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Electrothermal motion in an aqueous solution arises from the action of an electric field
on inhomogeneities in the liquid induced by temperature gradients. The temperature
field can be produced by the applied electric field through Joule heating, or caused by
external sources, such as strong illumination. Electrothermal flows in microsystems
are usually observed at applied signal frequencies around 1 MHz and voltages around
10 V. In this work, we present self-similar solutions for the motion of an aqueous
solution in a constant temperature gradient placed on top of: (a) two coplanar
electrodes subjected to an a.c. potential difference, and (b) four coplanar electrodes
subjected to a four-phase a.c. signal, generating a rotating field. The first case produces
two-dimensional rolls whereas the second case produces a liquid whirl. Finally, we
present experimental results of electrothermal liquid flows generated by alternating
and rotating electric fields under strong illumination, and these experiments are
compared to the analytical solutions. The induced rotating flow could be used in the
mixing of analytes and of liquids in microsystems.

1. Introduction
In microsystems, a.c. electric fields can interact with a liquid through several

mechanisms (Castellanos et al. 2003), ranging from bulk effects such as electrothermal
effects and natural convection (Müller et al. 1993; Arnold 2001) to surface effects
such as ac electro-osmosis (Ramos et al. 1999; Ajdari 2000; Bazant & Squires 2004).
Flows driven by electrothermal forces are often present in the dielectrophoretic
manipulation of colloidal particles in microsystems (Müller et al. 1996; Ramos
et al. 1998; Green et al. 2000, 2001). Electrothermal fluid flow is due to the
action of an electric field on thermally induced gradients of conductivity and
permittivity in the fluid (Melcher & Firebaugh 1967; Melcher 1981). The gradients
of temperature can be produced by external sources, such as strong illumination
(Green et al. 2000), or caused by the applied electric field through Joule heating
(Müller et al. 1993; Gimsa, Eppmann & Prüger 1997; Wang, Sigurdson & Meinhart
2005). Observations and estimates show that electrothermal effects are important
in microsystems for frequencies of the order of 1 MHz and voltages of the order
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Figure 1. Diagrams showing the coordinate systems for: (a) the two coplanar electrodes and
(b) the four coplanar electrodes.

of 10 V (Green et al. 2001; Castellanos et al. 2003). These frequencies are much
greater than typical frequencies of electrode polarization. For these frequencies,
electrokinetic flows such as a.c. electro-osmosis are almost certainly negligible since
the charges have no time to accumulate in the diffuse double layer (Ramos et al.
1999). In this work, we will consider that the applied signals have frequencies in
this regime, i.e. ω � 1/RbCDL, where Rb is the resistance of the bulk electrolyte
between electrodes and CDL the capacitance of the electrode/electrolyte double
layer.

In this paper, we present some self-similar solutions for the fluid flow induced
by a combination of electric fields and externally imposed gradients of temperature
in microelectrode structures. First, we consider the two-dimensional motion of an
aqueous solution placed on top of two coplanar, parallel electrodes subjected to an
a.c. potential difference when there is either a vertical or a horizontal gradient of
temperature. This geometry is shown in figure 1(a). Self-similar solutions for the
electric field and liquid motion are obtained. These solutions are relevant to some
fluid flows observed under strong illumination (Green et al. 2000).

Secondly, we study the three-dimensional problem of an aqueous solution lying
on four coplanar electrodes placed in each quadrant (see figure 1b). The electrodes
are driven by a four-phase a.c. signal and this generates a rotating electric field.
Previously studied two-dimensional configurations are used to solve the electrical
three-dimensional problem analytically. Then, the solution for the liquid flow is
obtained and it is shown that this produces a rotation of the liquid. Such a system
could be used in the design of rotatory micro-pumps and for local mixing in
microfluidics. Also, these results are relevant to electrorotation experiments when
combined with laser tweezers, where electrothermal flow rotation has been observed
(Schnelle et al. 2000).

Finally, we present experimental results of fluid flow and compare them with both
the two-dimensional and three-dimensional analytical self-similar solutions. In the
experiments, we have used simple electrode designs consisting of two or four coplanar
electrodes mounted on a glass substrate. Aqueous solutions of Potassium chloride
(KCl) were placed on top of the electrodes and subjected to the electric fields. The
temperature field was imposed using the light from a microscope (Green et al. 2000,
2001). A clear indication of heating under the strong illumination from the microscope
was the observation of natural convection, in the absence of electric fields, for devices
with heights of the order of 1 mm. For devices with smaller heights, gravity could
not overcome the viscous friction, and fluid flow was not observed in the absence of
electric fields. The combination of a.c. electric fields and heating by light at localized
points in a fluid could be of interest for the handling of liquids in lab-on-a-chip
technology.
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2. Formulation of the problem
The mathematical problem involves a coupled system of electrical, mechanical and

thermodynamical equations. The electric field moves the liquid, and this motion in turn
convects charge and heat. Nevertheless, the low velocities involved in microsystems
mean that these convection terms can be neglected, and therefore, the electrical
and thermodynamical problems can be solved independently with the solution then
inserted into the mechanical problem (Ramos et al. 1998).

