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1 Introduction

The Standard Model (SM) of particle physics is currently the most accurate theoretical
framework to describe microscopic phenomena. The SM successfully passed several precision
tests, and no new degrees of freedom have emerged yet by the direct exploration of the TeV
energy domain at the LHC. Nevertheless, the SM is plagued by a significant number of
open issues. The two we deal with in this paper, namely the flavour puzzle and the possible
unification of quarks and leptons, are related to the matter content of the SM. The flavour
puzzle refers to the highly non-generic pattern of masses and mixings of the three families

– 1 –



J
H
E
P
0
4
(
2
0
2
3
)
0
3
0

of quarks and leptons, which has no justification within the SM. Equally puzzling is the
peculiar assignment of the U(1)Y charges for the SM fermions that, despite being justified
a posteriori by the requirement of anomaly cancellation, naturally points toward some form
of unification of quark and lepton quantum numbers at high energies.

Attempts to provide dynamical justifications of the flavour puzzle, and attempts to unify
quarks and leptons into representations of new (non-Abelian) gauge groups, both have a
long history. However, to a large extent, these two efforts proceeded in parallel until recently.
Unification was pursued in a flavour-blind manner, extending the SM gauge group into a
grand-unified group acting in the same way for the three fermion generations [1]. The flavour
problem was addressed via appropriate horizontal symmetries (global or gauged, continuous
or discrete), commuting with the aforementioned unified gauge symmetry, as proposed for
instance in [2]. The factorisation of flavour and gauge symmetries was phenomenologically
motivated by the universality of the SM gauge group and, to some extent, by simplicity.
But it is certainly not the only option. The path we explore in this paper is a different one:
it is based on the assumption that the gauge group in the ultraviolet (UV) is fundamentally
family non-universal.

In the case of family non-universal gauge groups, the flavour problem is addressed via
a cascade of symmetry breaking steps occurring at different energy scales, from the initial
non-universal group to more universal ones, eventually ending with the SM, as in [3–8].
Qualitatively, the light families are generated at some high scale, where the non-universality
of the light families becomes manifest (i.e. at the scale where the light fermions have
new, non-universal, dynamical interactions). This implies a suppression with respect to
the third generation Yukawa couplings, which are generated at a lower scale. This type
of construction potentially addresses also another key open issue of the SM: a (stable)
separation of the scale stabilising the Higgs sector and the scale of new dynamics affecting
the light families. With such separation, the new dynamics stabilising the Higgs sector,
which necessarily couples strongly also to the third family, can still be quite close to the TeV
scale while avoiding (at least in part) the tight constraints derived from processes involving
the light families.

In addition to these general (top-down) arguments, interest in family non-universal
gauge groups has arisen recently from a pure bottom-up perspective because of the B-physics
anomalies, i.e. the deviations from the SM predictions observed in semileptonic B-meson
decays (see [9] and references therein). An interesting hypothesis describing well all present
data is the extension of the SM field content by a massive vector leptoquark field (U1), in
the TeV mass range, coupled mainly to the third generation [10]. The U1 field has the right
couplings and quantum numbers to be the broken generator of a (non-universal) SU(4)3 group
acting on the third family. This, in turn, has led to the so-called 4321 models: a construction
based on the (TeV-scale) gauge symmetry SU(4)3 × SU(3)l × SU(2)L ×U(1)X [5, 11, 12],
where SU(3)l acts only on the light families and color is the family diagonal subgroup of
SU(4)3 × SU(3)l. Besides offering a successful description of the B-physics anomalies, this
set-up features i) quark and lepton unification à la Pati-Salam [13] for the third generation,
and ii) an accidental U(2)5 global flavour symmetry acting on the light families. The
latter is known to be an excellent first-order approximation to the SM Yukawa couplings
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and, if broken in a minimal way, a key ingredient to ensuring sufficient protection against
flavour-violating effects involving the light families [14, 15].

It is natural to try to merge the indication of a 4321 gauge group at the TeV scale
with the more general top-down considerations about non-universal gauge groups presented
above. From this perspective, the 4321 group should be viewed as the last-but-one step of
the symmetry breaking chain from the UV theory down to the SM. Attempts of this type
have been presented in [5, 8, 16, 17]. In this paper we present a new proposal along this
line, which is significantly different from all previous attempts.

The novel aspect of our construction is the concept of electroweak-flavour unification,
which invokes an Sp(2Nf )L×Sp(2Nf )R gauge symmetry (in the general case of Nf families),
recently proposed in [18]. Rather than imposing this structure to unify all three fermion
families, as suggested in [18], we here propose a different path for light vs. heavy families:
both sectors feature quark-lepton unification via independent SU(4) groups, while only
the light sector features electroweak-flavour unification via Sp(4)L × Sp(4)R. With this
proposal the separation between the third family and the other two is “hard-coded” in the
UV, where the gauge symmetry is the direct product of groups acting separately on the
different fermion sectors. This is a good premise to justify in a natural way the large mixing
occurring in the light family sector, controlled by the Cabibbo angle (|Vus| ∼ 0.2), vs. the
small heavy-light mixing controlled by |Vts| ∼ 0.04. As we shall see, assuming a sufficiently
high-scale for the Sp(2Nf )L × Sp(2Nf )R symmetry breaking, this set-up also provides a
natural justification for the minimal breaking of the U(2)5 flavour symmetry [14], which
ensures an efficient suppression of non-SM effects in flavour-changing processes involving
the light families.1

The mixing between the two sectors happens via scalar fields charged under both
gauge groups, and appropriate vector-like fermions. While the observed flavour hierarchies
(masses and mixings) fix only the ratios between the different scales of this construction, an
absolute indication of the new energy scales comes from the stability of the field combination
responsible for electroweak symmetry breaking, i.e. the effective SM Higgs sector. The latter
requires the lowest non-standard symmetry breaking step (4321→SM) to occur around
the TeV scale. This is a further indication for new dynamics coupled mainly to the third
generation in this energy domain, independent from that obtained from the B-physics
anomaly. As we shall show, in this framework the data-theory comparison in B-physics
improves, but the low-energy signatures of the model are different from those derived
in the other known 4321 completions. This fact, together with the specific TeV-scale
phenomenology of the model, could help in the future to identify this motivated scenario.

The paper is organised as follows. In section 2 we introduce the UV gauge group as
well as the matter content of the model. We discuss the symmetry breaking pattern and
briefly review some basic facts about Sp(4) Lie groups. In section 3 we present a detailed
derivation of the Yukawa couplings for all the SM fermions. Section 4 is devoted to the
last step of the symmetry breaking chain, which allow us to anchor the various scales of

1Arguably, a U(2)5 flavour symmetry appears even more motivated after the recent RK(∗) measurement
by the LHCb collaboration [19], which provides a further strong constraint on non-universality between the
two light lepton generations.
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the model from the stability of the Higgs sector. In this section we also derive predictions
for both B-physics and collider phenomenology. Finally, we conclude and discuss some
interesting future directions in section 5.

2 A new flavoured gauge model

The model we propose is based on a high-energy gauge group that treats the third family
differently from the light two families, which are tightly unified. The gauge group has
the form

G = G12 ×G3, (2.1)

with the light families charged only under G12 and the third family charged only under
G3. As described in the Introduction, such a factorization of the gauge sector is strongly-
motivated by the observed Yukawa sector alone, together with considerations of naturalness
and data from high pT .

