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1 Introduction

The Standard Model (SM) of particle physics is one of the most successful theories ever
devised. Although a plethora of experiments have verified the validity of the SM to high
level of precision the SM is incapable to offer an explanation for the existence of dark
matter, the baryon asymmetry of the universe (BAU) or the masses of neutrinos.

Cosmological first order phase transitions (FOPT) could be a vital ingredient in under-
standing the mechanism of dark matter production [1–4], account for the baryon asymmetry
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of the universe [5–8] and be related to the origin of neutrino masses [9]. Additionally they
could lead to an observable stochastic gravity wave (GW) background [10]. With recent de-
tection of GWs from black hole mergers [11, 12] and hints of a stochastic background [13, 14]
that could have been produced in the early Universe [15–24] this possibility has motivated
many studies into probing various beyond the SM (BSM) scenarios predicting a FOPT
through their GW signals [25–73] (for a comprehensive review see [74, 75]).

First order transitions are characterized by the nucleation of bubbles of a symme-
try breaking vacuum phase [76–78] which subsequently expand and eventually collide
ending the transition. Throughout the growth of the bubbles their spherical symmetry
prohibits GW production. As the bubbles collide GWs can be sourced by the collisions
themselves [79–84], however, this source is relevant only in strongly supercooled [81, 85]
transitions in which plasma effects are suppressed. The source we will focus on comes from
the motion of the plasma generated by its interactions with the bubble walls [86–92].

Between formation and collision, in a thermal plasma environment, the bubbles reach
a steady state which is described by the velocity of the front interface and by the shape of
its profile. Determination of these properties is crucial for making reliable predictions of
the BAU and the GW spectrum. The first analytic formula, to the best of our knowledge,
for the wall velocity was given by Andrei Linde in ref. [78]. Assuming non-relativistic walls
v � 1, the plasma has a large heat conductivity and the bubble expansion is isothermal.
There is an outward pressure given by the difference in energy density of the false vacuum
to that in the true vacuum, i.e.,

ε ≡ V (0, T )− V (φ0, T ), (1.1)

this is compensated by the extra pressure from particles that are reflected and accelerated
after reaching the phase boundary. All particles that are massless in the false vacuum but
obtain a mass m � T cannot penetrate inside and gain energy after bouncing back into
the space of false vacuum. Thus the extra pressure on the wall is

∆p =
(∑

i

π2

30giT
4
)
v (1.2)

where the sum is over all particles that become massive and gi the number of degrees of
freedom. From these equations one obtains

v = 30ε∑
i π

2giT 4 . (1.3)

This simple picture is very intuitive and gives the right prediction, v → 0 as ε→ 0 as well
as suggesting that lower temperatures produce faster walls which holds true generically.
Another analytic estimate appeared in [93] where the authors used energy and momentum
conservation across the wall and obtained instead the quadratic relation v2 ∼ ∆p/∆ρ. It
was assumed that the temperature and velocity across the wall are constant however we
will show in the present paper that these changes cannot be brushed aside.

In ref. [94] it was shown that the analytic estimate of eq. (1.3) can only be applicable
if the phase transition is strongly first order since in this case particles acquire a large
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mass inside the bubble and are reflected off of the wall therefore damping its propagation.
This case corresponds to the “thin-wall” approximation where the thickness of the wall
is much smaller than all the other relevant length scales. Other important length scales
to evaluate are the mean free paths for elastic scattering λelastic and for particle number
changing processes λinelastic.

Three limiting situations were first identified in ref. [94] (see also [95]); (1) the thin-
wall limit with Lw < λelastic, λinelastic, where Lw is the thickness of the wall and which
corresponds to maximal departure from thermodynamic equilibrium, (2) the thick-wall
case which is the opposite scenario with λelastic, λinelastic < Lw, in this case the particles
that cross the wall have enough time to interact with the other particles in the plasma
and thermal equilibrium is maintained and (3) the intermediate situation λelastic < Lw <

λinelastic where some approximate form of thermal equilibrium is expected.
The aforementioned results make clear that an estimation of the relevant hierarchy

of length scales is pivotal for making a judicious choice of method for the computation of
the wall properties. This, nonetheless, cannot be done a priori since the wall thickness
is an unknown to begin with. For a given model the only thing one can do is to assume
the propagation of the bubble falls into one of these limiting situations and to check the
validity of the assumption a posteriori after applying a certain methodology.

Investigations of the wall properties assuming case (2), local equilibrium, include [64,
96–98] and in this case the only friction on the wall propagation comes from hydrodynamic
effects of the plasma. On the other hand, if the wall is thin (but thicker than the particles
thermal wavelength so that WKB approximation is valid), case (1), reflection and trans-
mission of particles is appropriate to quantify the friction. Studies that fall into to this
case can be found in [64, 65, 67, 99–101]. Recent methods aiming to compute the bubble
wall velocity in strongly coupled theories using holography can be found in refs. [102, 103].

In the impractical scenario of a FOPT in the SM with a light Higgs mass, it has been
found [94, 95] that the most likely limiting case is that of the intermediate region with a
small departure from thermodynamic equilibrium, the case (3). One of the reasons being
that in the SM we cannot ignore the effect of particles crossing the wall since some of the
masses are comparable to the temperature. In ref. [95] it was found that the thin-wall
scenario is unrealistic in the SM as it requires tuning the parameters of the theory. In this
reference the authors showed that the typical mean free path of the heavier particles is of
the same order as the width of the bubble wall and that a good approximation is to assume
a small departure from local thermal equilibrium. In the same paper, as well as in [94, 104]
it was recognized that in order to calculate the friction forces that stop the bubble wall
requires solving the non-equilibrium distributions of the massive particles in the plasma.
To do so one must solve a complicated system of Boltzmann transport equations. This was
first performed in the electroweak theory in [95] and later in more detail by Moore and
Prokopec in [105].

The method appropriate for case (3), henceforth called the semiclassical approxima-
tion [105], utilizes a three parameter fluid ansatz, which corresponds to perturbations in
the chemical potential, temperature and velocity. The linear transport equations that fol-
low are supplemented by the Higgs equation of motion (EOM) and a dynamical solution
to the wall shape and velocity can be obtained.
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The idea that the expansion of nucleated vacuum bubbles at finite temperature could
correspond to the motion of detonation waves was first proposed by Steinhardt in ref. [106].
This was subsequently expanded [107] to include all possible solutions in which the bub-
ble walls reach a constant finite velocity due to interactions with the plasma. The hy-
drodynamic effects governing friction were taken into account for the electroweak theory
in [95, 108, 109].

The full inclusion of non-equilibrium particle populations, hydrodynamic effects as
well as a leading order treatment (leading-log approximation) of all the relevant scattering
and decay rates which enter the collision term was first undertaken in [110]. Here it
was discovered that including the jump effect from hydrodynamics, the solutions become
subsonic. Furthermore it was pointed out that their results underestimate the friction since
the contribution from the Higgs self coupling and from infrared W bosons was ignored.

The semiclassical approximation has also been used for the singlet extension of the SM
in refs. [111–113]. The inclusion of scattering processes that include the Higgs boson was
done in ref. [112] and a calculation of the collision terms beyond leading-log was investigated
in [72]. The effect of infrared gauge boson (also termed transition radiation) has been
studied in [100, 101] and more recently in [67].

A simplified method of estimating the friction term in the Higgs EOM, called phe-
nomenological approach has also been implemented in [109, 114–119]. This approach con-
sists in adding a term ∝ η(vw, φ)uµ∂µ to the Higgs EOM, where uµ is the four velocity of
the fluid and η is an ad-hoc parameter which can depend non-trivially on the wall velocity
and on the Higgs field. It was shown in ref. [111] under which cases the phenomenological
approach can reproduce all features of the Boltzmann equations.

In this paper we undertake the study of the wall expansion assuming the limiting
situation (3) when there is a sizeable (but still small) departure from equilibrium. We base
our calculations for the properties of the wall on the recently improved semiclassical fluid
equations by Cline and Laurent [120]. Our primary focus here is to dissect the qualitative
properties of the wall and their dependence on the parameters of the theory and how they
correlate with the characteristics of the phase transition.

In order to remain consistent with current phenomenology of the SM while allowing
for FOPTs we use as benchmark models the gauge singlet extension with parity symmetric
potential and the SM effective field theory with a dimension six operator. While previous
studies have focused [121] on the complementarity of GW signals with the BAU, here we
build on these analyses by assessing the range of applicability of the semiclassical treatment
and show that it is only limited to sufficiently weak transitions with transition strength
parameter α . 0.1. More precisely, we show that this approximation stops operating at the
boundary between hybrid and detonation solutions. In other words, the Jouguet velocity
marks the maximum speed of the bubble wall. Furthermore we draw a comparison with
unsophisticated estimates for the wall velocity in the thin- and thick-wall approximations
and we found remarkable agreement with the thick-wall formula. We provide a simple
derivation for this formula and make a connection with recent results of wall velocities in
thermal equilibrium [98]. A similar derivation for the wall thickness is carried out that
gives a remarkably good approximation for the Higgs wall-thickness but overestimates the
singlet thickness by a factor of about ≈ 7/5 in all cases.
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Using the benchmark models mentioned above we computed the BAU employing the
updated transport equations of Cline and Kainulainen [122] and obtained the predictions
for the spectrum of stochastic background of GWs comparing them with current and future
sensitivities. We underscore the importance of doing the calculation with the correct
variables in front of the wall as otherwise one would not obtain the correct baryon relic.
We improve upon previous studies [121] by using two different BSM models which makes
our qualitative results more general. We also computed the percolation temperature for
the GW predictions which is usually a circumvented step.

The content of this paper is organized as follows: in section 2 we briefly review the
formalism of bubble nucleation at finite temperature including percolation and present
the most important parameters for GW spectrum. An overview of the hydrodynamic
treatment of the plasma is presented in section 3. After that, in section 4, we review the
improved transport equations and introduce the semiclassical approximation. Two separate
subsections are devoted to show the most relevant improved fluid equations for the CP-
even and CP-odd perturbations. We devote sections 5 and 6 to introduce the scalar singlet
model and the SM effective field theory (SMEFT), respectively. Appropriate subsections in
this section contain the results of the computations for the wall properties and for the BAU.
The predictions for the GW spectrum are assembled together in section 7. In section 8 we
discuss the comparison between our results and the thin- and the thick-wall approximations.
A summary of this work and our conclusions are provided in section 9. We provide the
formulas used in the finite temperature effective potential for the two benchmark models
in appendices A and B.

