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  Abstract 

 We develop a thermodynamic model of electrostriction for elastic dielectrics capable of 

large deformation.   The model reproduces the classical equations of state for dielectrics at 

small deformation, but shows that some electrostrictive effects negligible at small deformation 

may become pronounced at large deformation.  The model is then specialized to account for 

recent experiments with an elastomer, where the electric displacement is linear in the electric 

field when the strain of the elastomer is held fixed, but the permittivity changes appreciably 

when the strain changes.  Our model couples this quasi-linear dielectric behavior with 

nonlinear elastic behavior.  We explore the practical consequence of the model by deriving 

conditions under which the deformation-dependent permittivity suppresses electromechanical 

instability.  
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I. Introduction 

 A dielectric deforms when subject to a voltage. 1-5  The voltage may cause some 

dielectrics to become thinner, but other dielectrics to become thicker (Fig. 1). The 

voltage-induced deformation is exploited in diverse applications, including medical equipments, 

optical devices, energy harvesters, and space robotics.6-9  While all dielectrics deform under a 

voltage, the effect is particularly pronounced in soft materials, such as certain thermoplastic 

polymers 10 and elastomers 3, 11-15.  For example, subject to a voltage a membrane of an 

elastomer may enlarge many times its area. 

 For dielectrics that are nonpolar in the absence of electric field, the voltage-induced 

deformation has been analyzed by invoking stresses of two origins:  the electrostrictive stress 

and the Maxwell stress.  The electrostrictive stress results from the effect of deformation on 

permittivity.  Models of electrostriction have long existed, but only for small deformation. 16, 17  

For large deformation, almost all existing analyses have only used the Maxwell stress to account 

for voltage-induced deformation.3, 11-13, 15, 18, 19  Maxwell20 derived this field of stress in the 

vacuum to account for electrostatic forces between rigid conductors.  For example, for a 

parallel-plate capacitor, with two oppositely charged electrodes separated by a gap of vacuum, 

the Maxwell stress describes the electrostatic attraction between the two electrodes.   

 The Maxwell stress is unable to account for dielectrics that thicken under a voltage (Fig. 

1c).  Indeed, as we have pointed out in a previous paper21, the Maxwell stress can account for 

voltage-induced deformation only for a very special type of materials, which we call the ideal 

dielectric elastomers, where the permittivity is deformation-independent.  The behavior of the 
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ideal dielectric elastomers corresponds to the following physical picture.  An elastomer is a 

crosslinked network of long and flexible polymers.  When the degree of crosslink is low and the 

deformation is well below the extension limit, the molecular units in the polymers can polarize 

as freely as in a polymeric liquid, so that the permittivity is unaffected by the deformation.  

However, when the degree of crosslink is not so low, or when the deformation approaches the 

extension limit, the permittivity of the elastomer will be affected by the deformation.   In fact, 

recent experiments on an elastomer have shown that the permittivity varies by a factor of 2 at 

large deformation.15  Furthermore, there is no reason to assume deformation-independent 

permittivity for future materials. 14, 22  In such cases, the Maxwell stress by itself is not expected 

to account for the voltage-induced deformation.   

 This paper develops a thermodynamic model of electrostriction at large deformation, on 

the basis of a nonlinear field theory of elastic dielectrics; see Refs [23-25] for reviews.  When 

the permittivity is deformation-dependent, the model shows that the Maxwell stress only 

contributes to part of the voltage-induced deformation.  The model reproduces the classical 

equations of state for dielectrics at small deformation.  To explore the practical consequence of 

the model, we derive the conditions under which the deformation-dependent permittivity 

suppresses electromechanical instability.     

 

II. Work, free-energy function, and equations of state  

  To exhibit the essential behavior, we focus on a widely used configuration:  a 

membrane of an elastic dielectric sandwiched between two electrodes (Fig. 2).  In the 
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undeformed state, the membrane is of sides 1L , 2L  and 3L .  When the dielectric is subject to 

mechanical forces 1F , 2F  and 3F  in the three directions, as well as an electric voltage Φ  via 

an external circuit, the three sides deform to 1l , 2l  and 3l , and an amount of electric charge Q 

flows through the external circuit from one electrode to the other.  The electrodes are so 

compliant that they do not constrain the deformation of the dielectric.  We neglect the 

electrostatic energy associated with the fringe field in the vacuum outside the dielectric, and 

assume that the deformation and electric field inside the dielectric is homogenous.   

