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Abstract 

 

Molecularly imprinted polymers (MIPs) for the recognition of proteins are expected to possess high 

affinity through the establishment of multiple interactions between the polymer matrix and the large 

number of functional groups of the target. However, while highly affine recognition sites need building 

blocks rich in complementary functionalities to their target, such units are likely to generate high levels 

of non-specific binding. This paradox, that nature solved by evolution for biological receptors, needs to 

be addressed by the implementation of new concepts in molecular imprinting of proteins. Additionally, 

the structural variability, large size and incompatibility with a range of monomers made the 

development of protein MIPs to take a slow start. While the majority of MIP preparation methods are 

variants of chemical polymerization, the polymerization of electroactive functional monomers emerged 

as a particularly advantageous approach for chemical sensing application. Electropolymerization can be 

performed from aqueous solutions to preserve the natural conformation of the protein templates, with 

high spatial resolution and electrochemical control of the polymerization process. This review compiles 

the latest results, identifying major trends and providing an outlook on the perspectives of 

electrosynthesised protein-imprinted MIPs for chemical sensing.   
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1. Introduction 

 

Molecular imprinting is a universal concept to generate materials with “molecular memory” by 

performing a polymerization of suitable functional monomers in the presence of a target molecule acting 

as a template. The subsequent removal of the template creates recognition sites in the molecularly 

imprinted polymer (MIP) that can, further on, selectively rebind the target. Whilst nature has an arsenal 

of 20 amino acids, MIPs are typically prepared from one to four monomers. Nevertheless, this concept 

proved to be successful in preparing selective sorbents for compounds of small molecular weight (~200-

1200 Da). However, one should confront several specific problems if the target is a macromolecular 

protein [1] as the classical bulk methodologies worked out for small molecular weight compounds 

generally fail to address the peculiarities of protein targets. The difficulties are largely attributed to the 

intrinsic properties of the proteins as detailed below.  

 Due to their fragility irreversible conformational changes may occur during polymerization [2] 

and the rebinding of the native conformation to such imprinted sites is not favored.  

 The large size of the proteins makes them difficult to remove from, or rebind to a highly cross-

linked 3D polymeric network traditionally used in small molecule imprinting, i.e., during 

imprinting the macromolecules may become irreversibly entrapped in the polymeric material. 

 The large number of potential interaction sites on the surface of proteins may lead to cross-

reactivity of the imprinted polymers and nonspecific adsorption onto bulk polymeric material.  

 

All these difficulties caused a considerable lag in the development of protein imprinted MIPs compared 

to small molecule imprinting. Thus while the first research paper on a protein-imprinted MIP appeared 

already in 1985 [3] a steady increase in the publications can only be observed since 2005 (Figure 1). 

However, even in 2014 less than 1 % of the papers published on MIPs involved protein targets. 

Additionally, the range of implemented protein targets is very narrow and rather restricted to templates 

having properties that facilitates the imprinting process. In this respect proteins with good 

conformational stability, and distinct physical-chemical properties (e.g. high isoelectric point, and 

glycosylation) were generally preferred. Such properties facilities the formation of strong and/or 

selective interactions such as electrostatic interaction between the positively charged proteins (e.g., 

lysozyme,[4] avidin[5]) and negatively charged polymers as well as between glycan moieties and 

aminophenyl boronic acid (APBA) monomers [6]. This is a strong indication that the field of 



macromolecular imprinting is still very much at the proof of concept level and an enhancement in 

selectivity and affinity is required. 

  

Figure 1. Number of publications on all (circles) and electrosynthesized (squares) protein-imprinted 

polymers and on all MIPs (triangles, right axis), until the end of 2014 (ref. www.mipdatabase.com) 

 

Despite of the difficulties, imprinting methodologies custom tailored for protein targets are worthwhile 

to pursue beyond the inherent importance of protein analysis for several reasons.  

 The prospects of preparing “plastic antibodies” are in general better for proteins than for small 

molecular weight targets as proteins are expected to generate higher affinity MIPs through the 

establishment of multiple interactions with their large number of functional groups.  

 Molecularly imprinted polymers are expected to outperform their biological counterparts in 

terms of robustness and shelf-life. 

 MIPs are more robust to environmental conditions and cost effective as compared to antibodies 

and such their application in affinity assays is resourceful.    

 

1.1. Main concepts to overcome the difficulties of imprinting protein targets 

 

During the past decade different strategies have been introduced to overcome the barriers of protein 

imprinting and these were reviewed in several monographies [1, 7-20]. To avoid denaturation of protein 

templates polymerization in aqueous media using water soluble monomers and initiators was an evident 

http://www.mipdatabase.com/


choice, although there have been some concerns about the deteriorating role of water on H-bonding and 

dipole-dipole interactions between the functional monomers and the template.  

The problem of the restricted diffusion of the bulky macromolecular template in the highly cross-linked 

polymer network initiated fundamentally different strategies. The first approach, using lightly cross-

linked hydrogels similar to the ones used in gel electrophoresis, was initiated by Hjertén and his 

coworkers [21, 22]. Though not many direct evidences, the formation of highly permeable polymer 

structures or gels seem to not fulfil expectations with respect to the quality and stability of the imprints 

owing to excessive chain flexibility [20]. Another important approach is the “epitope imprinting”, 

whereby a small, representative peptide sequence is used as the template instead of the native protein. 

This approach enables the implementation of non-aqueous polymerization media and complete 

template removal [23, 24]. However, the rebinding of the targeted, much larger native protein may be 

still hindered in the MIP monolith. Therefore surface imprinting emerged as the main strategy for 

macromolecular imprinting. This approach restricts the formation of imprinted binding sites to the 

surface of a polymer or to a very thin polymer layer the thickness of which is comparable to the size of 

the protein template. In extreme cases proteins are captured by 2D monomolecular layers of suitable 

functional monomers anchored to an existing surface [25, 26]. To maximize the binding capacity of the 

respective MIPs, generation of polymeric nanostructures with high area/volume ratio comes as a natural 

necessity to take full advantage of the surface imprinted sites. Creative methods have been devised to 

confine the templated sites exclusively to the polymer surface such as micro-contact imprinting 

techniques [4, 27-30] and sacrificial template support methods [5, 31]. Imprinted soluble nanogels, 

having dimensions comparable to that of protein clusters were also shown to allow facile template 

exchange between the polymer and the solution [32]. The so-called solid-phase synthesis approach 

made feasible the reproducible, controlled and large scale production of such imprinted nanogels [33-

35].  Interfacial polymerization on planar surfaces or supporting beads [36-38] can create ultra-thin 

polymer films that only partially bury the protein template without completely encapsulating it. 