Guided by our desire for a third-family aligned U1 leptoquark, we then take

G3 = SU(4)3 × SU(2)L,3 × SU(2)R,3 (2.2)

to be a Pati-Salam symmetry. For the light families we also unify quarks with leptons à la
Pati-Salam, while further unifying the electroweak and flavour quantum numbers in the
manner recently explored for all three families in ref. [18]. We thus consider2

G12 = SU(4)1+2 × Sp(4)L × Sp(4)R, (2.3)

where Sp(4) denotes the symplectic group (see section 2.1). More minimal choices for G12
and G3 could have been made, for example G3 = SM3 and G12 = SU(3)1+2 × Sp(4)L ×
Sp(4)R × U(1)B−L,1+2, if we do not wish to unify quarks and leptons. The choices (2.2)
and (2.3) for G3 and G12 are motivated by matter unification in the UV, in particular
absorbing U(1) factors in the gauge symmetry, plus the phenomenological interest in vector
leptoquarks near the TeV scale.

2.1 Mathematical notation and conventions

In our convention, Sp(4) ⊂ SU(4) is the 10-dimensional group of 4 × 4 special unitary
matrices {U} that moreover satisfy UTΩU = Ω, where the matrix

Ω =
(

0 I2
−I2 0

)
, (2.4)

with I2 being the 2-by-2 identity matrix. The Lie algebra sp(4) and its representations are
probably familiar to most readers, thanks to the Lie algebra isomorphism sp(4) ∼= so(5).
The corresponding Lie group isomorphism is Sp(4) ∼= Spin(5), where Spin(5) is the double
cover of SO(5).

2We remark that g = Lie(G) is listed as algebra number 157 in ref. [20] (supplementary material), which
comprehensively studied semi-simple gauge algebras with possible gauge-flavour unification.
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To set out a little more necessary notation, we let {a1, a2, a3, a4} denote a basis for the
C4 vector space acted on by the fundamental representation 4 of SU(4)1+2, with {a∗i } a
basis for the conjugate 4 representation; correspondingly, let {Ai} and {A∗i } denote bases
for the fundamental and anti-fundamental representations of SU(4)3. We let {b1, . . . , b4}
and {c1, . . . , c4} denote bases for the vector spaces (both C4) acted on by the fundamental
of Sp(4)L and Sp(4)R respectively, and {B1, B2}, {C1, C2} denote the bases for the C2

vector spaces acted on by the fundamental representations of SU(2)L,3 and SU(2)R,3.
For Sp(2n) groups, like for SU(2) ∼= Sp(2), the fundamental and its conjugate rep-

resentation are isomorphic. It is therefore convenient to introduce a notion of complex
conjugation (∗) that, in addition to sending all C-valued components to their ordinary
complex conjugates, acts on our basis vectors as ∗ : bi 7→ Ωjibj and ∗ : ci → Ωjicj . With this
definition, the conjugate ϕ∗ of some field ϕ transforming in the 4 of Sp(4) also transforms
in the 4.3 For the n = 1 case, the factor of Ω appearing in the automorphism ∗ is the
familiar factor of iσ2 that conventionally appears in complex conjugation of SU(2) doublets.

The Ω matrices provide invariant tensors for symplectic groups, which we can use to
construct singlets. In particular, given two fields x = xibi and y = yibi in the fundamental
representation of Sp(4), the contraction

xiΩijyj (2.5)

is an Sp(4) singlet. We will frequently encounter such contractions of Sp(4) fundamentals
in the following, where we always suppress writing the indices and the requisite insertions
of the Ω matrix (which are implied). Other than the fundamental, all the representations of
Sp(4) that feature in this paper appear in the tensor product of two fundamentals, which is

4⊗ 4 = 1⊕ 5⊕ 10 . (2.6)

Here, the 10 is the symmetric contraction of two fundamentals, which for Sp(2N) Lie groups
is isomorphic to the adjoint representation, and the 5 is the part of the antisymmetric
contraction that remains after subtracting off the singlet (2.5).

We also introduce a convenient notation to indicate the ‘flow’ of Sp(4) indices in
Feynman diagrams, following [18], whereby solid red lines (—) marked with one or two
arrows denote specific contractions of Sp(4)L fundamental representations x and y. The
number of arrows matches the family of the SM fermions involved in the contraction:

y ] ∼ x1y3[ x y ] ∼ x3y1[ x

y ] ∼ x2y4[ x y ] ∼ x4y2[ x

Similarly, dashed blue lines (- - -) will be used to represent Sp(4)R contractions.
3To see this explicitly, let ϕ = ϕibi denote a field in the fundamental 4 of Sp(4). Under the Sp(4) action,

ϕi 7→ Uijϕj , where Uij are the components of a 4-by-4 Sp(4) matrix. The conjugate field ϕ∗ has components
(ϕ∗)i = Ωijϕ∗j with respect to the same basis {bi}. Under Sp(4), (ϕ∗)i 7→ ΩijU∗jkϕ∗k = UijΩjkϕ∗k = Uij(ϕ∗)j ,
where we have used UTΩU = Ω. Thus (ϕ∗) and ϕ transform in the same 4 representation.
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Field SU(4)1+2 Sp(4)L Sp(4)R SU(4)3 SU(2)L,3 SU(2)R,3
SM Fermions (chiral) Ψl

L 4 4 1 1 1 1
Ψl
R 4 1 4 1 1 1

Ψ3
L 1 1 1 4 2 1

Ψ3
R 1 1 1 4 1 2

Vector-like fermion ΞL/R 4 1 4 1 1 1
EWSB Higgses H1 1 4 4 1 1 1

H15 15 4 4 1 1 1
H1 1 1 1 1 2 2
H15 1 1 1 15 2 2

Symmetry breaking scalars SL 1 5 1 1 1 1
SR 4̄ 1 4 1 1 1
ΦL 1 5 1 1 1 1
ΦR 1 1 5 1 1 1
ΣL 1 4 1 1 2 1
ΣR 1 1 4 1 1 2
ω 4 1 4 4̄ 1 2

Table 1. Field content of the model. In addition to the SM fermions, there are various scalar fields
in which the electroweak symmetry breaking Higgs fields are embedded, as well as other symmetry
breaking scalars that break the gauge symmetry down to the SM, plus a vector-like fermion.

2.2 Embedding the Standard Model fields

The light fermion fields of the SM are all packaged into two 16-component reps, Ψl
L ∼

(4,4,1)⊗ (1,1,1) which is left-handed and Ψl
R ∼ (4,1,4)⊗ (1,1,1) which is right-handed,

where the label ‘l’ stands for ‘light’. We can represent Ψl
L and Ψl

R as 4× 4 matrices whose
rows transform in the fundamental representation of Sp(4)L and Sp(4)R respectively, and
whose columns transform in the fundamental of SU(4)1+2, viz.