2 Dynamics of the finite temperature phase transition

First-order phase transitions proceed via nucleation of bubbles of broken phase in the
space filled with unstable phase. The probability of tunneling into the broken vacuum at
temperature T is [78, 123]

Γ(T ) = A(T )e−S , (2.1)

where S is the Euclidean action of a critical bubble. For O(3)-symmetric thermal systems
S = S3

T . The prefactor A(T ) involves complicated functional determinants which are hard
to compute. For tunneling at finite temperature it can be approximated as

A(T ) =
(
S3

2πT

) 3
2
T 4. (2.2)

The nucleation temperature Tn is defined as the temperature at which the nucleation
probability per horizon volume is of order 1. It corresponds to the condition∫ tn

tc
dt

Γ(t)
H(t)3 = 1, (2.3)

where tc corresponds to the time at the critical temperature when both phases are degen-
erate and tn the time when nucleation of bubbles begins. H denotes the Hubble rate which
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in a radiation dominated epoch can be expressed as

H2 = ρr
3M2

P

, ρr ≡
π2

30g∗(T )T 4, (2.4)

whereMP = 2.4×1018 GeV is the reduced Planck mass and ρr the radiation energy density
of relativistic species. To take into account the temperature dependence of the number of
degrees of freedom g∗(T ), we use tabulated data from the estimates of ref. [124]. The
nucleation condition (2.3) can also be approximately written as

S3
Tn
≈ 4 log

(
Tn
H

)
, (2.5)

which for temperatures around the electroweak scale gives us the approximate condition
S3/Tn ≈ 140. This approximation is usually used in the literature for obtaining the nu-
cleation temperature. For sufficiently strong transitions, however, this nucleation criteria
has to be modified and in the most serious calculations one needs to include the vacuum
contribution in the Hubble parameter and compute the temperature of percolation.

It is usually assumed, that first-order phase transitions are instant and complete at the
temperature T ≈ Tn. Therefore all the parameters determining gravitational-wave signal
are typically evaluated at this value. However to be more accurate, one may consider a
probability, that a randomly chosen point is still in the false vacuum, given by

P (t) = e−I(t), (2.6)

where I(t) corresponds to the fraction of the space which has already been converted to
the broken phase, namely

I(t) = 4π
3

∫ t

tc
dt′Γ(t′)a(t′)3r(t, t′)3. (2.7)

In the expression above, r(t, t′) denotes the comoving radius of a bubble nucleated at t′
propagated until a subsequent time t and is given by

r(t, t′) =
∫ t

t′

vw(t̃)dt̃
a(t̃) , (2.8)

with a(t) the scale factor and vw(t) the wall velocity which, in principle, is time dependent.
In practical calculations, it is more convenient to use temperature T instead of time

variable t and (2.7) takes the form

I(T ) = 4π
3

∫ Tc

T

dT ′

H(T ′)Γ(T ′)r(T, T
′)3

T ′4
. (2.9)

It is usually assumed that the transition completes when P (t) ≈ 0.7, which leads to a
percolation temperature Tp given by the following condition

I(Tp) = 0.34. (2.10)
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Although the percolation time provides a more accurate estimate of when the transition
completes and one should in general evaluate all physical observables at this time, its
calculation presents a serious challenge given the fact that the comoving radius in (2.8)
depends on the velocity of the wall which is what we are aiming to achieve in this paper.
A complete solution would require an iterative method which we consider a next level of
diligence and we will leave this issue as beyond the scope of this paper.

Due to this complication our estimation for the wall velocity will be performed at the
nucleation temperature, obtained from the condition S3/Tn ≈ 140. Then the value of vw
is used in eq. (2.8) to obtain the percolation temperature which we used for evaluating the
GW spectrum.

Another approximation which has been used to assess the viability of electroweak
baryogenesis (EWBG) is the evaluation of the sphaleron shutting off condition after the
plasma enters inside the bubble. This has become known as the sphaleron washout condi-
tion [125] which translates into1

vn
Tn
& 1.0, (2.11)

with the numerical factor on the right hand side being a matter of some debate which could
lead to slight modification in the range 1.5 − 0.5 [126–128]. In this work we will use the
sphaleron washout condition only for studying the shape of the parameter space and we
will show its correlation with the other parameters of the phase transition. For the BAU
computation this condition is already integrated in the formula for the final asymmetry.

To conclude this section we present the parameters which are relevant for the compu-
tation of the GW spectrum. The strength of the phase transition which, following [75],we
define as

α ≡ 1
ρr

(
∆Veff(φ, T )− T

4 ∆∂Veff(φ, T )
∂T

)
, (2.12)

where the ∆ symbol meaning the difference between the false vacuum value and that in
the true vacuum. In the above formula we write a generic φ dependence on the potential
but it should be clear that it actually means dependence from all scalar fields according
to the BSM model. Additionally, the factor of 1/4 in the second term on α above has
been ommitted in past literature. We believe that it should be included, i.e. the strength
is identified with the difference of the normalized trace of the energy momentum tensor as
opposed to just the difference in the normalized energy density.

The other important parameter is the inverse time duration of the phase transition
which is calculated as

β

H
≡ Tp

d

dT

(
S3
T

) ∣∣∣
T=Tp

. (2.13)

The parameters β and α introduced above and the bubble wall-velocity play a central
role in determining the GW spectrum which will be discussed in a subsequent section.

1In the presence of extra scalars charged under SU(2)L this condition should be modified.
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3 Hydrodynamic treatment

When computing the dynamic properties of the bubble wall and the BAU it is of crucial
importance to take into account the hydrodynamic equations which model the plasma
behavior [129]. These hydrodynamic equations, as written in the universe frame,2 are
given by [107]

(ξ − v)∂ξe
w

= 2v
ξ

+ [1− γ2v(ξ − v)]∂ξv ,

(1− vξ)∂ξp
w

= γ2(ξ − v)∂ξv. (3.1)

where e is the energy density, p the pressure and ω the enthalpy of the plasma. The
variable ξ = r/t accounts for the self-similarity of the equations and has units of velocity.
For example v(ξw) is the fluid velocity at the location of the bubble wall and ξw = vw is
the wall velocity.

From these equations one can also obtain a differential equation for the temperature,
simply by using the following identity

∂p

∂T
= ∂ξp

∂ξ

∂T
, (3.2)

from which it follows that the enthalpy can be written as

ω ≡ T ∂p
∂T

= T∂ξp (∂ξT )−1 , , (3.3)

and then pluggig into (3.1) one obtains

∂ξT

T
= γ2µ∂ξv, µ(ξ, v) = ξ − v

1− ξv . (3.4)

The derivatives ∂ξe and ∂ξp can be related through the speed of sound in the plasma,
c2
s ≡ (dp/dT )/(de/dT ), so as to get the central equation describing the velocity profile:

2v
ξ

= γ2(1− vξ)
[
µ2

c2
s

− 1
]
∂ξv. (3.5)

The hydrodynamic fluid equations are supplemented by boundary conditions on both
sides of the wall which follow from the conservation of the energy momentum tensor accross
the interface, namely

v+v− = p+ − p−
e+ − e−

,
v+
v−

= e− + p+
e+ + p−

, (3.6)

with +(−) meaning in front (behind) of the bubble wall. These conditions are derived in
the rest frame of the bubble wall. It is important to keep track of which reference frame one
is referring to in order to obtain consistent solutions. For the calculation of the BAU and
the wall velocity one is interested in the thermodynamic properties of the plasma directly

2By universe frame we mean a reference frame far away from the wall, either inside or outside.
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in front of the wall, i.e. v+, T+, α+ etc. Failure to use the correct variables lead to no
solution for the bubble wall velocity [121] and a significant underestimate for the BAU.

It is usually assumed that the system is well modeled by the bag equation of state
which yields a relation between the plasma velocities [107]

v+ = 1
1 + α

(v−
2 + 1

6v−

)
±

√(
v−
2 + 1

6v−

)2
+ α2 + 2

3α−
1
3

 . (3.7)

All the possible solutions to the hydrodynamic fluid equations have been classified
in [107] and there are three possibilities: 1) Deflagration solutions have a subsonic wall
velocity and are preceded by a shock front discontinuity which allows the solution to go
to zero. The velocity of the plasma behind the wall vanishes, i.e. v− = vw. This type
of solution lives in the lower branch of the above formula. 2) Detonations correspond to
the opposite case with a vanishing velocity of the plasma in front of the wall and one has
v+ = vw. In this case the solution is located in the upper branch of eq. (3.7) 3) Hybrid
solutions are mixtures of the latter two and the velocity of the plasma is not vanishing on
both sides of the wall. The thermodynamic variables in front of the wall, i.e. v+, T+ and
α+ are trivially found in the case of detonations. The cases of pure deflagrations and the
deflagration component of hybrids however require some more work and in the remaining
part of this section we summarize our procedure for them.

We show the temperature change across the wall for a given strength of the transition
α = 0.05 for three different wall velocities realised by the three solutions discussed above
in figure 1. The key feature of deflagrations and hybrids is that the plasma is heated and
accelerated in front of the bubble wall. As the velocity increases for a given strength of the
transition, the fluid shell around it becomes steeper and thinner. The velocity at which the
shell disappears altogether and we switch to a detonation solution is given by the Jouguet
velocity [86, 106, 107]

vJ = 1√
3

1 +
√

3α2 + 2α
1 + α

. (3.8)

This expression can be obtained from (3.7) by taking the limit v− = 1/
√

3. This quantity
will be of key importance to us because if the friction does not cease the wall acceleration
before this velocity the surrounding temperature drops from T+ to TN . This further
decreases the friction and makes finding solutions with larger velocities not possible via the
semiclassical method.

3.1 Deflagrations

This type of solution is characterized by a subsonic bubble, i.e vw < cs where vw is the
bubble wall velocity and cs is the speed of sound in the plasma. A basic picture of this
configuration is shown in figure 2.

One of the consequences of a deflagration solution is the appearance of a shock front
which forms in front of the bubble wall interface and causes thermodynamic quantities to
suffer discontinuities. Thus one has to deal with two interface boundaries which serve as
two independent inertial reference frames. The velocity of the fluid as measured in these
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Figure 1. Temperature variation across the bubble wall for a transition with fixed strength α =
0.05. The three panels correspond to vw = 0.45, vw = 0.6 and vw = 0.75 and three different kinds
of solution corresponding to a deflagration, a hybrid and a detonation.

Figure 2. Diagrammatic picture for a deflagration bubble (w) propagating to the left as indicated
by the arrows as well as the shock front (s) propagating in front of it. The fluid velocities and
temperatures measured with respect to each wall interface are also indicated.

reference frames is therefore different depending on wether the fluid is in front or behind
the interface. We will denote the fluid velocities as measured with respect to the wall
(shock front) frame as v+ (vs+) if the fluid is in front and as v− (vs−) if the fluid is behind
the front. See figure 2 for reference.

The wall and shock front discontinuities give rise to relations between the fluid veloc-
ities. Here we summarize them again for convenience. Across the bubble wall we have

v+v− = p+ − p−
e+ − e−

,
v+
v−

= e− + p+
e+ + p−

, (3.9)

while for the shock front, since the fluid on both sides of it is actually in the symmetric
phase of the theory, they are more simply written by

vs+vs− = 1
3 ,

vs+
vs−

= T 4
s+ + 3T 4

s−
T 4
s− + 3T 4

s+
. (3.10)

Here it is useful to pause a moment to present a notation which was introduced in [112]
to denote the fluid velocities as measured with respect to the center of the wall. Let us
denote with v± (vs±) the fluid velocities in the wall (shock front) frame while we will use
tildes ṽ± to refer to fluid velocities in the fluid reference frame. This has also been called
the “frame of the universe” in refs. [118] (and more recently in [130]) in which the fluid
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far ahead and behind of the bubble wall and shock front is at rest. Therefore the universe
frame might also refer to a region of spacetime far ahead of the shock front where the fluid
velocity vanishes. Here whenever we mention the universe frame we will simply mean the
reference frame of the center of the bubble.