Adherent MIP films can be polymerized in-situ by free-radical polymerization for example by spin coating 

[39] or drop-casting  the pre-polymerization mixture onto the substrate and inducing polymerization 

[40]. Better control over the thickness of the sensing layer can be achieved with surface confined 

polymerization methods, where either the initiator [41, 42] or a pendant polymerizable group [43] is 

attached to the surface. Not only the thickness, but the area of the polymer film can be kept very small 

by the spatial confinement of the initiation process using light [44] or heat [45] supplied by a laser.  

  



2. Electrosynthesis of protein-imprinted MIPs 

 

While the great majority of MIP preparation methods are variants of chemical polymerization, the 

electropolymerization of functional monomers emerged as particularly attractive approach to prepare 

MIPs for chemical sensing applications [46, 47]. This is mainly due to the effortless in-situ spatial 

confinement of polymer layers by electropolymerization onto the surface of a suitable electrode 

resulting in a proliferation of chemically-modified electrodes and electrochemical sensors that utilizes 

MIPs to confer selectivity [48, 49]. Moreover, there are a number of other well-established transducers 

compatible with in situ electrosynthesis of MIPs such as quartz crystal resonators, surface plasmon 

resonance and acoustic wave sensors.  Additionally, electrosynthesis is especially well-suited for the 

synthesis of protein-imprinted MIPs. Most of the electropolymerizable monomers can be deposited from 

aqueous solutions where protein molecules preserve their natural conformation. Buffers that enhance 

the stability of proteins can serve as supporting electrolytes during the electrochemical polymerization 

process. Compared to free radical polymerization initiated generally either thermally or by UV light, 

which may cause structural changes in the protein template, [50] electropolymerization most often 

requires no external initiator. The lack of initiators is also a major advantage with respect to chemically 

initiated polymerization. For instance the commonly used persulfate initiators, that are strong oxidizing 

agents, may alter the structure of proteins that are susceptible to oxidation [51]. The precise control 

over electrosynthesis enables the fine tuning of the polymer layer thickness, which is particularly 

important for the surface imprinting of proteins. Electrosynthesis can be used straightforwardly to create 

several nanometer thick polymer films [52, 53] and with the aid of sacrificial materials, micro and 

nanostructures with surface confined binding sites [5, 54-56]. It must be noted that beside direct 

electrooxidation of suitable monomers the versatility of electrochemical synthesis enables surface 

confined polymer deposition also by electrochemically generating the “active” initiator [57] or 

electrochemically changing the local pH in the close vicinity of the electrode [58].  

These indisputable benefits motivated us to compile the literature and evaluate the state-of-the art 

of electrosynthesized protein MIPs.  The paper follows the work flow of MIP preparation and testing: 

 Functional monomers for the electrosynthesis of protein MIPs 

 Strategies for the electrosynthesis of protein-imprinted polymers 

 Template removal 

 Detection of the template binding 

 



2.1. Functional monomers for the electrosynthesis of protein MIPs 

 

Electrochemical polymerization of monomers (Fig. 2) onto conducting substrates leads to the formation 

of either conducting or non-conducting polymer films depending on the choice of the monomer and the 

electropolymerization conditions. Electrically conducting polymers can be grown in thicker films, which is 

beneficial if the goal is to prepare complex 3D micro- or nanostructured MIPs. In contrast, the growth of 

insulating polymer films is self-limiting in terms of thickness, i.e., the insulating polymer layer blocks the 

electron transfer between the electrode and the monomer after its thickness exceeds the range of 

electron transfer (generally in the lower nanometer range)[59] and/or a sufficiently compact film is 

formed to halt the permeation of the monomer to the electrode.  

The most widespread electrochemical polymerization technique for preparing protein MIPs is 

cyclic voltammetry. By varying the number of scan cycles and the scan rate, the thickness and the 

compactness of the deposited polymer film can be controlled, respectively. Too small scan rates result in 

tight films entrapping the template, while too large scan rates lead to a loose polymer network with low 

recognition ability [56],[85]. Potentiostatic deposition lacks the control over film compactness, but the 

film thickness can be precisely adjusted by the charge consumed during electropolymerization [48],[49]. 

Furthermore, the applied potential can be pulsed in order to create films with enhanced adhesion to the 

electrode surface [26]. The application of pulsed potential aids also the replenishment of the depleted 

solution layer adjacent to the electrode by the low diffusivity macromolecular template [79], [83], and 

thus to enhance the incorporation of the protein template into the growing polymer. 

MIPs based on electrically conducting polymers primarily involve the electrochemical oxidation 

of pyrrole and ethylenedioxythiophene (EDOT) monomers (Fig. 2 f, g) to form protein-imprinted  

polypyrrole (PPy) [60] and poly(3,4-ethylenedioxythiophene) (PEDOT)  [5] polymers.  The removal of 

oxygen from the monomer solution before polymerization might be crucial for the reproducible 

deposition of stable conducting films as reported explicitly for PPy [61]. Polypyrrole can be additionally 

overoxidized by applying high potentials (e.g. 1.0 V vs. Ag/AgCl) in buffer [62] or in alkaline solutions in 

the presence of oxygen. Such overoxidation induces the formation of additional functionalities, e.g. 

carboxyl groups, with the respective polymers becoming electrically insulating. The use of PEDOT-PSS 

(PEDOT doped with polystyrene sulfonate) for creating different protein-imprinted nanostructures was 

pioneered by Gyurcsányi’s group. The functional groups of this polymer offer various interactions, 

including hydrogen-bond, electrostatic and π-π interactions and yet it has been found to show very low 

nonspecific adsorption of proteins [5]. These properties make PEDOT-PSS an excellent candidate for 



protein imprinting. However, electrosynthesized PEDOT MIPs have only been prepared to date for a 

single model template, avidin [56, 63, 64].  

