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1 Introduction

If new particles beyond the Standard Model (SM) are much heavier than the weak scale,

their effects on current collider experiments can be described without introducing new

degrees of freedom. This can be done in the framework of an effective field theory (EFT)

with the SM Lagrangian supplemented by higher-dimensional operators constructed out

of only SM fields [1, 2]. The EFT Lagrangian is organized as an expansion in operator

dimensions D. The SM Lagrangian, which contains the renormalizable operators, is the

leading term in this expansion. Assuming lepton number conservation, the next-to-leading

contributions to physical observables come from dimension six operators, O6.

In the upcoming years, the LHC and other experiments will be searching for multiple

signatures of O6. From this perspective, it is important to understand what are the existing

constraints on these operators from previous measurements. In particular, one should

assess the constraining power of electroweak (EW) precision measurements with on-shell

Z or W bosons, which are among the most accurately measured observables in collider

physics. Such studies have a long history, see for example [3–19]. However, constraints in

the general situation where all D = 6 operators can be simultaneously present have not

been derived so far. In particular, previous analyses typically assumed that the coefficients
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of the dimension six operators involving the SM fermions do not depend on the fermion

generation index or assume a non-generic flavor structure [4]. This is justified by the

humongous number of O6 once a general flavor structure is allowed [20]. However, this

situation is not completely satisfactory, since many well motivated scenarios predict D = 6

operators in the low-energy EFT that are not flavor universal. It is important to determine

whether the strong bounds on these operators obtained under the assumption of flavor

universality [8, 16–18] are robust and survive in a completely generic scenario. Moreover,

understanding of the weakest constrained directions in the flavor space is important both

for model building and to identify the promising experimental signatures.

In this paper we consider an EFT where the higher-dimensional operator have a com-

pletely arbitrary flavor structure. In such a setting, we derive constraints on a subset of

O6 that affect the W boson mass and the Z or W boson couplings to fermions. Our con-

straints are based on the pole observables where a single Z or W boson is produced on-shell.

Contributions of 4-fermion operators to these processes are suppressed by the Z or W bo-

son width over its mass, as compared to contributions of the 2-fermion operators, which

is roughly an O(3%) correction [3]. We therefore neglect all 4-fermion operators (apart

from one that contributes to our input parameters) in our analysis, reducing the number

of operators to a tractable set. All in all, the pole observables depend only on those D = 6

operators that modify the Z and W couplings to fermions (so-called vertex corrections) or

electroweak gauge boson propagators (so-called oblique corrections), or affect the relation

between electroweak parameters and input observables.

To calculate the corrections to physical observables one needs to choose a basis of O6.

In this paper we use the basis advertised in refs. [13, 21, 22]. Rather than parameterizing

observables in terms of Wilson coefficients of SU(3)×SU(2)×U(1) invariant operators, we

use to this end the couplings of SM mass eigenstates after electroweak symmetry breaking.

The SU(2)×U(1) symmetry of D = 6 operators is not manifest in this language; instead it

is encoded in the relations between different couplings in the mass eigenstate Lagrangian.

This formalism is particularly convenient to connect the EFT to collider observables. In this

approach, all oblique corrections are redefined away, with the exception of the correction

to the W boson mass. Once that is achieved, the only parameters affecting the pole

observables at the leading order are the vertex corrections δg and the W mass correction

δm. This way, the relevant parameters for the pole observables are clearly identified,

without any unconstrained (flat) combination of parameters among them. To translate

these constraints to another basis, δg and δm should be mapped to a linear combinations

of D = 6 operators in that basis. We provide such a mapping for one particular basis

reviewed in appendix A.

Our work shows that the existing measurements of the pole observables simultaneously

constrain δm and 20 independent vertex corrections to flavor-diagonalW and Z interactions

in the SM (only vertex corrections to the ZtRtR coupling cannot be constrained by our

analysis). Some off-diagonal vertex corrections to Z boson couplings to quarks and leptons

can also be constrained. The strength of the limits varies depending on the interaction in

question. For example, the corrections to the W boson mass and the leptonic couplings

of Z are most strongly constrained, at the level of O(10−4) − O(10−3). On the other
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hand, couplings of the first generation and the right-handed top quarks are only weakly

constrained by current data, at the level ofO(10−1)−O(1). Relying on CP even observables,

our analysis has no sensitivity to complex phases in the Wilson coefficients of dimension

six operators.

Specific flavor models predict different correlations between the various vertex cor-

rections. For instance, if the UV theory is flavor universal it will induce flavor universal

vertex corrections with no flavor changing neutral currents (FCNC). However, any devia-

tion from universality will, in general, lead to FCNC due to the misalignment of the up-

and down-type left-handed quarks. In this work we consider three flavor scenarios which

address the new physics (NP) flavor puzzle: alignment [23, 24], Minimal Flavor Viola-

tion (MFV) [25–28] and anarchic partial compositeness or warped extra dimensions [29–35]

which is similar to vector-like fermion scenario [36, 37]. In the first two class of models

the magnitude of the off-diagonal couplings is dictated by the non-universality of the di-

agonal vertex corrections, resulting indirectly in stringent constraints on the off-diagonal

couplings. An analysis of B and top FCNC in alignment EFT based on a covariant de-

scription is given in refs. [38, 39] and the universality of CP violation in ∆F = 1 processes

is pointed out [40].

This paper is organized as follows. Section 2 introduces our formalism and notation.

In section 3 we present the experimental data and theoretical premises used in our work.

Section 4 (and appendix B) contains our results in the completely generic case, as well

as within the above mentioned flavor scenarios. We conclude in section 5. Appendix A

details the relations between the parameters we constrain in our formalism and the Wilson

coefficients of the dimension six operators in one particular basis — the so-called Warsaw

basis proposed in ref. [2]. For completeness, we analyze the constraints on the off-diagonal

couplings to quarks arising from low-energy observables in appendix C.

2 Preliminaries

We start by briefly summarizing our conventions and notations. The SU(3)×SU(2)×U(1)

gauge couplings of the SM are denoted by gs, gL, gY ; we also define the electromagnetic

coupling e = gLsθ, where sθ = gY /
√
g2L + g2Y is the Weinberg angle. The Higgs doublet

(H) acquires a Vacuum Expectation Value (VEV): 〈H†H〉 = v2/2, spontaneously breaking

EW symmetry. For the SM fermions we employ the two-component spinor notation, with

all conventions inherited from ref. [41]. The left-handed spinors of the up-type quarks,

down-type quarks, and charged leptons are denoted by u, uc, d, dc, e, ec, and neutrinos are

denoted as ν. All fermions are three vectors in generation space. We work in the mass

eigenstate basis in which Lm = −∑
fi
mfifif

c
i + h.c. where m is diagonal.

We consider the effective Lagrangian of the form,

Leff = LSM +
1

v2
LD=6, LD=6 =

∑

i

ciO6,i, (2.1)

where LSM is the SM Lagrangian, while O6,i is a complete basis of SU(3)× SU(2)× U(1)

invariant D = 6 operators constructed out of the SM fields. Any such basis contains
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2499 independent operators after imposing baryon and lepton number conservation [20].

However, working at tree level, a much smaller subset is relevant for electroweak precision

observables. The couplings in the effective Lagrangian are defined at the scale mZ ; we

neglect running and mixing effect to other relevant scales asmW ormt which are subleading

in our analysis, a detailed discussion on these effects can be found in [42].

As mentioned previously, we parameterize the effect of O6 on the interactions of the

SM mass eigenstates, rather than writing down a specific basis of D = 6 operators. We

work with an effective Lagrangian where all mass terms and kinetic terms are diagonal,

using the Z boson mass as an input parameter (hence introducing no correction to the

Z mass term). While, in general, D = 6 operators do generate such mixing and mass

corrections, the canonical form can always be recovered by using the equations of motion,

integration by parts, and redefinition of the fields and couplings. In this basis, the gauge

boson mass terms take the form

Lvv
eff =

(g2L + g2Y )v
2

8
ZµZµ +

g2Lv
2

4
(1 + 2δm)W+

µ W−
µ , (2.2)

where δm parameterizes the corrections to the W boson mass from D = 6 operators. The

interactions between the SM gauge bosons and fermions are then

Lvff
eff = eAµ

∑

f∈u,d,e

Qf (f̄ σ̄µf + f cσµf̄
c) + gsG

a
µ

∑

f∈u,d

(f̄ σ̄µT
af + f cσµT

af̄ c) (2.3)

+
gL√
2

(
W+

µ ūσ̄µ(V + δgWq
L )d+W+

µ ūσ̄µδg
Wq
R dR +W+

µ ν̄σ̄µ(I+ δgWℓ
L )e+ h.c.