Ψl
L =


ur1,L u

r
2,L d

r
1,L d

r
2,L

ug1,L u
g
2,L d

g
1,L d

g
2,L

ub1,L u
b
2,L d

b
1,L d

b
2,L

ν1,L ν2,L e1,L e2,L

 , Ψl
R =


ur1,R ur2,R dr1,R dr2,R
ug1,R ug2,R dg1,R dg2,R
ub1,R ub2,R db1,R db2,R
ν1,R ν2,R e1,R e2,R

 , (2.7)

where uai,L denotes a left-handed up quark with colour a and family index i, etc. With this
chiral fermion content, our gauge model is free of both perturbative and non-perturbative
gauge anomalies.4

There are Higgs fields that couple to both light families, in the representations H1 ∼
(1,4,4) ⊗ (1,1,1) and H15 ∼ (15,4,4) ⊗ (1,1,1), as well as separate Higgs fields H1 ∼

4The SU(4) factors have possible perturbative gauge anomalies, but these cancel because there are equal
numbers of left- and right-handed Weyl fermions in the (anomalous) fundamental representations of each
SU(4). The Sp(4) and SU(2) factors can suffer at most mod 2 anomalies in 4d [21], since these groups only
have real and pseudo-real representations. Given that we have even numbers of Weyl fermions charged in
the fundamental representation of each Sp(4) and SU(2) factor, all these mod 2 anomalies cancel. Finally,
one can rigorously check that there are no further possible non-perturbative anomalies by computing the
spin-bordism group ΩSpin

5 (B(G12 ×G3)) ∼= (Z2)4, using e.g. the methods of refs. [22, 23].
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(1,1,1)⊗ (1,2,2) and H15 ∼ (1,1,1)⊗ (15,2,2) that couple to the third family. It will
be the latter Higgs fields, H1 and H15, that acquire non-zero vacuum expectation values
(vevs) which break electroweak symmetry and, via mixing with H (see section 4), mediate
the light Yukawa couplings.

The representations of all SM fields are recorded in table 1, along with all the extra
fields (many scalars and one vector-like fermion) that will feature in the model.

2.3 Fundamental Yukawa interactions

The renormalisable Yukawa couplings between the SM fermions and these various Higgs
fields are

−L ⊃
∑

a∈{1,15}

[
yla Tr (Ψl

LHaΨl
R) + ȳla Tr (Ψl

LH∗aΨl
R)
]

+
∑

a∈{1,15}

[
y3
a Tr (Ψ3

LHaΨ3
R) + ȳ3

a Tr (Ψ3
LH
∗
aΨ3

R)
]

+ h.c. (2.8)

The terms in the first line couple the light fermions Ψl
L,R to the Ha Higgs fields. The terms

in the second line couple the third family fermions Ψ3
L,R to the Ha Higgs fields.

The model will also feature a vector-like fermion (VLF) in the representation Ξ ∼
(4,1,4)⊗ (1,1,1), charged only under the light-flavour group — specifically, in the same
representation as Ψl

R. This VLF is needed to introduce mixing between the third family
SM fermions and the light generations, as discussed in section 3.2.2. There are additional
renormalisable Yukawa interactions involving Ξ, some with the Ha Higgs fields, and others
with the scalar field ω ∼ (4,1,4)⊗ (4̄,1,2) (see table 1) that will play a role in breaking
the UV gauge symmetry down to the SM. These extra Yukawa interactions are

−L ⊃ λTr (ΞLωΨ3
R) + λ̄Tr (ΞLω∗Ψ3

R) (2.9)

+
∑

a∈{1,15}

[
κaTr (Ψl

LHaΞR) + κ̄a Tr (Ψl
LH∗aΞR)

]
+ h.c.

All the coefficients of these fundamental Yukawa interactions, namely

{yla, ȳla, y3
a, ȳ

3
a, λ, λ̄, κa, κ̄a}, (2.10)

are presumed to be independent O(1) numbers.5
The model will explain the structure of fermion masses and mixings, while also producing

third-family aligned U1 leptoquarks that offer the best combined explanation of the B-
physics anomalies, by breaking this large gauge symmetry down to the SM in a number
of stages. The symmetry breaking pattern in this model is shown in figure 1. We do not
attempt to explain the pattern of neutrino masses and mixings in this paper, although it is
reasonable to suppose that a form of see-saw mechanism can deliver very light neutrinos.
We postpone a detailed study of the neutrino sector for future work.

5The term in (2.9) with coupling λ̄ will not in fact appear in the final formulae we obtain for the physical
fermion mixing angles — but we include it here for completeness.
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[SU(4)1+2 × Sp(4)L × Sp(4)R]× [SU(4)3 × SU(2)L,3 × SU(2)R,3]

SU(3)1+2×SU(2)L,1×SU(2)L,2×SU(2)R,1×U(1)′′R

[SU(3)1+2 × SU(2)L,1+2 ×U(1)Y,1+2]× [SU(4)3 × SU(2)L,3 × SU(2)R,3]

SU(4)3 × SU(3)1+2 × SU(2)L ×U(1)′R

SU(3)× SU(2)L ×U(1)Y

Λ12

εΛ12

ΛΣ

Λ4321

〈SL〉 〈SR〉

〈φL〉 〈φR〉

〈ΣL〉 〈ΣR〉

〈ω〉

Figure 1. The symmetry breaking scheme in our model. The portion of the diagram coloured blue
is responsible for generating the light family Yukawas, and thus for controlling the flavour structure
of the light family sector. The portion coloured red mimics the low-energy breaking of so-called
‘4321 models’, delivering in particular a U1 leptoquark coupled mostly to the third family. We will
eventually suggest concrete scales for each Λ that appears on the vertical ‘axis’ — see figure 6.

3 Dynamical generation of the Yukawa sector

3.1 Electroweak light-flavour unification

In the 1–2 sector, we use electroweak flavour unification (EWFU) and its structured breaking
to generate hierarchies in the Yukawa textures that can accommodate the data. (These
symmetry breaking steps are coloured blue in figure 1.) This is a simplified, 2-family version
of the mechanism that was first proposed in ref. [18] (see also [24]).

As in ref. [18], the idea is to first ‘deconstruct’ the flavour-unified gauge symmetry
at a high scale using a pair of scalars transforming in the representations SL ∼ (1,5,1)
and SR ∼ (4̄,1,4) of G12, before using scalars ΦL and ΦR in 2-index antisymmetrized
representations (of Sp(4)L and Sp(4)R respectively) to ‘link’ the deconstructed gauge factors.
In a little more detail, the key steps in the mechanism can be summarized as follows.

3.1.1 Sequential symmetry breaking (part I)

A. Deconstruction of electroweak symmetry, at scale Λ12. First, the gauge-flavour
unified symmetry is ‘deconstructed’ around a high scale Λ12, which is so labelled because
it is the scale at which the structure of the light-family Yukawa couplings are generated.
This is done via a pair of scalars transforming in the representations SL ∼ (1,5,1) and
SR ∼ (4̄,1,4) of G12. Explicitly, the breaking pattern is

〈SL〉 : Sp(4)L −→ SU(2)L,1 × SU(2)L,2 , (3.1)
〈SR〉 : SU(4)1+2 × Sp(4)R −→ SU(3)1+2 × SU(2)R,1 ×U(1)′′R , (3.2)

– 8 –
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where U(1)′′R acts as B−L on the right-handed first family, and as hypercharge on all other
light fermions. This breaking can be achieved using vevs6

〈SL〉 = αLΛ12


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , 〈SR〉 = αRΛ12


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 (3.3)

where αL and αR are dimensionless numbers (that allow for the symmetry breaking in the
left- and right-sectors to occur at slightly different scales, in the vicinity of Λ12). Here, the
vev of SL, which transforms in an antisymmetrized 2-index representation of Sp(4)L, is
written as a 4-by-4 antisymmetric matrix. More precisely, the vev can be written (using
the basis defined in section 2.1) as 〈SL〉 = αLΛ12(b1 ∧ b3 − b2 ∧ b4), where the wedge
symbol ‘∧’ denotes antisymmetrization. The vev of SR, which transforms in the (4̄,4)
representation of SU(4)× Sp(4)R, is written as a 4-by-4 matrix; in index notation, we have
〈SR〉 = αRΛ12 a

∗
4 ⊗ c2.

