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ABSTRACT 

A mathematical model is developed to investigate the combined viscous electro-osmotic 
flow and heat transfer in a finite length micro-channel with peristaltic wavy walls. The 
influence of Joule heating is included. The unsteady two-dimensional conservation 
equations for mass, momentum and energy conservation with viscous dissipation, heat 
absorption and electro-kinetic body force, are formulated in a Cartesian co-ordinate 
system. The Joule heating term appears as a quadratic function of axial electrical field in 
the energy conservation equation. The axial momentum and energy equations are coupled 
via the thermal buoyancy term. The peristaltic waves propagating along the micro-
channel walls are simulated via a time-dependent co-sinusoidal wave function for the 
transverse vibration of the walls. Both single and train wave propagations are considered. 
Constant thermo-physical properties are prescribed and a Newtonian viscous model is 
employed for the fluid. The electrical field terms are rendered into electrical potential 
terms via the Poisson-Boltzmann equation, Debye length approximation and ionic Nernst 
Planck equation. The dimensionless emerging linearized electro-thermal boundary value 
problem is solved using integral methods. A parametric study is conducted to evaluate the 
impact of isothermal Joule heating term on axial velocity, temperature distribution, 
pressure difference, volumetric flow rate, skin friction and Nusselt number. The 
modification in streamline distributions with Joule heating and electro-osmotic velocity is 
also addressed to elucidate trapping bolus dynamics.  
 
Keywords: Electro-kinetic pumping; peristalsis; heat transfer; Nusselt number; Debye length; Grashof 

number; heat generation/absorption; unsteady flow; trapping; micro-channel.  
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1. INTRODUCTION 

The continuous scaling down of engineering devices has resulted in significant advances 

in micro- and nano-fluidics. Electro-osmotic systems are increasingly being deployed in 

many areas of medicine and industrial technology [1]. Electro-osmotic flows are 

generated by the Coulomb electrical force produced by the application of an external 

electrical field. This mobilizes electrical charges in solution (electrolytes) in particular 

near highly charged surfaces. This phenomenon can be exploited in many complex 

systems including micro-pumping for integrated electronic circuits [2, 3], miniature direct 

methanol fuel cell (DMFC) energy systems [4], ocean thermal-osmotic energy 

conversion systems [5] (which include reverse electro-dialysis in which concentrated 

ionic solutions move through alternating cells and fresh water flows through other cells 

resulting in a voltage generated across each ion-exchange membrane) [6] and also petro-

chemical purification processes [7]. Electro-osmotic flows are also fundamental to 

numerous physiological processes including gel electrophoresis in tissue engineering [8], 

cerebral trans-diffusion phenomena [9] and tri-phasic tissue behaviour in synovial 

mechanics [10].  

An important biophysical mechanism which is fundamental to many critical transport 

processes is peristalsis. This involves a rhythmic process of wave-like contractions of 

physiological vessel which propels contents efficiently over considerable distances. It 

arises in intestinal hydrodynamics [11], swallowing [12], ovum movement in the oviduct 

or uterus [13], endocardial cushioning in embryonic heart transition from peristaltic to 

pulsatile flow [14].  Many analytical and computational studies have been reported on 

peristaltic propulsion. Bertuzzi et al. [15] studied numerically the transport of a solid 

spherical bolus enclosed in a contractile membrane. Tripathi et al. [16] derived analytical 

solutions for the influence of curvature and non-Newtonian characteristics on transport of 

gastric fluids in peristaltic pumping. Tözeren et al. [17] investigated theoretically the 

viscous-dominated peristaltic transport of rigid particles along distensible conduits using 

a thin elastic shell model and lubrication theory.  

In recent years peristaltic electro-osmotic (EO) pumps have been explored as a bio-

inspired design for improving electrokinetic systems. These designs minimize working 

parts and increase system efficiency and sustainability. Important works in this regard 
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include the study by Hayakawa et al. [18] on gel electrophoresis preparation with EO 

micro-pumps in elution chamber design, Zhu et al. [19] for gas diffusion micro-chip 

enhancement and Yeh et al. [20] for dual electrode travelling-wave EO pump 

configurations. Mathematical studies of electro-osmotic peristaltic flows have also 

stimulated some interest, and serve as a compliment to experimental investigations. 