To determine whether the temperature field is independent of the velocity field, the
Péclet number must be calculated, given by vl/κ (v, typical velocity; l, typical system
length; κ , thermal diffusivity). The Péclet number for microsystems is typically very
small, showing that heat convection is small compared to heat diffusion (Castellanos
et al. 2003).

In the bulk electrolyte, the electrical current j is given very approximately by Ohm’s
law, j = σ E (Levich 1962). For a binary monovalent electrolyte at rest, the current
density can be expressed as

j = e(n+µ+ + n−µ−)E − e(D+∇n+ − D−∇n−) − e(DT
+n+ − DT

−n−)∇T , (1)

with e the absolute value of electronic charge, µ, D, DT , n+ and n−, the mo-
bility, diffusion coefficient, thermodiffusion coefficient and number densities of positive
and negative ions. For typical electric fields of interest in microsystems, the electro-
migration current dominates. In effect, the ratio between diffusion and electrical
drift is of the order of D+/µ+El = kBT /eEl (Chen et al. 2005), and the ratio
between thermodiffusion and electrical drift is of the order of �T DT

+/µ+El ∼
�T D+/T µ+El = kB�T/eEl (Putnam & Cahill 2005). Both ratios are much less
than one (kBT /e ≈ 0.025 V, El ∼ 5 V). Here kB is Boltzmann’s constant, T is the
absolute temperature and l is a typical distance. In addition, Gauss’ law suggests that
the liquid bulk is quasi-electroneutral on the micrometre length scale. The relative
difference in ion number densities (n+ − n−)/n+ = ∇ · (εE)/en+ is of the order of the
parameter Λ = εE/eln+ (Saville 1997; Castellanos et al. 2003), which is very small
for typical values in microsystems. The conductivity in Ohm’s law is then given by
σ = e(µ+ + µ−)n0, with n0 the unperturbed ion density.

In this work, we assume that the origin of conductivity gradients is due to the
fact that ionic mobilities depend on temperature. The conductivity is then a given
function of temperature σ = σ (T ). We do not take into consideration gradients of
concentration, as in Chen et al. (2005). Gradients of concentration can appear at
the electrodes owing to concentration polarization. For applied a.c. voltages of high
enough frequencies (ω � 1/RbCDL), negligible charge is accumulated at the double
layer and no concentration polarization is expected. This ‘RC time’ of a bulk resistor
in series with a double-layer capacitor is of the order of (ε/σ )(l/λD), where λD is the
Debye length (Ramos et al. 1999; Bazant et al. 2004). We consider a.c. signals with
angular frequencies that are ω � σλD/εl (f = ω/2π � 1 kHz for σ ∼ 10−3 Sm−1 and
l ∼ 10−5 m). In addition, the diffusion equation that governs the conductivity (Bazant
et al. 2004; Chen et al. 2005) gives a typical diffusion length of the order of

√
D/ω,

which is very small, of the order of the Debye length for frequencies around σ/ε.
Therefore, we do not expect gradients of concentration in the bulk.

The liquid conductivity and permittivity are functions of temperature. The
temperature field is a function of the electric field due to Joule heating and, therefore,
the electrical equations are strongly coupled to the temperature equation (Castellanos
2003). Typical increments in temperature caused by Joule heating are compared to
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imposed temperature fields in Green et al. (2001); Castellanos et al. (2003). It was
shown that for applied voltages smaller than or equal to 10 V, and conductivities less
than 0.03 S m−1, Joule heating is insufficient to generate the gradients of temperature
that account for observed flow velocities (which are of the order of 50 µms−1). Wang
et al. (2005) have measured fluid velocities around 100 µms−1 for electrothermal
flow induced by Joule heating at voltage amplitudes of 10–15 V, but in a fluid of
conductivity σ = 0.056 S m−1. For the conductivity we analyse in the experimental
section, the same voltages would generate fluid velocities around 5 µms−1 or less.
In this paper, we consider only externally imposed temperature gradients, which are
independent of the electric field.

2.1. Electrical equations

At low frequencies (<100 MHz) and because the magnetic effects are small, the
electromagnetic equations reduce to the quasi-electrostatic limit (Haus & Melcher
1989). In addition, the convection current can be neglected when compared to the
ohmic current (Castellanos et al. 2003). The electrical Reynolds number is defined as
εv/lσ (Melcher & Taylor 1969), where ε and σ are the electrical permittivity and
conductivity of the fluid, and v and l are the typical velocity and length in the system.
For microsystems, this number is much less than one, implying that ohmic currents
dominate. Assuming that σ and ε are independent of time, the equations that govern
the electric fields are

∇ · (εE) = ρ, (2)

∇ · (σ E) = −∂ρ

∂t
, (3)

∇ × E = 0. (4)

As the applied voltage is an a.c. signal of angular frequency ω, we use complex
amplitudes for the electric field E(t) = Re(Eeiωt ), where Re(. . .) indicates the real part
of (. . .), and combine the equations to give

∇ · ((σ + iωε) E) = 0, ∇ × E = 0. (5)

The electric field can be written as the gradient of an electric potential. The boundary
conditions for this potential are given by the voltage applied to the electrodes, Vs(x, y)
at the plane z = 0

φ = Vs(x, y) (z = 0), (6)

with the origin of potential located at infinity

φ → 0 (z → ∞). (7)

In (6), we have assumed that the frequency ω is high, so that the voltage across the
double layer is negligible.