Insulating polymers offer benefits in terms of preparing ultrathin films in the nanometer range as well as 

enabling the use of certain electrochemical detection schemes. These are based on the modulation of 

MIP film permeability for redox markers by protein binding or on direct electrochemical detection of 

proteins. In the latter respect, polyscopoletin has been introduced by Scheller’s group for the selective 

capture of cytochrome c and its detection by direct electron transfer [6]. Polymerization of the natural 

coumarin-derivative scopoletin is robust, does not depend on deoxygenation of the monomer solution, 

and yields a conformal, hydrophilic film on different electrode materials [65]. Imprinting of 

polyscopoletin with a wide range of proteins, e.g., cytochrome c [6],[66], concanavalin A [67], and ferritin 

[53] has been already demonstrated. At present, the insulating MIP films prevail also in terms of binding 

affinity as highly conformal polyphenol nanocoatings imprinted with ferritin were reported to have 

affinity in the fM concentration region [68]. 

Aniline [69] and related compounds such as o-phenylenediamine [70],[71] and o-aminophenol [72] were 

also favored for protein imprinting since they bear functionalities that can participate in hydrogen-

bonding, π-π and other types of interactions with the template, depending on the nature of the 

substituents. A monomer leading to more specific target-MIP interactions is the 3-aminophenylboronic 

acid, which is suited for the recognition of glycoproteins through the  ability of the —B(OH)2 moiety to 

form under alkaline conditions reversible covalent bonds with vicinal diols that are commonly found in 

carbohydrates [73] and glycoproteins [74]. This opportunity, although well exploited in case of 

chemically synthesized pAPBA MIPs [75],[76], has not been employed with electropolymerized films, 

which have only been prepared to date for the recognition of BSA [77], lysozyme and cytochrome c [78]; 

all non-glycated proteins. Wang et al. imprinted pAPBA with hemoglobin, a protein that exists to a minor 

extent in glycated form as well, but there is no mention on the exact  form of the protein [79]. Future 

works with electrosynthesized pAPBA MIPs for glycoprotein recognition should consider prior 

immobilization of the template glycoprotein, which was found essential in obtaining satisfactory 

selectivity against other glycoproteins [76]. Beside biocompatibility, a wide variety of functional groups 

and extensive knowledge about the formed polymers motivated the use of dopamine [80, 81] and 

acrylamide [57, 82] for protein MIPs.  

In addition to the monomer and template, the pre-polymerization mixture can contain additional 

compounds that are also incorporated in the polymer. This option is especially obvious in case of 

conducting polymers where the formation of the charged polymer film requires the incorporation of 



charge compensating ions, e.g., oppositely charged small ions or polyelectrolytes from the supporting 

solution. However, this mechanism enables also the incorporation of nanoparticles such as polystyrene 

sulfonate (PSS) modified superparamagnetic nanoparticles into PEDOT microrods as shown by Ceolin et 

al.. Such nanoparticles may confer further functionality to the MIPs like the opportunity to handle MIP 

particles by an external magnetic field [55], which in turn enables their application for separation and 

pre-concentration. 

 

Figure 2. Representative monomers applied for the electrosynthesis of protein imprinted polymers: 

phenol (a), o-aminophenol (b), o-phenylenediamine (c), aniline (d), scopoletin (e), pyrrole (f), 3,4-

ethylenedioxythiophene (g), proDOT-COOH (h), aminophenylboronic acid (i), dopamine (j) and 2,2’-

bithiophene-5-carboxylic acid (k). Monomers within the dashed inset polymerize into conductive films.  

 

  



2.2. Strategies for the electrosynthesis of protein-imprinted polymers 

 

Electrosynthesized MIPs have been developed for both relatively small monomeric proteins such as 

cytochrome c, serum albumin and troponin T, but also for oligomeric proteins like hemoglobin, avidin, 

lectins, and acetylcholinesterase (see Table 1 for a comprehensive compilation). The most 

straightforward approach, i.e. the formation of the pre-polymerization complex by simply dissolving the 

template in the monomer solution has already led to clear imprinting effect (Figure 3A). Karimian et al. 

reported that a troponin T-imprinted poly(o-phenylenediamine) film bound two orders of magnitude 

more troponin T than the control polymer [70],[83]; while Kan [62] and Li [57] have obtained an 

imprinting factor of ca. 7 for bovine hemoglobin with polypyrrole- and polyacrylamide-based MIPs, 

respectively. 

Local enrichment of the protein at the electrode surface by spontaneous adsorption was also used to 

immobilize the template for enlarged binding capacities. Wang et al. incubated the electrode in the 

monomer-template mixture to allow for protein adsorption on the surface before starting the 

polymerization [79] (Fig. 3B). The adsorption of charged proteins can be promoted by applying an 

opposite conditioning potential to the electrode during incubation as described in the work of Cai et al. 

[68]. Ramanaviciene and Ramanavicius performed the polymerization of pyrrole with short potential 

pulses intermitted with longer resting periods to compensate for local depletion of monomer and 

protein template in the close vicinity of the electrode [84]. 



 

Figure 3. Various surface imprinting methodologies for the electrosynthesis of MIP films for selective 

recognition of proteins: electropolymerization of a mixture of protein and monomer from solution (A); 

preconcentration of the protein (peptide in case of epitope imprinting) on the surface of an electrode 

either by physisorption (B) or by using a self-assembled anchor layer for oriented immobilization of the 

protein (e.g. a weak inhibitor of an enzyme) (C). 