Chakraborty [21] considered the influence of axial electric field on microfluidic transport 

in peristaltic microtubes, showing that careful prescription of peristalsis wave 

characteristics and axial electrokinetic body force may successfully boost the time-

averaged flow rate in such systems. El-dabe et al. [22] recently studied the influence of a 

vertical alternating current and electric field on peristaltic pumping of a dielectric 

viscoelastic Oldroyd fluid in a mildly stenosed conduit. They evaluated the effects of 

many parameters including electrical Rayleigh number, Reynolds number, wave number 

and Weissenberg number on flow characteristics. Roth [23] explored a different 

application of electro-kinetic peristalsis, namely aerodynamics in discharge plasma 

systems, showing that peristaltic induction of neutral gas by a traveling electrostatic wave 

is an effective mechanism for flow acceleration. Tripathi et al. [24] derived analytical 

solutions for unsteady electro-osmotic peristaltic transport in a microchannel subjected to 

transverse magnetic field and axial electrical field, using lubrication and Debye 

approximations. They showed that stronger magnetic field discourages bolus growth and 

decelerates axial flow and flow rate but elevates pressure difference at low time values. 

They also found that lower Debye electrical length increases time-averaged flow rate but 

decelerates axial flow. Si and Jian [25] presented perturbation solutions for electro-

magneto-hydrodynamic (EMHD) viscoelastic flow in a two slit corrugated micro-

channel, simulating peristaltic waves as periodic sinusoidal waves with small amplitude 

and computing the influence of dimensionless wave number and relaxation time and 

retardation time on pumping characteristics. Recently Tripathi et al. [26] investigated the 

transient electro-osmotic Newtonian peristaltic pumping in cylindrical vessels of finite 

length, under Debye-Hückel linearization, noting that greater axial electrical field (i.e. 

larger Helmholtz-Smoluchowski velocity) suppresses pressure for train wave 

propagation whereas it elevates pressure for single wave propagation. They further 

observed that with increasing electro-osmotic parameter (decreasing Debye length), the 
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volumetric flow rate rises and approaches the value for very thin EDL (as electro-osmotic 

parameter tends to infinity).  

The above studies generally neglected thermal transport i.e. heat diffusion. It has been 

identified however that the inclusion of ionic thermo-diffusion can exert a significant 

influence on ionic distribution, local electrical potential and even free charge density and 

therefore modifies substantially electro-osmotic flows [27]. The heat-conducting nature 

of real blood flows and also the presence of thermal effects in real micro-channel systems 

in industrial devices make the inclusion of heat transfer effects important since thermo-

diffusion-induced free charge density may influence thermo-diffusion-induced electro-

osmotic velocity. Applications of electro-osmotic heat transfer include microbial fuel 

cells for carbon capture [28], polymer electrolyte membrane (PEM) fuel cells [29] and 

thermal band broadening in electro-chromatography [30]. The hydrodynamics of electro-

osmotically generated flow differs markedly from conventional pressure-driven flows and 

therefore inevitably heat transfer in EO transport will also be affected. A number of 

researchers have therefore addressed thermal electro-osmotic micro-fluidic systems. 

Zhou et al. [31] considered thermal effects on EO flow under an imposed temperature 

difference, incorporating temperature-dependent thermophysical and electrofluid 

properties as well as ion thermo-diffusion. They showed that temperature 

difference/gradient induces a modification in ionic concentration, electrical potential, and 

electro-osmotic velocity profiles from their isothermal counterparts, and accelerates 

electro-osmotic transport. Soong and Wang [32] analyzed thermal electro-kinetic flow in 

a microchannel under asymmetric boundary conditions with wall-sliding motion, 

asymmetric zeta potentials and different heat fluxes imposed at the channel walls. 

Mukhopadhyay et al. [33] simulated thermally and hydrodynamically fully developed 

combined pressure-driven and electroosmotic flow in a micro-channel with isoflux wall 

boundary conditions, showing that thermofluid characteristics are strongly altered by the 

asymmetric wall boundary conditions. Another important characteristic of thermal 

electrokinetic flows is Joule heating which occurs commonly due to the presence of 

electrical potential gradient and electrical current. It has an amplified influence in 

systems with high electrical potential gradients or with high ionic concentration buffer 

solutions, which makes it relevant to both physiological and engineering applications. 
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Chen [34] examined convective heat transfer in pressure-driven electro-osmotic non-

Newtonian flow in micro-tubes, observing that larger length scale ratio decreases Nusselt 

number at low pressure gradients and furthermore that singularities arise in Nusselt 

number distributions for surface cooling as the ratio of Joule heating to wall heat flux is 

adequately high with negative sign. Experimental studies of Joule heating effects in 

electro-osmotic thermo-fluid mechanics include Cetin and Li [35] for electrophoresis 

fused-silica capillary reactors, by Rathore [36] for open/packed electro-driven separation 

techniques of capillary electrophoresis (CE) and capillary electro-chromatography (CEC) 

and by Petersen [37] for microchip based electrophoretic capillary systems. Vocale et al. 