2.2. Mechanical equations

After calculating the electric field, the electrical volume force density can be
determined. Ignoring the electrostriction term (that can be incorporated into the
pressure and omitted from the calculations), the instantaneous electrical force density
is given by the sum of a Coulomb term and a dielectric term (Melcher & Taylor
1969)

f = ρ E − 1
2
E2∇ε. (8)
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Because ρ and E are oscillating at a frequency ω, the volume force is composed
of a steady term and an oscillating force, of frequency 2ω. This second term would
produce a small-amplitude rapid oscillation of the liquid, which is impossible to
observe in practice. The steady component of the force produces a continuous motion
that is easily observable. This force can be calculated as the time-averaged value of
the electrical volume force density acting on the fluid (Ramos et al. 1998)

〈 f 〉 = 1
2
Re(ρ E∗) − 1

4
E · E∗∇ε, (9)

where ∗ indicates complex conjugate.
This average force is inserted into the Navier–Stokes equations to calculate the

liquid motion. In the low-Reynolds-number regime (valid for microsystems), the
equations for the time-averaged velocity and pressure are

∇ · v = 0, −∇p + η∇2v + 〈 f 〉 = 0. (10)

Here we have neglected the buoyancy force. For microsystems with typical lengths
smaller than 300 µm, the buoyancy force is small compared to the electrical force
(Ramos et al. 1998; Castellanos et al. 2003). We have also neglected variations of
liquid viscosity with temperature in the mechanical equations, as is usually done in
the Boussinesq approximation (Tritton 1977). The boundary condition for the liquid
velocity at the electrode plane is simply v = 0. We have assumed that the frequency is
high enough so that negligible charge is accumulated in the diffuse double layer and,
therefore, possible electrokinetic slip velocities are also negligible.

2.3. Weak temperature gradient

Even for applied temperature gradients, the spatial dependence of the field may
be complicated. We assume that the permittivity and conductivity changes with
temperature are small. In this way, we can expand ε and σ around a reference
temperature as

ε(T ) = ε0(1 + α(T − T0)) σ (T ) = σ 0(1 + β(T − T0)), (11)

where in the right-hand side of each equation, σ 0, ε0, α and β are the quantities
and their relative derivatives at T = T0. For aqueous solutions at T0 = 20 ◦C, α =
(∂ε/∂T )/ε ≈ −0.0046 K−1 and β = (∂σ/∂T )/σ ≈ 0.020 K−1 (from CRC Handbook of
Chemistry and Physics).

In the same approximation, the electric field can be written as E = E0 + E1, where
E0 is the electric field for a spatially constant temperature, T = T0, and |E1|  |E0|.
Substituting in the equations for the field, we have, at the lowest order

∇ · E0 = 0, ∇ × E0 = 0, ρ0 = 0, (12)

so that the electric potential at this order satisfies Laplace’s equation, ∇2φ = 0, with
boundary conditions given by the applied voltage, Vs , at the plane z =0.

2.4. Volume force

The first non-vanishing term in the expansion of the electrical force requires the
first-order charge density ρ1, whose complex amplitude can be obtained from the
zero-order field (Ramos et al. 1998; Castellanos et al. 2003). Taking into account (2)
and (5), the complex amplitude ρ1 is

ρ1 = ∇ε · E0 + ε0∇ · E1 = ∇ε · E0 − ε0 E0 · ∇(σ + iωε)

σ 0 + iωε0
(13)
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and from ∇ε = ε0α∇T and ∇σ = σ 0β∇T , we obtain

ρ1 =
ε0(α − β)

1 + iωτ
(∇T · E0), (14)

with τ = ε0/σ 0, the charge relaxation time of the liquid. Substituting in the time-
averaged volume force, (9), gives:

〈 f 〉 = 1
2
Re

(
ε0(α − β)

1 + iωτ
(∇T · E0)E∗

0

)
− ε0

4
αE0 · E∗

0 ∇T . (15)

3. Two-dimensional flows
We consider first the geometry shown in figure 1(a), which consists of two coplanar

electrodes separated by a small gap.
Approximating the electrodes as half-planes separated by an infinitesimal gap, the

boundary conditions for the potential at z = 0 are

φ(z = 0) = Vs = 1
2
V0 sgn (x), sgn (x) =

{
+1 x > 0,

−1 x < 0.
(16)

This problem allows a self-similar solution, independent of r , given in polar co-
ordinates by

φ(r, ϕ) =
V0

π

(
π

2
− ϕ

)
, E0(r, ϕ) =

V0

πr
uϕ. (17)

The field lines describe half-circles from one electrode to the other. This solution
describes approximately the behaviour of a real system if the gap is much narrower
than the electrode width.