B. Integrate out heavy Higgs fields. Under the above deconstruction step, each of
the Higgs fields H1 ∼ (1,4,4) and H15 ∼ (15,4,4) decomposes into a set of ‘flavoured’
Higgs fields, with components coupling to each pair of light families (one left-handed,
and one right-handed).7 Specifically, the Sp(4)L × Sp(4)R bifundamental representation
(4,4) decomposes under Step 1, which breaks SU(4)1+2 × Sp(4)L × Sp(4)R → SU(3)1+2 ×
SU(2)L,1 × SU(2)L,2 × SU(2)R,1 ×U(1)′′R, as

Ha ∼ (4,4)a 7→ (2,1,2)0︸ ︷︷ ︸
H11
a

⊕ (1,2,2)0︸ ︷︷ ︸
H21
a

⊕ (2,1,1) 1
2︸ ︷︷ ︸

H12+
a

⊕ (2,1,1)− 1
2︸ ︷︷ ︸

H12−
a

⊕ (1,2,1) 1
2︸ ︷︷ ︸

H22+
a

⊕ (1,2,1)− 1
2︸ ︷︷ ︸

H22−
a

,

(3.4)
where we use the notation Hija to denote an SU(3)1+2 singlet component coming from
Ha, that couples to the ith generation of left-handed fermion, and the jth generation of
right-handed fermion.8 It is assumed that most of these flavoured Higgs components are
heavy, except for the H22±

a components which we suppose are lighter, and which will
ultimately mix with the physical Higgses (see section 4). It is this presumed structure of
the quadratic Higgs mass terms that defines the second generation; modulo these scalar
mass terms, the theory is at this point still invariant under permuting the family labels of
left-handed light fermions.

6The fact that the vev of SL ∼ 5 deconstructs Sp(4)L → SU(2)L,1 × SU(2)L,2 is easily understood at the
Lie algebra level by recalling that sp(4) ∼= so(5). The field SL ∼ 5 transforms in the fundamental vector
representation of so(5), and so a generic vev breaks so(5) to an so(4) ∼= su(2)⊕ su(2) subalgebra. At the
group level, this translates to the breaking Sp(4)→ SU(2)× SU(2). It is straightforward to show that the
vev direction (3.3) breaks Sp(4) to the particular SU(2)L,1 × SU(2)L,2 subgroup that we want to preserve.

7This kind of model-building structure, whereby a generic set of flavoured Higgs fields are ultimately
responsible for generating hierarchies in the Yukawa couplings, is reminiscent of the ‘scalar democracy’
idea proposed in refs. [25, 26]. Electroweak-flavour unification is a natural UV framework for realising
scalar democracy.

8The notation Hij15 therefore denotes an SU(3)1+2 singlet components originating from the decomposition
of the adjoint Higgs H15.
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Concretely, denoting with M ij
a the mass of field Hij(±)

a , we assume the scalar potential
is such that

M11
a ≈M12

a ≈M21
a ≈ Λ12, (3.5)

M22
a somewhat lighter . (3.6)

The heavy components are all integrated out at the scale Λ12. This generates many
EFT couplings, including higher-dimensional Yukawa operators that couple the remaining
dynamical Higgs fields H22

a (which will mix with the physical Higgs) to the first generation
fermions. At the level of the EFT, one can already see that gauge invariance requires one
insertion of ΦL (ΦR) to couple H22

a to a left-handed (right-handed) first generation fermion.
Thus, schematically, the effective Yukawa couplings have the form

LEFT ⊃ f̄L,2H22
a fR,2 + ΦL

Λ12
f̄L,1H22

a fR,2 + ΦR

Λ12
f̄L,2H22

a fR,1 + ΦLΦR

Λ2
12

f̄L,1H22
a fR,1 , (3.7)

for each fermion type f ∈ {u, d, e}. We give the precise expressions in eqs. (3.14)–(3.20).

C. Break to the (light-flavour) SM, at scales εL,R Λ12. Finally, there are the remain-
ing dynamical scalars ΦL (real) and ΦR (complex), which are in 2-index antisymmetrized
representations (the 5) of Sp(4)L and Sp(4)R respectively that can be represented by
antisymmetric 4-by-4 matrices. These scalar fields acquire vevs to ‘link’ the deconstructed
gauge factors. The required vevs are embedded as

〈ΦL〉 = Λ12εL


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , 〈ΦR〉 = Λ12εR


0 0 0 z+
0 0 z− 0
0 −z− 0 0
−z+ 0 0 0

 , (3.8)

where z± are (independent) dimensionless, order-1 C-numbers. In our index notation these
vevs are

〈ΦL〉 = Λ12εL(b1 ∧ b4 + b2 ∧ b3) =: 〈φL〉, (3.9)
〈ΦR〉 = Λ12εRz+c1 ∧ c4︸ ︷︷ ︸

〈φR+〉

+ Λ12εRz−c2 ∧ c3︸ ︷︷ ︸
〈φR−〉

(3.10)

where, in the second line, it is convenient to identify specific components of ΦL,R with distinct
link fields φL, φR+ and φR− in the broken phase. These transform in the representations
φL ∼ (2,2) of SU(2)L,1 × SU(2)L,2, and φR± ∼ 2± 1

2
of SU(2)R,1 × U(1)′′R. The factors

εL and εR are small, R-valued parameters, which parametrize the ratios of energy scales
between the ΦL,R condensation scale and the heavier scale Λ12 at which the heavy Higgs
components are integrated out.

These vevs trigger the symmetry breaking

〈ΦL〉 : SU(2)L,1 × SU(2)L,2 −→ SU(2)L,1+2, (3.11)
〈ΦR〉 : SU(2)R,1 ×U(1)′′R −→ U(1)Y,1+2 , (3.12)
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ΨL ΨR

H22
a

Figure 2. Feynman diagram representing the direct coupling of second generation fermions
to the H22

a Higgs components, which ultimately mix with the Ha fields and result in the 2–2
Yukawa couplings.

ΨL ΨR

H22
a

〈ΦL〉

ΨL ΨR

H22
a

〈ΦR〉

Figure 3. Feynman diagrams that contribute to the 1–2 (left) and 2–1 (right) elements of the
Yukawa matrices, once the heavy Higgs components running along the internal lines are integrated
out at Λ12.

the result of which is SM1+2 := SU(3)1+2 × SU(2)L,1+2 × U(1)Y,1+2, the (light-flavour) SM
gauge symmetry. Once this condensation of ΦL and ΦR occurs, the EFT Yukawa operators
generated in Step B match onto dimension-4 Yukawa couplings of the first generation
fermions to the field H22

a , with in-built EFT suppression factors of εL and εR±.

3.1.2 EFT matching for light Yukawas

Having described the essential elements of the EWFU mechanism for generating Yukawa
hierarchies, which we here adapt from ref. [18] to the 2-flavour sector, we now give the
details of the EFT matching.