[38] used a finite element method to investigate the electro-osmotic heat transfer inside 

silicon elliptical cross-section micro-channels with Joule heating and H1 boundary 

conditions. They showed that with decreasing electro-kinetic diameter, Joule heating 

induces a more prominent change in temperature distribution whereas increasing electro-

kinetic diameter elevates the convective heat transfer. Escandón et al. [39] reported 

asymptotic and computational solutions for steady-state conjugate heat transfer in fully 

developed electro-osmotic non-Newtonian laminar flow with Joule heating, using the 

viscoelastic simplified Phan-Thien-Tanner (SPTT) constitutive equation.  

In the present investigation, we consider unsteady peristaltic electro-kinetic flow and heat 

transfer in a finite length micro-channel in the presence of Joule heating, heat 

generation/absorption, thermal buoyancy and viscous dissipation effects. Both single and 

train wave propagation are considered. Using lubrication and electrical Debye 

linearization approximations, the transformed, dimensionless boundary value problem is 

solved analytically. The influence of isothermal Joule heating term on axial velocity, 

temperature distribution, pressure difference, volumetric flow rate, skin friction (wall 

shear stress function) and Nusselt number (wall heat transfer rate) are presented 

graphically for fixed values of Grashof (thermal buoyancy) number, Helmholtz-

Smoluchowski velocity, heat source/sink (absorption) parameter and other geometric 

parameters. Trapping phenomena are also addressed via streamline visualization. 

Detailed interpretation is provided. Applications of the current analysis include thermal 

electro-osmotic micro-pumps and also hemodynamic transport in medical engineering 
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[40]. The study is relevant to enhanced thermal transport in micro-fluidic systems, 

chromatography and electrophoretic processes in physiology. 

 

2. MATHEMATICAL MODEL 

The geometric model for the electro-osmotically-modulated peristaltic transport through 

finite length ( L ) microfluidics channel, as depicted in Fig.1, is mathematically 

simulated for dual wave scenarios, as: 

2( , ) cos ( ) [0, ]h x t a x ct x L



     , for train wave propagation,                   (1a) 












],1[],0[,

1),(cos
),(

2

Lttxifa

txtiftcxa
txh





,   for single wave propagation:          (1b) 

where , , , , ,h x t a   and c  represent transverse vibration of the wall, axial coordinate, 

time,  half width of the channel, amplitude of the wave, wavelength and wave velocity 

respectively. The temperatures at the center line and the wall of the peristaltic channel are 

given as: 0TT    (at 0y  ), 1TT   (at y h ).  In Fig. 1 the case of a single wave 

propagating from the left reservoir to the right reservoir with a wave velocity c is 

illustrated. The pressures at the left and right reservoirs (inlet and exit, respectively) are 

denoted as 0p  and 
Lp  respectively. 

The governing equations for unsteady, two-dimensional, viscous, incompressible 

electrokinetically-modulated peristaltic transport and heat transfer may be formulated as 

follows: 

0,
u v

x y

 
 

 
                                                                                               (2) 
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( ) ,e x
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                         (3) 
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                                                             (4) 
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,                                          (5)           
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Figure 1. Schematic view of electro-osmotically–modulated peristaltic transport between 

two parallel plates subjected to constant temperature ( 1TT  ) at the top and bottom 

surfaces.  

 

Here ,,,,,  pvu and xE  denote the fluid density, axial velocity, transverse velocity, 

pressure, fluid viscosity, and electrokinetic body force and , , , ,pg T c k , ,  and   

denote the acceleration due to gravity, coefficient of linear thermal expansion of fluid, 

temperature, specific heat at constant pressure, thermal conductivity, viscous dissipation, 

the electrical conductivity of the buffer fluid and the heat absorption parameter. The first 

and second terms of Eq.(5) indicate the thermal energy transfer due to convection and 

thermal diffusion, respectively, while the third, fourth and fifth terms show thermal 

energy generation in the system due to viscous dissipation, heat absorption and Joule 

heating, respectively. The electric potential within the microchannel is given by 

according to well-known Poisson-Boltzmann equation as: 