 As noted in our previous paper 23, we emphasize that 1F , 2F  and 3F  are mechanical 

forces applied by external agents, such as weights. We do not invoke the nebulous notion of 

electric force. When the sides of the membrane change by small amounts, 1lδ , 2lδ  and 3lδ , the 

mechanical forces do work 11 lF δ , 22 lF δ  and 33 lF δ .  Similarly, when a small amount of charge, 

Qδ , relocates from one electrode to the other through the external circuit, the electric voltage 

does work QδΦ . 

 The dielectric is a thermodynamic system taken to be held at a constant temperature.  

Denote the Helmholtz free energy of the system by A.  When the dielectric is in equilibrium 

with the applied forces and the applied voltage, associated with any small change in the sides 

and the induced charge, and change in the Helmholtz free energy equals the work done by the 

applied forces and the applied voltage, namely, 

   QlFlFlFA δδδδδ Φ+++= 332211 . (1) 

 Divide (1) by the volume of the dielectric in the reference state, 321 LLL , and we obtain 

that 
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  DEsssW
~~

332211 δδλδλδλδ +++= , (2) 

where ( )321/ LLLAW =  is the Helmholtz free-energy density, ( )3211 / LLFs = , ( )3122 / LLFs =  

and ( )2133 / LLFs =  are the nominal stresses, 111 / Ll=λ , 222 / Ll=λ  and 333 / Ll=λ  are the 

stretches, 3/
~

LE Φ=  is the nominal electric field, and ( )21/
~

LLQD =  is the nominal electric 

displacement.  It is evident from (2) that the nominal stresses are work-conjugate to the 

stretches, and the nominal electric field is work-conjugate to the nominal electric displacement. 

 Following Refs. [21, 23-27], as a material model we stipulate that the free-energy 

density is a function of the stretches and the nominal electric displacement, ( )DW
~

,,, 321 λλλ .  

Consequently, (2) dictates that the nominal stresses and the nominal electric field be the partial 

differential coefficients, namely,    
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Once the free-energy function ( )DW
~

,,, 321 λλλ  is known for a given elastic dielectric, (3) 

constitutes the equations of state.  

 Recall that the true stresses are defined as 3211 / llF=σ , 1322 / llF=σ  and 2133 / llF=σ , 

so that the true stresses relate to the nominal stresses by ( )3211 / λλσ s= , ( )3122 / λλσ s=  and 
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( )2133 / λλσ s= .  Similarly, the true electric field is defined as 3/ lE Φ= , so that the true 

electric field relates to the nominal electric field by 3/
~ λEE = .  Also, the true electric 

displacement is defined as ( )21/ llQD = , so that the true electric displacement relates to the 

nominal electric displacement by ( )21/
~ λλDD = . 

 While the nominal stress 1s  is work-conjugate to the stretch 1λ , the true stress 1σ  

is not.  This statement is understood as follows.  The applied force 1F  does work 11 lF δ .  

This work can be written in terms of the nominal stress: 

  ( ) ( ) ( )( )113211132111 δλλδδ sLLLLLLslF == . (4)   

Thus, the product 11δλs  is the work per unit volume, a fact that leads to (3a).  By contrast, the 

same work 11 lF δ  can also be written in terms of the true stress:  

  ( ) ( ) ( )( )113211132111 δλσλδσδ llLLlllF == . (5)   

Thus, the product 11δλσ  is not work per unit volume, and 11 / λσ ∂∂≠ W . 