The fluid velocities in both frames are related by Lorentz transformations, i.e.

ṽ± = vw − v±
1− vwv±

, ṽs± = vsh − vs±
1− vwvs±

, (3.11)

where vw and vsh are the relative velocities between the wall and shock front and the center
of the bubble, respectively.

Now we can give a more precise definition of a deflagration. In this case the fluid
velocity behind the wall is zero, i.e,

ṽ− = 0 −→ vw = v−. (3.12)

Similarly the necessity of having a shock front is that we require that the fluid velocity
jumps to zero in front of it. So we get

ṽs+ = 0 −→ vsh = vs+. (3.13)

Since we are interested in the fluid velocity and temperature directly in front of the wall
we need to solve their corresponding hydrodynamic equations

2v
ξ

= γ2(1− vξ)
[
µ2

c2
s

− 1
]
∂ξv, (3.14)

∂ξT

T
= γ2µ∂ξv . (3.15)

Given α and some value for the wall velocity vw < cs, the boundary condition on the
velocity equation is

ṽ+ ≡
ξw − v+
1− ξwv+

= v(ξw), (3.16)

with ξw = vw = v− the wall velocity and v+ is determined by eq. (3.7) with the minus
sign in front of the radical as is the case for deflagrations. The form of eq. (3.14) does not
accept analytic solutions and a standard numerical integration would stop at the singular
point µ2 = c2

s. However the solution actually stops before reaching the singularity and the
final point determines the velocity of the shock front which satisfies the relation:

ṽs− ≡
ξs − vs−
1− ξsvs−

= v(ξs) (3.17)

with ξs = vsh = vs+ the position of the shock front. Notice that the equation above has
two unknowns, namely ξs and vs−. This relation can be supplemented with the jump in
velocities at the shock front eq. (3.10) as follows

vs− = ξs − v(ξs)
1− ξsv(ξs)

= 1
3ξs

, → µ(ξs, v(ξs))ξs = 1
3 = c2

s (shock front position), (3.18)
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where on the left we Lorentz transformed (3.17) in favor of vs−. Having solved for the
velocity profile, the fluid velocities behind and in front of the wall and the shock front
are completely specified. To determine the corresponding temperatures one needs to solve
the equation for the temperature profile, eq. (3.15). One plugs in the solution v(ξ) into
the temperature equation and integrate. The boundary conditions relate the values of the
temperature outside the wall T+ with the temperature inside the shockfront Ts−. In reality
what is fixed is their ratio, i.e.

T+
Ts−

= exp
[∫ vsh

vw

dξγ2µ∂ξv

]
= exp

[∫ ξshock

ξw

dξ
2c2
sv(ξ − v)

ξ ((ξ − v)2 − c2
s(1− vξ)2)

]
. (3.19)

In addition one has to satisfy the boundary conditions at the shock front eq. (3.10). From
these one can eliminate vs+ to find

T 4
s−
T 4
N

= 3(1− v2
s−)

9v2
s− − 1 , (3.20)

where we notice that the temperature in the region in front of the shock front corresponds
to the nucleation temperature of the transition, i.e. Ts+ = TN . Using (3.19) and (3.20) we
can write

T+
TN

=
(

3(1− v2
s−)

9v2
s− − 1

)1/4

exp
[∫ ξshock

ξw

dξ
2c2
sv(ξ − v)

ξ ((ξ − v)2 − c2
s(1− vξ)2)

]
. (3.21)

Notice that in the region of integration in the above formula the latent heat is given by its
value in front of the bubble wall, α+ which is different from αN that is calculated from the
phase transition properties . To find the correct α+ we iterate the above procedure for T+
until the condition α+T

4
+ = αNT

4
N is satisfied. This is a good approximation for the bag

equation of state with equal number of degrees of freedom on each side of the wall. Once
α+ is found, v+ is fixed by [107]

v+ = 1
1 + α+

[ (
v−
2 + 1

6v−

)
±

√(
v−
2 + 1

6v−

)2
+ α2

+ + 2
3α+ −

1
3

]
. (3.22)

3.2 Detonations

Detonations constitute the opposite case to deflagrations, namely the bubble wall is super-
sonic vw > cs and the fluid velocity in front of the wall vanishes, i.e. ṽ+ = 0 which means
vw = v+. That is, the wall velocity equals the fluid velocity in front of the wall. For the
nucleation temperature and strength of the transition it also follows that TN = T+ and
αN = α+. For our purposes this case represents the most trivial one in regard to the BAU
and the wall velocity calculation. We briefly review this case for completeness.

The fluid velocity behind the wall can be obtained by inverting (3.7) in favor of v−,

v− =
1− 3α+ 3v2

+(1 + α) +
√
−12v2

+ + (1− 3α+ 3v2
+(1 + α))2

6v+
, (3.23)
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where we took the plus sign in the radical by definition. Contrary to the case of deflagrations
which do not require further thinking in applying formula (3.7) for finding the fluid velocity
in front of the wall, for detonations the above formula hides a non trivial constraint on α

and vw; we must require that the velocity is positive and that the term inside the square
root do not become negative. It can be proven that the necessary and sufficient condition
that satisfy these constraints is given by

α ≤ (1−
√

3v+)2

3(1− v2
+) , (consistency condition). (3.24)

This equation can be interpreted as an upper bound for the transition strength given the
wall velocity. However we find this explanation to be counter-intuitive given the pipeline
structure of our calculations where we first find the strength of the transition and after
that we calculate the wall velocity. Thus we prefer to express the last equation in a form
that is most suitable for our motives. Using v+ = vw we can write it as

0 ≤ (vw − v+
J )(vw − v−J ), v±J = 1√

3
1±
√

3α2 + 2α
1 + α

, (3.25)

and since v+
J > v−J we thus see that the Jouguet velocity encountered at the beginning of

this section, eq. (3.8) indicates the lower bound for the wall velocity for which detonations
can be found. Within the range cs < vw < vJ neither deflagrations nor detonations can be
obtained. This is the range of velocities for hybrids which we discuss next.

3.3 Hybrids

Now we discuss the computation of the thermodynamic variables in front of the wall v+,
T+, α+ for the case of hybrid solutions. As their name suggests, this type of solution
has features of both deflagrations and detonations. The wall velocity in this case is not
identified with neither v+ nor v− and it falls within the range cs < vw ≤ vJ, the reason
they are also called supersonic deflagrations.

The hybrid case is therefore a superposition of a deflagration and a detonation. For
the detonation part we need to fix v+ = v−J in order to satisfy the consistency condition
in eq. (3.25), doing so automatically fixes v− = cs. The initial condition for this part is
found by Lorentz transforming to the fluid rest frame, i.e. v(ξw) = µ(ξw, v−), see eq. (3.4).
The deflagration component is solved by fixing as initial condition the alternative Lorentz
transformation, i.e. v(ξw) = µ(ξw, v+). The total solution is found by patching these two.

To obtain the thermodynamic variables in front of the wall in the hybrid case we apply
the same procedure explained in section 3.1 to iteratively solve for α+, T+ and v+.

To conclude this section we show examples of all three types of solutions for different
values of α in figure 3. The wall interface is located at the maximum of each curve. For
reference we show in each figure the speed of sound and the Jouguet velocity as vertical
dot-dashed and dashed lines respectively.
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Figure 3. The hydrodynamics solutions for the velocity profile of the plasma around the bubble
wall for α = 0.05 in the upper left, α = 0.3 in the upper right and α = 1 in the bottom. Green
curves are deflagrations, blue colored curves hybrids and red curves correspond to detonations.

4 Electroweak baryogenesis and bubble wall expansion

4.1 Review on updated transport equations

One of the most popular ways to account for the BAU is realised through EWBG, for a
complete review see ref. [8]. In EWBG a first order phase transition is needed to provide the
necessary out of equilibrium condition. The phase boundary exerts a force on the particles
in the plasma perturbing their distribution functions from their equilibrium forms. Due to
CP violation in the underlying theory, the form of this force depends on which particles it is
acting upon, e.g. particles and anti-particles (as well as different helicity states) experience
the same force but with opposite signs. Thus the effect of CP violation is to cause an
asymmetry in the population densities of particles in front of the wall. This asymmetry
biases the non-perturbative sphaleron rates to produce more baryons than anti-baryons.
Then as the phase transition completes and the plasma is swept inside the bubble the
sphaleron processes turn-off and the total baryon number freezes to its present value.

For quite some time it was commonly accepted that EWBG could only work if the
bubble wall velocity is small v � cs, with cs the velocity of sound in the plasma, since
otherwise the diffusion of the particle asymmetries would not be efficient. The claim [110],
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that the wall velocity would have been subsonic in the SM, further motivated the derivation
of the transport equations for particles asymmetries using the small velocity approxima-
tion v � 1. This approximation leads to transport equations which breakdown for wall
velocities close to the speed of sound [131]. Recently, Cline and Kainulainen [122] have re-
derived improved transport equations for arbitrary wall velocities arguing that the process
of particle diffusion is not dependent on the propagation of sound waves in a plasma and
thus even for highly relativistic walls one would expect a significant fraction of particles
traveling faster than the wall and contributing to the diffusion tail. Using a scalar singlet
model they showed that the baryon to entropy ratio is actually a continuous function of the
wall velocity asymptotically reaching zero as v → 1. Furthermore the transport equations
are well behaved for velocities close to the speed of sound.

The Boltzmann transport equations for the out of equilibrium distribution functions
can be separated into CP-even and CP-odd equations which can be solved independently of
each other. While the CP-odd equations are suitable for computing the BAU, their CP-even
counterparts can be used to predict the bubble wall velocity and its shape. These equations
have also been improved for arbitrary wall velocities by Cline and Laurent in [120]. One
crucial point of refs. [120, 122] has been to treat the velocity perturbations differently than
the chemical potential and temperature fluctuations. In this case one does not assume
a specific form for the velocity perturbation and instead uses a factorization assumption
which allows one to factor out the velocity perturbation u from non-trivial integrals which
appear when taking moments of the Liouville term. Also, in the case of the CP-odd
equations, the authors used a truncation scheme which related higher moments of u to the
first moment in a linear fashion.

As recognized in [120, 122], the factorization and truncation prescriptions, although
leading to transport equations which do not breakdown for velocities close to the speed
of sound, are somewhat arbitrary. Without these ad-hoc assumptions, it was shown [132]
that the singularity at vw ≈ cs smooths out as one includes higher order terms in the
momentum expansion, in coincidental agreement with the findings of [120]. More recently
however, in ref. [133], it was argued that the un-physical singularity is in fact expected
from hydrodynamics alone. The authors in [133] advocate for the use of a generalized fluid
ansatz which corresponds to a higher order expansion and to the use of moments of the
Boltzmann equations which follow from energy-momentum conservation. As of the time
of writing of this paper, the formalism introduced in refs. [120, 122] has not been formally
refuted nor confirmed thus the issue as to which set of equations capture the correct physics
is still a matter of ongoing debate.