2 e


    ,                                                                                                                      (6) 

where   is the permittivity, ( )e ez n n     is the electrical charge density, n and n  

are positive  and negative ions  having bulk concentration (number density) 0n  and a 

valence of z  and z  respectively, and e represents elementary charge. Further, in order 
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to determine the potential distribution, it is necessary to describe the charge number 

density. For this, the ionic number distributions of the individual species are given by the 

Nernst-Planck equation for each species as:  

2 2

2 2
B

n n n n n Dze
u v D n n

t x y x y k T x x y y

    
 

              
                    


  

,                  (7) 

Implicit in this analysis, is the assumption of equal ionic diffusion coefficients for both 

the species, and that the mobility of the species is given by the Einstein formula and D  

represents the diffusivity of the ionic species, 
Bk  is Boltzmann constant. Introducing the 

following non-dimensional parameters; , , , , ,
x y ct u v

x y t u v
a c c  

      

2

, ,
h pa

h p
a c 

   
0

, ,
n

n
a n





    , and the nonlinear terms in the Nernst Planck 

equations are  2
O Pe , where Pe Re Sc  represents the ionic Peclet number and 

Sc D   denotes the Schmidt number. Therefore, the nonlinear terms may be dropped 

in the limit that Re, Pe,  <<1 where 
ca

Re
 


  is Reynolds number and 
a


  wave 

number. In this limit, the Poisson equation is obtained as: 

2
2

2 2

n n

y
          

,                                                                                                       (8) 

where 02

B d

n a
aez

K T


 
  , is known as the electro-osmotic parameter and 

1
d 
  is 

Debye length or characteristic thickness of electrical double layer (EDL).  

The ionic distribution may be determined by means of the simplified Nernst Planck 

equations:  

2

2
0

n
n

y y y




   
     

 ,                                                                                                     (9) 

subjected to 1n   at 0   and 0n y    where 0y    (bulk conditions). These 

yield the much celebrated Boltzmann distribution for the ions: 

Φ
n e  .                                                                                                                          (10) 
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Combining equation (8) and (10), we obtain the Poisson-Boltzmann paradigm for the 

potential determining the electrical potential distribution: 

 
2

2

2
sinh

y
 

 


.                                                                                                         (11) 

In order to make further analytical progress, we must simplify equation (11). Equation 

(11) may be linearized under the low-zeta potential approximation. This assumption is 

not ad hoc since for a wide range of pH, the magnitude of zeta potential is less than 25 

mV. Therefore, equation (11) may be simplified to give:  

2
2

2
y

 
 


,                                                                                                                    (12) 

which may be solved subjected to 
0

0
y

y 





 and 1

y h
  , the potential function is 

obtained as: 

cosh( )

cosh( )

y

h




  .                                                                                    (13) 

For the valuation of relative order of volumetric heat generation due to electric resistance 

heating (Joule heating), and a local volumetric heating due to viscous dissipation, one 

may obtain a ratio of strength of Joule heating and viscous dissipation as:
2 2~

v
R

a


 


. We 

may consider the viscous dissipation to be negligible in comparison to Joule heating 

effects for channel width greater than 10 μm. The nonlinear terms in the momentum 

equation are found to be  2
O Re , Re  being the Reynolds number and   denotes the 

ratio of the transverse length scale to the axial length scale. Therefore, the nonlinear 

terms may be dropped in the limit that Re,  <<1, the governing equations in a 

dimensionless coordinate system (x,y) are reduced to: 

0,
u v

x y

 
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 
                                                                                 (14) 

2
2

2
,HS

p u
Gr U

x y
  

   
 

                                                                                             (15) 

 0
p

y





,                                                                                                                           (16) 
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0,S

y

 
  


                                                                                                              (17) 

where,
2 3

1 0
2

( )g a T T
Gr

 



  is the Grashof number, 0

1 0

T T

T T
 



 is the dimensionless 

temperature, x
HS

E
U

c




   is the Helmholtz-Smoluchowski velocity or maximum 

electro-osmotic velocity, 
2

1 0( )

a

k T T

 



 is the dimensionless heat source/sink 

(absorption) parameter, and 2 2
1 0/ ( )xS E a k T T  for constant wall temperature, is the 

normalized generation term that represents the ratio of Joule heating to surface heat flux.  