 

The immobilization of the protein through a self-assembled anchor layer offers advantages over random 

immobilization or electropolymerization from a protein-monomer mixture in terms of generating 

uniformly accessible binding sites. Kan et al. has demonstrated [81] that covalent immobilization of the 

template prior to polymer deposition can significantly enhance the MIP’s analytical performance: their 

imprinting factor reached 20 due to this modification. Scheller’s group has obtained a ca. 3-fold 

improvement in the imprinting factor when they used immobilized template [60] instead of free protein 

[58] to create selective recognition sites for cytochrome c in a polyscopoletin film.  This approach was 

shown to be compatible with epitope imprinting, i.e. the terminal peptide of the native protein was 

immobilized onto the electrode and used as template in the subsequent electropolymerization step. The 

concept was demonstrated by Dechtrirat et al. [66] who immobilized the surface-exposed C-terminus 

peptide of cytochrome c (comprising of 9 amino acids) and showed that the epitope imprinted 



polyscopoletin nanofilm could effectively rebind the native protein. An “inverse epitope-imprinting” 

method was proposed by Evtugyn et al. who imprinted poly(methylene green) with double-stranded 

DNA [85]. After template removal a short fragment of the DNA, an aptamer was rebound. Here, 

however, the MIP only served as a means of immobilizing the aptamer, which was in turn responsible for 

the recognition of the thrombin analyte. 

The oriented immobilization of proteins via self-assembled anchor molecules which can reversibly bind 

to the protein through non-covalent bonds has been used also for the preparation of hybrid molecularly 

imprinted polymers. In such MIPs the binding site is generated both by the molecular imprinting process 

and the specific moieties of the anchoring molecule. The concept was demonstrated by using thiolated 

oligoethyleneglycol (OEG)/mannose monolayer self-assembled on the transducer surface to immobilize 

the carbohydrate binding protein, concanavalin A (ConA) [67]. Following the electropolymerization of a 

polyscopoletin film of comparable thickness with the protein, binding sites with enhanced binding 

properties were formed that comprised both the mannose moiety and the imprinted cavity. Similar 

methodology was implemented by Bosserdt et al. to induce oriented adsorption of cytochrome c by 

coating the electrode with an anionic self-assembled monolayer (SAM) which attracted the positively 

charged lysine residues of the protein neighboring its heme group [6]. Recently the enzyme 

acetylcholinesterase (AChE) has been “vectorially” bound  via its peripheral anionic site to a propidium 

terminated SAM prior the deposition of an ultrathin polymer film of a ProDOT derivative [52] (Figure 3C). 

Propidium which is a weak inhibitor of AChE was thereby made part of the binding site in the MIP 

nanofilm. It was shown that in fact the binding is dominated by the propidium-protein interaction. The 

imprinted ProDOT film acts as a shape selective filter enabling the selective access of AChE to the 

propidium moiety and by that effectively suppressing interference from coexisting proteins. The 

selectivity was further enhanced by in-situ electrochemical detection of the enzymatic activity of AChE 

bound to the hybrid MIP. 

The oriented protein imprinting can be achieved also by using an inert nanoparticle support for their 

immobilization [54, 86] instead of the surface of an electrode. The approach introduced by the group of 

Gyurcsányi used such particles to create nanostructured polymer films by assembling polystyrene 

nanospheres into a monolayer on the surface of an electrode, electropolymerizing PEDOT-PSS film in the 

voids between the spheres and then dissolving the nanospheres (Fig. 4E).  This concept works best with 

conducting polymers alleviating the demand for ultrathin films while providing a higher binding capacity 

owing to the increased specific surface of the polymer. Most importantly, a significantly better 

discrimination could be achieved between avidin (used as target) and its analogues when the template 



was immobilized through its biotin-binding site [54], than with the same type of polymer imprinted with 

randomly immobilized avidin [56].  

Figure 4. Micro- and nanostructuring of protein-imprinted polymers based on sacrificial materials. 

Template synthesis using polycarbonate-based sacrificial materials of Av-imprinted PEDOT-PSS 

microstructures in the form of surface confined microrods (A) (adapted with permission of ref. [5]) , 

microbands (B) (adapted with permission of ref. [56]) and solution dispersed magnetic core particles (C) 

(adapted with permission of ref. [63]) as well as for protein-imprinted polyphenol coated nanoelectrode 

arrays (D) (adapted with permission of ref. [87]). Nanosphere lithography based on latex (E) (adapted 

with permission of ref. [54]) and silica beads (F) (adapted with permission of ref. [86]) as sacrificial 

materials for the synthesis of surface imprinted PEDOT-PSS and polypyrrole films, respectively. 

 

The sphere lithography concept could be extended to generate surface imprinted microporous MIPs by 

self-assembling several sacrificial bead layers [81] (Fig. 4D) as opposed to just one [49].  

The efforts towards the electrosynthesis of micro- and nanostructured MIPs with high binding capacity 

were supported by the use of sacrificial scaffolds, which led to the formation of nanorods [88],[87] (Fig 

4D),  microbands [56] (Fig. 4), and microparticles [63] (Fig. 4C). In one of the earliest attempts Menaker 



et al. [5] tightened an avidin coated track-etched polycarbonate membrane on top of a gold disk-

electrode and deposited PEDOT-PSS within its pores. Afterwards, the membrane was detached from the 

electrode and dissolved in chloroform, liberating surface-imprinted polymer microrods that matched the 

size and shape of the original pores. The same concept and materials were implemented in a follow up 

study to enable the standard photolithographic fabrication of micropatterned surface-imprinted 

polymers [56] (Fig. 4B). By this methodology - compatible with large-scale fabrication - avidin-imprinted 

PEDOT-PSS conducting polymer microbands were prepared directly on surface plasmon resonance (SPR) 

chips. With the intent to enable high-throughput electrosynthesis and characterization of protein MIPs 

the so called microelectrospotting technique was developed by Bosserdt et al. [53]. The electrically 

connected spotting pin, which acted as a counter electrode, enclosed the mixture of monomer and 

template protein that upon contacting the surface of an electrode was in-situ electropolymerized. By 

using various templates and monomer mixtures surface confined polymers spots of ca. 500 μm diameter 

were prepared on surface plasmon resonance imaging (SPRi) gold chips. It was shown that the thickness 

of the spots is in the low nanometer range that enables real time monitoring of template-MIP 

interactions by SPR. This novel format may open the route for high-throughput screening of protein-

imprinted electrosynthesized MIPs given that a proper library of monomers and protein templates 

compatible with the microelectrospotting technology is established.  