4.2 The semiclassical fluid approximation

In the semiclassical treatment as introduced in the seminal papers by Moore and
Prokopec [105, 110] the Higgs EOM receives an extra contribution due to deviations from
equilibrium in the particle distribution functions. This extra term is interpreted as a friction
component and the distribution functions are calculated by means of Boltzmann equations.

The fluid approximation relies on the following assumptions: 1) that the deviations
from equilibrium are small enough and the system of equations can be linearized, 2) the
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time scale for the phase transition to complete is much smaller than the inverse Hubble
rate and one is entitled to neglect the expansion of the universe which justifies the use of
ordinary derivatives instead of the full covariant form of general relativity, 3) the de-Broglie
thermal wavelength of particles in the system is smaller than the bubble wall thickness, this
guarantees that the WKB approximation is valid for calculating the dispersion relations
and group velocities. In addition we take it for granted that a steady state regime is
achieved such that the wall has a well defined rest frame and furthermore that the bubble
becomes sufficiently large for it to be treated as a planar surface.

In the following we will introduce the modified fluid equations as derived in [120, 122]
for completeness. Starting from the Boltzmann equation which dictates the time evolution
of the particle distribution of species a as

dfa
dt

= ∂tfa + ~̇x · ∂~xfa + ~̇p · ∂~pfa = C[fa], (4.1)

where the dots denote time derivative. In the steady state the bubble has expanded suffi-
ciently so that it can be viewed as a planar interface and the problem can be reduced to
one dimension, the direction of the wall propagation . We work in the rest frame of the
bubble wall where the first term on the left hand-side of the Boltzmann equation vanishes
as the solution becomes static. The fluid ansatz for the distribution function is written as

f ≈ fv − f ′vδX̄ + δfu +O(δf2), (4.2)

with
fv = 1

eβγ(E−vpz) ± 1
, f ′v ≡

dfv
dβγE

, (4.3)

where this form makes manifest the Lorentz transformation to the wall frame and

δX̄ = µ+ βγδτ(E − vpz), (4.4)

encodes the perturbations from equilibrium. The variable µ is the chemical potential and δτ
is the temperature perturbation. The extra term δfu gives rise to the velocity perturbation
and its form remains completely undetermined. The factorization prescription amounts to∫

d3p Q δfu → u

∫
d3p Q

E

pz
fv (4.5)

for any prefactor Q that may appear when we take moments of the Boltzmann equation. As
we mentioned above in the introduction, this prescription is arbitrary but it can be justified
a posteriori by obtaining transport equations which are well behaved for all velocities.

The velocity and the force on the particle follow classical Hamiltonian equations of
motion. For models where CP violation can be written as complex phases in fermionic
mass terms, i.e., m(z) = |m(z)|eiγ5θ(z), the dispersion relation computed using the WKB
approximation [134] gives

ż ≡ ∂ω

∂pz
= pz
E

+ s
m2θ′

2E2Ez
, ṗz ≡ −

∂ω

∂z
= −(m2)′

2E + s
(m2θ′)′
2EEz

, (4.6)
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where primes denotes derivatives with respect to the transverse direction to the wall, ω is
the energy of the WKB wave packet and E2

z ≡ p2
z +m2. The variable s = 0 (1) for particles

(anti-particles). In the derivation of the above equations an expansion in gradients ∂z
was assumed. Thus we see that CP violation appears at higher order in gradients and
one can separate the Boltzmann equation as well as perturbations into CP even and CP
odd components which can be independently solved. Solution to the CP even equations
are connected to the bubble wall properties while the CP odd ones are useful for the
computation of the BAU. In the following two subsections we present the most relevant
formulas for each case.

4.2.1 CP-even equations: bubble wall properties

The derivation of the bubble wall properties entails solving the transport equations for the
CP even perturbations. These can be obtained by inserting the force and group velocity
of eq. (4.6) into the Boltzmann equation (4.1)[

pz
E
∂z −

(m2)′
2E ∂pz

] (
fv − f ′vδX̄ + δfu

)
= C[f ], (4.7)

where we used the fluid ansatz of eq. (4.2). Since this is a partial integro-differential
equation with momentum and space-time dependence some form of massaging is necessary
to obtain a tractable system of equations. First notice that in the fluid ansatz of eq. (4.2)
three parameters were introduced, namely µ, δτ and u. Therefore it is customary to
take moments of the Boltzmann equation for each variable that is introduced. The choice
of weight factors for these moments is also somewhat arbitrary. In the improved fluid
equations of [120] these were chosen as∫

d3p
1
T 3 ,

∫
d3p

E

T 4 ,

∫
d3p

1
T 3

pz
E
. (4.8)

After some algebra and by grouping the perturbations in a vector object as q = (µ, δτ, u)T
the simplified transport equations take the form

Av~q
′ + Γ~q = S, (4.9)

with

Av =


C1,1
v γvC−1,0

0 D0,0
v

C0,1
v γ(C−1,1

v − vC0,2
v ) D−1,0

v

C2,2
v γ(C1,2

v − vC2,3
v ) D1,1

v

 , (4.10)

and

S = γv
(m2)′
2T 2

C
1,0
v

C0,0
v

C2,1
v

 , (4.11)

being the source term. The coefficients in the A matrix and in the source term are defined
as non-trivial integrals of the particle distribution functions. They are given in equation (8)
of [120]. The Γ matrix arises from treating the collision term and the numerical expressions
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were recomputed in the leading-log approximation in the same reference. For more details
we refer the reader to this reference.

In principle, the linearized transport equations presented above have to be solved for
every particle in the plasma that is expected to contribute significantly to friction. For
the SM extensions considered in this paper, the particles which contribute the most to the
friction term are the heaviest SM particles, namely the top quark and the W and Z bosons.
The remaining particles do not couple significantly to the Higgs and their interactions are
assumed to be very efficient so that they equilibrate quickly and form a thermal background
with a z dependent temperature and velocity. The effect of this background is taken into
account by taking δτ → δτ + δτbkgnd, u → u + ubkgnd, where a z dependence on each
term should be understood. This effect gives rise to additional transport equations for the
background perturbations.

The Higgs EOM in the presence of out of equilibrium particle populations is given
by [105, 110, 111, 135]

Eh ≡ �φ+ dVeff(φ, T )
dφ

+
∑
i

dm2
i

dφ

∫
d3p

(2π)3
δfi(p, x)

2E = 0, (4.12)

where the sum in the last term is over all particles that receive mass from the Higgs
condensate. This term is interpreted as a frictive force which must be carefully estimated
for an accurate prediction of the bubble wall properties. Equations (4.9) and (4.12) form a
consistent set of constraints for the out equilibrium particle distributions and for the Higgs
condensate. In the presence of additional scalars, as in the case of extensions of the SM,
one has to supplement this system with the corresponding equations of motion for each
extra scalar. For the scalar singlet model considered in this paper one has to satisfy, in
addition to (4.12),

Es ≡ −s′′ +
∂Veff(h, s, T )

∂s
= 0, (4.13)

which doesn’t have a frictive term because the singlet doesn’t contribute to the Higgs
mechanism of mass generation.

Calculation of the bubble wall velocity in the scalar singlet extension of the SM, see
ref. [130], has shown that the scalar profiles can be well approximated by tanh functions.
This form is well justified since the instanton solutions for bubble nucleation follow this
shape so that scalar fields interpolate continuously across the bubble interface. Thus we
use the expressions

h(z) = h0
2

[
tanh

(
z

Lh

)
+ 1

]
, (4.14)

s(z) = s0
2

[
1− tanh

(
z

Ls
− δs

)]
, (4.15)

with Lh, Ls denoting the bubble wall thicknesses and δs an extra off-set factor. The
field values h0 and s0 do not necessarily correspond to the vevs obtained by the bubble
nucleation calculation since the form of the bubble after it has reached a steady state
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velocity is in principle different than its form during nucleation. We do expect however
these latter values not to be too different in magnitude from the former.

By using the tanh ansatz in the field profiles one cannot expect that the EOMs to be
satisfied everywhere in space. Instead one can impose that the EOM has two vanishing
moments, i.e.

M1 ≡
∫
dzEhh

′dz = 0, (4.16)

M2 ≡
∫
dzEhh

′[2h(z)− h0]dz = 0. (4.17)

The form of M1 above has physical intuition as it corresponds to the total pressure acting
on the wall. It must vanish for a steady state wall [105, 110]. The second condition3 is
interpreted as pressure gradients which mostly depend on the wall thickness.

To obtain the wall-velocity we follow the methodology introduced in [121]. Although
this was introduced for the scalar singlet extension, it can however be applied to other (not
very exotic) SM extensions as well. Here we summarize the workflow:

• For a given set of model parameters; ms, λhs and λs we calculate the thermodynamic
quantities of the nucleation process using the ComoTransitions code [136].

• Having the nucleation temperature TN and the latent heat of the transition αN we
perform a grid scan in the vw, Lh plane. At each point in this grid we perform the
next steps:

1. Solve the hydrodynamic equations for the energy budget of the FOPT, see sec-
tion 3. This allows us to obtain the thermodynamic parameters evaluated in
front of the wall, that is T+, α+, v+.

2. Modify the field amplitudes so that they satisfy the correct minimization con-
ditions with the effective potential evaluated at the temperature in front of the
wall, with

dVeff(h, 0, T+)
dh

∣∣∣
h=h0

= dVeff(0, s, T+)
ds

∣∣∣
s=s0

= 0. (4.18)

3. Solve the transport equations (4.9) for the perturbations from equilibrium. This
step determines the friction force in the Higgs EOM.

4. Update the Higgs amplitude h0 by requiring the Higgs EOM to be satisfied deep
inside the bubble, that is

∂VT (h, 0, T+)
∂h

∣∣∣
h=h0

+
∑
i

dm2
i

dh

∫
d3p

(2π)3
δfi(p, z)

2E
∣∣∣
z→∞

= 0. (4.19)

5. Satisfy the singlet EOM by minimizing its action with respect to Ls and δs,

Sscalar = s2
0

6Ls
+
∫
dz [Veff(h, s, T+)− Veff(h, s∗, T+)] , (4.20)

3This choice of M2 differs from the one first introduced in refs. [105, 110] but we believe that the final
solution for vw should be only mildly dependent on which form of M2 one adopts.

– 19 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
7

0.2 0.4 0.6 0.8
vw

1

2

3

4
L h

T n
M1/T4

n

1.8

1.5

1.2

0.9

0.6

0.3

0.0

0.3

0.6

0.2 0.4 0.6 0.8
vw

1

2

3

4

L h
T n

M2/T5
n

3.0

1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

Figure 4. Moment grid for a model with ms = 80GeV, λhs = 0.84 and λs = 1. The red point
gives the minimum of the quadrature f(vw, Lh) = M2

1 +M2
2 .

where s∗ is the scalar singlet profile with its parameters fixed as L∗s = Lh
and δ∗s = 0.