)

+
√
g2L + g2Y Zµ

[
∑

f∈u,d,e,ν

f̄ σ̄µ(IT
3
f − Is2θQf + δgZf

L )f

+
∑

fc∈uc,dc,ec

f cσµ(−Is2θQf + δgZf
R )f̄ c

]
,

where I is the 3×3 unit matrix, and V is the CKM matrix. The effects of D = 6 operators

are parameterized by the vertex corrections δg, which are 3× 3 matrices in the generation

space with, in general, non-diagonal elements. The local SU(2) × U(1) symmetry of the

effective Lagrangian implies the following relations:

δgZν
L = δgZe

L + δgWℓ
L , δgWq

L = δgZu
L V − V δgZd

L . (2.4)

Note that the gauge interactions of the photon and the gluon in eq. (2.3) are the same as

in the SM; again, this can be always ensured without loss of generality via redefinitions of

fields and couplings. The relation between the vertex corrections and the Wilson coefficients

in the basis of ref. [2] is given in appendix A.

To summarize, the effects ofO6 relevant for EW pole observables is parameterized using

δm, δgZe
L , δgZe

R , δgWℓ
L , δgZu

L , δgZu
R , δgZd

L , δgZd
R , δgWq

R , (2.5)

which stand for 1 + 7 × 6 + 9 = 52 real parameters in the general case (plus 30 complex

phases which we are not sensitive to in this analysis.)
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3 Electroweak observables

In this section we list the experimental data we use and the corresponding SM predictions

for the pole observables. We further draw our assumptions and the statistical treatment

we take. The relevant observables are summarized in table 1, table 2 and table 3. Starting

with eq. (2.2) and eq. (2.3), we calculate the leading corrections to these observables in

terms of the effective Lagrangian parameters δm and δg, and the SM input parameters gL,

gY and v.

The basic premises of our procedure are the following:

• For the SM predictions of the pole observables, we use the state-of-art theoretical cal-

culations. Whenever available, we use the central value quoted in table 2 of ref. [43].

We ignore the theoretical errors, which are subleading compared to the experimental

ones. We verified that including the theoretical errors does not affect our results in

an appreciable way.

• The electroweak parameters (that we need to evaluate NP corrections) are extracted

at tree-level from the muon lifetime τµ = 384π3v4/m5
µ (equivalently, from the Fermi

constant GF = 1/
√
2v2 = 1.16637× 10−5 GeV−2 [44]), the electromagnetic constant

α(mZ) = e2/4π = 7.755 × 10−3 [45], and the Z boson mass mZ =
√

g2L + g2Y v/2 =

91.1875GeV [46]. With this choice, the tree-level values of the electroweak parame-

ters are

gL = 0.650, gY = 0.356, v = 246.2GeV. (3.1)

• We work at the level of D = 6 operators neglecting possible contributions of

dimension-8 operators. Consistently, for observables where the SM contribution is

non-zero, we only include the leading corrections that are formally O(v2/Λ2) in the

EFT counting. These come from interference terms between NP and SM contribu-

tions to the amplitudes of the relevant processes, and they are linear in δm and

δg. Quadratic corrections in δg and δm are in this case neglected, since they are

formally of order O(v4/Λ4), much as the contributions from dimension-8 operators

that we ignore.

• The off-diagonal neutral current couplings are absent in the SM at the tree level.

The leading order contribution to the branching ratios for flavor violating Z decays

is therefore O(v4/Λ4), and quadratic in δg. In this case, the contribution from possi-

ble dimension-8 operators is parametrically O(v6/Λ6), and, again, can be neglected.

Similarly, the effects of flavor-diagonal vertex corrections on flavor-violating Z decays

(that enter via corrections to the total Z width) are parametrically O(v6/Λ6) and

are neglected.

• We ignore all loop-suppressed effects proportional to δg and δm. In particular, we

only take into account the interference terms between tree-level NP corrections and

tree-level SM contributions, while we ignore the interference of the NP corrections

with loop-level SM contributions. This is the largest source of uncertainty on the
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central values and standard deviations of δg and δm that we quote below. From the

change of the limits under variation of the input electromagnetic coupling between

the scale mZ/2 and 2mZ we estimate this uncertainty to be of order 30%.

• All the observables we consider are measured for Z or W bosons close to the mass

shell. Thanks to that, we can ignore the contribution of 4-fermion operators, which

is suppressed by ΓZ/mZ or ΓW /mW [3, 19]. The only exception is the Vtb measure-

ment extracted from the single t-channel top production at the LHC; in this case,

the experimental cuts suppress possible contributions of 4-fermion operators to this

observable.

• We neglect CKM-suppressed corrections. As a result, the pole observables depend

only on the diagonal elements of δg. Furthermore, corrections proportional to δgWq
R

do not interfere with the SM amplitudes; therefore they enter only quadratically and

are neglected.

All in all, at the tree level, the pole observables depend linearly on 3× 7− 1 = 20 diagonal

elements of δgZe
L , δgZe

R , δgWℓ
L , δgZu

L , δgZu
R , δgZd

L , δgZd
R and on δm (they do not depend

on the Z coupling to right-handed top quarks). All these couplings are simultaneously

constrained by the observables Oi listed in table 1 and table 2. Moreover, 4 combinations

of the Z off-diagonal couplings are constrained by the limits listed in table 3.

To construct a global χ2 function, we write the observables as

Oi,th = ONNLO
i,SM + ~δg · ~OLO

i,BSM (3.2)

The state-of-art SM predictions ONNLO
i,SM are provided in the literature, while the tree-level

NP corrections ~δg · ~OLO
i,BSM linear in δg are computed analytically. Then χ2 function is

constructed as

χ2 =
∑

ij

[Oi,exp −Oi,th]σ
−2
ij [Oj,exp −Oj,th] , (3.3)

where σ−2
ij = [δOiρij,expδOj ]

−1 is calculated from the known experimental errors δOi and

their correlations ρij,exp (whenever quoted).

4 Results

4.1 Generic scenario

First, from the measurement of the W boson mass we derive the constraint

δm = (2.6± 1.9)× 10−4 . (4.1)

The correlation between this result and the constraints on δg’s is small and will be neglected

in the following.

Next, we derive the constraints on the δg’s when all of them are simultaneously present

and a-priori unrelated by the UV theory. Minimizing our χ2 function with respect to δg

– 6 –
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Observable Experimental value Ref. SM prediction Definition

ΓZ [GeV] 2.4952± 0.0023 [46] 2.4950
∑

f Γ(Z → ff̄)

σhad [nb] 41.541± 0.037 [46] 41.484 12π
m2

Z

Γ(Z→e+e−)Γ(Z→qq̄)
Γ2
Z

Re 20.804± 0.050 [46] 20.743
∑

q Γ(Z→qq̄)

Γ(Z→e+e−)

Rµ 20.785± 0.033 [46] 20.743
∑

q Γ(Z→qq̄)

Γ(Z→µ+µ−)

Rτ 20.764± 0.045 [46] 20.743
∑

q Γ(Z→qq̄)

Γ(Z→τ+τ−)

A0,e
FB 0.0145± 0.0025 [46] 0.0163 3

4A
2
e

A0,µ
FB 0.0169± 0.0013 [46] 0.0163 3

4AeAµ

A0,τ
FB 0.0188± 0.0017 [46] 0.0163 3

4AeAτ

Rb 0.21629± 0.00066 [46] 0.21578 Γ(Z→bb̄)∑
q Γ(Z→qq̄)