 Analogously, as we noted in our previous paper23, while the nominal electric 

displacement D
~

 is work-conjugate to the nominal electric field E
~

, the true electric 

displacement D is not work-conjugate to the true electric field E.  Recall that the applied 

voltage Φ  does work QδΦ .  This work can be written in terms of the nominal quantities: 

   ( ) ( ) ( )( )DELLLLLDLEQ
~~~~

321213 δδδ ==Φ . (6) 

Thus, the product DE
~~δ  is the work per unit volume, a fact that leads to (3d).  By contrast, the 

same electric work QδΦ  can also be written in terms of the true quantities:  

  ( ) ( ) ( )( ) ( )123213321213 llllllEDDEllllDlElQ δδδδδ ++==Φ . (7)   

Thus, the product DEδ  is not work per unit volume, and DWE ∂∂≠ / . 
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 The fact that the true quantities are not work-conjugate makes theoretical arguments 

using the true quantities often appear very subtle, even when the deformation is small; e.g., Ref. 

[16, 17].  As we will show later, such apparent subtleties vanish when we use the nominal 

quantities.  While the merit of the nominal quantities is evident from the work-conjugate 

relations, i.e. Eq (3), the true quantities seem to appeal to most researchers.  In this paper we 

compromise:  we will derive basic relations using the nominal quantities, and then translate 

these relations in terms of the true quantities. 

 

III. Quasi-linear dielectrics 

 When a dielectric sustains a large deformation and a large electric displacement, the 

equations of state are nonlinear.  The general structure of the nonlinear equations of state for 

elastic dielectrics has been reviewed recently. 23-25  This section considers a special type of 

dielectric behavior, which we call quasi-linear dielectric behavior, where the electric 

displacement is linear in the electric field when the strain is held fixed, but the permittivity may 

vary when the strain changes.  This quasi-liner behavior seems to describe the experimental 

observation of many elastomers.3, 11-13, 15, 18, 19 The quasi-linear dielectrics include ideal dielectric 

elastomers as a special case.  For the latter, the electric field is linear in the electric 

displacement, and the permittivity is deformation-independent.  Furthermore, as we will show 

below, the quasi-linear dielectric model naturally extends the model of small-strain 

electrostriction widely used in the literature. 16, 17    

 To account for the quasi-linear dielectric behavior, we expand the free-energy function 
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( )DW
~

,,, 321 λλλ  into the Taylor series in terms of D
~

 up to the quadratic term: 

   ( ) ( ) ( ) 2
321321321

~
,,

2
1

,,
~

,,, DWDW S λλλβλλλλλλ += . (8) 

The leading term ( )321 ,, λλλSW  is the elastic energy in the absence of the applied voltage.  The 

material is taken to be nonpolar, so that by symmetry the term linear in D
~

 vanishes.  The 

coefficient of the quadratic term, β , is a function of the stretches. 

 Inserting (8) into (3d), we obtain that  

  DE
~~ β= . (9)   

This equation characterizes the quasi-linear dielectric:  the electric field is linear in the electric 

displacement when the stretches are held at any fixed levels.  In terms of true quantities, (9) 

becomes DE 213 λβλλ = . We recover the familiar equation ED ε=  by identifying 

( )βλλλε 213 /= .  In general, the permittivity ε  is a function of the stretches, ( )321 ,, λλλε . 

 Using the permittivity, we rewrite (8) as  
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2

321

3
1

2
1

1
321321

~
,,2

,,
~

,,, DWDW S λλλε
λλλ

λλλλλλ
−−

+= . (10) 

Inserting (10) into (3), we obtain that 
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 In terms of the true quantities, (11) becomes that 
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∂
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  ED ε= . (12d) 

Once the two functions ( )321 ,, λλλSW  and ( )321 ,, λλλε  are known for a quasi-linear dielectric, 

(12) constitutes the equations of state.  Eq. (12d) recovers the familiar relation for a linear 

dielectric when the stretches are held fixed.  Eqs. (12a-c) have a similar form.  As an example, 

in what follows we discuss (12c).  The first term in (12c) is the stress due to elasticity, and can 

be either tensile or compressive.  The second term is the Maxwell stress, and is always tensile 

in the direction of the electric field.  The third term is present when the permittivity varies with 

the stretch, and can be either tensile or compressive.  Observe that the third term in (12c) also 

scales with 3λ , which differs greatly from unity when the dielectric deforms substantially.  

Consequently, some electrostrictive effect negligible at small deformation may become 

significant at large deformation. 