6. Recompute the perturbations (4.9) and calculate M1 and M2.

The outcome of this algorithm for a single parameter space point is presented in figure 4
for a model with ms = 80GeV, λhs = 0.84 and λs = 1. It shows filled contour plots with
color maps for M1 and M2 normalized by appropriate factors of temperature. The red
point on both plots shows the minimum of the scalar function M2

1 +M2
2 .

The method of mapping the moments presented above is reliable in determining if
there is a solution to eqs. (4.16) and (4.17). Unfortunately to obtain an acceptable level of
precision it sometimes requires too many iterations which are time consuming. In order to
achieve better precision one can use this mapping only to produce an initial guess for vw
and Lh and then feed this guess into a root finding algorithm.

4.2.2 CP-odd equations: BAU

As it has been mentioned in previous sections, the CP-odd contribution to the Boltzmann
equations is what is needed to compute the BAU. In this subsection we present the sim-
plified set of equations that one has to solve to achieve this goal. Here we only describe
how the equations are obtained. For a full derivation we refer the reader to Cline and
Kainulainen [122].

The starting point is (4.1) and now one includes in the group velocity and force the
CP-violating contribution, i.e. the terms proportional to θ′ in eqs. (4.6). At the same
time the energy in the distribution function receives a CP-violating contribution of the
form E → E − s m2θ′

2EEz
, with E ≡

√
~p2 +m2, the usual relativistic dispersion relation and

Ez ≡
√
p2
z +m2. Since CP-violation is a higher order effect in an expansion in derivatives
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we separate the chemical potential and the velocity perturbation in the following form

µ ≡ µe + sµo,

δf ≡ δfe + sδfo, (4.21)

with the subscript e (o) standing for even (odd). To obtain the CP-odd transport equations,
moments from the Boltzmann equations were taken as follows

1
N1

∫
d3p,

1
N1

∫
d3p

pz
E
, (4.22)

with N1 ≡ −2
3π

3T 2γw. Additionally, for the BAU one does not need to include a temper-
ature fluctuation and the linearized Boltzmann equations for a particle species take the
form

Aw′ + (m2)′Bw =S + δC, (4.23)

where w = (µ, u)T and

A =
(
−D1 1
−D2 R

)
, B =

(
−vwγwQ1 0
−vwγwQ2 R̄

)
, (4.24)

with coefficients that depend non-trivially on velocity and are given by integrals of the
distribution function. The source terms Sl = (S1, S2)T are given by

Soh` = vwγws
[
(m2θ′)′Q8o

` − (m2)′m2θ′Q9o
`

]
, (4.25)

with non-trivial functions Q8o
` and Q9o

` . We notice that the derivation of the transport
equations in [122] assumed that the wall is propagating from left to right. In this paper
however we are considering the opposite case and we replace vw → −vw.

The collision terms are generically given by

δC1 =
∑
ij

Γisijµj , δC2 = Γtotalu− vwK0δC1. (4.26)

In the SM case we have

δCtL1 = Γy(µtL − µtR + µh) + Γm(µtL − µtR) + ΓW (µtL − µbL
) + Γ̃ss[µi],

δCbL
1 = Γy(µbL

− µtR + µh) + ΓW (µbL
− µtL) + Γ̃ss[µi],

δCtR1 = −Γy(µtL + µbL
− 2µtR + 2µh) + Γm(µtR − µtL)− Γ̃ss[µi],

δCh1 = Γy(µtL + µbL
− 2µtR + 2µh) + Γhµh, (4.27)

with
Γ̃ss = Γss

(
(1 + 9Dt

0)µtL + (1 + 9Db
0)µbL

− (1− 9Dt
0)µtR

)
. (4.28)

In the above expressions Γsph = 10−6 T , Γss = 4.9×10−4 T , Γy = 4.2×10−3 T , Γm = m2
t

63 T ,
ΓW = Γh,total, Γh = m2

W
50 T are the sphaleron, strong, top Yukawa, helicity-flips, W boson

and Higgs number violation rates [137]. The total interaction rates are given in terms of
diffusion constants, Γi,total = D2/(D0D̃i) with D̃h = 20/T and D̃q = 6/T .
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When studying the improved transport equations of Cline and Kainulainen [122] we
noticed that there is a mismatch in mass dimensions between their equations (42) and (53);
one needs to divide δC̄ by 1/T . To fix this mismatch we identified that their definition of
the normalization factor K0 given in their eq. (43) should carry an extra factor of 1/T as
the same authors pointed out that K0 ∼= 1.1 for a massless fermion. On the other hand,
for vw = 0.5, it gives us K0 ∼= 110 without the extra factor of 1/T (T = 100GeV in their
fiducial model). Additionally we believe there is a typo in their eq. (A5) for the helicity
eigenstates, it should read

V = p̃2
z

p̃2
z + x2

1√
1− x2

Ẽ2

. (4.29)

We take into account these modifications throughout our calculations.
By solving the system (4.23) one obtains the total left-handed baryonic chemical po-

tential
µBL

= 1
2(1 + 4Dt

0)µtL + 1
2(1 + 4Db

0)µbL
+ 2Dt

0µtR , (4.30)

and the BAU can be calculated as [122]

ηB = 405 Γsph
4π2vwγwg∗T

∫
dz µBLfsph e

−45Γsph|z|/4vw , (4.31)

with fsph(z) = min(1, 2.4 T
Γsph

e−40h(z)/T ) introduced so that the integral interpolates
smoothly the sphaleron contribution between false and true vacua.

5 The scalar singlet extension

It is known that in the SM the phase transition is a crossover and not suitable for explaining
the BAU. Let us first consider the simplest extension of the SM which is the addition of
an extra gauge singlet with a Z2 symmetric potential, for other studies on this model see
refs. [138–144].

5.1 Model notation and assumptions

The scalar potential at tree-level reads

V0(Φ, s) = −µ2
hΦ†Φ + λ(Φ†Φ)2 +

(
m2
s −

λhsv
2

2

)
s2

2 + λs
4 s

4 + λhs
2 s2Φ†Φ, (5.1)

where Φ = (G+, h+iG0
√

2 )T is the Higgs doublet with v = 246 GeV the SM Higgs vev. The
mass squared term for the scalar singlet has been written in such a way that it is easy to
see that ms is the physical mass for the scalar singlet at the vacuum (h, s) = (v, 0) which
corresponds to the electroweak symmetry breaking (EWSB) vacuum.

We assume that at zero temperature the electroweak symmetry is broken by the vev
of the Higgs doublet while the complex singlet does not develop a vev, see ref. [145], for
a scenario that breaks the Z2 spontaneously. As we will show below, the scalar singlet
develops a vev at finite temperature and the Z2 symmetry is broken at some point during
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the thermal history. However we will assume, in the context of baryogenesis, that higher
dimensional operators break the discrete symmetry explicitly and the occurrence of a do-
main wall problem is avoided. This explicit breaking also means that the singlet is not
stable and doesn’t contribute to the dark matter relic density at all. See refs. [36, 146] for
analyses of this case.

Imposing the minimization conditions on the potential, namely that the first partial
derivatives with respect to the fields vanish in the (v, 0) vacuum, we obtain the familiar
SM relation λ = µ2

h
v2 and the Higgs mass is given by m2

h = 2µ2
h. Thus there are three free

parameters coming from the tree-level scalar potential: m2
s, λs and λhs.

We notice that the constraints imposed above are necessary conditions for the vacuum
(v, 0) to be a minimum of the tree-level potential. For some parameter values a second
minimum in the s-field direction can develop, this situation corresponds to the case of
2m2

s < λhsv
2 and this minimum might coexist with the EWSB minima. In this case one

needs to check that the EWSB is indeed the global minimum.
The parameters of the tree-level potential are also constrained by the positivity re-

quirement, i.e. that the potential doesn’t become unbounded from below at large field
values. Therefore one must have λ > 0 and λs > 0 and notice that if λhs > 0 the potential
is automatically positive at large field values thus we only care about the case λhs < 0. A
simple analytic analysis of the potential shows that the positivity requirement entails

λhs > −

√
2m

2
h

v2 λs. (5.2)

Negative values of λhs do not lead to FOPTs and hence we will not consider this region
of parameter space further in this paper. Another simplification that we will adopt in this
work is to consider scalar singlet masses above the Higgs mass threshold, in other words
we will only consider the case ms > 2mh so that no exotic Higgs decays are predicted.
This has been famously referred as the nightmare scenario in [143] because of its difficult
prospects of detection at colliders. Moreover, since we are considering the case where the
scalar singlet has vanishing vev at zero temperature, there is no eigenstate mixing between
singlet and Higgs field and the two-loop Barr-Zee contributions to electron and neutron
electric dipole moment (EDM) are absent.

The above simplifications allow us to put negligible focus on the collider constraints
on this model, which have been studied elsewhere. Here we are primarily interested in
calculating the bubble wall properties and their repercussions on the BAU and on the
energy density of GWs.

To study the thermal history of the model one needs the one-loop Coleman-Weinberg
contribution as well as the finite temperature potential for which we include the relevant
formulas in the appendices. For the computation of the instanton solution of the Euclidean
action we have made use of the publicly available CosmoTransitions code [136]. We mod-
ified the CosmoTransitions module for a generic potential to make it compatible with the
on-shell renormalization prescription. Additionally we have written our own code with a
simplified calculation that instead of calculating the trajectory in field space that minimizes
the Euclidean action, uses overshooting along the path that minimizes the potential energy
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Figure 5. Contour plot of the effective potential for the scalar singlet model with parameters:
ms = 100GeV, λhs = 0.93, λs = 1. The blue dots represent the trajectory in field space of
the instanton solution as obtained with CosmoTransitions while the yellow points show the path
of minimum energy. The critical and nucleation temperatures are given by Tc = 94GeV and
Tn = 59GeV, respectively. These parameter space values yield a phase transition strength α = 0.11.

(as in refs. [34, 147] ). The EOM was solved for temperatures from the range in which two
minima coexist. Sampling different values and checking the condition (2.5) at every step,
we used a bisection algorithm to find the nucleation temperature. In a similar way, α and
β
H were evaluated. We cross-checked the output from the CosmoTransitions package with
our own code and we found reasonably good agreement between the two methods.

An example of a parameter set that gives rise to a FOPT is presented in figure 5. This
parameter space point exemplifies what is commonly called a two-step FOPT; at very high
temperatures the only stable minimum of the effective potential lies at the origin of field
space. Then as the universe evolves and the temperature drops a second minimum in the
s field direction starts to form while the origin starts to become a local maximum. The
transition in this case is second order. After more cooling the electroweak vacuum appears,
eventually becoming degenerate with the s-vacuum. Afterwards the electroweak vacuum
becomes the global minimum and a FOPT occurs at the nucleation temperature when the
probability of bubble formation becomes comparable to the Hubble volume at that time.

