conditions of full chemical equilib-
rium, the monomer filling concentration should equal ()"
=60/Ra. The fact that ()" =60/Ra decreases as the radius
increases, is reasonable since capsid filling is driven by a
surface energy. The relevance of this result to actual experi-
ments could be questioned since it was derived under condi-
tions of full chemical equilibrium. We saw that under the
arguably more realistic conditions of restricted equilibrium, a
much larger range of filling concentrations was possible in
principle. In this conclusion, we will argue first why we be-
lieve that {¢)"=60/Ra still effectively determines the filling
fraction of synthetic viruses, i.e., viral capsids with a poly-
electrolyte cargo.

Assume capsid walls that are impermeable to the poly-
electrolyte cargo. In that case, (¢) =60/Ra represents the

minimum of the capsid free energy Aép«qﬁ)). Assume first
that an assembling capsid contains a single polyelectrolyte
molecule, as we did in the previous sections. The condition
(¢)"=60/Ra would then be obeyed only if the number of
monomers, M, equaled M*=8moR?*/ a. Assume that M is
less than M~ so the filling fraction will drop below ()"

=60/Ra. If M was equal to % M”, then Aép(<¢)) could be

minimized by introducing two molecules, each having % M
monomers, into a partially formed capsid. In fact, for any M
less than % M", we always can obtain capsid formation en-

ergies in the range between Aép(<¢>*) to Aép(<<;/>>*/2) by
introducing a suitable number of cargo molecules into the
capsid. We infer that, provided the capsid assembly process
proceeds sufficiently slowly, the filling fraction should be in
the range 30/Ra<(¢)<60/Ra if M is less than M" [31].

What if M exceeds M"? Consider the following thought
experiment. Assume that during assembly, a partially formed
capsid shell contains a (small) aperture through which poly-
electrolyte molecules with M>M" can enter or leave the
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capsid interior. Starting from (¢)=0, the capsid free energy

Aép(<¢>) will decrease as (¢) increases, which means that
polyelectrolyte insertion proceeds spontaneously. This will
continue until M~ monomers have been introduced and ()
=60/Ra. Increasing M beyond M~ would demand increas-

ing Aép«qﬁ)). Insertion would not proceed spontaneously
(unless some external source of thermodynamic work was
available such as the DNA insertion motor protein of the
®29 bacteriophages [32]). The typical amount of work
VX p)*kpT required to squeeze the remaining material into
the capsid (of order 10? k4T for the estimated values given
below) is much too large for a random thermal fluctuation to
be able to complete the insertion process (after which the
aperture could be closed). Self-assembly of a capsid in the
presence of polyelectrolytes with M > M" is thus expected to
produce a defected capsid with M" monomers inside the
capsid, and a random coil of M —~M" monomers remaining as
a tether outside the partially formed shell. We conclude that
well-formed self-assembled synthetic capsids are expected to
have filling concentrations in the range 30/Ra<({¢)
<60/Ra.

How does this compare with the results of the classical
studies of Bancroft and co-workers on the self-assembly of
CCMV capsid proteins in the presence of homopolymeric
single-stranded RNA molecules [4]? We saw that under good
solvent conditions, in the physiological range, the Debye
screening length is of order 1 nm, the Kuhn length (of ho-
mopolymeric s8$ RNA) of order 1-2 nm, and the charge pa-
rameter a= 1 [25]. The excluded volume parameter v is then
of order 7 nm? according to Eq. (8). The inner radius R of a
CCMV capsid is about 10 nm, as for most T=3 viruses.
CCMV capsid proteins have a nominal positive charge of
+10 on their inner surface [10], which translates to a surface
charge density o of about 1.4 charges per nm?. The extrapo-
lation length d is then of order 0.1 nm.