One of the main drawbacks of electrosynthetic methods is that electrochemical polymerization 

requires contact with an electrode and as such the fabrication of free-standing polymeric 

structures/particles is difficult. However, the use of sacrificial scaffolds proved to be an enabling 

technology also in this respect and the first report on solution dispersed electrosynthesised MIP particles 

used the pores of an avidin-coated track etch membrane as a microreactor to generate surface 

imprinted microrods [55]. To enable the recovery and handling of such nanoparticles after the removal 

of the sacrificial membrane, PSS modified magnetic nanoparticles were incorporated during the 

electrosynthesis into the PEDOT microrods. The same concept was pursued by Wang’s group to prepare 

surface imprinted tubular microengines [64] that can actively move by bubble propulsion to capture and 

carry the template protein (avidin) in the sample solution. 

 

 

 

  



2.3. Template removal 

 

Template removal is essential to liberate accessible binding sites for latter rebinding of the protein. The 

essential prerequisite for any procedure is not to alter the polymer structure in an extent that would 

affect the rebinding of the template. This is not as straightforward as many studies suggest and in fact 

the choice of the regeneration solvent is a trade-off between complete removal of the imprinted protein 

[56],[71] and preservation of the integrity of the binding sites [79],[87]. Accordingly, different methods 

were applied that range from the application of chaotropic agents to the denaturation, dissociation or 

lysis of the protein.  

Globular proteins have been extracted by chaotropic reagents; alcohols or surfactants which induce a 

collapse of the tertiary structure. This method is applicable to imprints created with free or physically 

immobilized proteins. A wide range of treatments were reported including the use of highly acidic 

[6],[84],[85] or basic [55] solutions and/or surfactants (sodium dodecylsulfate (SDS) [68],[89] or Tween 

20 [78],[79]), sometimes at elevated temperatures [62],[6],[70]. For oligomeric proteins the dissociation 

into monomeric units by changing the pH and/or employing detergents may also be used to generate 

free binding sites in the MIP. Covalently immobilized proteins are removed according to the nature of 

the bond: a disulfide-containing crosslinker can be cleaved by reduction with mercaptoethanol [54],[81], 

while the imine bond is easily hydrolyzed using oxalic acid [86]. Sometimes the protein is removed 

together with the sacrificial support to which it was immobilized, as in the works of Menaker et al. [5], 

Lautner et al. [56] and Orozco et al. [64], where the polycarbonate-based support was dissolved in 

chloroform or dichloromethane without any further steps.  

An alternative to harsh solvent extraction is the degradation of the protein target by proteolytic 

digestion using a protease enzyme. Proteinase K – a protease enzyme with broad cleaving specificity – 

offers a particularly attractive alternative for protein removal under mild conditions. This approach was 

used for the removal of concanavalin A [67]  and myoglobin [72] templates. The obtained peptides and 

amino acid residues, as well as the remaining protease were then washed out of the polymer with a 

buffer solution. 

Electrochemical means have only been applied so far for the removal of small molecular weight 

templates, but in principle can be used also to remove protein targets. Dechtrirat et al. oxidized the thiol 

group tethering the template peptide chain to the electrode at a high potential [66], while Kong et al. 

changed the charge of the polypyrrole film by overoxidation, which thereby rejected the now identically 

charged template [90].  



2.4. Detection of the template binding 

 

The most important parameters  characterizing the performance of MIPs  are the affinity and specificity 

of target rebinding which determine the dynamic concentration range including the lower limit of 

detection and the cross reactivity. The rebinding of the target is quantified by methods which indicate 

directly the presence of the protein in the MIP layer and by “indirect” methods which evaluate the 

change in the signal of a marker molecule. Direct detection of the template protein by Raman and FTIR 

spectroscopy [72] offers a rather specific mean to detect the presence of the protein template in the MIP 

and by that to evaluate the efficiency of the template removal.  In case of redox active proteins and 

certain enzymes the direct electron transfer[6] and the assessment of local enzymatic activity [52], 

respectively, offer sensitive means for the direct detection of the template protein binding to the MIP. As 

the signal originates in principle solely from the template bound to the MIP, nonspecific protein 

adsorption may interfere only in competitive manner. This is not the case for SPR [53, 56, 66, 77, 79] and 

QCM [54, 67, 81](Fig. 5D) where the signal reflects overall mass (refractive index change) of the MIP 

layer, which can be induced not only by the target but also by nonspecific adsorption and other type of 

changes of the chemical environment. It is very important to realize that such interfering effects in case 

of nonspecific signals does not necessarily mean that the imprinted sites lack sufficient selectivity. The 

reason is that it is hardly possible to imprint the whole sample exposed surface with a protein template, 

meaning that in fact the generated surface will be a mixture of imprinted and non-imprinted polymer 

(NIP). Accordingly, the NIP is expected to exhibit inherent adsorption properties of the bulk polymeric 

material and the lack of selectivity may easily originate from binding to the NIP fraction of the surface 

and not from the insufficient selectivity of the imprinted sites. A conclusive demonstration of this 

eventuality was provided by Dechtrirat et al. who observed a very significant interference from lysine 

when testing the selectivity of cytochrome c-imprinted polymers by SPR [66]. However, when injecting 

lysine first and then the template the signal increased roughly with the same amount as when the 

template was injected on a lysine-free MIP. This suggests that the lysine does not bind to surface 

imprinted sites, but elsewhere on the MIP, while still contributed to the SPR signal. Despite of this 

deficiency both SPR and QCM offer very sensitive means to evaluate the MIP-target interactions. In 

particular SPR imaging [56] coupled with local deposition of MIPs (Fig. 5C) having different compositions 

or imprinted by different templates [53] is particularly promising for high throughput optimization of 

MIP compositions and protein analysis.  Following on the line of label-free methods the presence of the 

proteins in surface imprinted polymer films was successfully detected also by atomic force microscopy 



(AFM) [52, 53]. While this method is by no means suitable for sensing application it offered clear 

evidence for the formation of protein imprints (cavities) (Fig. 5B) in highly conformal surface imprinted 

polymer layers and for the subsequent binding of proteins [52]. 