On figure 5 we indicate the trajectory in field space as found by CosmoTransitions with
the blue points while the yellow points show the path of minimum energy. One can easily
observe a difference between the two paths in this case. While studying the parameter
space of the model we noticed that for a given strength of the transition, bigger masses
tend to deviate more from the minimum energy path. Furthermore, the range of FOPT
strengths narrows down as the mass becomes smaller and the thin wall approximation
becomes worse because the escape point is significantly far away from the global minimum
around (v, 0). This is why the blue points do no reach the other end in the figure. The
parameter space point chosen in this case illustrate these two effects.

In this paper we will restrict our attention to two-step FOPTs as these type of transi-
tions can provide CP violating mass terms for quarks at high temperature. In our case we
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Figure 6. Parameter scan of the scalar singlet model featuring two-step FOPTs. Left: the color
map indicates the value of the latent heat released during the transition. Right : the color shows
the value of the sphaleron washout condition.

consider a complex mass term for the top quark via the following dimension-5 operator

LYukawa ⊇ ytQ̄ΦtR
(

1 + is

ΛCP

)
+ h.c., (5.3)

where ΛCP is some high energy cutoff scale and is treated as a free parameter. In principle
one can also add similar operators for all SM fermions, however one expects their effect to
be proportional to their Yukawa couplings which are suppressed relative to the top quark
Yukawa coupling. We will ignore them completely in this paper. In the above expression
we have set the Wilson coefficient of the dimension-5 operator equal to one imaginary unit.
This is done for simplicity as it corresponds to maximal CP-violation.

We present, in figure 6, the result of a parameter scan of the scalar singlet model
featuring two-step FOPTs with the singlet quartic coupling fixed to λs = 1 for simplicity.
Changing the value of λs will not change the qualitative results and will only shift the
points up or down. On the left, the color bar represents the latent heat released during
the phase transition. This is also a measure of the strenght of the phase transition. The
colorbar on the right shows the sphaleron washout condition.

The relevant “arm” of parameter space has a very well delineated structure: for a given
mass, stronger transitions prefer larger values of the Higgs portal parameter. The same
applies for the sphaleron condition. The white region (with no colored points) above the
arm is excluded by the requirement of (v, 0) to be the global minimum. The white region
below the arm has too low values of λhs and there is no FOPTs there.

5.2 Bubble wall properties

As we have discussed in section 4.2.1, the bubble wall properties in the scalar singlet
extension consist in the determination of the parameters vw, Lh, Ls, h0, s0, δs which
satisfy the set of equations (4.16), (4.17), (4.18), (4.19) and (4.20).

In order to produce easily readable results we choose four benchmark values for the
scalar singlet mass ms = 70, 80, 100, 120GeV and we scan the Higgs portal parameter
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λhs with values compatible with two-step FOPT. The singlet quartic coupling is set λs = 1
throughout the paper as we expect that varying its value will not have any qualitative
repercussions on the results. This simplification has the added benefit that for a given
mass the only micro-physical parameter from the Lagrangian is the Higgs portal coupling
λhs. The value of this parameter then completely determines the properties of the FOPT
and of the bubble wall. The results of the calculation are presented in figure 7. We show on
the upper left plot the relation between the strength of the FOPT and the portal coupling.
This is clearly the same pattern from figure 6 which indicates that stronger transitions
are given by the largest possible value of λhs. On the upper-right the dimensionless wall
thickness LhTn is plotted against α, evidencing the inverse proportionality between the
two. In the lower plots we show the dependence of the velocity on the strength (left)
and on the wall thickness (right). These plots corroborate our intuition that: 1) stronger
transitions lead to faster moving walls and 2) faster walls are thinner. It is important to
mention that the lines of the plots in figure 7 terminate at some maximum value of the
strength of the transition αmax. As we see in the lower left panel this corresponds to strong
transitions for which the walls reach the Jouguet velocity (see eq. (3.8)). As we discussed in
section 3, if the acceleration of the wall is not stopped by the friction below that velocity the
solution changes into a detonation. As a result the heated plasma shell around the bubble
disappears and the effective temperature determining the friction drops to the background
temperature of the unbroken phase. This lowers the friction considerably and we never find
solutions with M1 = M2 = 0 with higher velocities. This result agrees with [121] which
also was not able to find the wall properties for detonation solutions for the same reason.

To conclude this section we explore the relationship between the rest of the bubble
wall properties, namely the field amplitudes h0, s0, the scalar singlet thickness parameter
Ls and the offset constant δs. These are shown in figure 8 for ms = 100GeV. However, it
is important to mention we have verified that the same qualitative behaviour follows for
different masses. The two wall thicknesses are positively correlated as shown on the upper
left plot with thicker walls requiring a bigger offset factor. This positive correlation was
also reported in figure 7.c of ref. [121], however, due to the multiple parameter scan in that
reference, it is hard to see the relation with the offset parameter. The field amplitudes h0
and s0 are also positively correlated and larger amplitudes are associated with faster walls.
The plots on the bottom show the wall thicknesses Lh and Ls as function of h0 and s0,
respectively. In both cases the larger the field amplitude the thinner the wall.

5.3 Baryogenesis

As a consequence of the higher dim-5 operator in (5.3) the top quark acquires a complex
mass during the two-step FOPT. This mass term violates CP and is the source of the
baryon assymmetry. The space-time dependent mass term in the Dirac equation of the top
can be written as mt(z)eiθt(z), with

mt(z) ≡ yth(z)√
2

√
1 + s(z)2

Λ2
CP

, (5.4)
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Figure 7. Results of the calculation for the bubble wall properties in the scalar singlet model for
different ms benchmarks. We have set λs = 1 everywhere and the qualitative description for each
figure is provided in the text.

and the CP-violating phase

θt(z) = arctan
[
s(z)
ΛCP

]
. (5.5)

We can see that the cutoff scale can affect the value of the top quark mass during the FOPT
however we expect that this effect is not significant for the thermodynamic properties of
the transition as well as the wall speed computation. Thus ΛCP is taken as a free parameter
which can be fixed to accommodate the final BAU.

In ref. [121] it was found that use of variables T+ and v+ including heating of the
plasma around the bubble had a significant impact on computation of the wall properties.
In this paper we emphasise this issue and show that this can also lead to considerable
different estimates for the BAU. We illustrate this in figure 9 where we show the BAU,
normalized to its observed value ηobs ≈ 8 × 10−11 [148, 149], computed using vw, TN in
orange and with v+ T+ in blue. With the former variables one would conclude that the
BAU yield decreases at higher wall velocities and none of the shown transitions can give the
right amount of asymmetry. This is however not the case, as shown by the blue curves, the
model with a velocity of about vw ≈ 0.55 (≈ 0.64) on the left (right) yields the right value
of BAU. Therefore the inclusion of the hydrodynamic effects is key for correct baryogenesis
predictions.
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Figure 8. Correlation between parameters of the bubble wall. Color maps show the value of the
offset parameter for the upper-left plot and the wall velocity for the rest of them. λs = 1 as in the
rest of the paper.

The variation of the BAU with the cut-off scale can also be deduced from figure 9.
For the cut-off values chosen one can directly observe the qualitative scaling ηB ∼ 1/ΛCP.
Increasing the value of ΛCP requires faster walls to explain the matter asymmetry. Fur-
thermore the final BAU is well behaved for all the velocities computed which provides a
consistency check of the possibility of baryogenesis for supersonic walls.

Figure 10 shows the cut-off scale ΛCP necessary to obtain observed baryon asymme-
try for our chosen range of masses ms = 70 − 120GeV. According to [121], the value
ΛCP >∼ 540GeV is consistent with experimental bounds on scalar singlet production at
the LHC and agreeing with that reference we conclude it is not difficult to find plausible
scenarios predicting the correct baryon asymmetry. Higher wall velocities (and stronger
transitions) predict a larger asymmetry and the CP scale predicting the observed value can
be as large as ΛCP ≈ 1.5TeV.

6 SMEFT

The SM effective field theory is a low energy representation of a possibly more UV com-
pleted theory. To parametrize our ignorance to the physics at high energy scales one adds a
tower of higher dimensional operators that are consistent with the gauge symmetries of the
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Figure 9. Prediction for the BAU normalized to its observed value in the scalar singlet model
using the correct variables in front of the wall T+, v+ (blue solid) and using the naive variables Tn,
vw (orange dash-dot). The parameters have been fixed as indicated. The horizontal axis gives the
wall velocity of each parameter set.
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Figure 10. Cut-off scale ΛCP required to obtain the observed baryon asymmetry as a function of
the wall velocity (left panel) and wall thickness (right panel) in three benchmark values of the mass
ms = 70, 80, 100, 120GeV in the scalar singlet model.

SM and suppressed by a high energy scale Λ. In our case we consider the scalar potential
augmented by a dimension six operator, namely

V0 = −m2Φ†Φ + λ(Φ†Φ)2 + κ(Φ†Φ)3, (6.1)

in this notation κ ≡ 1/Λ2. The vacuum stability conditions at tree-level are

V ′(h = v) = 0, V ′′(h = v) = m2
h , (6.2)

which allow us to express the parameters in the potential as

m2 = m2
h

2 −
3v4

4Λ2 , λ = m2
h

2v2 −
3v2

2Λ2 , (6.3)

notice that for sufficiently low values of the cutoff scale, the quartic coupling can have neg-
ative values. This allows the formation of a tree-level potential barrier giving rise to FOPT.
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The relevant formulas for the one-loop corrections and the temperature dependent masses
are relegated to an appendix. It is also important to mention that including higher dimen-
sional operators would not change the possible results for transition parameters instead
simply mapping our one variable Λ onto a certain combination of more operators [41].

A comment about the use of the effective field theory should be provided; it has been
shown [150] that the projection between the scalar singlet model (both with and without
Z2 symmetry) and SMEFT up to the dimension six operator in the potential is not always
one-to-one with regards to the character of the phase transition. In other words, some
regions of parameter space which show FOPT within the scalar singlet model do not always
manifest the same type of transition when mapped onto the low energy effective field theory
(EFT). The main problem lies on the fact that strongly FOPTs in the scalar singlet model
are located in a region of parameter space with lower masses and large mixing quartic
λhs. This is in direct tension with the premises of effective field theory which requires a
large separation of scales (large masses in this case) so that heavy physics are sufficiently
decoupled and the EFT remains valid.

The possibility of EWBG within the SMEFT has been scrutinized in ref. [151] where
the authors directly tested one of the fundamental properties of effective field theories; the
use of the EOM to remove redundant operators. This means operators that are related
by the EOM should lead to the same physical prediction up to higher order effects in
the perturbative EFT expansion. In that reference two different types of CP violating
operators, connected by the EOM, were used to predict the EDM contributions and the
BAU. While it was found that both operators give the same prediciton for the EDM, the
prediction for the BAU was significantly different unless higher order effects are included.
Their results thus contradict the hypothesis of EFTs about the redundancy of operators
connected by the EOM in the context of EWBG. A very similar of study appeared in [152]
by some of the same authors which further confirmed the breakdown of the EFT for the
purposes of EWBG calculations. In this paper we do not interpret eq. (6.1) as coming
from any particular UV completion and we treat it simply as a toy model for which we can
compute the properties of the phase transition and apply the semiclassical treatment for
the bubble wall velocity and the BAU.