The effective Yukawa operators that we wrote schematically in eq. (3.7) are automatically
generated upon integrating out the heavy components of Hija at scale Λ12, provided the UV
model contains the following gauge invariant cubic and quartic scalar interactions

V (Φ, H) ⊃
∑

a∈{1,15}
Λ12 [βaLTr (H∗aΦLHa) + βaRTr (H∗aHaΦR) + βa∗R Tr (H∗aHaΦ∗R)]

+
∑

a∈{1,15}
βaLRTr (H∗aΦLHaΦR) + βa∗LRTr (H∗aΦLHaΦ∗R) , (3.13)

which couple the Ha Higgs fields (and their conjugates) to the symmetry breaking scalars
ΦL and ΦR. Given these scalar interactions, one can draw the Feynman diagrams shown in
figures 2–4; upon integrating out the Hija components, which run as internal propagators,
one gets the desired higher-dimension Yukawa operators.

If we decompose the fermion fields into their family-deconstructed components, i.e. those
states relevant after all the symmetry breaking steps detailed in section 3.1, the resulting
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ΨL ΨR

H22
a

〈ΦL〉 〈ΦR〉

ΨL ΨR

H22
a

〈ΦL〉

〈ΦR〉

ΨL ΨR

H22
a

〈ΦL〉

〈ΦR〉

Figure 4. Feynman diagrams that contribute to the 1–1 element of the Yukawa matrices, once the
heavy Higgs components running along the internal lines are integrated out at Λ12. The presence of
the diagram on the left is essential in order to provide enough freedom to parametrize the 1–1 entry
independently of the 1–2 and 2–1 entries.

effective Yukawa operators obtained by EFT matching can be organised by increasing mass
dimension, as follows.

Dimension 4 (see figure 2):

LEFT ⊃ QL,2

(
yl1H22−

1 + yl1H22+∗
1 + yl15H22−

15 + yl15H22+∗
15

)
uR,2 + h.c.

+QL,2
(
yl1H22+

1 + yl1H22−∗
1 + yl15H22+

15 + yl15H22−∗
15

)
dR,2 + h.c.

+LL,2
(
yl1H22+

1 + yl1H22−∗
1 − 3yl15H22+

15 − 3yl15H22−∗
15

)
eR,2 + h.c. . (3.14)

To simplify the notation, it is convenient to define:(
Hua
Hua

)
= Ra

(
H22−
a

H22+∗
a

)
,

(
Hda
Hda

)
= Ra

(
H22+
a

H22−∗
a

)
, (3.15)

where the unitary matrix Ra is

Ra = 1√
|yla|2 + |ȳla|2

 yla ȳla

−
(
ȳla

)∗ (
yla

)∗
 . (3.16)

This way only the combinations Hu,da appear in the Yukawa interaction (3.14). The
latter assumes the simple form

LEFT ⊃
∑

a∈{1,15}
ỹla

(
QL,2HuauR,2 +QL,2HdadR,2 + LL,2ΓaHdaeR,2

)
+ h.c. , (3.17)

where Γ1 ≡ 1 and Γ15 ≡ −3 encode the different treatment of the SU(3)-singlet piece
(i.e. the leptons) contained in SU(4), and

ỹla =
√
|yla|2 + |ȳla|2 . (3.18)

Proceeding in a similar manner, the subleading contributions to the effective Yukawa
interaction generated by high-dimensional operators are as follows.
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Dimension 5 (see figure 3):

LEFT ⊃
∑

a∈{1,15}
ỹla

[
uL,1

βaLφL
Λ12

Hua uR,2 + uL,2

(
βaRφR+

Λ12
+
βa∗R φ

∗
R−

Λ12

)
Hua uR,1

+dL,1
βaLφL
Λ12

Hda dR,2 + dL,2

(
βaRφ

∗
R+

Λ12
+ βa∗R φR−

Λ12

)
Hda dR,1

+(d↔ e , ỹla ↔ Γaỹla)
]

+ h.c. . (3.19)

Dimension 6 (see figure 4):

LEFT ⊃
∑

a∈{1,15}
ỹla

[
uL,1

(
(βaLR + 2βaLβaR)φLφR+

Λ2
12

+
(βa∗LR + 2βaLβa∗R )φLφ∗R−

Λ2
12

)
Hua uR,1

+dL,1
(

(βaLR + 2βaLβaR)φLφ∗R+
Λ2

12
+ (βa∗LR + 2βaLβa∗R )φLφR−

Λ2
12

)
Hda dR,1

+(d↔ e , ỹla ↔ Γaỹla)
]

+ h.c. . (3.20)

To summarize the 1–2 sector generated by this mechanism, for all three types of SM
fermion f ∈ {u, d, e}, the Yukawa couplings Y 22

f between the light families and the H22

Higgs fields have the hierarchical structure

Y 22
f ∼

(
εLεR εL
εR 1

)
. (3.21)

This is the 2-flavour version of the EWFU structure derived in [18].

3.2 Mixing with the third family

At this point the construction of the Yukawa sector departs from the EWFU mechanism
of [18] (which essentially replicates the structure we have just described in all three families).
For us, the third family is treated differently in the UV, coupling to its own decoupled
Pati-Salam gauge factor G3, as in eqs. (2.1)–(2.2).

Before we explain how the remaining Yukawa couplings (that mix with the third family)
are generated, we must explain the final symmetry breaking steps needed to take us from
SM1+2 × G3 down to SM1+2+3, the SM gauge symmetry. Continuing our labelling from
that of section 3.1, these steps are the following.

3.2.1 Sequential symmetry breaking (part II)

D. Linking of electroweak symmetry, at scale ΛΣ. The lowest breaking step (E)
will, by design, mimic the symmetry breaking in so-called ‘4321 models’ [11, 12, 27]. To
make contact with this requires we first link together the electroweak symmetries, which
remain partially deconstructed. This step resembles a similar linking step in the ‘Pati-
Salam cubed’ UV completion [5, 28, 29] of 4321. This breaking step is triggered by two
complex scalar fields, which start life in representations ΣL ∼ (1,4,1) ⊗ (1,2,1) and
ΣR ∼ (1,1,4)⊗ (1,1,2) of the UV gauge symmetry G (2.1).
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Representing both these bifundamentals as 2-by-4 matrices (for which each row trans-
forms as an Sp(4)L/R fundamental), appropriate vevs are

〈ΣL〉 = γLΛΣM, 〈ΣR〉 = γRΛΣM, (3.22)

where the matrix M is
M =

(
0 1 0 0
0 0 0 1

)
. (3.23)

In our index notation, this is equivalent to 〈ΣL〉 = γLΛΣ(b2 ⊗B1 + b4 ⊗B2) and 〈ΣR〉 =
γRΛΣ(c2 ⊗ C1 + c4 ⊗ C2). The result is to break

SU(2)L,1+2 ×U(1)Y,1+2 × SU(2)L,3 × SU(2)R,3 −→ SU(2)L ×U(1)′R, (3.24)

leaving the electroweak factor of the 4321 model. Here U(1)′R acts as hypercharge on
the light families, and as U(1)R (i.e. the subgroup of SU(2)R generated by σ3) on the
third family.