The imposed boundary conditions are: 

0
0

y

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 , 1

y h



 , 

0

0
y

u

y 


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, 0,

y h
u




0
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
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v

t





, 00x
p p


 , 

Lx L
p p


 .  (18)                      

The solution for the temperature field of Eq. (17), using the boundary conditions (18), is 

obtained as: 

 22 ( )( )

2

y S h hy

h




  
 .                                                                                           (19) 

Integrating Eq.(15) with respect to y , and implementing the boundary condition (18), the 

axial velocity emerges as: 

 

2 2 4 4 3 3 31 1 cosh( )
( ) ( 2 ) ( ) 1

2 6 4 cosh( )HS

p Gr S y
u y h y h y h y h U

x h h

 

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.  (20) 

 

Integrating the continuity equation with respect to y , and using Eq. (20) and boundary 

condition (18). The transverse velocity is obtained as: 
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Integrating Eq. (21) with respect to x , the pressure gradient is given by: 

2

03

1 tanh( ) 7( )
( ) 3 3

8 10HS

p h h Gr S h
G t dx U h

x h t

 

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 .                 (22) 

where )(0 tG  is arbitrary function of t  to be evaluated by using the finite length boundary 

conditions (18). The pressure difference can be computed along the axial length by: 

0
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
   

 .                                                                      (23) 

 Using boundary conditions 00x
p p


 , 

Lx L
p p


  in Eq. (23), and rearranging the 

terms, )(0 tG is expressed as: 
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Volumetric flow rate is defined as 
0

( , )
h

Q x t udy  , and integrating, in view of Eq. (20), 

yields: 

3 27( ) tanh( )
( , ) 3

3 8 10 HS

h Gr S h p h
Q x t U h

x

 


                   
.                                   (25) 

The transformations between a wave frame ( , )w wx y moving with velocity ( c ) and the 

fixed frame ( , )x y  are given by : 

, , ,w w w wx x ct y y u u c v v      ,                                                       (26) 

where ( , )w wu v and ( , )u v  are the velocity components in the wave and fixed frame 

respectively. 

The volumetric flow rate in the wave frame is given by 

0 0

( 1)
h h

w w w wq u d y u dy    ,                                                                                 (27) 

which, on integration, yields:  

wq Q h  .                                                                                                          (28) 

Averaging volumetric flow rate along one time period, we get 
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1 1

0 0

( )wQ Qdt q h dt    ,                                                                                     (29) 

which, on integration, yields 

1 / 2 1 / 2wQ q Q h        .                                                                     (30) 

Using Eqs. (20 & 21), the stream function in the wave frame (obeying the Cauchy-

Riemann equations, 
w

w

u
y





and 
w

w

v
x


 


) takes the form: 

3 2

3

2 5
3 2 4 4 4 3

1 1 / 2 sinh( )
( 3 )

2 cosh( )

7( ) 2 2
3 ( 3 ) ( ) 2 ( 4 ) .

48 10 5

HS

Q h y
y yh y U y

h h

Gr S h y
y h y S h y y h y h y

h

 
 

 

     
        

  
                 
     

(31) 

The shear stress, and heat transfer rate at the wall are defined in terms of skin friction 

coefficient (Cf ), and Nusselt number (Nu) and obtained as: 

2sin(2 ( )) (6 ( )) tanh( )
12f HS

p Gr
C h x t h S U h

x
                   

,          (32)   

 22 ( ) sin 2 ( )

2

h S x t
Nu

h

      
  .                                                                  (33) 

All the above results will reduce to the results reported in Ref.[42] for 0 & 0
HS

U S   and 

they are further reduced to the results of Ref. [43] for 0, 0 & 0
HS

U Gr S    

 

3. NUMERICAL RESULTS AND DISCUSSION 

Numerical evaluations of the closed-form solutions derived in Secn. 2 are visualized in 

Figs. 2-10. These provide a perspective of the sensitivity of the regime to various electric-

physical and thermo-physical parameters. Generally in these figures we consider a 

peristaltic wave amplitude of  =0.6 and heat generation  =2 which represent working 

conditions in real systems. 

Fig. 2 illustrates the evolution of temperature with Joule heating parameter (S). The 

temperature is greater for negative values of Joule heating parameter (S) however it is 

lower for positive values of Joule heating parameter. The presence of an applied voltage 

gradient and its induced electric conduction current manifests in Joule heating in the 
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fluid. For S< 0 this results in volumetric energy generation in the electro-osmotic flow. 