6.1 Bubble wall properties

Calculating the wall velocity in SMEFT is relatively easier than with the scalar singlet
scenario. In this case the grid scan method presented in section 4.2.1 has less steps since
one only needs to satisfy the Higgs EOM. Furthermore in this model the cutoff scales Λ
and ΛCP are the only parameters that have to be fixed and they are disentangled with
respect to the bubble wall properties and the BAU, respectively.4

The outcome of the computation of the bubble wall shape and speed is displayed in
figure 11 which shows different cross sectional views of the velocity, thickness and amplitude
as well as their dependence on Λ. The main qualitative results found for the scalar singlet

4The top quark field dependent mass in (6.5) has a direct dependence on ΛCP and this might affect
the calculation of the FOPT quantities. For the values of ΛCP considered here we expect this effect to be
negligible.
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Figure 11. Bubble wall properties in the SMEFT. Color bar shows the value of Λ in the upper
left figure and of vw in the rest of them.

model also hold here; thicker walls are slower and larger field amplitudes correspond to
faster walls, this is represented by the upper plots.

The cutoff Λ in the SMEFT completely determines the character of the FOPT with
smaller values of Λ giving the strongest possible transitions. The points scanned for Λ
terminate for low values because the h = 0 becomes the deepest minimum of the potential
while for very high values one starts recovering the SM for which a FOPT is not possible.

6.2 Baryogenesis in SMEFT

In order to compute the BAU in this model we introduce CP violation in the following form

LYukawa ⊇ ytQ̄ΦtR + y′

Λ2
CP
Q̄ΦtR(Φ†Φ) + h.c. (6.4)

where we assume the coefficient of the higher dimensional operator is purely complex
y′ = i, which corresponds to maximal CP violation. It is also assumed that the only
CP violating operator is the one presented above. We also ignore the existence of other
higher dimensional operators that might have phenomenological constraints. For a study
of operators with constraints from precision electroweak observables see [153].
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Figure 12. Left: normalized BAU against the wall velocity computed for the SMEFT. Right: the
variation of the wall properties as function of velocity. The CP-violating cut-off scale was fixed to
ΛCP = 500GeV in both cases.

As a consequence of (6.4), a space-time dependent complex mass term for the top
quark appears, that is, mt(z)eiθt(z), with

mt(z) ≡ yth(z)√
2

√
1 + h(z)4

4Λ4
CP
, (6.5)

and the CP-violating phase

θt(z) = arctan
[
h(z)2

2Λ2
CP

]
. (6.6)

The WKB approximation for computing the BAU in SMEFT has been investigated
in [154]. In this reference the authors considered the two thresholds to be correlated, i.e.
Λ = ΛCP, and showed the observed BAU could be obtained. When this reference appeared
the Higgs boson had not yet been discovered and the physical Higgs mass was taken as
a free parameter. At the same time the authors examined the properties of the bubble
wall using the analytic estimates of ref. [155]. The study of the bubble wall properties and
EWBG within the SMEFT in this paper thus provides an updated and improved analysis
compared to that reference. Moreover we consider the case of decoupled thresholds, i.e.
Λ 6= ΛCP as it has been shown in ref. [156] that the parameter space is ruled out for
Λ = ΛCP unless one includes extra CP-violating higher dimension operators to provide a
cancellation for EDM contributions.

Figure 12 shows the baryon yield normalised to the observed value as a function of
the wall velocity for fixed ΛCP = 500GeV. We again highlight the impact of using the
parameters T+ and v+ in front of the wall in comparison with the naive ones Tn and vw.
As we can see, for the latter case, the model can never produce the observed BAU. In the
right hand side panel of figure 12 we show values of relevant parameters again as a function
of the wall velocity. The only thing that varies in this plot is the cut-off scale of the dim-6
operator, all other quantities have been computed from first principles.

Figure 13 shows the cut-off scale ΛCP necessary to produce the observed baryon asym-
metry as a function of the cut-off scale in the scalar potential (left) and of the bubble
thickness (right) in SMEFT. The colorbar shows the value of the wall velocity. One can
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Figure 13. Cut-off scale ΛCP necessary to produce the observed BAU as a function of the cut-off
scale of the scalar potential (left) and of the bubble wall thickness (right) in SMEFT

see that the allowed scale for BAU has negative correlation with the cut-off scale in the
scalar potential, i.e., smaller Λ values are associated with stronger phase transitions and
faster walls pushing the scale ΛCP. The same result we found in the singlet model. At the
same time, thicker walls yield the lowest ΛCP necessary for the correct asymmetry.

Even though ΛCP reaches only a few hundred GeV for the stronger transitions, the
bound from EDM constraints on CP violating cutoff has been estimated to be in the multi
TeV range, i.e., [152] ΛCP > 2.5 TeV and we conclude that SMEFT cannot be responsible
for the baryon asymmetry unless some additional mechanism is added to hide the CP
violating interactions from EDM experiments.

7 Gravitational wave signals

In this section we will discuss stochastic gravitational wave backgrounds produced by the
first order phase transitions our models predict. Given the transitions in question are rel-
atively weak and the walls never reach very relativistic velocities we will exclusively focus
on GWs sourced by plasma motion [74, 75]. Thus we will neglect the bubble collision
contribution which would necessarily require a much stronger transition [81, 82, 84, 157]
not feasible in our models featuring polynomial potentials [90]. Further, despite recent
progress concerning GWs produced by turbulence [158–160] the overall size of this contri-
bution sourced by a phase transition remains uncertain and following [75] we will neglect
it. Finally for the range of wall velocities we compute it seems crucial to use updated
hybrid calculations of GW generation through sound waves in the plasma [88, 91, 161, 162]
predicting a non-trivial dependence of the spectral shape on the wall velocity. However, we
have checked these modifications have a negligible impact on the observational prospects
of upcoming experiments simply because for weak signals these are dominated by the peak
abundance which is not significantly modified.

As a result we will use the results of lattice simulations for the GW signal from sound
waves [87, 89, 163] as summarised in [74, 75]. The abundance of the signal can be ex-
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pressed as

Ωsw(f)h2 = 4.13× 10−7 (R∗H∗)
(

1− 1√
1 + 2τswH∗

)(
κsw α

1 + α

)2 (100
g∗

) 1
3
Ssw(f) , (7.1)

Ssw(f) =
(
f

fsw

)3 [4
7 + 3

7

(
f

fsw

)2]− 7
2

, (7.2)

with the peak frequency given by

fsw = 2.6× 10−5Hz (R∗H∗)−1
(

Tp
100GeV

)(
g∗

100

) 1
6
. (7.3)

where g∗ is the number of degrees of freedom at temperature Tp for which we use the results
of [124]. The duration of the sound wave period normalised to Hubble can be approximated
as [81, 89, 90, 92, 164]

τswH∗ = H∗R∗
Uf

, Uf ≈
√

3
4

α

1 + α
κsw . (7.4)

The average bubble radius normalised to Hubble rate can be approximated as

H∗R∗ ≈ (8π)
1
3 Max(vw, cs)

(
β

H

)−1
, (7.5)

using duration of the transition from eq. (2.13). Finally we calculate the sound wave
efficiency factor κsw using the fluid profiles velocity and temperature profiles as explained
in section 3. This quantity can be approximated as the energy converted into bulk fluid
motion, given by [107]

κsw = 3
αρR v3

w

∫
w ξ2 v2

1− v2dξ = 4
α v3

w

∫ (
T (ξ)
Tp

)4

ξ2 v2

1− v2dξ . (7.6)

Figures 14 and 15 show GW spectra produced in the SMEFT and neutral singlet
models together with power-law integrated sensitivity of LIGO [165–168] together with
upcoming laser interferometer experiments LISA [169, 170] and ET [171, 172] as well as
future devices based on atom interferometry [173] AEDGE [174] and AION-1km [175].
Figure 16 shows the corresponding signal to noise ratio for LISA and AEDGE. We find
that only a very small fraction of the parameter space of SMEFT predicts a transition
strong enough to be observed while in the scalar singlet model none of the transitions for
which we can verify baryogenesis can be observed [121].

While both models are of course capable of supporting much stronger transitions with
clearly visible signals [74, 75] we focus only on the cases in which friction of the plasma is
large enough for the walls to cease accelerating below the Jouguet velocity. Only in those
cases we are able to compute the wall velocity and width and calculate the final baryon
yield, see figure 17. If the acceleration of the wall is not stopped below the Jouguet velocity
we obtain a detonation solution in which plasma in front of the wall is no longer heated
up. As a result above this threshold the friction on the wall drops significantly and we
don’t find any solutions until the fluid approximation breaks down at vw ≈ 1 rendering our
calculation inadequate and viability of baryogenesis uncertain.
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Figure 14. Gravitational wave signals for a range of parameters starting with the strongest transi-
tions in the SMEFT model together with power-law integrated sensitivities of current and upcoming
experiments.
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Figure 15. Gravitational wave signals for a range of parameters starting with the strongest transi-
tions in the SM plus neutral scalar model together with power-law integrated sensitivities of current
and upcoming experiments.

8 Simple estimate for the wall velocity and thickness

In this section we will discuss methods that can approximate the wall velocity in a simple
manner. Starting with the thermal equilibrium formula [93] corrected for the cases in which
the transition is too strong and the fluid approximation breaks down

vw =



√
∆V
αρr

for
√

∆V
αρr

< vJ(α)

1 for
√

∆V
αρr
≥ vJ(α)

(8.1)
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Figure 17. Bubble wall velocity solutions as a function of the phase transition strength α for all
the models tested.

where vJ(α) is the Jouguet velocity from eq. (3.8). The lower case corresponds to transitions
too strong for the fluid approximation to find a solution as discussed in section 4.2. We
show in the left panel of figure 18 the comparison of this simple approximation with the
results we find in all the SM extensions we studied. Although the level of agreement
between the naive formula and our results might seem extraordinary at first, it is not
difficult to understand. Reminding ourselves that the velocity is determined by finding
the roots of the moments introduced in eqs. (4.16), (4.17) and that M1 mostly fixes vw
as can be appreciated in figure (4), it is natural to ask what is the relation between M1
and the approximation in eq. 8.1. The answer is that in thermal equilibrium the condition
M1 = 0 is simply equivalent to that formula. First we notice that if the temperature
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Figure 18. Left: comparison between the wall velocity calculation using the semiclassical method
and the thermal equilibrium formula, eq. (8.1). Right: comparison between our results for the wall
thickness in the Higgs direction with the estimated formula eq. (8.7). Both: the solid black line has
slope one and is plotted for visual guidance.

remains constant we can write (4.16) as

M1 =
∫
dz
∂T zzφ
∂z

= ∆T zzφ , (8.2)

where T zzφ is the zz component of the energy momentum tensor of the scalar field, i.e. the
momentum flux in the z direction. Now if one replaces the scalar field contribution, in the
above formula, by that of a perfect fluid in thermal equilibrium one obtains instead

M1 = ∆
(
ωγ2v2 + p

)
= 0, → −∆p = γ2v2∆ω, (8.3)

where we used that in the steady state the wall has reached a constant velocity. Then
using the relation p = −V (φ, T ) together with the thermodynamic identity ω = T ∂p

∂T and
solving for the velocity we arrive at

v2 = ∆V (φ, T )
∆
(
V (φ, T )− T ∂V (φ,T )

∂T

) ≡ ∆V
αρr

, (8.4)

where the definition of the strength, eq. (2.12) was used and we omitted the factor 1/4
in the denominator. This gives us the first case in eq. 8.1. The fact that the above
formula can provide a proxy for the wall velocity in some cases is tied to the assumption
of small departure from equilibrium. If for a given strength, the above formula yields a
velocity above the Jouguet value then the transition is too strong and there cannot be
thermodynamic equilibrium. Let us also note that the above expression can be derived
from recent results on the wall velocity in local equilibrium [98]. In particular, equating
the two pressures in formula (17) of that reference and assuming constant velocity with
thermal equilibrium one arrives at the same result.