As for Step C above, we can decompose these symmetry breaking scalars into components
of the intermediate gauge symmetry that remains dynamical at this scale, namely SM1+2×G3.
The field ΣL just splits into a pair of bidoublets,

ΣL −→ (2,2)⊕2 of SU(2)L,1+2 × SU(2)L,3 , (3.25)

while
ΣR −→ (+1/2,2)⊕2 ⊕ (−1/2,2)⊕2 of U(1)Y,1+2 × SU(2)R,3 . (3.26)

The fact that all the fields in these decompositions are duplicated is because of their origin
in the gauge-flavour unified Sp(4)L(R) symmetries; there is one copy of every field for each
light family. The vevs (3.22)–(3.23) sit in Sp(4) components corresponding to the second
family; while other choices would have achieved the same symmetry breaking pattern (which
is obvious because the decompositions (3.25)–(3.26) carry no trace of the light family index,
which has now been linked together in SM1+2), we will see that the vevs of ΣL,R play
another role. This second role is in the mixing of the different Higgs fields to produce the
physical mass eigenstates; as we alluded to above, this is where the second and first family
are distinguished, and so the choice (3.23) is important. See section 4.1.1.

E. Breaking 4321 to the Standard Model, at scale Λ4321. At this point, the gauge
symmetry is that of the 4321 model, namely

SU(4)3 × SU(3)1+2 × SU(2)L ×U(1)′R . (3.27)

Even though the gauge group (and its action on the SM chiral fermions) is the same as for
established 4321 models [11, 12, 27], this model features a different scalar sector and choice
of vector-like fermion, which we record in table 2.9

9Specifically concerning the vector-like fermions (VLFs), we here consider a VLF that is a singlet under
all of G3, which means it decomposes to singlets under the SU(4)3 factor of 4321 — this is a minimal choice
for generating the required mixings in the Yukawa sector (as is explained in this section). In contrast, 4321
models designed to fit the central value of RD(∗) anomaly (see section 4.2.1) feature VLFs charged under
SU(4)3, which are required to modify the flavour structure of the U1 leptoquark to fit the anomaly (without
contravening high-pT bounds). For a phenomenological analysis including recent data, see [30].
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Field (i, j = 1, 2) SU(4)3 SU(3)1+2 SU(2)L U(1)′R
SM Fermions (chiral) QiL 1 3 2 1/6

uiR 1 3 1 2/3
diR 1 3 1 −1/3
LiL 1 3 2 −1/2
eiR 1 3 1 −1
νiR 1 3 1 0
Ψ3
L 4 1 2 0

Ψ3
R,u 4 1 1 1/2

Ψ3
R,d 4 1 1 −1/2

Vector-like fermion ξiu 1 3 1 2/3
ξid 1 3 1 −1/3
ξie 1 1 1 −1
ξiν 1 1 1 0

Higgses (light only) H22+
a 1 1 2 +1/2
H22−
a 1 1 2 −1/2
R2 1 3 2 7/6
R̃2 1 3 2 1/6
H+

1 1 1 2 1/2
H+

15 15 1 2 1/2
H−1 1 1 2 −1/2
H−15 15 1 2 −1/2

Symmetry breaking scalars ωi3uu 4̄ 3 1 7/6
ωi3ud , ω

3i
ud 4̄ 3 1 1/6

ωi3dd 4̄ 3 1 −5/6
ωi3νν 4̄ 1 1 1/2

ωi3eν , ω
3i
νe 4̄ 1 1 −1/2

ωi3ee 4̄ 1 1 −3/2

Table 2. Field content of the model before 4321 breaking. Of the scalar fields (listed in the last
two blocks), those that acquire non-vanishing vevs are indicated by grey shading.

The remaining symmetry breaking step is to the SM. The final scalar field ω, whose
vev triggers this breaking, transforms in the representation ω ∼ (4,1,4)⊗ (4̄,1,2) of the
UV gauge symmetry G (2.1). At this point it is not so enlightening to record how the
vev is embedded in the UV field, so we begin by decomposing this field under the 4321
group (3.27). We have10

ω → ω̂3 ⊕ ω̂1 , (3.28)

ω̂3 ∼ {(4̄,3,1, 7/6)︸ ︷︷ ︸
ωi3uu

⊕(4̄,3,1, 1/6)︸ ︷︷ ︸
ωi3
ud
, ω3i

ud

⊕2 ⊕ (4̄,3,1,−5/6)︸ ︷︷ ︸
ωi3
dd

}⊕2 ,

ω̂1 ∼ {(4̄,1,1, 1/2)︸ ︷︷ ︸
ωi3νν

⊕(4̄,1,1,−1/2)︸ ︷︷ ︸
ωi3νe, ω

3i
νe

⊕2 ⊕ (4̄,1,1,−3/2)︸ ︷︷ ︸
ωi3ee

}⊕2 .

10Note that the fields here labelled ω̂3(1) themselves denote reducible representations of 4321, which we
use as a notational convenience to gather together the SU(3)1+2 triplets (singlets).
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Our notation here needs a little explanation. The subscript label indicates the pair of
fermion types to which that ω component couples; for example, the fields ωi3uu are colour
triplets and so couple to di-quark pairs, and their U(1)′R charge of +7/6 means they couple
specifically to pairs of up-type quarks. The superscript label then indicates the family
indices of the fermion pair to which that ω component couples. One of these is always a
third family label, and the other is always a light family label which can run over i ∈ {1, 2};
this is because the UV field ω is in a bifundamental representation of Sp(4)R,12 × SU(2)R,3,
and the duplication labelled by i comes from the fact that Sp(4)R,12 stores a light family
index. For the fields with ‘mixed couplings’, i.e. to one up-type and one down-type quark,
there is a further duplication due to the fact that there are components coupling to {second
family down-type, third family up-type}, and vice-versa. Thus, for example, there are four
of these scalars with quantum numbers (4̄,3,1, 1/6). To emphasize this, we will at times
use notation

ω13
ud ≡ ωub , ω23

ud ≡ ωcb , ω31
ud ≡ ωtd , ω32

ud ≡ ωts , (3.29)

labelling the quark (or lepton) flavours explicitly.
The 4321 gauge symmetry is broken down to the SM gauge symmetry, i.e.

SU(4)3 × SU(3)1+2 × SU(2)L ×U(1)′R −→ SU(3)× SU(2)L ×U(1)Y , (3.30)

if any of the components ωi3, 3iud (and possibly ωi3, 3iνe ) acquire non-zero vevs in the directions

〈ωi3, 3iud 〉 = v3√
2


1 0 0
0 1 0
0 0 1
0 0 0

 , 〈ωi3, 3iνe 〉 = v1√
2


0
0
0
1

 , (3.31)

mimicking the original 4321 setup of [11], where we represent ωi3, 3iud and ωi3, 3iνe as a 4-by-3
matrix and a 4-vector respectively.

However, as a point of departure from other 4321 models in the literature, we emphasize
that in this model there are four copies of each of these scalars, as listed in (3.29). Which
of these copies acquire symmetry-breaking vevs in fact has physical consequences; after
integrating out the vector-like fermion (VLF) Ξ (see the following section 3.2.2), the choice
of vev-acquiring-ω fields determines which 2–3 Yukawa elements are populated in our EFT
(up to subleading corrections due to mixing effects between the scalars). While all choices
are equally natural, phenomenological reasons suggest we take the components

ω23
ud ≡ ωcb and ω32

νe ≡ ωντµ (3.32)

as the (only) ones that get the vevs indicated in eq. (3.31).