 As noted before, the Maxwell stress can fully account for the voltage-induced stress only 

when the permittivity is independent of deformation.  When the permittivity is 

deformation-dependent, the third term in (12c) can either add to the tensile Maxwell stress 

when 0/ 3 <∂∂ λε , or reduce the effect of the tensile Maxwell stress when 0/ 3 >∂∂ λε .  Recall 

that a voltage can cause some dielectrics to become thinner, but other dielectrics to become 
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thicker (Fig. 1). 

 A few remarks on terminology may be helpful.  In (12c), the contribution from the 

electric field separates into two terms:  one term scales withε , and the other scales with 

3/ λε ∂∂ .  It seems natural to call the former the Maxwell stress, and the latter the 

electrostrictive stress.  Such a separation is possible only for quasi-linear dielectrics, for which 

the permittivity is defined.  For a generally nonlinear dielectric, however, the equations of state 

are given by (3), and there may not be a natural way to single out part of the stress and call it the 

Maxwell stress.  In such a case, one may as well call the whole voltage-induced deformation 

electrostriction, and refrain from the temptation to divide the deformation in some artificial 

manner.             

 

VI. Small-strain approximation 

 Past analyses of electrostriction have assumed small deformation.16, 17 The resulting 

equations of state are sometimes used without justification for elastomers at large 

deformation.28, 29  To contrast the equations of state at small and large deformation, here we 

specialize our results for large deformation to those for small deformation. 

 When deformation is small, all three stretches are close to the unity, 1≈iλ .  

Consequently, one can expand the function ( )321 ,, λλλε  into the Taylor series up to terms linear 

in ( )1−iλ , namely, 

   ( ) ( )[ ]311 3213 −+++−+= λλλλεε ba , (13) 

where ε  is the permittivity of the dielectric in the absence of deformation, and a and b are the 
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coefficients of electrostriction.16, 17  In writing (13), we have assumed that the dielectric is 

isotropic.  When the electric field is applied in direction 3, by symmetry, the coefficient of 

electrostriction is the same in directions 1 and 2, but is different in direction 3. 

 Inserting (13) into (12), we obtain that 

  ( ) ( )[ ] 2
3213
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1
3

1
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1
Eba

WS −+++−+−
∂
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∂
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  ( ) ( )[ ]EbaD 311 3213 −+++−+= λλλλε . (14d) 

In the small-strain approximation, 1−iλ  are small compared to the unity, and the coefficients 

of electrostriction a and b are assumed to be of order unity, so that (14) becomes   
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1 1
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  ED ε= . (15d) 

Eqs. (15a-d) agree with the classical results in Refs. [16, 17]. This agreement is not accidental. 

Although the derivation of the existing model takes a different approach from ours, both 

derivations are based on the same assumption: quasi-linear dielectrics at small deformation.  

The classical results, however, are restricted to small deformation.  At large deformation, one 
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should use more general equations of state, (3) or (12).     

  

V. Incompressible elastic dielectrics 

 When an elastomer deforms, the change in shape is usually much more pronounced than 

the change in volume.  Consequently, it is a common practice to assume that the elastomer is 

incompressible.  This section derives the equations of state for incompressible, quasi-linear 

dielectrics. 

 The condition of incompressibility places a constraint among the three stretches:  

1321 =λλλ , so that when the membrane deforms, the change 3δλ  relates to the changes 1δλ  

and 2δλ  as 
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Consequently, (2) becomes 

  DE
s

s
s

sW
~~

2

1
2
2

3
21

2
2
1

3
1 δδλ

λλ
δλ

λλ
δ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= . (17) 

 As a material model, we stipulate that the free-energy density is a function of the two 

in-plane stretches and the nominal electric displacement, ( )DW
~

,, 21 λλ , so that (17) implies that 
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Once the free-energy function ( )DW
~

,, 21 λλ  is known for an incompressible elastic dielectric, (18) 

constitutes the equations of state.  

 For an incompressible, quasi-linear dielectric, the free-energy function is specialized 

from (10) and takes the form 

  ( ) ( ) ( )
2

21

2
2

2
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~
,2

,
~