Using Cartesian coordinates, the voltage and the field can be written as

φ =
V0

π
arctan

(
x

y

)
, E0 =

V0

π

(
−yux + xuy

x2 + y2

)
. (18)

3.1. Vertical gradient

Assume an imposed uniform vertical gradient of temperature, that can be written as
∇T = T ′uz. Substituting in (15), we obtain the first-order electrical body force

〈 f 〉 =
ε0

2

(
V0

πr

)2

T ′
[(

α − β

1 + (ωτ )2
− α

2

)
cos ϕ uϕ − α

2
sinϕ ur

]
. (19)

The r−2 radial dependence of 〈 f 〉 enables self-similar solutions to be found for the
pressure and liquid velocity. These solutions are expressed as the product of a certain
power of r multiplied by a function of the angle ϕ, i.e. rnF (ϕ). A simple scale analysis
gives the appropriate powers from the Stokes equation: p ∼ r−1, v ∼ r0, f ∼ r−2.
From this balance, we propose the functional forms

p(r, ϕ) =
P (ϕ)

r
, v = (vr (ϕ)ur + vϕ(ϕ)uϕ). (20)

The incompressibility condition provides a relation between the radial and azimuthal
components

vr = −dvϕ

dϕ
. (21)
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Substituting in the Navier–Stokes equation and eliminating the pressure, we obtain a
fourth-order equation for the azimuthal velocity

d4vϕ

dϕ4
+ 2

d2vϕ

dϕ2
+ vϕ = −C cos ϕ, (22)

where

C =
ε0V 2

0 T ′

2π2η

α(ωτ )2 + β

1 + (ωτ )2
. (23)

Since α < 0 and β > 0, the constant C changes sign at a characteristic frequency given
by

ωc =
1

τ

√
β

−α
, (24)

which gives approximately ωc ≈ 2.1/τ for electrolytes. The general solution for vϕ is:

vϕ = 1
8
Cϕ2 cos ϕ + A1 cos ϕ + A2ϕ cos ϕ + B1 sinϕ + B2ϕ sin ϕ. (25)

The boundary conditions for zero velocity at ϕ = 0 and π require

vϕ = 0 at ϕ = 0, π,
dvϕ

dϕ
= 0 at ϕ = 0, π. (26)

This gives the solution for vϕ as

vϕ = − 1
8
C((πϕ − ϕ2) cosϕ + (2ϕ − π) sinϕ), (27)

and from here, the radial component can be obtained,

vr = −dvϕ

dϕ
= 1

8
C(2 − πϕ + ϕ2) sinϕ. (28)

For this particular solution, the fluid flow changes direction at the characteristic
frequency ωc, equation (24). For the general case, there is a transition of fluid flow
behaviour around ωc, corresponding to fluid flow driven by two different forces: the
Coulomb term (for ω  ωc) and the dielectric term (for ω � ωc). Furthermore, the
difference in magnitude between the Coulomb force and the dielectric force implies
that the velocity amplitude at low frequencies is β/|α| ∼ 5 times greater than the
velocity amplitude at high frequencies.

In this self-similar solution, the velocity components do not depend on the distance
to the origin r . Figure 2(a) shows a contour plot of a streamfunction, defined by the
relations

vr = −1

r

∂ψ

∂ϕ
, vϕ =

∂ψ

∂r
. (29)

The arrows indicate the direction of the fluid flow when the temperature decreases
with height and the frequency is less than ωc as defined by (24). For ω >ωc, the flow
changes direction. The pattern of streamlines is very close to that given in Green
et al. (2001) for a similar numerical problem in the neighbourhood of r = 0 where
the self-similar solution is expected to be valid.

Figure 2(b) shows a plot of the modulus of the fluid velocity (scaled with C) for
the same system. The maximum absolute value of vr occurs at ϕ = π/2, where
vr = −0.0584251 C. The maximum absolute value of vϕ is at ϕ1 = 0.887129 and
ϕ2 = π − ϕ1 where vϕ(ϕ1) = 0.025405 C and vϕ(ϕ2) = − 0.025405 C. These values of
maximum velocities compare well with the numerical results presented in Green et al.
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Figure 2. (a) Streamlines for a vertically imposed temperature gradient. The arrows indicate
the direction of the fluid flow when the temperature decreases with height and the frequency
is less than ωc . (b) Liquid speed as a function of angle ϕ for a vertically imposed temperature
gradient (polar curve).

(2001) for a system of two coplanar electrodes heated by light. In this work, the
numerically calculated thermal field shows an almost vertical gradient of temperature
over the electrodes. Using the values specified in Green et al. (2001), T ′ = 0.021 K µm−1,
V0 = 10 V and ω  ωc, the maximum radial velocity from the analytical solution is
87.0 µms−1, compared to 80 µms−1 obtained from numerical work using finite-element
modelling.