3.2.2 EFT matching for third family Yukawas and mixings

Another ingredient is required to generate mixing between the light families and the third,
and this is the vector-like fermion (VLF) Ξ ∼ (4,1,4) ⊗ (1,1,1), which has the same
quantum numbers as the field Ψl

R.
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Ψl
L

Ψ3
R

{κa, κ̄a} {λ, λ̄}

{Ha,H∗a} {ω, ω∗}

Ξ Ξ̄

Figure 5. Feynman diagrams, depicted in the unbroken G12 × G3 phase, that lead to mixing
between the third family and light family fermions. Integrating out the VLF Ξ and expanding the
scalar field ω about its vev gives the relevant effective Yukawa couplings mixing the light families
with the third. The notation ‘{κ, κ̄}’ denotes, for example, that there are two possible couplings
that can feature, connecting to either Ha or its conjugate H∗. Recall from section 2.3 that the bar
denotes an independent coupling.

This VLF permits the fundamental Yukawa interactions written above in eq. (2.9),
which link third family fermion fields to the light fermions via either H(∗)

a or ω. Using these
interactions, one can write down the Feynman diagram in figure 5, that links Ψl

L with Ψ3
R.

Note that, given the quantum numbers of the fields in our model (in particular, given the
quantum numbers of Ξ), there is no corresponding tree-level diagram by which we can link
Ψ3
L with Ψl

R.11

Since the fields Ha will mix with the physical Higgs (through the components H22±
a

introduced in (3.4)), the Feynman diagram in figure 5 will result in Yukawa couplings
linking light left-handed fermions with the third family right-handed fields, populating the
third column (but not the third row) of the Yukawa matrices. These terms will moreover
be suppressed (with respect to the 33 entries of the Yukawa matrices) by the same overall
factor by which the second family masses are suppressed, helping to explain why the mixing
angles with the third family are so small.12

Under 4321 the VLF decomposes as

Ξ→ ξ̂3 ⊕ ξ̂1 , (3.33)
ξ̂3 ∼ {(1,3,1, 2/3)︸ ︷︷ ︸

ξiu

⊕ (1,3,1,−1/3)︸ ︷︷ ︸
ξi
d

}⊕2 ,

ξ̂1 ∼ {(1,1,1, 0)︸ ︷︷ ︸
ξiν

⊕ (1,1,1,−1)︸ ︷︷ ︸
ξie

}⊕2 ,

where we employ a similar notation to that used for ω in (3.28). Again, there are two copies
of each 4321 representation; one set of VLFs couples to the first family fermions, and the

11Such terms, which would populate the third row of the Yukawa matrices, would be generated if we
further added a VLF charged under Sp(4)L, which we choose not to.

12If we had instead included a VLF charged under G3, the 1–3 and 2–3 entries of the Yukawa matrices
would be populated by direct couplings to the H1 and H15 Higgs fields, which recall are those Higgses
charged under G3. This is a less desirable option, because the smallness of the 1–3 and 2–3 quark mixing
angles would have to be explained purely as a result of the heaviness of the VLF with respect to v1,3.
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other set to the second family, and this is labelled by the index i, coloured red. Both sets
of interactions are present in the UV couplings (2.9).

In the 4321 phase, the diagram in figure 5 decomposes into separate contributions
(with different mediator fields) for quarks and leptons. The SU(3)1+2 triplet components
(ωud, ξ2

u,d) contribute to the quark Yukawas, while the SU(3)1+2 singlets (ωνe, ξ2
ν,e) contribute

to the lepton Yukawas.
Similarly to the case of the light Yukawa couplings, it is convenient to introduce a new

Higgs basis  (Hκ)ua(
Hκ
)u
a

 = Ka
(
H22−
a

H22+∗
a

)
,

 (Hκ)da(
Hκ
)d
a

 := Ka
(
H22+
a

H22−∗
a

)
, (3.34)

where

Ka := 1√
|κa|2 + |κ̄a|2

(
κa κ̄a

− (κ̄a)∗ (κa)∗

)
. (3.35)

Defining in addition
κ̃a =

√
|κa|2 + |κ̄a|2 , (3.36)

the effective heavy-light Yukawa interactions assume the form

L ⊃
∑

a∈{1,15}

λv3κ̃a
mξ2

u

[uL,2(Hκ)ua uR,3 + βaLεL uL,1(Hκ)ua uR,3] (3.37)

+λv1κ̃a
mξ2

e

[
eL,2(Hκ)da eR,3 + βaLεL eL,1(Hκ)da eR,3

]
+ h.c. . (3.38)

We remark that there is no equivalent mixing term generated in the down-quark sector, at
least to this order, because of the 4321-breaking vev appearing in the ωcb component, as in
eq. (3.32). It turns out that the vertex with coupling λ̄, defined in the UV Lagrangian (2.9),
does not contribute to any non-vanishing Yukawa operator of this kind once ω is expanded
about its 4321-breaking vev.

The scalar potential of the model will lead the four SU(2)L,1+2 Higgs doublets in
H22
a (namely H22+

1 ,H22−
1 ,H22+

15 ,H22−
15 ) to have a small mixing with the corresponding

SU(2)L,3 Higgs doublets in H1, which are the fields driving the SM electroweak symmetry
breaking (see section 4). As a consequence, the four neutral Higgs doublets in H22

a acquire
a non-vanishing vev that, in general, we can write as

〈H22+
a 〉 =

(
0

εhη
+
a v

)
, 〈H22−

a 〉 =
(
εhη
−
a v

0

)
, (3.39)

where v ≈ 246GeV is the SM electroweak scale, εh � 1 and η±a = O(1). The mass matrices
of the SM fermions then arise from the combination of couplings of the third family to Ha,
yielding 33 elements of O(v), and couplings of all other fermion bilinears to H22

a , yielding
parametrically suppressed contributions of O(εhv).

– 18 –



J
H
E
P
0
4
(
2
0
2
3
)
0
3
0

3.3 Fermion mass and mixing angle observables

Putting everything together from the previous subsections, one can derive the mass matrices
of the SM fermions after electroweak symmetry breaking. For each of f ∈ {u, d, e}, the
mass matrix assumes the following hierarchical structure

Mf ∼
v√
2

εhεLεR εhεL εhεLδf
εhεR εh εhδf

0 0 1

 , (3.40)

where we have introduced the quantities

δu = λv3
mξ2

u

, δd � δu , δe = λv1
mξ2

e

, (3.41)

where the hierarchy between δd and δu follows from the (natural) choice in eq. (3.32), that
ωcb gets the vev (a comparable δd ∼ δu would be achieved if a vev was also developed by the
ωts component). Using matrix perturbation theory, one can extract the following overall
scaling of the eigenvalues of such matrices, i.e. of the fermion masses in our model:

m1 ∼ O(εLεR εh) , (3.42)
m2 ∼ O(εh) , (3.43)
m3 ∼ O(1) . (3.44)

The CKM angles scale as

Vus ∼ O(εL) , (3.45)
Vcb ∼ O(εhδu) , (3.46)
Vub ∼ O(εLεhδu) , (3.47)

where we emphasize that each of these CKM elements admits a complex phase. The precise
expressions are recorded in appendix A.

4 Anchoring the low scale

We now turn to the scalar sector of the model, in particular the mechanism by which a
set of light electroweak doublets acquire their non-zero vevs (from which we identify the
SM Higgs). By requiring limited tuning in this Higgs sector, we will place constraints on
the various symmetry breaking scales of the model, thereby anchoring the masses of the
lightest new physics particles close to the TeV scale.