Rc 0.1721± 0.0030 [46] 0.17226 Γ(Z→cc̄)∑
q Γ(Z→qq̄)

AFB
b 0.0992± 0.0016 [46] 0.1032 3

4AeAb

AFB
c 0.0707± 0.0035 [46] 0.0738 3

4AeAc

Ae 0.1516± 0.0021 [46] 0.1472
Γ(Z→e+

L
e−
L
)−Γ(Z→e+

R
e−
R
)

Γ(Z→e+e−)

Aµ 0.142± 0.015 [46] 0.1472
Γ(Z→µ+

L
µ−
L
)−Γ(Z→µ+

R
µ−
R
)

Γ(Z→µ+µ−)

Aτ 0.136± 0.015 [46] 0.1472
Γ(Z→τ+

L
τ−
L
)−Γ(Z→τ+

R
τ−
R
)

Γ(Z→τ+τ−)

Ae 0.1498± 0.0049 [46] 0.1472
Γ(Z→e+

L
e−
L
)−Γ(Z→e+

R
e−
R
)

Γ(Z→τ+τ−)

Aτ 0.1439± 0.0043 [46] 0.1472
Γ(Z→τ+

L
τ−
L
)−Γ(Z→τ+

R
τ−
R
)

Γ(Z→τ+τ−)

Ab 0.923± 0.020 [46] 0.935 Γ(Z→bLb̄L)−Γ(Z→bRb̄R)

Γ(Z→bb̄)

Ac 0.670± 0.027 [46] 0.668 Γ(Z→cLc̄L)−Γ(Z→cRc̄R)
Γ(Z→cc̄)

As 0.895± 0.091 [47] 0.935 Γ(Z→sLs̄L)−Γ(Z→sRs̄R)
Γ(Z→ss̄)

Ruc 0.166± 0.009 [44] 0.1724 Γ(Z→uū)+Γ(Z→cc̄)
2
∑

q Γ(Z→qq̄)

Table 1. Z boson pole observables. The experimental errors of the observables between the double

lines are correlated, which is taken into account in the fit. Ae and Aτ are listed twice: the first

number comes from the combination of leptonic polarization and left-right asymmetry measure-

ments at the SLC collider, while the second from the tau polarization measurements at LEP-1. We

also include the model-independent measurement of on-shell Z boson couplings to light quarks in

D0 [48]. For the theoretical predictions we use the best fit SM values from GFitter [43].
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Observable Experimental value Ref. SM prediction Definition

mW [GeV] 80.385± 0.015 [49] 80.364 gLv
2 (1 + δm)

ΓW [GeV] 2.085± 0.042 [44] 2.091
∑

f Γ(W → ff ′)

Br(W → eν) 0.1071± 0.0016 [50] 0.1083 Γ(W→eν)∑
f Γ(W→ff ′)

Br(W → µν) 0.1063± 0.0015 [50] 0.1083 Γ(W→µν)∑
f Γ(W→ff ′)

Br(W → τν) 0.1138± 0.0021 [50] 0.1083 Γ(W→τν)∑
f Γ(W→ff ′)

RWc 0.49± 0.04 [44] 0.50 Γ(W→cs)
Γ(W→ud)+Γ(W→cs)

Rσ 0.998± 0.041 [51] 1.000 gWq3
L /gWq3

L,SM

Table 2. W -boson pole observables. We also include the Vtb measurement in the single-top t-

channel production at the LHC; even though W boson is not on-shell, the experimental cuts suppress

possible contributions of 4-fermion operators to this observable. Measurements of the three leptonic

branching ratios are correlated. For the theoretical predictions of mW and ΓW , we use the best fit

SM values from GFitter [43], while for the leptonic branching ratios we take the value quoted in [50].

Observable Experimental bound Ref. Definition

Br(Z → eµ) 7.5× 10−7 [52] Γ(Z→eµ)∑
f Γ(Z→ff ′)

Br(Z → eτ) 9.8× 10−6 [53] Γ(Z→eτ)∑
f Γ(Z→ff ′)

Br(Z → µτ) 1.2× 10−5 [54] Γ(Z→µτ)∑
f Γ(Z→ff ′)

Br(t →Zq) 5.0× 10−4 [55] Γ(t→Zu)+Γ(t→Zc)∑
f Γ(Z→ff ′)

Table 3. Flavor-violating processes with Z-boson. Limits are quoted at 95% CL. In the SM,

the lepton flavor violating Z decays completely vanish while the FCNC top decays are extremely

suppressed to an unobservable level.

we obtain the following central values and 1σ errors:

[δgWe
L ]ii =




−1.00± 0.64

−1.36± 0.59

1.95± 0.79


× 10−2, (4.2)

[δgZe
L ]ii =




−0.26± 0.28

0.1± 1.1

0.16± 0.58


× 10−3, [δgZe

R ]ii =




−0.37± 0.27

0.0± 1.3

0.39± 0.62


× 10−3, (4.3)

– 8 –



J
H
E
P
0
7
(
2
0
1
5
)
0
1
8

[δgZu
L ]ii =




−0.8± 3.1

−0.16± 0.36

−0.28± 3.8


× 10−2, [δgZu

R ]ii =




1.3± 5.1

−0.38± 0.51

×


× 10−2, (4.4)

[δgZd
L ]ii =




−1.0± 4.4

0.9± 2.8

0.33± 0.16


× 10−2, [δgZd

R ]ii =




2.9± 16

3.5± 5.0

2.30± 0.82


× 10−2. (4.5)

The corresponding 20× 20 correlation matrix is given in appendix B.

As for the off diagonal couplings, we find:

√
|[δgZe

L ]12|2 + |[δgZe
R ]12|2 < 1.2× 10−3,

√
|[δgZe

L ]13|2 + |[δgZe
R ]13|2 < 4.3× 10−3,

√
|[δgZe

L ]23|2 + |[δgZe
R ]23|2 < 4.8× 10−3, (4.6)

where the measured central value of the Z width is used and

√
|[δgZu

L ]13|2 + |[δgZu
R ]13|2 + |[δgZu

L ]23|2 + |[δgZu
R ]23|2 < 1.6× 10−2

(
Γt

1.35GeV

)1/2

, (4.7)

at the 95% CL. Here we take ΓSM
t ≃ 1.35GeV for mt = 173GeV [56].

Using the above central values δg0, uncertainties δgσ and the correlation matrix ρ one

can reconstruct the dependence of the global χ2 function on the vertex corrections:

χ2 =
∑

ij

[δg − δg0]iσ
−2
ij [δg − δg0]j , (4.8)

where σ−2
ij = [[δgσ]iρij [δgσ]j ]

−1. In specific extensions of the SM, the vertex corrections

will be functions of a (typically smaller) number of the model parameters. In this case, the

global χ2 function can be minimized with respect to the new parameters, and thus limits

on this particular model can be obtained. This way our results can be used to obtain the

constraints on any specific UV model.

From our results for the vertex corrections, eqs. (4.2)–(4.5), we learn the following:

• Globally, the fit is in a very good agreement with the SM, corresponding to the

p-value of order 40%.

• Corrections to the Z boson couplings to charged leptons are constrained at the

level of O(10−3). We stress that these stringent constraints are completely model-

independent. On the other hand, W couplings to leptons are somewhat less tightly

constrained - at the level of O(10−2) - than in the flavor universal case. Due to the

relation in eq. (2.4), the Z boson couplings to neutrinos are constrained with the

same precision.
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• As for the Z boson couplings to quarks the situation is more complicated. Some

of these couplings, specifically the ones to charm and bottom, are rather tightly

constrained, at the level of O(10−2). The couplings to top and strange quarks are

weakly constrained, such that O(10%) deviations are possible, and the Z coupling to

the right-handed quarks is not constrained at all in a model-independent way. The

couplings to the first generation quarks are poorly constrained in a model-independent

way, especially the ones to right-handed down quarks.