Having obtained a usable formula for the wall velocity in thermal equilibrium, it is in-
structive to obtain an expression for the wall thickness using the second moment. Assuming
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again constant temperature we can write eq. (4.17) as follows

M2 =
∫
dz ∂zT

zz
φ φ(z) = −V (φ0, T )φ0 −

∫
dz

1
2(∂zφ)3 +

∫
dzV (φ, T )∂zφ, (8.5)

where in the last equality we simply integrated by parts. The second integral above sim-
plifies to

∫ 1
2(∂zφ)3 = φ3

0/30L2 when using the tanh ansatz, then one can solve for the
thickness

L2 = φ3
0

30 [
∫
V (φ, T )dφ− V (φ0, T )φ0] . (8.6)

In the above derivation we have assumed the dependence on a single field φ, which in our
case is identified with the Higgs but this expression can be generalized for multiple fields.
We do not pursue the generalization here but instead notice that the expression in the
denominator can be traded for the height of the potential barrier5 thus L2 ∝ φ2

0/Vh where
Vh is the height. The proportionality constant is model dependent and we found that for
the scalar singlet model and for SMEFT the best approximation is given by

L2 = φ2
0

4Vh
. (8.7)

To quantify the discrepancy of this approximation with our results for the scalar singlet
we calculate the height of the potential barrier using the maximum value of the potential
along the path of minimum energy at the critical temperature. In the numerator we used
the expectation value of the field at the true vacuum. As we show in figure 18, eq. (8.7)
provides an extremely good approximation for the width of the wall of the Higgs field.

In figure 19 we show the comparison of results from eq. (8.7) (with the numerator
evaluated at the false vacuum, s0 6= 0 ) with our numerical results for the scalar singlet wall.
Clearly the appropriate numerical constant in eq. (8.7) for this case depends on the mass of
the scalar and so reproducing the details of the scalar singlet wall is more difficult than in
the Higgs direction making full reproduction of the BAU from these simplifications difficult.

9 Summary and conclusions

In this paper we have investigated the FOPTs arising within the scalar singlet extension of
the SM with parity symmetric potential and in the SMEFT with a dimension six operator.
The bubble profile and its velocity were computed from first principles using the recently
improved semiclassical fluid equations of Cline and Laurent [120]. The parameter space
of the scalar singlet model has been thoroughly studied in ref. [121]. Here we did not
undertake a full scan but instead focused on the qualitative features for some particularly
motivated values of the scalar singlet mass. In the SMEFT the cutoff scale of the dimension
six operator in the scalar potential is the only relevant parameter and we surveyed the whole
range that facilitates a FOPT.

5To convince oneself, one can use as an example the simplest looking potential V = λ/4φ2(φ − φ0)2,
See [118].

– 38 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
7

2 4 6 8 10 12 14
LsapproxTn

2

4

6

8

10

12

14

L s
T n

thick-wall
ms = 70 GeV
ms = 80 GeV
ms = 100 GeV
ms = 120 GeV

Figure 19. Comparison between our results for the wall thickness in the singlet direction with the
estimated formula eq. (8.7). The solid black line has slope one and is plotted for visual guidance.

For both scenarios we have found the intuitive expectation that stronger transitions
produce faster walls holds. However, the strength of the transition suitable for baryoge-
nesis is severely limited with α ≤ 0.1. For stronger transitions the friction of the plasma
does not cease the acceleration of the wall before it reaches the Jouguet velocity. Above
that velocity the heated plasma shell around the bubble disappears as our hydrodynamic
solution becomes a detonation. This lowers the plasma friction significantly and such walls
always reach very relativistic velocity vw ≥ 0.9 for which we cannot compute the wall
properties and assert the viability of baryogenesis. We find this behaviour in both models
which suggests this could be a generic trademark of any SM-like model which does not
modify the SM plasma contents drastically.

Our results also show that very strong transitions are not suitable for the semiclassi-
cal treatment as no solution for the moments can be found. In this case the assumptions
of the fluid approximation are not satisfied as the wall becomes very thin and the WKB
approximation is invalid. We also expect that very strong transitions correspond to large
departures from thermodynamic equilibrium and a different formalism is needed in that
case. In this paper we have focused only on the region of parameter space for which the
wall properties can be computed. We have considered the presence of higher dimensional
CP-violating operators and computed the BAU employing the upgraded fluid equations
of [122]. While the scalar singlet model can easily yield the right amount of asymme-
try, the EDM constraints on the CP-violating cutoff scale make SMEFT not capable of
explaining the BAU.

Computation of the wall velocity is also crucial for the GW signals produced by the
transition. We calculate the GW signals in both scenarios for transitions in which we can
compute the properties of the wall. We find that only the strongest transitions of SMEFT
fall within the sensitivity band of the LISA experiment while AEDGE operating at a slightly
higher frequency will not be able to observe any of these signals. Both models, of course,
support also stronger transitions which would be clearly visible in LISA and AEDGE,
however, for these cases we find the plasma friction will not stop the wall acceleration
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before breakdown of the fluid approximation and its justified to simply assume vw ≈ 1.
We provide a simple and quite accurate approximation for the wall velocity requiring only
the strength of the transition and potential which takes this effect into account. From
our results we infer that GW signals produced by simple SM extensions visible in future
experiments are likely to only be produced in strong transitions with vw ≈ 1. This does
not mean that plasma can be neglected altogether in these results and bubble collision can
always play an important role as this requires α� 1 instead. However, observable signals
produced by plasma related sources are likely to be produced mostly by detonations with
highly relativistic wall velocities.
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A Finite temperature effective potential

In this paper we adopt the customary procedure of calculating the effective potential in
the Landau gauge where the contribution from the Goldstone bosons is independent from
the massive gauge bosons and ghosts do not contribute.

Generically, the effective finite temperature potential is given by

Veff(φ, T ) = V0(φ) + VCW(φ) + VT(φ, T ). (A.1)

where V0 gives the tree-level contribution, VCW represents the Coleman-Weinberg poten-
tial [176] and VT the finite temperature contribution. In the equation above we have written
a generic field dependence but it should be understood that φ could denote the background
field values h and s in the scalar singlet extension or simply the Higgs background vev in
case of the SMEFT.

In this paper we consider the effective potential calculated at one-loop order and we
choose to follow the on-shell prescription [143, 177] in which the one-loop contributions do
not disturb the minimization conditions at tree-level. In this case, the Coleman-Weinberg
contribution can be written as

VCW(φ) =
∑
i

(−1)Fi
di

64π2

[
m4
i (φ)

(
log m

2
i (φ)
m2

0i
− 3

2

)
+ 2m2

i (φ)m2
0i

]
, (A.2)

where the index i runs over all particles contributing to the potential with Fi = 0 (1)
for bosons (fermions), di is the number of degrees of freedom of the particle species while
mi(φ) is the field dependent mass of particle i and m0i its value at the EW vacuum.
As mentioned above, this form of the Coleman-Weinberg potential ensures that the zero
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temperature vacuum conditions are completely determined by the tree-level contribution.
In other words

dVCW(φ)
dφ

∣∣∣
φ0

= d2VCW(φ)
dφ2

∣∣∣
φ0

= 0, (A.3)

where φ0 corresponds to the field values at the zero temperature EW vacuum, i.e., φ0 =
(v, 0) for scalar singlet and φ0 = v in the SMEFT.

The contribution to the Coleman-Weinberg potential from the Goldstone bosons re-
quires special care since for small field values the squared mass parameter becomes negative
and furthermore it vanishes at the EWSB minimum leading to infrared divergences of the
effective potential. It has been shown in [178, 179] that proper resummation of the Gold-
stone boson contributions must be performed to avoid such divergences. We do not include
the contributions from the Goldstone bosons as it has been shown [179] that the numer-
ical impact of the resummation procedure as a function of the renormalization scale is
very small.

The finite temperature piece is given by

VT (φ, T ) = T 4

2π2

∑
i

diJ∓

(
mi(φ)
T

)
, (A.4)

where the J∓ functions are defined as

J∓(x) = ±
∫ ∞

0
dyy2 log

(
1∓ e−

√
y2+x2

)
, (A.5)

and the upper (lower) sign is for bosons (fermions).
The well known breakdown of the perturbative expansion at high temperature [180] due

to the presence of infrared bosonic modes can be ameliorated by performing dimensional
reduction techniques [68, 181, 182]. Such a dedicated study is left for future work.

B Field dependent and thermal masses

In this section we present the relevant formulas for the field dependent masses which are
inputs for the one-loop and thermal contributions to the effective potential. In the models
studied in this paper the thermal masses for the SM particles are given by

m2
W = g2

4 h
2, m2

Z = g2 + g′2

4 h2, m2
t = y2

t

2 h
2. (B.1)

The field dependent masses for the scalar particles are modified with respect to the SM
and are presented in the following two sub-appendices.

B.1 Scalar singlet extension

At any field value the physical masses correspond to the eigenvalues of the Hessian matrix
of the scalar potential, namely

m2
ij(h, s) =

m2
h

2

(
3h2

v2 − 1
)

+ s2 λhs
2 hsλhs

hsλhs m2
s + h2−v2

2 λhs + 3λss2

 . (B.2)
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We add the effect of thermal masses that correct the behavior at high temperatures.
In our model they are written as [183, 184]

Πh =
(

3g2

16 + g′2

16 + λ

2 + y2
t

4 + λhs
24

)
T 2, (B.3)

Πs =
(
λhs
6 + λs

4

)
T 2, (B.4)

ΠGauge = T 2diag
(11

6 g
2,

11
6 g
′2
)
. (B.5)

A truncated full dressing implementation [185] amounts to the replacement

m2
ii(h, s)→ m2

ij(h, s, T ) ≡ m2
ii(h, s) + Πi (B.6)

in the one-loop potential at finite temperature. This procedure is also called daisy resum-
mation.

B.2 SMEFT

In this model the addition of the dimension six operator gives rise to a Higgs mass

m2
h = −m2 + 3λh2 + 15

4
h4

Λ2 , (B.7)

while the thermal masses are

Πh(T ) = T 2

4v2

(
m2
h + 2m2

W +m2
Z + 2m2

t

)
− 3

4T
2 v

2

Λ2 ,

ΠW (T ) = 22
3
m2
W

v2 T 2.

(B.8)
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