 

Figure 5. Representative general detection methods of the protein binding to the MIP films: (A) 

Electrochemical detection based on the modulation of the flux of redox mediators to the supporting 

electrode upon target protein binding, (B) atomic force microscopy (adapted with permission of ref. 

[52]), (C) surface plasmon resonance imaging (adapted with permission of ref. [53]) , (D) quartz crystal 

microbalance.  

 

Labeled targets were also used for the direct assessment of template removal and rebinding. 

Measurement of MIP film fluorescence after interaction with a fluorescently labeled target protein 



[61],[27, 62] or of the enzymatic activity (HRP)[79] of enzyme labeled targets allows highly sensitive and 

selective quantification of rebinding. A frequently applied indirect method for the characterization of 

template rebinding to thin films of MIPs is based on measuring by CV  [71],[86],[83] or electrochemical 

impedance spectroscopy [91],[89] the permeability of the polymer film for a redox marker  such as 

ferrocyanide or ferrocenecarboxylic acid [68]. In the absence of the target protein the templated voids 

(binding sites) in the MIP film permit the access of the redox mediator to the underlying electrode 

surface while the target binding will gradually decrease the permeability of the MIP film in a 

concentration dependent manner, i.e., the current signal of the redox marker is diminished upon target 

binding (Fig. 5A). The detection scheme resembles to that of ion-channel sensors with logarithmic 

concentration dependence and dynamic range over several orders of magnitude[92]. This approach 

provides indeed a convenient procedure to follow the work flow of MIP preparation by comparing the 

signals of the MIP after electropolymerization, template removal and rebinding. However, it may not be 

fully suited for the accurate determination of binding parameters, such as binding isotherm and 

equilibrium constant. A major disadvantage of the method is that at low target concentrations minute 

decreases in the current are to be detected in a large base current. As such the fluctuation of the 

background current makes the uncertainty of the determinations very high in this range, especially, 

considering contingent swelling-shrinking of the polymer film upon change in the ionic strength and/or 

pH of the sample solution. Therefore, it is surprising that several papers describing MIPs for both low and 

high molecular weight targets (using the redox marker ferrocyanide) claim measuring ranges over 

several orders of magnitude with sub-nanomolar lower limit of detection. Many trials were made to 

enhance the sensitivity of the electrochemical readout of protein MIPs by using different coatings on the 

electrode surface prior to polymer deposition. Among these the application of graphene and carbon 

nanotubes stand out. Graphene, beside its excellent mechanical properties and electrical conductivity, 

provides a large surface that leads to an increased current response and thus better sensitivity [71],[91]. 

Carbon nanotubes [69],[89] are usually drop-casted onto the electrode surface prior to polymer 

deposition in random orientation, but Choong et al. prepared a vertically aligned array by directly 

growing the carbon nanotubes onto the electrode surface and electrochemically deposited an imprinted 

polypyrrole layer on their lateral wall [88]. Although developed with caffeine as template, this procedure 

is promising for the imprinting of large molecules as well because the thickness of the imprinted polymer 

layer can be readily tuned to match the dimensions of the template. Moreover, the capacity and the 

binding site density of the polymer can be controlled by varying the length and packing density of the 

carbon nanotubes. Indeed, later on spectacular results were reported for arrays of carbon-nanotube tips 



with an imprinted polyphenol coating that could achieve pg/L limit of detection for ferritin and a human 

papillomavirus derived protein using ferrocene carboxylic acid as marker and electrochemical impedance 

spectroscopy for detection [68]. Microdendrites can also improve electronic transfer rates and the 

effective electrode area [57]. 

The imprinting factor IF is defined as the ratio of the signals of the MIP and NIP after rebinding of the 

target. It should reflect the ratio of “specific” binding of the MIP to the nonspecific binding at the NIP 

surface. At saturation concentrations it returns the ratio of binding capacities to the imprinted and 

nonimprinted polymer. As an alternative, the ratio of the slopes in the linear region of the binding curve 

is determined. However, for negligible nonspecific binding this method will provide nonrealistic high IF 

values.  It is obvious that the determination of the imprinting factor is influenced by the method which 

was used to measure the rebinding to the MIP and NIP. For SPR and QCM the signal can be influenced by 

structural changes of the polymer. In this respect the evaluation of the enzymatic activity or of direct 

electron transfer is considerably more specific and gives a “functional” imprinting factor. The frequently 

used measurement of the current of a redox marker is influenced not only by the occupancy of the 

cavities by the target but also by the formation of “nonspecific” pores during the extraction of the 

template. Therefore the conditions of template removal are crucial. 

 



Table 1. Electrosynthesized protein MIPs 

TEMPLATE 
POLYMERIZATION 

METHOD 

TEMPLATE REMOVAL                        

[method of verification] 
DETECTION 

PERFORMANCE 

PARAMETERS
a
              

[binding model] 

SELECTIVITY 

COMMENTS REF WELL 

DISCRIMINATED 

INTERFERING 

(>25%) 

acrylamide (AAm), methylenebis(acrylamide) (MBA) 

BHb CV: (-1.2)-(-0.4) V, 20 mV/s 10% AcOH + 10% SDS [CV] CV, LSV IF = 7.6 cyt c, OvA, BSA, 

Lys 

n.a. polymer film on electrode coated 

with Au microdendrites and PrB 

[57] 

BHb CV: (-0.2)-(-1.4) V, 20 mV/s 10% AcOH + 10% SDS, 0.5 M 

H2SO4, PB pH 6.8 

CV, DPV no response on NIP BSA, OvA, GOx, 

cyt c 

n.a.  [82] 

aminophenol 

Myo CV: (-0.2)-0.8 V, 50 mV/s protK digestion [EIS, CV, FTIR] EIS, SWV IF ~ 4, Kd = 5.88∙10
-7