• In those cases where large couplings corrections are allowed, one needs to be more

careful about the validity of the EFT expansion. The large corrections may be a

result of large Wilson coefficients, where the higher dimensional operators can not

be safely neglected. For example, when O(30%) corrections are allowed, this implies

that higher dimensional operators suppressed by the scale ∼ 0.5TeV may be present

in the Lagrangian. For new physics with order one couplings to the SM it would

imply that the EFT expansion is inadequate (in particular, dimension-8 operators

cannot be safely neglected). However, even in this case, the EFT expansion may be

valid when new physics couples to the SM strongly, with the coupling close to the

maximal value allowed by perturbativity.

• For some of the vertex corrections the best fit value is more than 2σ away from zero.

In the case of [δgZd
R ]33 this reflects the famous anomaly in the forward-backward

asymmetry of b-quark pair production at LEP-1; for [δgWe
L ]33 it is due to the excess

of the measured W → τν at LEP-2.

One important comment is in order. The constraints on the vertex corrections we

derived are valid in the Higgs basis, where oblique corrections are rotated away and new

physics affects the pole observables via the effective Lagrangian in eq. (2.3). Of course,

physical observables are independent of a basis choice; however parametrization of new

physics does depend on a basis. In another basis, larger parameters may be allowed if

compensating oblique corrections are present [6, 7], such that physical corrections remain

small. For instance, in the Warsaw basis [2], see appendix A for details, both 2-fermions

operators OHf (that induce vertex corrections) and bosonic operators OWB, OT (that

induce oblique corrections) contribute to the pole observables. Neither the former nor

the latter can be constrained by itself using the pole observables alone. In other words,

there are 2 exactly flat directions of the pole observables in the space of the Warsaw basis

operators spanned by OHf , OWB, and OT . Of course, the number of constraints is the

same in the Higgs and Warsaw basis: in any basis, the pole observables in table 1 and

table 2 always constrain 21 linear combinations of Wilson coefficients.

Different flavor models lead to specific patterns of vertex corrections. In particular,

they often impose relations between different [δg]ij ’s, reducing the number of free param-

eters. In the following we discuss some simple flavor structures for the effective operators,

the resulting pattern of vertex corrections, and the constraints on the parameters of these

scenarios.
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4.2 Flavor universality

The simplest flavor scenario is the one assuming an unbroken U(3)5F flavor symmetry for

the D = 6 Lagrangian, as previously considered in refs. [8, 17, 18]. This ansatz leads to

flavor blind vertex corrections,

[δgV f
L,R]ij = AV f

L,R δij . (4.9)

Among this eight dimensional parameter space only seven directions affect the pole observ-

ables at the linear level (δgWq
R enters only quadratically, see above). In this case, instead

of the leptonic Z-pole observables in table 1 and leptonic W branching fractions in ta-

ble 2, we use the corresponding observables determined under assumption of lepton flavor

universality, see table 1 of ref. [18]. We find




AWℓ
L

AZe
L

AZe
R

AZu
L

AZu
R

AZd
L

AZd
R




=




−0.89± 0.84

−0.20± 0.23

−0.20± 0.24

−1.7± 2.1

−2.3± 4.6

2.8± 1.5

19.9± 7.7




× 10−3 , (4.10)

where the correlation matrix is given in eq. (B.2) of appendix B.

4.3 Alignment

In the alignment scenario one assumes that the flavor structure of the different O6’s is

aligned with the corresponding Yukawa matrix. In more detail, the right-handed currents

are aligned with Yu,dY
†
u,d, while the left-handed ones with Y †

u,dYu,d. For the latter, one

has to specify whether these are aligned with the Yukawa matrix of the up sector (up-

alignment) or the with the Yukawa matrix of the down sector (down-alignment). In our

basis, the vertex corrections then take the form

δgZf
R = [δgZf

R ]iiδij , (4.11)

for f = u, d, e, and

[δgZu
L ]ij = [δgZu

L ]iiδij , δgZd
L =

∑

k

[δgZd
L ]kkV

∗
kiVkj (up-alignment), (4.12)

or

[δgZd
L ]ij = [δgZd

L ]iiδij , δgZu
L =

∑

k

[δgZu
L ]kkVikV

∗
jk (down-alignment). (4.13)

Moreover, for the lepton sector,

[δgZν
L ]ij = [δgZν

L ]iiδij , δgZe
L =

∑

k

[δgZe
L ]kkU

∗
kiUkj (ν-alignment), (4.14)
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or

[δgZe
L ]ij = [δgZe

L ]iiδij , δgZν
L =

∑

k

[δgZν
L ]kkUikU

∗
jk (e-alignment), (4.15)

where the CKM matrix V and the PMNS matrix U are taken from [44]. Clearly, the

alignment hypothesis does not reduce the number of independent diagonal vertex correc-

tions. The resulting constraints on the diagonal correction are found to be the same as in

eqs. (4.2)–(4.5).

The off-diagonal couplings of the left-handed quarks are controlled by the non-

universality in the diagonal vertex corrections. To leading order in the Wolfenstein pa-

rameter λC , one obtains for the up-alignment:

[δgZd
L ]12 ≃

(
[δgZd

L ]11 − [δgZd
L ]22

)
λC ,

[δgZd
L ]13 ≃

(
[δgZd

L ]33 − [δgZd
L ]22 + ([δgZd

L ]11 − [δgZd
L ]33)(ρ− iη)

)
Aλ3

C ,

[δgZd
L ]23 ≃

(
[δgZd

L ]22 − [δgZd
L ]33

)
Aλ2

C , (4.16)

and for the down-alignment:

[δgZu
L ]12 ≃

(
[δgZu

L ]22 − [δgZu
L ]11

)
λC ,

[δgZu
L ]13 ≃

(
[δgZu

L ]11 − [δgZu
L ]22 − ([δgZu

L ]11 − [δgZu
L ]33)(ρ− iη)

)
Aλ3

C ,

[δgZu
L ]23 ≃

(
[δgZu

L ]33 − [δgZu
L ]22

)
Aλ2

C . (4.17)

with A, η and ρ are the other Wolfenstein parameters of the CKM matrix. Clearly, at the

limit of universal diagonal vertex corrections the off-diagonal couplings vanish. Given the

limits on the diagonal vertex corrections, we find that

(up-alignment):[δgZd
L ]12 . 3× 10−2 , [δgZd

L ]13 . 7× 10−4 , [δgZd
L ]23 . 2× 10−3 ,

(down-alignment):[δgZu
L ]12 . 1× 10−2 , [δgZu

L ]13 . 5× 10−4 , [δgZu
L ]23 . 3× 10−3 ,

(ν-alignment):[δgZe
L ]12 . 9× 10−4 , [δgZe

L ]13 . 7× 10−4 , [δgZe
L ]23 . 9× 10−4 , (4.18)

is allowed at 95% CL. We see that, in the down-alignment case, the allowed magnitude

of [δgZu
L ]23 is just below the direct limit from t → Zc constraints, and may be probed by

these searches in the forthcoming LHC run. Similarly, in the ν-alignment case, the upper

limits are not far from the direct bounds on Z lepton flavor violating decays, eq. (4.6).

Indirect constraints on the Z off-diagonal couplings also arise from low-energy pro-

cesses. These bounds are sensitive to the assumptions on the 4-fermion operators, and

hence meaningful only in the absence of cancelation between the different FCNC contribu-

tions. Although not the scope of this paper, we analyze these constraints in appendix C

in the alignment scenario for completeness. Currently, these are the only available observ-

ables which are sensitive to the off-diagonal couplings to d, s, b, u and c. By comparing the

bounds of eq. (C.1) and eq. (C.2) to the allowed ranges of eq. (4.18) we conclude the fol-

lowing: the indirect bound on [δgZu
L ]12 from charm mixing measurements is about a factor

of 40 stronger than the allowed range in down alignment scenario. In case of up-alignment,

the bound from Kaon-mixing on [δgZd
L ]12 is stronger by two orders of magnitude, while the

bounds from Bd,(s) → µ+µ− on [δgZd
L ]13(23) are stronger only by an order of magnitude

(factor of few) from the allowed range.
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4.4 Minimal flavor violation

Another extreme solution to the NP flavor puzzle is the one of MFV. The assumption of

MFV states that the SM Lagrangian, as well as any NP interactions, formally respect a

global SU(3)5F flavor symmetry. Under this ansatz, the SM fermions transforms in the

fundamental representation of the corresponding SU(3)F , while the Yukawas are spurion

fields following a bi-fundamental transformation low. In the MFV scenario the global

SU(3)5F symmetry is then broken by the expectation values of the Yukawa spurions, given by

the fermion masses and mixing parameters. The effective interactions induced by the heavy

states should then be formally invariant under this symmetry. In this section we discard

neutrino masses and hence have no effect arising from the leptonic mixing parameters.