However for S >0 energy is removed from the flow. This results in a cooling in the 

micro-channel electrokinetic flow with positive S and a heating with negative S. the 

influence of Joule heating (whether assistive or opposing) to thermal distribution is 

clearly non-trivial. A similar observation has been made by Laser et al. [3] and also Chen 

[34], the latter noting a particularly strong reduction in temperature and enhancement in 

wall heat transfer rates (heat being conducted away from the fluid to the channel walls).  
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Fig.2. Temperature profile at 0.6, 2, 1
x

p    , 1,
HS

U  1, 1Gr   for different 

values of Joule heating parameter. 
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Fig.3. Velocity profile at 0.6, 2, 1
x

p    , 1, 1Gr   for different values of Joule 

heating parameter (a) 1HSU   (b) 0HSU  . 
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Fig.4. Pressure distribution along the channel length at 0.7, 0.48, 5,t     

1, 1Gr   for different values of Joule heating parameters (a) train wave propagation 

1HSU   (b) train wave propagation 0HSU   (c) single wave propagation. 
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Fig.5. Volumetric flow rate along the channel length at 
0.7,  0.48,t  1, 5,xp   1,

HS
U  1, 2Gr   for different values of Joule 

heating parameters (a) train wave propagation (b) single wave propagation. 
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Fig.6. Skin friction coefficient along the channel length at 0.7, 0.48, 1, 5,
x

t p      

1,
HS

U   1, 2Gr   for different values of Joule heating parameters (a) train wave 

propagation (b) single wave propagation. 
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Fig.7. Nusselt number along the channel length at 0.7, 0.48, 5t     for different 

values of Joule heating parameters (a) train wave propagation (b) single wave 
propagation. 

  

Nu

x  

x  

y  

    

1

0

1

S

S

S

 



(b) 

(a) 



18 
 

18 
 

  

  

Fig.8. Stream lines at 1,
HS

U  0.5, 0.7, 5,Q    0.1, 2Gr    for (a) 5S   , (b) 0S  , (c) 

5S  . 
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Fig.9. Stream lines at 0,HSU  0.5, 0.7, 5,Q    0.1, 2Gr    for (a) 5S   , (b) 0S  , 

(c) 5S  . 
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Fig.10. Stream lines at 1,HSU   0.5, 0.7, 5,Q    0.1, 2Gr    for (a) 5S   , (b) 0S  , 

(c) 5S  . 
 

x  

x  

y  

y  

(b

) 

(c) 



22 
 

22 
 

Joule heating is associated with electric field-induced internal heating in the fluid under 

an externally applied potential gradient. Greater higher electrical field strength results in 

higher heat generation which heats the fluid, but apparently only for negative values of S. 

2 2
1 0/ ( )xS E a k T T   and is proportional to both the square of the applied axial electrical 

field and also the electrical conductivity of the electrolyte. This implies that greater molar 

concentration is also associated with greater heat generation. The overall influence of 

negative Joule heating is to heat the fluid and cool the micro-channel walls (“surface 

cooling”) whereas for positive Joule heating the opposite effect is induced i.e. cooling of 

the fluid and heating of the micro-channel walls (“surface heating”). It is also noteworthy 

that generally we consider the following default values for other parameters i.e. px=1, 

1,
HS

U  1, 1Gr   which correspond to unity axial pressure gradient in the positive x-

direction, intermediate axial electrical field strength, equivalent thermal buoyancy and 

viscous forces, and unity value of electro-osmotic parameter.  

Fig. 3a presents the axial velocity response to variation in Joule heating parameter (S). A 

substantial acceleration in axial flow accompanies an increase in positive S values with 

the contrary response for increasing negative S values. Distributions are however found 

to be skewed and asymmetric about the channel centre line. The presence of the negative 

ion charges on the wall surfaces creates a concentration gradient of positively charged 

ions near the wall surfaces. This results in an electrical potential distribution in the 

electrolyte which we term the electric double layer (EDL). When electrical field (axial) is 

elevated, the Joule parameter is quadratically increased (for constant temperature 

difference) and the electro-kinetic body force (in the momentum eqn. (15) i.e. + 2UHS) 

is also significantly enhanced. This results in an acceleration in the axial flow when S >0 

(assistive case) and a deceleration in the flow when S<0 (retarding case). Flow control is 

therefore achieved with Joule heating. With greater acceleration in the flow, there will 

also be elevated dragging of ions with the fluid molecules along the micro-channel walls.  