The predicted optimal monomer filling concentration
(¢)=60/Ra is of order 8 per nm’, corresponding to about
3500 RNA bases in total. In the Bancroft study [4], ho-
mopolymeric ss RNA molecules were used of various
lengths, mostly of the order of 500 bases. It was found, from
sedimentation experiments, that the maximum amount of en-
capsidated homopolymer RNA material had a molecular
weight of about half the actual CCMV RNA genome, which
corresponds to about 1500 bases. The theory significantly
overestimates the maximum amount of polyelectrolyte mate-
rial that can be encapsidated by a synthetic virus.

The obvious origin for the discrepancy is the fact that the
(estimated) extrapolation length d was significantly less than
not only the (estimated) Kuhn length / but also less than the
Debye length \j, except at exceedingly elevated ionic
strengths. This implies—see Eq. (19)—that the monomer
concentration at the surface would significantly exceed the
excluded volume density 1/v. At the very least, higher-order
virial terms would have to be included in the surface layer,
which would limit the density and reduce the amount of
encapsidated material. In fact, the strength of the electrostatic
interaction between the RNA molecules and the CCMV
capsid proteins in the surface layer appears to be so large that
physical phenomena are to be expected that lie beyond the
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range of the classical poly-electrolyte physics as discussed in
this paper. One possibility is the formation of surface arrays
of double-stranded RNA material compensating the capsid
surface charge as reported for many 7=3 viruses [33] or
Wigner crystallization phenomena [34].

A quantitative test of the theory presented in this paper
would be to repeat the Bancroft study but using, instead of ss
RNA, polyelectrolyte molecules with « values less than 0.1
to reduce the strength of the interaction. In fact, certain de-
rivatives of polystyrene sulfonate have an adjustable value
of @ [35], which would be a very interesting material as a
test cargo. Alternatively, mutants of the CCMV subunit are
available with a smaller number of positive charges. Such
studies would allow a test of the prediction that the maxi-
mum amount of encapsidated homopolymeric RNA material
should be proportional to the surface charge and inversely
proportional to a.

A second important test of the theory concerns the charge
reversal phenomenon. The macro-ion charge of a capsid with
(¢)=60/Ra should be opposite in sign to that of the empty
capsid. This could be tested in an electrophoresis study:
empty and filled capsids should drift with similar speed but
in opposite directions. For suboptimal capsids with 30/Ra
<{(¢)<60/Ra—which can be separated out through their
lower sedimentation rates—the macroion charge will be pro-
portionally smaller but the sign of the charge always should
be opposite to that of the empty capsid. We expect this to be
the case even if the filling is optimal, unless care is taken to
prepare the virus capsids in such a way that the weak-
adsorption approximation applies, i.e., near the isoelectric
point of the capsid proteins and/or at high enough salt.

A prediction that may be harder to test concerns the den-
sity profile of the monomers inside the capsid, which is
claimed to have the form ¢(r)=52/(1-r*/ rg)2 under the
conditions of slow assembly discussed above. RNA density
profiles of natural viruses have been obtained by a combina-
tion of x-ray diffraction and Cryo-TEM and it would be ex-
tremely interesting if these experiments could be repeated for
self-assembly of CCMYV proteins with homopolymeric RNA
or other synthetic polyelectrolytes [32].

Our second important result concerns the requirement that
the capsid surface charge must exceed the desorption thresh-
old o=/ a(16m)?\g\;, (see also Fig. 4). Using our earlier
estimates for the CCMV-homopolymeric RNA system under
physiological conditions, we find that o" is less than
1073 nm™, i.e., much smaller than the typical surface charge
of a T=3 viral subunit. This would indicate that CCMV-
RNA aggregates are far below the desorption limit and thus
very stable. In fact, the surface charge would remain signifi-
cantly larger than o even if we increased the salt concentra-
tion from 0.1 M to 1 M, a conclusion that must be greeted
with some skepticism. Although reassembly of CCMV with
viral RNA is efficient at lower salinity levels, it does not take
place at 1 M salt (at a pH of 7.4). The salt dependence of
reassembly of CCMV with homopolymeric RNA has not
been reported on, but we suspect that the predicted desorp-
tion threshold may be an overestimate of capsid stability for
the same reasons that we overestimated the filling fraction:
excluded volume effects will limit the concentration of poly-
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electrolyte material adjacent to the capsid surface. A mea-
surement of the desorption threshold as a function of salt
concentration clearly would be a very valuable test of the
proposed theory.