Imposing the MFV ansatz on the effective Lagrangian, to leading order in the spurions,

the vertex correction receive the following contributions:

δgZu
L = AZu

L I+ B̃Zu
L Y †

uYu + C̃Zu
L Y †

d Yd

= AZu
L δij +

1

2
BZu

L


m2

ui

m2
t

δij +
∑

dk

m2
dk

m̃2
b

VikV
∗
jk


+

1

2
CZu
L


m2

ui

m2
t

δij −
∑

dk

m2
dk

m̃2
b

VikV
∗
jk


 ,

δgZd
L = AZd

L I+ B̃Zd
L Y †

d Yd + C̃Zd
L Y †

uYu

= AZd
L δij +

1

2
BZd

L

(
m2

di

m2
b

δij +
∑

uk

m2
uk

m̃2
t

V ∗
kiVkj

)
+

1

2
CZd
L

(
m2

di

m2
b

δij −
∑

uk

m2
uk

m̃2
t

V ∗
kiVkj

)
,

δgZu
R = AZu

R I+ B̃Zu
R YuY

†
u =

(
AZu

R +BZu
R

m2
ui

m2
t

)
δij ,

δgZd
R = AZd

R I+ B̃Zd
R YdY

†
d =

(
AZd

R +BZd
R

m2
di

m2
b

)
δij ,

δgWℓ
L = AWℓ

L I+ B̃Wℓ
L Y †

e Ye =

(
AWℓ

L +BWℓ
L

m2
ei

m2
τ

)
δij ,

δgZe
L = AZe

L I+ B̃Ze
L Y †

e Ye =

(
AZe

L +BZe
L

m2
ei

m2
τ

)
δij ,

δgZe
R = AZe

R I+ B̃Ze
R YeY

†
e =

(
AZe

R +BZe
R

m2
ei

m2
τ

)
δij , (4.19)

where we take the fermion masses at mZ from [57], and use m̃2
b ≡ ∑

k V3kV
∗
3km

2
dk

≃
m2

b , m̃2
t ≡ ∑

k Vk3V
∗
k3m

2
uk

≃ m2
t . BZu

R is very weakly constrained because [δgZu
R ]33 is

not bounded. In addition, both CZu
L and CZd

L do not modify the couplings to the third

generation and hence they are very weakly constrained by the data. We neglect these in

our numerical fit. The vertex corrections are now parameterized by 14 parameters, with

contributions which are correlated across different observables. We find that, under the
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MFV assumption, the limits on the expansion coefficients are given by



AWℓ
L

BWℓ
L

AZe
L

BZe
L

AZe
R

BZe
R

AZu
L

BZu
L

AZd
L

BZd
L

AZu
R

AZd
R

BZd
R




=




−1.2± 0.4

−3.2± 1.2

−0.021± 0.024

0.039± 0.062

−0.031± 0.025

0.073± 0.066

−0.19± 0.31

−0.1± 3.8

0.20± 0.54

0.12± 0.57

−0.26± 0.50

1.6± 2.7

0.7± 2.9




× 10−2 . (4.20)

The correlation matrix is given in eq. (B.3) of appendix B. The off-diagonal terms are

extremely suppressed by the fermion masses and the CKM elements. In particular, the

upper possible value for [δgZu
L ]23 . 1.6 × 10−3 is an order of magnitude below its current

experimental bound, see eq. (4.7).

Higher order corrections in the MFV expansion might modify the relations between the

couplings to different generation in each sector [58]. Yet again, due to the m2 suppression

the significant bounds arise only from the coupling to the third generation. Hence, including

these higher contributions is equivalent to a redefinition of the various B’s, and can be made

straightforwardly.

4.5 Anarchic vector-like fermions

Another common flavor ansatz is the idea of mixing between the SM fermions and heavy

vector-like states with an anarchic flavor structure. In the anarchic scenario one assumes

the absence of any direct couplings between the SM fields and the Higgs doublet. Instead,

the masses and mixing are generated solely via this mixing, which induce effectively the

familiar Yukawa interactions. A similar phenomenology is retained in the anarchic partial

compositeness scenario, which can be realized in composite Higgs models or in the warped

extra dimension [29–32]. One can further assume that the hierarchic flavor structure is

encoded entirely in the mixing parameters, rather than in the vector-like sector itself.

Under this assumption, the effective Yukawa matrices are determined by

[Yf ]ij = λfR
i [Ỹf ]ijλ

fL
j , (4.21)

where λf is the mixing strength between the vector-like fermions and the SM fields, assumed

to obey λdL = λuL , and the anarchic ansatz states that Ỹf are random matrices of order

one. The mixing parameters are determined, up to order one factors, by the observed

masses and mixing angles [31],

mui

v
∼ λu

i λ
q
i ,

mdi

v
∼ λd

i λ
q
i , Vij ∼

λq
i

λq
j

, for i < j . (4.22)
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As a convenient choice we take λq
3 = O(1) which in turn dictate the order of all other

parameters in the quark sector. The same parameters also set the order of magnitude of

the vertex corrections, obeying

[δgZu
L ]ij = A1δij +

[
B̃Zu

L

]
ij
λq
iλ

q
j = A1δij +

[
BZu

L

]
ij
VibVjb ,

[δgZd
L ]ij = A2δij +

[
B̃Zd

L

]
ij
λq
iλ

q
j = A2δij +

[
BZd

L

]
ij
VibVjb ,

[δgZu
R ]ij = 2(A1 +A2)δij +

[
B̃Zu

R

]
ij
λu
i λ

u
j = 2(A1 +A2)δij +

[
BZu

R

]
ij

mui
muj

v2
1

VibVjb
,

[δgZd
R ]ij = −(A1 +A2)δij +

[
B̃Zd

R

]
ij
λd
i λ

d
j = −(A1 +A2)δij +

[
BZd

R

]
ij

mdimdj

v2
1

VibVjb
,

[δgWℓ
L ]ij = (A1 −A2)δij ,

[δgZe
L ]ij = −(2A1 +A2)δij ,

[δgZe
R ]ij = −3(A1 +A2)δij . (4.23)

One could add the corresponding leptonic flavor dependent contributions in a similar form

as the ones in the quark sector. However, assuming a common NP scale for all sectors, the

corresponding λℓ and λe are expected to be suppressed by the small lepton masses. For

instance, taking

mei

v
∼ λe

iλ
ℓ
i , λℓ

i ∼ λe
3 ∼

√
mτ/v (4.24)

will generate the required fermionic mass hierarchy and leptonic mixing structure. The

overall effect of these parameters on the vertex corrections is negligible due to the overall

mass suppression they exhibit.

As a meaningful result we quote in the following only the bounds for which the differ-

ent generation are not split by more than two orders of magnitude and set all the other

couplings to zero. The resulting bounds are
(
A1

A2

)
=

(
0.3± 2.0

−0.4± 2.2

)
× 10−4 , (4.25)




[
BZu

L

]
22[

BZu
L

]
33[

BZd
L

]
33[

BZu
R

]
22


 =




−39± 130

−0.7± 3.8

−0.043± 0.067

−40± 120


× 10−2 , (4.26)

with the corresponding correlation matrix given in eq. (B.4) of appendix B. This class

of models leads to an interesting flavor phenomenology [32, 59–61]. However, the large

contribution to Z → b̄LbL pushes the NP scale to the scale of order 4TeV [62]. In ref. [63],

it was shown that a custodial symmetry can protect the Z → b̄LbL vertex, resulting in a

valid lower NP scale. Note that the parametric suppression of the right-handed currents

with custodial symmetry is slightly different, ∼ (mimj/v
2)Vib/Vjb. A detailed discussion on

rare K and B decays in custodial protected models can be found in [64], while a discussion

on top flavor violating decays can be found in [65].
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Three comments are in order. First, we note the A1,2 universal parts in eq. (4.23) which

arise from the oblique contributions to the vertex corrections in our basis. These encode

the effect of the usual S and T oblique parameters, that typically arise in scenarios of this

kind. Second, we stress that in our analysis we assume no accidental cancelation between

different contributions to the vertex corrections. Furthermore, in concrete models of partial

compositeness stronger limits may arise from other effects than the vertex corrections, e.g.

from 4-quark operators induced by heavy gluon exchange [66].