Membrane, under constant pressure gradient (px =1). Fig.3b present a comparative study 

between the present results (S==1, -1) and results (S=0) from Ref.[42]. 
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Figs. 4a-c present the evolution in pressure difference (p) with axial coordinate again 

for various Joule heating parameter values (S). Both train wave and single peristaltic 

waves are considered. The simulation is visualized at t = 0.48. A strong depression (fig. 

4a) in pressure difference peaks accompanies a positive increase in S values whereas 

peaks are markedly enhanced with negative S values. The magnitudes of S are also quite 

high. For S = 5 the Joule heating is five times greater than the surface heat flux. A 

generally regular distribution of alternating peaks and troughs is computed for the train 

wave case.  Fig.4b validates the results with Ref.[42] 

However a significantly skewed pattern is computed for the single wave scenario (fig. 

4c). Pressure difference is less dramatically influenced by Joule heating parameter for the 

single wave case as compared with the multiple (train) wave case. Peaks are also much 

sharper (triangular profiles are observed) for the single wave case whereas they are 

parabolic for the train wave case. The influence of positive Joule heating parameter on 

pressure difference is generally the opposite to that on velocity profiles i.e. it induces 

suppression of pressure differences whereas it results in enhancement of axial flow. The 

results concur strongly with other investigations including Soong and Wang [32].  

 

Fig. 5a,b depict the profiles of volumetric flow rate (Q) with axial coordinate (for both 

train wave and single peristaltic wave propulsion) with different values of Joule heating 

parameter values (S). Both graphs are again plotted at t = 0.48. The axial flow 

acceleration with greater electrical field and therefore larger positive S values will boost 

flow rates. This results in an elevation in Q values for S =1 and a reduction in Q values 

for S = -1 (the case of S=0 corresponds to an absence of Joule heating).Whereas both 

peaks and troughs arise periodically for the train wave case (fig. 5a) only a single peak is 

observed for the single wave case (fig. 5b) i.e. the flow rate profile is plateau-like either 

side of the peak. However a distinct increase in flow rate is observed also for the single 

wave case. The number of peristaltic waves propagating along the micro-channel walls 

therefore imparts a significant modification to the volumetric flow rate, irrespective of 

the Joule parameter effect. 

Figs. 6a,b present the skin friction (wall shear stress function) distributions with axial 

coordinate for various Joule heating parameter values (S). As anticipated the skin friction 
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magnitudes are enhanced with positive S values (since the axial flow is accelerated) and 

reduced with negative S values (axial flow retardation). However whereas in the train 

wave case (fig. 6a) peaks are consistently maintained at similar magnitudes along the 

channel length, in the single wave case (fig. 6b) the peak values strongly grow with 

distance along the channel x-axis. The influence of the sign of Joule heating is also 

significantly less prominent in the single wave case compared with the multiple (train) 

wave case, in particular at low x-values i.e. in the vicinity of the entry zone to the 

channel. Both cases however exhibit alternating profiles. The results appear to agree with 

the findings of other researchers, notably Chakraborty [21] although he did not consider 

coupled thermal effects. 

Figs. 7a,b illustrate the Nusselt number profiles with axial coordinate for various Joule 

heating parameter values (S). Nusselt number quantifies the heat transfer rate at the 

micro-channel walls. It defines also the ratio of thermal convective heat transfer to 

thermal conduction heat transfer. With enhanced positive Joule heating (S >0), the 

electrolyte regime in the channel is cooled (temperatures are lower, as observed in fig. 2) 

and this results in enhanced diffusion of heat away from the fluid to the channel walls. 

Nusselt number is therefore elevated at lower values of x. The profiles for both train and 

single wave scenarios are found to alternate with progression along the channel length. 

The impact of Joule heating is therefore also different at different x-values. Nusselt 

number profiles are consistently of similar shape in the train wave case (fig. 7a) whereas 

they progressively increase in magnitude with axial distance for the single wave case (fig. 

7b). Similar results have been reported by Sadeghi et al. [41]. 

Figs. 8-10 depict the collective influence of the Helmholtz-Smoluchowski velocity (UHS) 

and Joule heating parameter (S) on trapping phenomena. In these plots, figs. 8a, 9a, 10a 

correspond to S=-5 with UHS = 1, 0 and -1, respectively. Figs 8b,9b, 10b correspond to S= 

0 with UHS  = 1, 0 and -1, respectively. Figs 8c, 9c, 10c correspond to S= 5 with UHS  = 1, 

0 and -1, respectively. With an increase in Helmholtz-Smoluchowski velocity (UHS) the 

axial electrical field is stronger. This weakly intensifies the circulation as UHS decreases 

from 1 to 0. However with further decrease the dual bolus formation in figs 8a, 9a is 

further split into two pairs of boluses, with multiple vorticity zones appearing in fig. 10a.  