It is interesting to compare the predictions of the model
system discussed in the paper with the self-assembly of natu-
ral viruses. We saw, for the CCMYV case, that a natural T
=3 virus can package about double the amount as the syn-
thetic virus with a homopolymer RNA cargo. It is in fact not
very surprising that it is easier to compactify a viral RNA
molecule with a complex, hydrogen-bonded secondary and
tertiary structure, then a homopolymeric RNA, of the same
length, with an open random coil structure. Since the self-
interaction of viral RNA effectively lowers the solvent qual-
ity, it would be very interesting to repeat the studies of Ban-
croft and co-workers of RNA homopolymer condensation
under reduced solvent conditions, for instance by adding
Mg** ions, which tend to condense ss RNA, or by using
instead of ss RNA various polystyrene sulfonate derivatives
with hydrophobic components [35], and see whether the fill-
ing fraction could be increased this way. The work required
to compactify RNA would progressively drop as we ap-
proached the so-called ® point, where the coefficient of the
second virial expansion goes to zero.

A second issue concerns the RNA density profile inside
the virus. For natural CCMYV viruses, the packaging density
profile is roughly constant—and comparable to hydrated
RNA crystals—except for a central core region, which seems
empty [36]. Cryo-EM images of E. Coli—expressed HBV
also point at an adsorption layer, presumably containing
short E. Coli RNA fragments, of about 3 nm width and
roughly constant density, and a center that appears empty
[37]. This does not resemble the power-law density profile of
the present theory. We believe that it is possible that the
density profile under reduced solvent conditions, i.e., near
the ® point, would involve a boundary surface separating a
high and a low density region. The reported density profile of
ss RNA viruses also is reminiscent of the spool-like structure
of the genome phages [38], which is suggestive that there is
some form of liquid-crystalline order in the surface layer of
ss RNA viruses.

Another challenging problem that is raised by the com-
parison with natural viruses concerns the osmotic pressure.
The arguments presented in this paper indicate that ho-
mopolymer encapsidation will produce capsids that are not
under osmotic pressure, even in the restricted sense of an
osmotic pressure exerted by the core region on an effective
interface of capsid proteins plus adsorbed polyelectrolyte.
This appears logical since it is hard to see how a self-
assembling system can produce a pressurized capsid. How-
ever, the fact that the genome density inside ss RNA viruses
is significantly higher than that of the same molecules in
solutions indicates that self-assembling ss RNA viruses in
fact may be under internal osmotic pressure. (See, e.g., [39]
and works cited therein.) Studies of the genome release sce-
narios of the FHV and Tymo viruses provide at least quali-
tative evidence that this internal pressure may play an impor-
tant role during genome release [12]. Even though a core
osmotic pressure is thermodynamically possible, we saw that
it is difficult for capsid assembly to be completed when the
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internal pressure begins to rise during assembly. We specu-
late that the tertiary structure of viral RNA in solution pre-
sents a “condensation surface” for the capsid proteins and
that during assembly, as an increasing part of the condensa-
tion surface is covered by the growing capsid, the collective
self-interaction between different parts of the RNA mol-
ecule(s) preventing escape of part of the RNA out of a par-
tially formed capsid, particularly if assembly proceeded at a
higher rate. In that case, an interior pressure may be gener-
ated. (See also [40].) It would be fascinating if a “biomi-
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metic” protein-polyelectrolyte system could be synthesized
that would be able to duplicate this remarkable feat, which
seems to be so easy for natural viruses.
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