5 Conclusions

In this paper we derived model-independent constraints on the D = 6 Lagrangian from

the Z and W pole observables. These observables constrain the corrections to the W

boson mass and to the W and Z boson interactions with SM fermions. Our main result is

displayed in eqs. (4.2)–(4.5), from which the following conclusions can be drawn.

• Flavor diagonal leptonic couplings are robustly constrained. The limits are most

stringent on the Z couplings to charged leptons, where the deviations from the SM are

at most O(10−4)−O(10−3). Leptonic couplings of W (and by gauge symmetry of the

effective Lagrangian, also Z couplings to neutrinos) are somewhat less constrained, at

the level of O(10−2). Moreover, one can also constrain flavor off-diagonal Z couplings

to charged leptons at the level of O(10−3)−O(10−2).

• For quark couplings, the limits depend a lot on the flavor. Couplings to the bottom

and charm quarks are still fairly well constrained, at the level of O(10−2). Con-

straints on other quark couplings are weaker, and O(1) deviations are allowed in

some cases. Constraints on off-diagonal Z couplings involving the top quark are cur-

rently O(10−1). We emphasize that for case of large Wilson coefficients (translated

to large vertex corrections) the validity of the EFT expansion should be verified and

that the new physics scale itself should be well above the EW one.

The above bound on the vertex corrections can be translated to the bound on the scale Λ

suppressing the respective dimension six operator: Λ & 5
√
10−3/δgTeV.

Our results have important consequences for ongoing searches for physics beyond the

SM. In principle, the vertex corrections could affect the total rate and differential distribu-

tions of numerous processes at the LHC. The limits we provide imply model-independent

bounds on the magnitude of such effects. For example, for Higgs boson decays to four

leptons via intermediate gauge bosons, the effect of vertex corrections will be difficult to

observe, and can be safely neglected in current LHC Higgs analyses.

At the same time, we have shown that certain electroweak couplings are poorly or

not-at-all constrained in a model independent way. One blatant example is the Z boson

coupling to right-handed top quarks. Currently, the observables sensitive to this coupling

(such as b → sγ, or ttZ associated production) depend also on other dimension-6 operators

(4-fermion couplings, dipole couplings of the top quark), which makes difficult extracting

model-independent constraints. A dedicate analysis for the EW and rare K and B decays
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on ttZ vertex coupling can be found in [67], while direct and indirect constraints on top

dipole moments are given in [68]. Precision measurements of the ZtRtR coupling is one of

the strongest motivations for building a high-energy e+e− collider [69, 70].

Next, the pole observables alone provide no constraints on the flavor off-diagonal Z

couplings to light quarks. While these couplings affect meson mixing, their contribution

is entangled with that of four-quark operators. Therefore a more general analysis that

includes these operators is in order to establish model-independent bounds on off-diagonal

quark couplings. Non-trivial limits from the pole observables can be obtained in the con-

text of particular flavor models, where the off-diagonal couplings are correlated with the

diagonal ones.

Finally, the Z boson couplings to light quarks are presently only weakly constrained.

These couplings are probed by multiple high-precision measurements, for example, by

atomic parity violation, parity-violating electron scattering, fermion pair production in

LEP-2, and meson decays. However, these processes involve an off-shell Z boson exchange,

and as a consequence they are also sensitive to four-fermion operators involving electrons

and quarks. Again, a more general analysis that includes these operators is needed in order

to establish model-independent constraints using these processes. The Z boson couplings

to light quarks can also be probed in hadron colliders. Indeed, it was demonstrated that

hadron colliders can achieve a decent precision to measure electroweak parameters, in

particular sin2 θW [71, 72]. Model independent measurements of Z boson couplings to

up and down quarks, as done in ref. [48], can be repeated at the LHC and with the full

Tevatron dataset.
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A Warsaw basis

In this appendix we discuss the relation between the vertex and mass corrections in our

effective Lagrangian, and the Wilson coefficients of SU(3)×SU(2)×U(1) D = 6 operators.

We consider the effective Lagrangian LWB
eff = LSM + 1

v2
∑

i ciOWB
6,i , where a complete non-

redundant basis of D = 6 operators OWB
6,i is given in table 4. This basis is, up to small

modifications, the same as in refs. [2, 20], often referred to as the Warsaw basis.1 In order

1The normalization of operators and notation are different than in the original references. We replaced

the operator |H†DµH|2 by (H†DµH − DµH
†H)2. For Yukawa-type operators Of we subtracted v2 so

that these operators do not contribute to off-diagonal mass terms. This way we avoid tedious rotations of

the fermion fields to bring them back to the mass eigenstate basis. Starting with the Yukawa couplings

−Hf̄ ′
R(Y

′
f + c′fH

†H/v2)f ′
L we can bring them to the form in table 4 by defining f ′

L,R = UL,RfL,R, cf =

U†
Rc

′
fUL, Yf = U†

R(Y
′
f + c′f/2)UL, where UL,R are unitary rotations to the mass eigenstate basis.
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H4D2 and H6

OH

[
∂µ(H

†H)
]2

OT

(
H†←→DµH

)2

O6H (H†H)3

f2H3

Oe −
(
H†H − v2

2

)
ēH†ℓ

Ou −
(
H†H − v2

2

)
ūH̃†q

Od −
(
H†H − v2

2

)
d̄H†q

V 3D3

O3G g3sf
abcGa

µνG
b
νρG

c
ρµ

O
3̃G

g3sf
abcG̃a

µνG
b
νρG

c
ρµ

O3W g3ǫijkW i
µνW

j
νρW

k
ρµ

O
3̃W

g3ǫijkW̃ i
µνW

j
νρW

k
ρµ

V 2H2

OGG g2sH
†H Ga

µνG
a
µν

O
G̃G

g2sH
†H G̃a

µνG
a
µν

OWW g2LH
†HW i

µνW
i
µν

O
W̃W

g2LH
†H W̃ i

µνW
i
µν

OBB g2Y H
†H BµνBµν

O
B̃B

g2Y H
†H B̃µνBµν

OWB gLgY H
†σiHW i

µνBµν

O
W̃B

gLgY H
†σiH W̃ i

µνBµν

f2H2D

OHℓ iℓ̄σ̄µℓH
†←→DµH

O′
Hℓ iℓ̄σiσ̄µℓH

†σi←→DµH

OHe iecσµē
cH†←→DµH

OHq iq̄σ̄µqH
†←→DµH

O′
Hq iq̄σiσ̄µqH

†σi←→DµH

OHu iucσµū
cH†←→DµH

OHd idcσµd̄
cH†←→DµH

OHud iucσµd̄
cH̃†DµH

f2V HD

OeW gLℓ̄σµν ē
cσiHW i

µν

OeB gY ℓ̄σµν ē
cHBµν

OuG gsq̄σµνT
aūcH̃ Ga

µν

OuW gLq̄σµν ū
cσiH̃ W i

µν

OuB gY q̄σµν ū
cH̃ Bµν

OdG gsq̄σµνT
ad̄cH Ga

µν

OdW gLq̄σµν d̄
cσiHW i

µν

OdB gY q̄σµν d̄
cH Bµν

(L̄L)(L̄L) and (L̄R)(L̄R)

Oℓℓ (ℓ̄σ̄µℓ)(ℓ̄σ̄µℓ)

Oqq (q̄σ̄µq)(q̄σ̄µq)