These trends are also observed in figs. Figs 8b,9b, 10b (S= 0) and also Figs. 8c, 9c, 10c 
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(S=5). The influence of maximum electro-osmosis velocity is therefore quite prominent. 

To elucidate the Joule heating effect, we consider figs. 8a-c, 9a-c and 10a-c. There is no 

tangible modification in the trapping bolus structures computed for figs 8a-c, figs. 9a-c or 

figs 10a-c with a dramatic increase in S.  

 

4. CONCLUSIONS  

Closed form analytical solutions have been derived for the influence of Joule electro-

thermal heating on peristaltic viscous electro-osmotic flow and heat transfer in a finite 

length micro-channel in the presence of viscous dissipation and heat absorption. Both 

single and train (multiple) wave propagation scenarios have been studied. The low 

Reynolds number and Debye approximation have been utilized. A finite length channel 

has been considered. Numerical evaluation of the solutions for axial velocity, temperature 

distribution, pressure difference, volumetric flow rate, skin friction (wall shear stress 

function) and Nusselt number (wall heat transfer rate) have been plotted using 

Mathematica software. The computations have shown that: 

 With negative electro-osmotic velocity the dual bolus formation present for 

positive electro-osmotic velocity is modified to two pairs of boluses, with new 

circulation zones. 

 A change in Joule heating parameter has no significant influence on the trapping 

phenomena. 

 Increasing positive Joule parameter decreases temperatures (induces cooling) 

whereas increasing negative Joule number enhances temperatures (induces 

heating). 

 Increasing positive Joule parameter accelerates the axial flow whereas increasing 

negative Joule parameter retard the axial flow in the micro-channel. 

 Increasing positive Joule parameter reduces pressure differences for the train 

wave case, whereas the converse behavior is induced with negative S values.  

 Pressure differences are more evenly distributed for the train wave case compared 

with the single wave case and in the latter Joule heating has a much weaker 

influence.  
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 Skin friction magnitudes are increased with positive Joule parameter and retarded 

with negative Joule parameter. 

 Nusselt number is increased with positive Joule heating effect manifesting in 

heating of the micro-channel walls, with the opposite response for negative Joule 

heating effect. 

The present work has been confined to Newtonian electrolytes which is applicable to 

study the heat transfer and electrokinetic transport in physiological systems. This model 

is also helpful in designing the microfluidics devices for biomedical engineering.  
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NOMENCLATURE 

a  half width of the channel (m) 
c wave velocity (m/s) 

fC  skin friction coefficient 

pc  specific heat at constant pressure (J/kg K) 

D  diffusivity of the chemical species (m2/s) 

xE  electrokinetic body force (N)  

g  acceleration due to gravity (m/s2)  

Gr  Grashof number  

h  transverse vibration of the wall (m) 

k  thermal conductivity (W/m K) 

Bk  Boltzmann constant (J/K) 

L length of tube (m) 

n and n  positive and negative ions, respectively 

0n  bulk concentration (number density) (1/m3) 

Nu Nusselt number 
p  pressure (N/m2) 
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0p and
Lp  pressures at the left and right reservoirs, respectively (N/m2) 

Pe  Péclet number 

Q  volumetric flow rate 

Q  averaging volumetric flow rate 

wq  volumetric flow rate in the wave frame 

Re  Reynold’s number 
Sc  Schmidt number 

S  Joule heating parameter 

t  time (s) 

T temperature 

u  axial velocity (m/s) 

HSU  Helmholtz-Smoluchowski velocity (m/s) 

andw wu v  velocity components in wave frame of reference (m/s) 

v  transverse velocity (m/s) 

x  axial coordinate 

z  and z  valence 

 

Greek Symbols 

  amplitude of the wave (m) 

  wavelength (m) 
  fluid density (kg/m3) 
  fluid viscosity (N s/m2) 

  coefficient of linear thermal expansion of fluid (1/K) 
  viscous dissipation (1/s2) 

  heat absorption parameter (W/m3) 

  electrical conductivity of the buffer fluid (S/m) 
  permittivity (F/m) 

e  electrical charge density (C/m) 

  electro-osmotic parameter 

d  Debye length (m) 

  dimensionless temperature parameter 

  dimensionless heat source/sink (absorption) parameter  

  wave number 

p  pressure difference 

 