 M [La] troponinT n.a.  [72] 

aminophenylboronic acid (APBA) 

BSA CV: (-0.1)-1.4 V, 20 mV/s 3% AcOH + 0.1% Tween20 SPR LR: 2∙10
-2

-10
-1

 g/l, IF ~ 2 n.a. Hb, Lys co-monomer: oPD [77] 

cyt c, Lys CV: (-0.2)-0.7 V, 100 mV/s 3 v/v% AcOH,  0.1 v/v% 

Tween20 

CV IF = 6.7 (Lys), ~ 2.3 (cyt c) n.a. n.a. PPy and non-imprinted pAPBA 

supporting layers 

[78] 

PHb CV: (-0.1)-1.1 V, 20 mV/s 3% AcOH + 0.1% Tween20 electrochemical SPR LR: 5∙10
-2

-50 g/l, IF ~ 1.6 BSA OvA, Lys  [79] 

aniline 

BSA CV: (-0.4)-1.2 V, 50 mV/s 5% AcOH + 10% SDS [DPV] DPV, EIS LR: 10
-7

-10
-1

 g/l HSA, BHb n.a. polymer film on GR and MWCNT-

modified electrode 

[69] 

dopamine 

IgG CV: (-0.45)-0.55 V, 50 mV/s 0.1 M ME (EtOH), 3 M 

NaCl+0.1% SDS (100°C) 

QCM IF = 1.66, Kd = 2.96∙10
-7

 M 

[Fr-La] 

n.a. n.a.  [81] 

tumor 

marker Ags 

CV: (-0.5)-0.5 V, 20 mV/s 1 wt% SDS ECLIA IF = 2 (CEA) , 1.23 (CA199) BSA, IgG, AFP,  

Lys 

n.a.  [80] 

3,4-ethylenedioxythiophene (EDOT) 

Av potentiostatic: 0.9 V  disrupt Av-bead linkage, 

dissolve beads in toluene 

QCM IF = 6.5 SAv, NAv, (EAv), 

BSA 

Lys nanostructured film, vectorially 

immobilized template 

[54] 

Av potentiostatic: 0.75 V 1 M NaOH, DCM, 50% MeOH fluorescence IF ~ 5 n.a. n.a. microrods with embedded SPM NPs [55] 

Av potentiostatic: 0.75 V DCM; regeneration: 1 M NaCl. SPR IF ~ 10; Kd = 1.25∙10
-9

 M 

[sp] 

BSA, SAv, NAv Lys, EAv polymer microbands formed with 

lithography 

[56] 

Av pulses: (-0.2) / 1.1 V, 5 Hz chloroform fluorescence IF = 6, Kd = 3.49∙10
-9

 M [Sc-

Ro] 

BSA n.a. microrods prepared using a sacrificial 

membrane 

[5] 

Av-FITC potentiostatic: 0.8 V DCM fluorescent 

microscopy 

no binding observed on 

NIP 

anti-IgG n.a. microrods prepared using a sacrificial 

membrane 

[64] 

 



TEMPLATE 
POLYMERIZATION 

METHOD 

TEMPLATE REMOVAL                        

[method of verification] 
DETECTION 

PERFORMANCE 

PARAMETERS
a
              

[binding model] 

SELECTIVITY 

COMMENTS REF 

WELL DISCRIMINATED 
INTERFERING 

(>25%) 

methylene green 

thrombin 

(target) DNA 

aptamer 

(template) 

CV: (-0.3)-1.3 V, 

100 mV/s 

5 M HCl EIS, potentiometry IF = 1.83 HSA n.a. "inverse epitope imprinting" [85] 

phenol 

HFer, HPV E7 

protein, Cal 

CV: (0.3 V * 30 s), 

0-0.9 V, 50 mV/s 

DI water or 5% AcOH or 

10% SDS 

DPV, EIS 9.8∙10-15
 M [Hill] horse (apo)Fer, Ca

2+
-free 

conformation of Cal 

n.a. arrays of carbon-nanotube tips [68] 

ovarian cancer 

antigen 

CV: 0-0.9 V, 50 mV/s DI water or 1% AcOH + 

3% SDS [EIS] 

DPV, EIS  HSA, human serum 

proteins 

n.a. polymer coating on 

nanoelectrodes 

[87] 

o-phenylenediamine (oPD) 

troponinT CV: 0-1.1 V, 50 mV/s 0.25 m NaOH (EtOH:H2O 

2:1) [CV] 

CV, EIS, DPV LR: 9∙10
-9

-8∙10
-7

 g/l, Kd = 

2.4∙10
-12

 M [sp.+nsp], no 

response on NIP 

serum proteins n.a.  [70] 

troponinT CV: 0-1.1 V, 50 mV/s 0.25 m NaOH (EtOH:H2O 

2:1) [CV] 

CV, EIS, DPV no response on NIP, Kd = 

2.3∙10
-13

 M [sp.+nsp] 

n.a. n.a.  [83] 

proDOT-COOH 

AChE potentiostatic: 0.75 V 

* 5 s, 0 V * 5 s 

glycine-HCl [AFM, 

enzyme activity] 

enzyme activity, AFM IF = 5.3, Kd = 4.2∙10
-7

 M [La] BSA urease  [52] 

pyrrole 

BHb CV: (-0.2)-1.2 V, 

100 mV/s 

1 M H2SO4 [EIS] DPV LR: 10
-5

 - 1 g/l BSA, HSA, Lys, BIn, ATP n.a. film on electrode coated with GR 

and IL 

[91] 

BHb CV: (-0.2)-1.2 V, 

100 mV/s 

1 M H2SO4, CVs in PBS 

(-0.6)-1 V 

DPV, EIS IF = 7.72 BSA EAv, Lys  [62] 

BHb CV: (-0.2)-1.2 V, 

100 mV/s 

4% HF, 1 M oxalic acid 

[DPV] 

EIS, DPV IF ~ 20 BSA, EAv Lys nanostructured film [86] 