,, DWDW S λλε
λλλλλλ

−−

+= . (19) 

As indicated, both the elastic energy density SW  and the permittivity ε  are functions of the 

two in-plane stretches.  Inserting (19) into (18), we obtain that   
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In terms of true quantities, (20) becomes 
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  ED ε= . (21c) 

Once the two functions ( )21 ,λλSW  and ( )21 ,λλε  are known for an incompressible, quasi-linear 

dielectric, (21) constitutes the equations of state.   

 In recent experiments, Wissler and Mazza stretched membranes of a VHB elastomer by 

an equal amount in the two in-plane directions, and measured the permittivity as a function of 



 14

the stretch.15  As shown in Fig. 3, we fit their experimental data to the following function: 

  ( ) ( )[ ]21, 2121 −++= λλελλε c , (22) 

with 053.0−=c  and 068.4 εε = , where F/m1085.8 12
0

−×=ε  is the permittivity of the 

vacuum.    

 By substituting Eq. (22) into (21), we obtain that  

  2
2131 2

2
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⎦
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⎢
⎣

⎡
⎟
⎠
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⎜
⎝
⎛ −++−=− λλεσσ , (23a) 
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2132 2

2
3

1 Ec ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −++−=− λλεσσ . (23b) 

In writing (23), we have only retained the contributions due to the electric field, and dropped 

those due to elasticity.  Eq. (23a) is plotted in Fig 4 using the experimental value of the 

coefficient of electrostriction, 053.0−=c .  For comparison, Fig. 4 also includes several 

expressions sometimes used in the literature: the Maxwell stress with constant permittivity 3, 11-13, 

15, 18, 19, 2Eε− ; the Maxwell stress with varying permittivity 15, ( )[ ] 2
21 21 Ec −++− λλε ; and 

electrical stress from small strain electrostriction 28, 29, ( ) 22/1 Ec+− ε .  At small deformation 

( 121 ≈= λλ ), the electrical stress of other forms are close to the prediction of our model. 

However, as deformation increases, the electrical stresses of all the other expressions 

significantly deviate from our prediction. At 621 == λλ , the deviation of the Maxwell stress with 

constant permittivity and small-strain electrostriction are around 70%, and the deviation of the 

Maxwell stress with varying permittivity is more than 30%.  Dielectric elastomer usually works 

at a pre-stretched state ( 6~3, 21 =λλ ), and gives a very high actuation strain (over 100%). The 

large deformation may cause significant errors in almost all previous models on dielectric 
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elastomers.  

 

VI. Electromechanical instability  

 Subject to a voltage, a dielectric elastomer reduces its thickness, so that the voltage 

induces a high electric field. The positive feedback between the electric field and the thickness 

may cause the elastomer to thin down drastically, resulting in an electrical breakdown. This 

electromechanical instability was first described by Stark and Garton15, and has been studied for 

ideal dielectric elastomers21,26,30.  In this section, we examine the effect of 

deformation-dependent permittivity on the electromechanical instability, using a method 

developed in Refs. [21, 26].  

 We will consider the case where the elastomer is subject to no mechanical 

force, 0321 === sss , and is subject to a voltage.  By symmetry, the two in-plane stretches are 

equal, which we denote as λλλ == 21 .  Due to incompressibility, the stretch in the direction of 

thickness is give by 2
3

−= λλ .  We write the free-energy function as 

  ( ) ( ) ( )[ ]1212

~
32

2

~
,

24
42

−+
+−+=

−
−

λε
λ

λλμλ
c

D
DW . (24) 

In writing (24), we have used the deformation-dependent permittivity (22), and assumed that 

the elastomer is a network of long and flexible polymers obeying the Gaussian statistics, with μ  

being the shear modulus.31  As the results below will indicate, when the electromechanical 

instability does occur, the critical stretch is modest.  For such a modest level of stretch, the 

Gaussian statistics is expected to describe the elasticity of the elastomer adequately. 
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 Equation (20c) becomes 

  ( ) μελ
λ

εμ
D

c

E
~

121/

~ 4

−+
=

−

 (25) 

In the absence of the applied force, the voltage causes the elastomer to expand in the plane, so 

that λ  also depends on D
~

, and E
~

 is no longer linear in D
~

.  Indeed, the electromechanical 

instability sets in when the function ( )DE
~~

 reaches maximum. 21, 26 

 We next construct the nonlinear function ( )DE
~~

.  The condition ( ) 0
~

,1 =Ds λ  implies 

that ( ) 0/
~

, =∂∂ λλ DW .  Inserting (24) into ( ) 0/
~

, =∂∂ λλ DW , we obtain that 

  
( ) ( )[ ]

( )[ ] 1

6

1212

12112
~

−−++