3.2. Horizontal gradient

Assume now an imposed horizontal gradient of temperature in the x direction, ∇T =
T ′ux . In polar coordinates, this is

T (r, ϕ) = T0 + T ′r cos ϕ, (30)

where the temperature at the plane ϕ = π/2 (or x = 0) is T0.
Assuming again that the permittivity and conductivity increments with temperature

are small enough, we can write the electrical body force as:

〈 f 〉 = −ε0

2

(
V0

πr

)2

T ′
[(

α − β

1 + (ωτ )2
− α

2

)
sinϕuϕ +

α

2
cos ϕur

]
, (31)

where α and β have the same meaning as before.
Since the body force tends again as r−2, we can propose self-similar solutions as

previously. The resulting equation for the azimuthal velocity is now

d4vϕ

dϕ4
+ 2

d2vϕ

dϕ2
+ vϕ = C sin ϕ, (32)

where C is the same constant as given in (23).
The solution for ϕ that satisfies the boundary conditions for zero velocity at ϕ = 0

and π is

vϕ = 1
8
C(πϕ − ϕ2) sinϕ. (33)

The expression for the radial component is

vr = − 1
2
C((π − 2ϕ) sin ϕ + (πϕ − ϕ2) cosϕ). (34)
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Figure 3. (a) Streamlines for a horizontally imposed temperature gradient. The arrows indicate
the direction of the fluid flow when the temperature decreases with x (to the right in the figure)
and ω < ωc . (b) Liquid speed as a function of angle ϕ for a horizontally imposed temperature
gradient (polar curve).

Figure 3(a) shows a contour plot of the corresponding streamfunction. The arrows
indicate the direction of the fluid flow when the temperature decreases with x (to
the right in the figure) and ω <ωc. As before, for ω > ωc the flow changes direction.
Figure 3(b) shows the modulus of the velocity for the same system. This solution
is relevant to experiments where a difference in temperature is established between
coplanar electrodes, producing a horizontal gradient (Green et al. 2000, 2001). Since
unidirectional motion is obtained, this configuration could be used as the basis for a
micro-pump employing only a single a.c. signal. For example, an array of interdigitated
electrodes with a modulated temperature field could be used. An advantage of this type
of pump is that for saline solutions, the maximum flow velocity is almost independent
of the conductivity of the solution. In effect, the peak velocity is obtained at frequencies
ω  ωc and it is proportional to β = (dσ/dT )/σ . In order to avoid complications with
double-layer effects, the frequency of the applied signal should be increased linearly
with conductivity, keeping ω  ωc.

The maximum absolute value of vϕ is obtained at ϕ = π/2, where vϕ = 0.308425 C.
The maximum absolute value of vr is at ϕ1 = 0.729827 and ϕ2 = π − ϕ1 where
vr (ϕ1) = −0.304156 C and vr (ϕ2) = 0.304156 C.

4. Three-dimensional fluid rotation
Extending the analysis to three dimensions, we consider a system of four electrodes

placed at each quadrant, with small gaps in between, and with a rotating-phase
voltage applied (see figure 1b).

In this system, the electric field has a net rotation around the z-axis. The induced
volume charge density follows the field with a certain delay. The resulting volume
force produces a torque on the liquid and the appearance of rotation of the fluid
around a central axis.

4.1. Basic electric field

We consider the x- and y-axes along the gaps and the z-axis normal to the electrode
plane.
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In the lowest order, the electric potential satisfies Laplace’s equation with the
boundary condition at the plane z =0

φ = Vs(x, y, t)

⎧⎪⎨
⎪⎩

V0 cos(ωt), x > 0, y > 0,
−V0 sin(ωt), x < 0, y > 0,
−V0 cos(ωt), x < 0, y < 0,
V0 sin(ωt), x > 0, y < 0,

(35)

and with the potential vanishing far from the electrodes

φ → 0 (z → ∞). (36)

This problem can be posed in terms of the complex potential amplitude, that also
satisfies Laplace’s equation, with the boundary condition

φ(z = 0) = Vs =

⎧⎪⎨
⎪⎩

V0, x > 0, y > 0,
V0i, x < 0, y > 0,
−V0, x < 0, y < 0,
−V0i, x > 0, y < 0.

(37)

The surface voltage can be written in a simpler form as follows

Vs =
V0(1 − i)

2
sgn (x) +

V0(1 + i)

2
sgn (y), (38)

which corresponds to the symbolic equation:

i 1

− 1 −i

= − 1 − i

2

1 − i

2
+

1 + i

2

− 1 + i

2

.

Each term of (38) is exactly the surface potential for the two-dimensional case that
was described in the previous section. In this way, we can write the electric potential
in the bulk as a sum of two two-dimensional solutions. These solutions are shifted
90◦ in space and in time, producing the rotating potential. Writing the angles in terms
of Cartesian coordinates we have

φ =
V0(1 − i)

π
arctan

(
x

z

)
+

V0(1 + i)

π
arctan

(
y

z

)
. (39)

The total complex amplitude for the electric field can also be expressed as a super-
position of two fields

E0 =
V0(1 − i)

π

(
−zux + xuz

x2 + z2

)
+

V0(1 + i)

π

(
−zuy + yuz

y2 + z2

)
. (40)
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The direction of the electric field (in the time domain) rotates, although not uniformly.
This field can be written equivalently as

E0 =
1 − i√

2
Ea +

1 + i√
2

Eb, (41)

with Ea and Eb purely real, multiplied by complex coefficient of unit modulus. The
first component is

Ea =
V0

√
2

π

(
−zux + xuz

x2 + z2

)
, (42)

which is identical to the two-dimensional field given in (18) except for the factor
√

2.