O′
qq (q̄σ̄µσ

iq)(q̄σ̄µσ
iq)

Oℓq (ℓ̄σ̄µℓ)(q̄σ̄µq)

O′
ℓq (ℓ̄σ̄µσ

iℓ)(q̄σ̄µσ
iq)

Oquqd (ucqj)ǫjk(d
cqk)

O′
quqd (ucT aqj)ǫjk(d

cT aqk)

Oℓequ (ecℓj)ǫjk(u
cqk)

O′
ℓequ (ecσ̄µνℓ

j)ǫjk(u
cσ̄µνqk)

Oℓedq (ℓ̄ēc)(dcq)

(R̄R)(R̄R)

Oee (ecσµē
c)(ecσµē

c)

Ouu (ucσµū
c)(ucσµū

c)

Odd (dcσµd̄
c)(dcσµd̄

c)

Oeu (ecσµē
c)(ucσµū

c)

Oed (ecσµē
c)(dcσµd̄

c)

Oud (ucσµū
c)(dcσµd̄

c)

O′
ud (ucσµT

aūc)(dcσµT
ad̄c)

(L̄L)(R̄R)

Oℓe (ℓ̄σ̄µℓ)(e
cσµē

c)

Oℓu (ℓ̄σ̄µℓ)(u
cσµū

c)

Oℓd (ℓ̄σ̄µℓ)(d
cσµd̄

c)

Oqe (q̄σ̄µq)(e
cσµē

c)

Oqu (q̄σ̄µq)(u
cσµū

c)

O′
qu (q̄σ̄µT

aq)(ucσµT
aūc)

Oqd (q̄σ̄µq)(d
cσµd̄

c)

O′
qd (q̄σ̄µT

aq)(dcσµT
ad̄c)

Table 4. Dimension six operators in the Warsaw basis [2].

to relate the two descriptions, we need to bring LWB
eff to the same form as the effective

Lagrangian considered in section 2. In particular, we need to get rid of the kinetic mixing

and non-canonical normalization induced by OWB
6,i . This is achieved by application of

equations of motion, and field and coupling redefinitions, as described in ref. [22]. When

the dust settles, the shift of the W boson mass is given by

δm =
1

g2L − g2Y

[
−g2Lg

2
Y cWB + g2LcT − g2Y δv

]
, (A.1)
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where δv = ([c′Hℓ]11 + [c′Hℓ]22)/2 + [cℓℓ]1221/4. The leptonic vertex corrections are given by

δgWℓ
L = c′Hℓ + f(1/2, 0)− f(−1/2,−1),

δgZν
L =

1

2

(
c′Hℓ − cHℓ

)
+ f(1/2, 0),

δgZe
L = −1

2

(
c′Hℓ + cHℓ

)
+ f(−1/2,−1),

δgZe
R = −1

2
cHe + f(0,−1), (A.2)

where

f(T 3, Q) = I

[
−QcWB

g2Lg
2
Y

g2L − g2Y
+ (cT − δv)

(
T 3 +Q

g2Y
g2L − g2Y

)]
. (A.3)

Finally, the shifts of the SM W and Z boson couplings to quarks are given by

δgWq
L = c′HqV + f(1/2, 2/3)V − f(−1/2,−1/3)V,

δgWq
R = cHud,

δgZu
L =

1

2

(
c′Hq − cHq

)
+ f(1/2, 2/3),

δgZd
L = −1

2
V †

(
c′Hq + cHq

)
V + f(−1/2,−1/3),

δgZu
R = −1

2
cHu + f(0, 2/3),

δgZd
R = −1

2
cHd + f(0,−1/3). (A.4)

We can insert these relation into the global χ2 functions, so as to obtain constraints on

the Wilson coefficients in the Warsaw basis. Clearly, the vertex corrections constrained

by pole observables map to a combination of a larger number of the Wilson coefficients

ci. Therefore, only certain combinations of the latter can be constrained by the pole

observables. We define

[
ĉ′Hℓ

]
ij

=
[
c′HL

]
ij
+

(
g2LcWB − g2L

g2Y
cT

)
δij ,

[ĉHℓ]ij = [cHL]ij − cT δij ,

[ĉHe]ij = [cHE ]ij − 2cT δij ,

[
ĉ′Hq

]
ij

=
[
c′HQ

]
ij
+

(
g2LcWB − g2L

g2Y
cT

)
δij ,

[ĉHq]ij = [cHQ]ij +
1

3
cT δij ,

[ĉHu]ij = [cHU ]ij +
4

3
cT δij ,

[ĉHd]ij = [cHD]ij −
2

3
cT δij . (A.5)

The pole observable constrain all diagonal elements of ĉ except for [ĉHU ]33.
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For these combinations, we obtain the following central values and 1-sigma errors:

[
ĉ′Hℓ

]
ii
=




−1.09± 0.64

−1.45± 0.59

1.86± 0.79


× 10−2, [ĉHℓ]ii =




1.03± 0.63

1.31± 0.62

−2.01± 0.80


× 10−2, (A.6)

[ĉHe]ii =




0.22± 0.66

−0.6± 2.6

−1.3± 1.3


× 10−3, [cℓℓ]1221 = (4.8± 1.6)× 10−2, (A.7)

[
ĉ′Hq

]
ii
=




0.1± 2.7

−1.2± 2.8

−0.7± 3.8


× 10−2, [ĉHq]ii =




1.8± 7.1

−0.8± 2.9

0.0± 3.8


× 10−2, (A.8)

[ĉHu]ii =




−3± 10

0.8± 1.0

×


× 10−2, [ĉHd]ii =




−6± 32

−7± 10

−4.6± 1.6


× 10−2. (A.9)

We stress that only the combinations in eq. (A.5) are constrained by the pole observables.

Conversely, the pole observables calculated in the Warsaw basis are completely indepen-

dent on the Wilson coefficients along the flat directions defined by [ĉHf ]ij = 0. Therefore,

individually, cHf , cWB, and cT cannot be constrained by the pole observables alone. To

this end, the input from off-pole and/or Higgs observables has to be included. For exam-

ple, including the LEP-2 WW production data breaks the degeneracy and allows one to

separately constrain cHf , cWB, and cT [8, 18].

B Correlation matrix

Here we quote the various correlation matrices described in section 4.
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ρ = (B.1)


1. −0.12 −0.63 −0.10 −0.03 0.01 0.07 −0.06 −0.04 −0.02 0 0 −0.03 0.01 −0.02 −0.03 0.02 −0.05 −0.03 0

· 1. −0.56 −0.11 −0.04 0.01 0.08 −0.06 −0.04 −0.02 0 0 −0.03 0.01 −0.02 −0.03 0.02 −0.05 −0.04 0

· · 1. −0.10 −0.03 0.01 0.07 −0.05 −0.04 0.01 −0.01 0 0.02 −0.01 0.01 0.03 0.02 0.04 0.03 0.01

· · · 1. −0.10 −0.07 0.17 −0.05 0.03 0.02 0.08 −0.02 0.03 0.09 0.02 0.03 −0.38 0.05 0.03 −0.37

· · · · 1. 0.07 −0.06 0.90 −0.04 0 −0.02 0 0 −0.01 0 0.01 0.08 0 0 0.05

· · · · · 1. 0.02 −0.03 0.41 −0.01 −0.02 0 −0.01 0 0 0 0.08 −0.01 −0.01 0.01

· · · · · · 1. −0.08 −0.04 −0.01 0.07 −0.02 −0.01 0.12 −0.01 −0.01 −0.36 −0.02 −0.01 −0.40

· · · · · · · 1. 0.04 0.01 0 0 0.01 −0.02 0.01 0.01 0.02 0.02 0.02 0.05

· · · · · · · · 1. 0.01 0.02 0 0.01 −0.01 0.01 0.01 −0.05 0.02 0.02 0.01

· · · · · · · · · 1. −0.07 0 0.72 0.06 0.79 −0.06 −0.01 0.76 −0.12 0

· · · · · · · · · · 1. 0 0.03 0.29 −0.04 0.10 −0.11 0.03 0.03 −0.15

· · · · · · · · · · · 1. 0 −0.01 0 0 0.04 0 0 0.04

· · · · · · · · · · · · 1. 0.03 0.71 −0.21 −0.01 0.92 −0.15 −0.01

· · · · · · · · · · · · · 1. 0.03 0.03 −0.19 0.06 0.04 −0.15

· · · · · · · · · · · · · · 1. −0.63 −0.01 0.66 0.01 0

· · · · · · · · · · · · · · · 1. −0.02 −0.04 −0.03 −0.02

· · · · · · · · · · · · · · · · 1. −0.02 −0.02 0.89

· · · · · · · · · · · · · · · · · 1. −0.32 −0.02

· · · · · · · · · · · · · · · · · · 1. −0.01

· · · · · · · · · · · · · · · · · · · 1.