−+−=

λλ
λλ

με cc

cD
 (26) 

We can regard the stretch λ  as the independent variable, and calculate D
~

 from (26), and 

then calculate E
~

 from (25). 

 Fig 5 plots (25) and (26) in several ways, using various values of the coefficient of 

electrostriction, c. The critical points for electromechanical instability are marked by crosses. 

For 0=c , the permittivity is independent of deformation, and the results recover those for the 

ideal dielectric elastomers.26  For 053.0−=c , the nominal electric field reaches peak at the 

stretch 28.1≈λ .  For 1=c , the nominal electric field reaches peak at a smaller stretch, 

18.1≈λ .   

 When 0<c , the effect of deformation-dependent permittivity partially removes the 

Maxwell stress.  Consequently, a sufficiently negative coefficient of electrostriction c will 

suppress electromechanical instability.  When 10−=c , for example, the elastomer becomes 

thicker under applied voltage, a fact that eliminates the positive feedback between the true 
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electric field and the thickness, so that the dielectric is electromechanically stable.  When 

25.0−=c , even though the elastomer becomes thinner with the applied voltage, the 

deformation-dependent permittivity can still suppress electromechanical instability.   

 In addition to the electromechanical instability, the elastomer may also fail by electrical 

breakdown.  Fig. 5c shows that the true electric field E  is a monotonic function of D
~

.  The 

true electric field is useful to estimate the condition of electrical breakdown.   

 Fig. 6 plots the critical conditions for electromechanical instability ( cE
~

, cE  and cλ ) as 

a function of the coefficient of electrostriction, c.  As c decreases, the critical values of the true 

electric field, nominal electrical field, and stretch all increase.  When 23.0−<c , 

electromechanical instability is suppressed. 

  

VII. Concluding remarks 

 Models of electrostriction have long existed, but only for small deformation. This 

paper develops a model of electrostriction that is consistent with thermodynamics at large 

deformation.  Motivated by recent experiments on dielectric elastomers, our model couples 

nonlinear elastic behavior and quasi-linear dielectric behavior.  The model shows that 

electrostrictive effects negligible at small deformation may become pronounced at large 

deformation. Based on experimentally determined permittivity-stretch function for VHB, we 

calculate the voltage-induced stress using several available models.  We show that the stress 

predicted by the previous models markedly deviate from that predicted by the present model.  

Our model also has implications for designing new materials. For example, we derive conditions 
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under which the deformation-dependent permittivity suppresses electromechanical instability. 
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FIG. 1.  Consider a dielectric nonpolar in the absence of applied voltage (a).  Subject to a 

voltage, some dielectrics become thinner (b), but other dielectrics become thicker (c). 
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FIG. 2.  A membrane of an elastic dielectric is sandwiched between two compliant electrodes.  

(a) Under no applied forces and voltage, the membrane is of sides 1L , 2L  and 3L .  (b) 

Subject to mechanical forces 1F , 2F  and 3F  in three directions, and to electrical voltage Φ  

via an external circuit, the membrane deforms to 1l , 2l  and 3l , and charge Q flows from one 

electrode to the other through the external circuit. 
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FIG. 3.  Experimentally measured permittivity as a function of deformation.15  The 

experimental data are fitted to a straight line with 068.4 εε =  and 053.0−=c , where 

F/m1085.8 12
0

−×=ε  is the permittivity of vacuum. 
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FIG. 4.  Comparison of stresses calculated using various methods.  Only the voltage-induced 

stresses are plotted. 
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FIG. 5. Behavior of dielectric elastomers for various values of the coefficient of electrostriction. 

(a) nominal electric field vs nominal electric displacement, (b) true electric field vs nominal 

electric displacement, and (c) nominal electric field vs actuation stretch. The critical points for 

electromechanical instability are marked by crosses. 
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FIG. 6. The effect of the coefficient of electrostriction on electromechanical instability. As c 

decreases, the critical true electric field, nominal electrical field, and stretch for 

electromechanical instability all increase.  When 23.0−<c , electromechanical instability is 

suppressed. 

 