4.2. The case of a vertical gradient

We now consider the combined action of the previous electric field with an imposed
uniform vertical temperature gradient, ∇T = T ′ uz.

The volume force

〈 f 〉 = 1
2
Re

(
ε0(α − β)

1 + iωτ
(∇T · E0)E∗

0

)
− ε0α

4
(E0 · E∗

0)∇T , (43)

and is composed of a Coulomb part and a dielectric one. Both can be decomposed
into four terms, according to the components, Ea and Eb, of the electric field involved

f = f aa + f ab + f ba + f bb. (44)

The first and last terms produce purely two-dimensional motions, as described in a
previous section: f aa generates a two-dimensional motion with components in the
(x, z)-plane, and f bb in the (y, z)-plane. The velocity expressions for these lateral
motions are the same as in (27) and (28) multiplied by a factor 2. In what follows, we
are mostly concerned with the cross-terms, f ab and f ba , which produce net rotation.

The cross-terms for the dielectric force cancel each other

f d = −ε0α

4
∇T (iEb · E∗

a − iEa · E∗
b) = 0. (45)

The only new terms appear in the Coulomb force:

f ab + f ba =
ε0(α − β)ωτ

(1 + ω2τ 2)
((∇T · Ea)Eb − (∇T · Eb)Ea). (46)

Even before calculating the spatial dependence of the coupled volume force density,
we can establish the dependence on the frequency as

f ab + f ba =
ωτ

1 + ω2τ 2
C. (47)

This term vanishes for low and high frequencies, with a maximum at the charge
relaxation frequency ω = σ 0/ε0. Contrary to the previous two-dimensional fluid flows,
this three-dimensional case does not change direction with frequency.

The spatial dependence of the coupled force density is

f c =
Az(−yux + xuy)

(x2 + z2)(y2 + z2)
, A = −V 2

0 T ′(α − β)ε0ωτ

π2(1 + ω2τ 2)
, (48)

or, using spherical coordinates,
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f c =
A cos θ sin θ

r2(cos2 θ + sin2 θ cos2 ϕ)(cos2 θ + sin2 θ sin2 ϕ)
uϕ. (49)

This force is directed along the azimuthal direction, causing rotation.
The dependence on the angular coordinate ϕ is periodic with a period of length

π/2, repeating each quadrant, and therefore it can be written as a Fourier series,

fc =

∞∑
n=−∞

cne
i4nϕ. (50)

A somewhat lengthy calculation leads to the coefficients

cn =
2A sin θ

r2(1 + cos2 θ)

(
tan

(
θ

2

))|n|

. (51)

Only the zero-order term produces net rotation. The component of this mode is
obtained by averaging in ϕ over a period

1

2π

∫ 2π

0

fc dϕ = c0 =
2A sin θ

r2(1 + cos2 θ)
. (52)

Multiplying the Navier–Stokes equations by uϕ and averaging in ϕ, we obtain an equ-
ation for the mean azimuthal velocity

1

r

∂2

∂r2
(r〈vϕ〉) +

1

r2

∂

∂θ

(
1

sin θ

∂

∂θ
(sin θ 〈vϕ〉)

)
= − 2A sin θ

ηr2(1 + cos2 θ)
. (53)

As in the previous sections, the r−2-dependence of the force dictates the functional
form for the self-similar velocity solution. We assume a functional form independent of
r as 〈vϕ〉 = U (θ)A/η, which reduces the problem to an ordinary differential equation,

d

dθ

(
1

sin θ

d

dθ
(sin θ U )

)
= − 2 sin θ

1 + cos2 θ
. (54)

The solution for this equation that satisfies the b.c. of zero velocity at θ = 0 and at
θ = π/2 is

U = cot θ

(
π

2
− 2 arctan(cos θ) − ln(2)

)
+

ln(1 + cos2 θ)

sin θ
. (55)

This function is always positive, and goes from zero at the axis to zero at the electrodes,
reaching maximum speed at θ = 0.961 with a value Umax = 0.232 (see figure 4).

5. Comparison with experiments
The electrothermal fluid flows were observed on micro-electrode structures subjected

to a.c. signals with potential amplitudes between 0 and 10 V (20 V peak to peak)
and frequencies between 0.1 and 20 MHz. Two types of microelectrode design were
fabricated on planar glass slides using photolithography: (a) two parallel electrodes
separated by constant gap and (b) four hyperbolic electrodes (the dimensions can
be seen in figure 5). The pair of electrodes was subjected to a single a.c. signal. The
four hyperbolic electrodes were driven by a four-phase a.c. signal, with the voltage
on consecutive electrodes phase-shifted by 90◦ in order to generate a rotating electric
field.
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Figure 4. Plot of the velocity function U , (equation (55)), with polar angle θ .
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Figure 5. Diagram showing the two designs of electrode use in the experiments, with the
voltage sequences used to drive the fluid.