.

–
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ρUNI =




1. −0.55 0.15 0.02 0.03 0.09 0.06

· 1. 0.34 0.02 0.05 −0.28 −0.34

· · 1. 0.09 0.07 −0.39 −0.38

· · · 1. 0.83 0.04 −0.11

· · · · 1. −0.13 −0.05

· · · · · 1. 0.89

· · · · · · 1.




. (B.2)

ρMFV = (B.3)



1. −0.97 −0.11 0.02 0.05 −0.05 0. 0. −0.11 0.11 0.01 −0.12 0.12

· 1. −0.01 0. 0. 0. −0.01 0. 0.09 −0.09 −0.01 0.1 −0.09

· · 1. −0.36 0.36 −0.18 0.08 −0.02 0.08 −0.17 0.11 0.08 −0.18

· · · 1. −0.19 0.49 −0.05 0.01 −0.03 0.07 −0.04 −0.03 0.08

· · · · 1. −0.35 0.11 −0.03 0.03 −0.15 0.11 0.04 −0.15

· · · · · 1. −0.03 0.01 0. 0.04 −0.05 0.01 0.04

· · · · · · 1. −0.1 0.52 −0.52 0.43 0.23 −0.27

· · · · · · · 1. −0.05 0.06 −0.04 −0.02 0.04

· · · · · · · · 1. −0.96 0.19 0.9 −0.86

· · · · · · · · · 1. −0.23 −0.86 0.91

· · · · · · · · · · 1. 0.36 −0.38

· · · · · · · · · · · 1. −0.95

· · · · · · · · · · · · 1.




.

ρVL =




1. −0.95 −0.19 −0.01 0.19 0.

· 1. 0.17 0.01 −0.17 −0.04

· · 1. 0. 0.07 0.85

· · · 1. 0.02 0.

· · · · 1. −0.13

·. · · · · 1.




. (B.4)

C Low energy constraints on off-diagonal Z coupling to quarks

Low energy processes, such as meson mixing or rare decays, imply strong indirect bounds

on tree-level Z off-off diagonal couplings. Assuming alignment, these arise only in the left

handed currents. We thus consider only [δZZu
L ]ij and [δZZd

L ]ij . For simplicity, we assume

these parameters to be real.

For the up sector, the strongest bound is arising from charm-mixing, we follow [73]

(and the recent results in eqs. (62)–(63) of [65]) and find that

[δgZu
L ]12 . 8.4× 10−5 , (C.1)

where the NP is allowed to saturate the 1σ bound on the mixing parameters. For the down

sector, following [74], the strongest constrained are coming from ∆MK = (0.5392±0.0009)×
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10−2pb−1 [44], Br(Bd → µ+µ−) < 6.3×10−10 and Br(Bs → µ+µ−) = (3.1±0.7)×10−9 [75].

We find that

[δgZd
L ]12 . 1.4× 10−4 , [δgZd

L ]13 . 1.5× 10−4 , [δgZd
L ]23 . 4.6× 10−4 , (C.2)

is allowed at 95% CL.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[66] C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs,

JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].

[67] J. Brod, A. Greljo, E. Stamou and P. Uttayarat, Probing anomalous ttZ interactions with

rare meson decays, JHEP 02 (2015) 141 [arXiv:1408.0792] [INSPIRE].

[68] J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark,

Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].

– 26 –

http://dx.doi.org/10.1007/JHEP06(2014)090
http://arxiv.org/abs/1403.7366
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.7366
http://dx.doi.org/10.1103/PhysRevD.90.072010
http://arxiv.org/abs/1408.5774
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5774
http://dx.doi.org/10.1007/BF01553981
http://inspirehep.net/search?p=find+Z.Phys,C67,555
http://dx.doi.org/10.1007/s002880050313
http://inspirehep.net/search?p=find+Z.Phys,C73,243
http://dx.doi.org/10.1103/PhysRevLett.112.171802
http://arxiv.org/abs/1312.4194
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.4194
http://dx.doi.org/10.1016/0550-3213(89)90108-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B314,1
http://dx.doi.org/10.1103/PhysRevD.86.013013
http://arxiv.org/abs/1112.3112
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3112
http://dx.doi.org/10.1103/PhysRevD.80.076002
http://arxiv.org/abs/0903.1794
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1794
http://dx.doi.org/10.1103/PhysRevD.75.015002
http://arxiv.org/abs/hep-ph/0606293
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0606293
http://dx.doi.org/10.1103/PhysRevLett.93.201804
http://arxiv.org/abs/hep-ph/0406101
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406101
http://dx.doi.org/10.1016/j.physletb.2008.04.005
http://arxiv.org/abs/0711.3376
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.3376
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.011
http://arxiv.org/abs/hep-ph/0510164
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510164
http://dx.doi.org/10.1016/j.physletb.2006.08.005
http://arxiv.org/abs/hep-ph/0605341
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605341
http://dx.doi.org/10.1088/1126-6708/2009/03/108
http://arxiv.org/abs/0812.3803
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3803
http://dx.doi.org/10.1007/JHEP12(2014)082
http://arxiv.org/abs/1408.4525
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4525
http://dx.doi.org/10.1088/1126-6708/2008/09/008
http://arxiv.org/abs/0804.1954
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1954
http://dx.doi.org/10.1007/JHEP02(2015)141
http://arxiv.org/abs/1408.0792
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.0792
http://dx.doi.org/10.1103/PhysRevD.88.039903
http://arxiv.org/abs/1107.3143
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3143


J
H
E
P
0
7
(
2
0
1
5
)
0
1
8

[69] M.S. Amjad et al., A precise determination of top quark electro-weak couplings at the ILC

operating at
√
s = 500GeV, arXiv:1307.8102 [INSPIRE].

[70] F. Richard, Present and future constraints on top EW couplings, arXiv:1403.2893

[INSPIRE].

[71] CMS collaboration, Measurement of the weak mixing angle with the Drell-Yan process in

proton-proton collisions at the LHC, Phys. Rev. D 84 (2011) 112002 [arXiv:1110.2682]

[INSPIRE].

[72] D0 collaboration, V.M. Abazov et al., Measurement of the effective weak mixing angle in

pp̄ → Z/γ∗ → e+e− events, arXiv:1408.5016 [INSPIRE].

[73] O. Gedalia, Y. Grossman, Y. Nir and G. Perez, Lessons from Recent Measurements of

D0-D̄0 Mixing, Phys. Rev. D 80 (2009) 055024 [arXiv:0906.1879] [INSPIRE].

[74] A.J. Buras, F. De Fazio and J. Girrbach, The Anatomy of Z’ and Z with Flavour Changing

Neutral Currents in the Flavour Precision Era, JHEP 02 (2013) 116 [arXiv:1211.1896]

[INSPIRE].

[75] Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of

b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].

– 27 –

http://arxiv.org/abs/1307.8102
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.8102
http://arxiv.org/abs/1403.2893
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2893
http://dx.doi.org/10.1103/PhysRevD.84.112002
http://arxiv.org/abs/1110.2682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2682
http://arxiv.org/abs/1408.5016
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5016
http://dx.doi.org/10.1103/PhysRevD.80.055024
http://arxiv.org/abs/0906.1879
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1879
http://dx.doi.org/10.1007/JHEP02(2013)116
http://arxiv.org/abs/1211.1896
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1896
http://arxiv.org/abs/1412.7515
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7515