BLV protein pulses: 0.95 V * 1 s, 

0.35 V * 10 s 

1 M H2SO4 [PA] PA, ELISA assay IF = 22 BSA n.a.  [84] 

BSA CV: (-0.35)-0.85 V, 

50 mV/s 

5% AcOH + 10% SDS 

[EIS] 

DPV, EIS LR: 10
-7

 -10
-1

 g/l HSA, BHb n.a. polymer film on MWCNT and 

magnetic NPs-modified electrode 

[89] 

 



TEMPLATE 
POLYMERIZATION 

METHOD 

TEMPLATE REMOVAL                        

[method of verification] 
DETECTION 

PERFORMANCE PARAMETERS
a
              

[binding model] 

SELECTIVITY 

COMMENTS REF WELL 

DISCRIMINATED 

INTERFERING 

(>25%) 

scopoletin 

con A potentiostatic: 0.7 V 

* 5 s, 0 V * 5 s 

protK digestion [fluorescence] QCM IF = 8.6, Kd = 7.2∙10
-10

 M [La] BSA, Myo, RNAse, 

lectins 

n.a.   [67] 

cyt c potentiostatic: 0 V * 

15 s, 0.5 V * 35 s 

1 M H2SO4 [CV] CV (DET), pseudo-

peroxidase activity 

IF = 2, Kd = 10
-5

 M [Sc] BSA, Myo Lys oriented template 

adsorption 

 

cyt c derived 

peptide 

potentiostatic: 0.7 V 

* 5 s, 0 V * 15 s 

electrochemical stripping, PBS+0,1% 

Tween [fluorescence] 

fluorescence, SPR IF = 10 (peptide), 6 (cyt c), Kd = 2.51∙10
-6

 

M (peptide), 8.5∙10
-6

 M (cyt c) [Sc] 

single mismatch 

peptide, BSA, Myo 

Lys  [66] 

ferritin pulses: 0 V * 1 s, 

0.9 V * 0.1 s 

5 mM NaOH injections in iSPR iSPR IF = 13 cyt c, Myo BSA, urease thin film confined to 

spots 

[53] 

bithiophene-derivatives 

HSA CV: 0-1.2 V, 50 mV/s 30% NaOH 45°C DPV, EIS IF = 26.8, LR: 8∙10
-4

-2∙10
-2

 (DPV) or 4∙10
-

3
-8∙10

-2
 (EIS) g/l 

creatinine, urea, 

uric acid, cyt c, Myo, 

artificial serum 

glucose, Lys  [93] 

a
 LR: linear range, IF: imprinting factor (signal of MIP divided by signal of NIP), binding models: (n)sp: (non)specific binding, Sc: Scatchard, R: Rosenthal, L: Langmuir, Fr: Freundlich 

AChE: acetylcholinesterase,  AFM: atomic force microscopy, Ags: antigens, Av: avidin, Av-FITC: avidin labelled with fluorescein isothiocyanate, BHb: bovine hemoglobin, BIn: bovine insulin, BLV: bovine leukemia virus, BSA: 

bovine serum albumin, Cal: calmodulin, cyt c: cytochrome c, con A: concanavalin A, CV: cyclic voltammetry, DCM: dichloromethane, DET: direct electron transfer, DPV: differential pulse voltammetry, EAv: ExtrAvidin®, 

ECLIA: electrochemiluminescent immunoassay, EIS: electrochemical impedance spectroscopy, FTIR: Fourier-transform infrared spectroscopy, GOx: glucose oxidase, GR: graphene, HFer: human ferritin, HPV: human 

papilloma virus, HSA: human serum albumin, IL: ionic liquid, LSV: linear sweep voltammetry, Lys: lysozyme, ME: mercaptoethanol, Myo: myoglobin, n.a.: not available, NAv: NeutrAvidin, OvA: ovalbumin PA: pulsed 

amperometry, PC: polycarbonate, PHb: porcine hemoglobin, PrB: prussian blue, protK: proteinase K, QCM: quartz crystal microbalance, SAv: Streptavidin, SPM: superparamagnetic, (i)SPR: surface plasmon resonance 

(imaging), SWV: squarewave voltammetry 

 



3. Conclusions and outlook 

 

As compared with antibodies protein MIPs have been prepared only for a restricted spectrum of proteins 

starting with RNAse by Mosbach’s group [25]. Almost half of the papers still use hemoglobin, serum 

albumins and avidin as model templates. Point-of-care detection of marker proteins  for cardiac [70],[72] 

or tumor disease  [53, 68][72],[87], Alzheimer`s disease (AChE)[52] or virus infections is the prospective 

aim in the generation of electrochemically addressable MIPs. In spite of a few reports claiming close to 

routine applicability [68, 72] MIPs need still substantial improvement to overcome disturbances caused 

by constituents of real samples. Presently the synthesis of MIPs follows a highly empirical strategy 

therefore a progress is expected either from a rational design or from the association of an empirical 

approach with high-throughput synthesis and detection methods. The latter could accelerate the 

determination of the optimal MIP compositions offering high affinity and selectivity.  The proof of 

principle of such enabling technology was already made for electrosynthesized MIPs by using 

microelectrospotting [53]. As an additional benefit “microfabrication” methods can drastically reduce 

the required amount of template making available for imprinting presently unaffordable proteins, i.e., 

expensive proteins or proteins   available in restricted quantities, e.g. proteins produced by cell-free 

protein synthesis. However, it is still a question whether such high-throughput approaches can be 

universally applied for a wide range of monomers and proteins with distinct physico-chemical properties. 

With respect to the rational design the complexity of the protein-imprinted systems is a major obstacle, 

which may be reduced by epitope imprinting and/or the implementation of hybrid materials involving 

bioinspired moieties with known binding properties. Irrespective of the approach adopted the 

implementation of nanomaterials and controlled oriented imprinting features as an optimal choice to 

increase the  number and homogeneity of binding sites and by that improving the sensitivity and the 

selectivity of protein MIPs. The field would have also to benefit from establishing standardized testing 

procedure and relevant quality control criteria of the prepared protein MIPs.  
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