A squared glass chamber was constructed around the electrodes and filled with a
KCl solution of conductivity σ = 2.5 × 10−3 S m−1. Fluorescent latex particles, 500 nm
in diameter, were suspended in the KCl solution and used as tracers. The electrodes
were observed and illuminated using epi-fluorescence microscopy with band-pass
filters which allowed only light of a given wavelength to reach the sample. The fluid
velocity was measured using particle-tracking velocimetry. Stacks of images taken
from video were handled using free software from ImageJ (http://rsb.info.nih.gov/ij/).

In both types of electrode, the incoming light from the microscope was enough
to heat the electrodes. A clear indication of this was the observation of natural
convection for a chamber with a height of 1 mm. In this chamber, the fluid was
observed to move when the spot of incoming light was on the electrodes with no
applied electric field. At the level of the electrodes, the fluid flowed towards the light
spot as expected by natural convection. However, when the spot of light was on
the glass, no observable fluid flow occurred. The conclusion is, therefore, that the
light is heating the electrodes much more than the glass or the aqueous solution.
For chambers with smaller heights, gravity could not overcome the viscous friction
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50 µm

Electrodes

Lid

Figure 6. Horizontal view of two counter-rotating rolls on top of two coplanar electrodes at
V0 = 7 V and f = 1 MHz. Image of particle tracks obtained by superimposing successive video
frames.

and no observable motion was detected without electric fields. However, with the
application of electric fields under illumination, fluid flow was observed in chambers
with heights smaller than 200 µm. The buoyancy force becomes less important as the
typical system length decreases. As discussed by Castellanos et al. (2003), a transition
between buoyancy and electrothermal fluid flows is expected to occur for typical
system lengths around 300 µm.

The magnitude of the incident light could be altered by inserting a filter into the
light path. The light intensity was measured at different positions in the area of
view using a photodiode. With a filter inserted into the light path, the light intensity
decreased by a factor 3.62 ± 0.15. If the flow is electrothermal in origin, i.e. if the
conductivity and permittivity gradients occur because of light-induced heating of the
liquid, then the velocity of the liquid is expected to change by the ratio of light
intensity with and without the filter.

5.1. Experiments with a pair of symmetric electrodes

Observations of fluid flows under conditions similar to the two-dimensional problems
previously analysed have been reported in Green et al. (2000). Fluid flow was observed
when the electrodes were subjected to voltages around 10 V and frequencies around
1MHz under strong illumination. The observed fluid flow pattern agrees well with the
prediction from the electrothermal theory if there is a vertical gradient of temperature,
generated by the light (Green et al. 2001). The experimental fluid flow changed
direction at a certain frequency and the fluid velocity amplitude varied with frequency
as predicted. The two-dimensional analytical solutions of the present work compare
well with the numerical and experimental results.

In the present work, the fluid was observed from the side using a horizontal
microscope. Figure 6 shows a superimposition of several images showing the
experimental streamlines, for a voltage amplitude of V0 = 7 V and frequency of
f = 1 MHz. The lid of the device was at a height of 160 µm. The fluid velocity was
measured at a height of 77 ± 4 µm above the electrode gap. It was found that the flow
velocity was reduced by a factor of 3.5 ± 0.5 when the incident light was reduced
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Figure 7. Best-fit power law of velocity against applied voltage at f =1MHz: (a) two coplanar
electrodes subjected to a single phase signal, and (b) four coplanar electrodes subjected to a
four-phase signal.

with a filter. This factor corresponds to the ratio of light intensities with and without
the filter, and indicates that the flow is electrothermal.

The velocity as a function of voltage amplitude V0 at the same position and
frequency is shown in figure 7. The best-fit power curve is given by u = 1.25V 1.96

0 µms−1

(with V0 in volts), close to the expected power law u ∝ V 2
0 . At this height of 77 µm,

dielectrophoresis on the tracking particles should be negligible (Ramos et al. 1998).
A maximum estimated dielectrophoretic velocity is around 0.01 V 2

0 µms−1, much
smaller than the measured velocities.

In previous experiments (Green et al. 2000), with a voltage of V0 = 10 V the velocity
was found to be 80 µms−1. In the present work, we measured a value of 110 µms−1

for the same voltage. This discrepancy could be explained by a change in the
vertical temperature gradient, by a factor 1.37 times greater than in the previous
experiments.

5.2. Experiments on electrothermal rotation

Figure 8 shows particle tracks at a plane 40 µm up from the electrodes for two
cases: (a) with maximum incident light, and (b) with the light intensity reduced by
a factor 3.6 with a filter. The electrodes were driven with a four-phase sine wave
with a voltage amplitude of V0 = 6 V and a frequency of f =3 MHz. The particle
trajectories demonstrate that the liquid rotates when subjected to a rotating electric
field under strong illumination. When the direction of the rotating field was changed,
the liquid changed direction accordingly. Because there is more light in case (a), the
particle track lengths are greater than in case (b) for the same time interval. The ratio
between measured velocities at selected points in case (a) and in case (b) is 3.4 ± 0.2,
in agreement with the ratio of light intensities.

Figure 7 shows the velocity as a function of voltage, measured at a radius of
100 µm from the centre of rotation, a height of 30 µm above the electrodes, and
a frequency of 1 MHz. The best-fit power curve is given by u =3.38V 1.94

0 µms−1,
again close to the expected V 2

0 power law. At this position, the fluid speed was
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50 µm

(a) (b)

Figure 8. Top view of a rotating aqueous solution placed on top of four coplanar electrodes.
Image of particle tracks obtained by superimposing successive video frames in a time interval
of 0.4 s: (a) maximum light intensity, and (b) light intensity reduced by filter.

96 ± 9 µms−1 at V0 = 5.4 V and 1 MHz. In order to obtain this velocity using the
analytical expression, the temperature gradient should be of T ′ =0.025 K µm−1. This
gradient of temperature is 1.2 times greater than the gradient estimated in previous
experiments (Green et al. 2000, 2001).

As predicted by the three-dimensional analytical solution, the rotating fluid flow
was significant over a certain frequency range and did not change direction with
frequency. Figure 9 shows particle tracks from a top view at V0 = 5.8 V and four
different frequencies: 0.2, 0.5, 2 and 5 MHz. The fluid flow behaves differently at
frequencies above and below 1 MHz. Above 1 MHz, the flow patterns are more
circular, while below 1MHz they look like spirals. According to the theory, the flow
is the sum of two superimposed characteristic fluid flows: (a) a rotating flow with
maximum rotation at f = 0.568 MHz as given by ω = σ/ε; and (b) two superimposed
two-dimensional flows with velocity components in the (x, z)- and (y, z)-planes, and
with a characteristic frequency of 1.27 MHz as given by ωc = (σ/ε)

√
−β/α. At this

frequency, the two-dimensional flows disappear because Coulomb and dielectric forces
cancel each other. The ratio between two-dimensional and rotational velocities is
proportional to

v2D

vrot

∝ |β − |α|(ωτ )2|
(β + |α|)ωτ

. (56)

This ratio is zero for the transition frequency ωc. For very high and very low
frequencies, the two-dimensional motions dominate. There is an interval of frequencies
around ωc where the rotational motion is dominant. For ω  ωc, the two-dimensional
motion is proportional to β whereas for ω � ωc, the two-dimensional motion is
proportional to |α| ∼ |β|/5. Therefore, the frequency range where rotation is dominant
is greater for ω >ωc than for ω <ωc. This can explain why the spiral-like paths
observed at f < 1 MHz change to more circular paths at f > 1 MHz, since the two-
dimensional motions are relatively less important at these frequencies.

Figure 10 is a plot of the measured angular velocity as a function of frequency
at constant voltage amplitude V0 = 5.8 V. The angular velocity was measured from
the particle tracks at different angles about the origin, at a radius of 85 ± 25 µm
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(a) (b)

(c) (d)

Figure 9. Top view of a rotating aqueous solution on top of four coplanar electrodes. The
applied four-phase signals have an amplitude of 5.8 V and different frequencies: (a) 0.2MHz,
(b) 0.5 MHz, (c) 2 MHz and (d) 5 MHz.
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Figure 10. Angular velocity as a function of frequency.

from the centre, and at a height of 60 µm. The plotted data are the averages of
these points. The error bars are given by the standard deviation. The large errors
at 0.2 MHz are an indication of the difficulty in assigning a rotatory velocity in
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this case (see figure 9). Theoretically, the maximum angular velocity is obtained at
f = σ 0/2πε0 = 0.568 MHz, in accordance with the experiments within experimental
errors. The theoretical expression for the angular velocity at a given height h from
the electrodes is given by

Ω(θ) =
A

hη
U (θ) cot θ. (57)

The illumination intensity was different from the previous experiments and the
measured angular velocities would be obtained if the temperature gradient is around
four times smaller than for the data shown in figure 7.

6. Conclusions
Self-similar solutions for the fluid flow induced by the combination of electric

fields and externally imposed gradients of temperature in microelectrode structures
have been presented. Two kinds of problem were considered: (a) the two-dimensional
motion of an aqueous solution placed on top of two coplanar parallel electrodes
subjected to an a.c. potential difference when there is either a vertical or a horizontal
gradient of temperature; and (b) the three-dimensional motion of an aqueous solution
lying on four coplanar hyperbolic electrodes subjected to a four-phase a.c. signal,
generating a rotating electric field.

Experiments were performed using aqueous solutions of KCl placed on top of two or
four coplanar microelectrodes and the results compared with the analytical solutions.
The temperature field was imposed using the light from the microscope. Indications of
this were the observation of natural convection for devices with heights around 1 mm
and that the observed electrothermal fluid velocities were proportional to the light
intensity. The device with two coplanar parallel electrodes produced two-dimensional
rolls of fluid flow. The device with four hyperbolic electrodes demonstrated that the
liquid rotates when subjected to a rotating electric field under strong illumination. The
experiments showed a good agreement with the expected trends from the theoretical
solutions.

The combination of electric fields and heating with light at localized points could
be of interest in the design of micro-pumps and for local mixing in the lab-on-a-chip
technology. An advantage of this way of generating flow in saline solutions is that
the maximum flow velocity is almost independent of the conductivity of the solution.
In order to obtain the best efficiency, the frequency of the applied signal should be
increased linearly with conductivity.

This work has been supported by the Spanish MCyT, under contract BFM2003-
01739.
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