4.1 The light-Higgs sector

The theory contains several scalar fields that, at the end of the breaking chain in figure 1,
transform as doublets of SU(2)L and hence as SM Higgs fields. We denote as the “light-Higgs
sector” the subset comprised of the four doublets {H22±

a } (see section 3.2.2), i.e. those with
second-family flavour indices, plus the four doublets from Ha. As anticipated, these two
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sets mix because of the non-vanishing vev of the ΣL,R fields. More precisely, the doublets
in H22±

a mix with the doublets in H1 but not H15 (at least not at the renormalisable level),
and this mixing happens separately for the up-type and down-type components, i.e. only
fields with the same U(1)R charges can mix.

In this light-Higgs sector we expect a single ‘ultra-light’ component to appear, that we
identify with the effective SM-like Higgs. Without loss of generality, in order to simplify
the notation, we assume that this ultra-light component can be identified with the up-type
component of H1. In other words, we assume

|〈H1〉| � |〈H15〉| and |〈H−1 〉| � |〈H
+
1 〉| , (4.1)

where |〈Ha〉| denotes the magnitude of the vev of the field Ha. To this end, we recall that
it is sufficient that either H−1 or H+

1 acquire a non-vanishing vev in order to achieve the
spontaneous symmetry breaking of electroweak symmetry and give non-vanishing masses to
all the fermions. Indeed, via the Ra and Ka rotation matrices introduced above, the vev of
a single (up or down) component of H22

a generates non-vanishing masses for both up and
down quarks (and a similar mechanism holds for third-generation quarks). A non-vanishing
vev for H15 is needed to generate the appropriate splitting between yτ and yb. However,
the smallness of yτ,b with respect to yt ensures that this effect can easily be obtained
with |〈H15〉| � |〈H1〉|, hence with a tiny contribution of H15 to the electroweak vev (and,
correspondingly, to the SM-like Higgs field).

As we shall see in the next section, the configuration in (4.1) can be obtained with a
rather natural choice of parameters in the effective Higgs potential. The only critical point
is to ensure |〈H1〉| ≈ v. This condition is what implies ΛΣ . 10TeV, anchoring the whole
chain of symmetry breaking scales in figure 1.

4.1.1 Mixing and spectrum in the light-Higgs sector

The mixing between the {H22±
a } fields and the components from H1 is induced by the

following interaction terms,

L ⊃ λ1
HΣH22

1 ΣLH1ΣR + λ15
HΣH22

15ΣLH1ΣR + h.c. , (4.2)

where we use the generic notation ‘H22
a ’ to denote SU(3)1+2 singlet scalar components origi-

nating from the UV Higgses H1 and H15. Recall that under the light-flavour deconstruction,
Sp(4)L → SU(2)L,1 × SU(2)L,2, the ΣL field decomposes as

ΣL ∼ 4→ (2,1)⊕ (1,2) . (4.3)

After SU(2)L,1 × SU(2)L,2 → SU(2)L,1+2, this just gives two doublets of SU(2)L,1+2
(see (3.25)). We assume that the vev of ΣL occurs in the (1,2) component that couples to
H2j
a , and likewise that the vev of ΣR occurs in the 1±1/2 components of SU(2)R,1 ×U(1)′′R

that couple only to Hi2a . This way, once ΣL,R acquire their vevs, the mixing term in (4.2)
selects only the H22

a components.
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We now focus the attention on the up-type SU(4)-singlet Higgs fields, i.e. the fields
that after SU(2)L,1+2 × SU(2)L,3 → SU(2)L behave as SU(2)L doublets with (SM) hyper-
charge −1/2. Their mass matrix, M2

u, defined via

L ⊃ ( ~H−)†M2
u
~H− (4.4)

where ~H− = (H22−
1 ,H22−

15 , H−1 ), assumes the form

M2
u =

 (Mu
1 )2 0 λ1

HΣ|〈ΣL〉||〈ΣR〉|
0 (Mu

15)2 λ15
HΣ|〈ΣL〉||〈ΣR〉|

λ1
HΣ|〈ΣL〉||〈ΣR〉| λ15

HΣ|〈ΣL〉||〈ΣR〉| m2
u

 . (4.5)

A completely analogous structure holds for M2
d, acting on the vector (H22+

1 ,H22+
15 , H+

1 ),
with identical off-diagonal entries and potentially different diagonal elements.13

The mass matrix M2
u can de diagonalized by an appropriate orthogonal rotation of the

three fields,
OuM2

uO
T
u = diag(M2

u1 ,M
2
u2 ,−µ

2
u) . (4.6)

Assuming m2
u, λaHΣ|〈ΣL,R〉|2 � (Mu

a )2, we find

µ2
u ≈

∑
a=1,15

(θau)2(Mu
a )2 −m2

u , (4.7)

where

θau = λaHΣ
|〈ΣL〉||〈ΣR〉|

(Mu
a )2 , Ou ≈

 1 0 θ1
u

0 1 θ15
u

−θ1
u −θ15

u 1

 . (4.8)

Electroweak symmetry breaking is achieved if either M2
u and/or M2

d develops small
negative eigenvalues. This requires some tuning between the two terms in (4.7), or the
analogous combination for M2

d. It is natural to assume this happens only in one the two
mass matrices: we work under the hypothesis this happens only in M2

u. In this limit, the
effective mixing parameters defined in (3.39) assume the form

εh =
√

(θ1
u)2 + (θ15

u )2 , η−a ≈
θau√

(θ1
u)2 + (θ15

u )2
vu
v
, η+

a = 0 . (4.9)

Here vu ∝ µu denotes the ‘fraction’ of the electroweak-breaking vev that is due to the H1
field, while v denotes the total vev considering also the contribution from 〈H15〉. The latter
is controlled by independent parameters and can easily be tuned to be small, reaching the
configuration (4.1).

13Generically, the components H22−
1 and H22−

15 are expected to mix and populate the 1–2 and 2–1 entries
of the upper blocks of M2

u,d. We work under the assumption that this mixing is absent as its only effect
would be to re-define effective couplings λaHΣ, leaving the following discussion essentially unchanged.

– 21 –



J
H
E
P
0
4
(
2
0
2
3
)
0
3
0

4.1.2 Constraints on the scales from the electroweak vacuum

The requirement that µ2
u ∼ v2, with minimal tuning, allows us to derive a series of constraints

on the symmetry breaking scales that appear in our setup. Assuming that both terms
in (4.7) are of similar size implies

v2 ∼ λ2
HΣ

Λ4
Σ

M2
H

→ Λ2
Σ

MH
∼ v

λHΣ
, (4.10)

where λHΣ denotes generically λ1,15
HΣ , and MH generically denotes Mu

1,2. At the same time,
the request εh ∼ 10−2 from the Yukawa couplings implies

εh ∼ λHΣ
Λ2

Σ
M2
H

→ MH
ΛΣ
∼
(
λHΣ
εh

)1/2
. (4.11)

The λHΣ couplings cannot be arbitrarily small, since the operators in (4.2) are necessarily
generated by quantum corrections: a natural lower bound is |λHΣ| & 10−2, which implies
that ΛΣ is at most as large as MH.

The last piece of information we need to take into account are the experimental bounds
on the family non-universal electroweak gauge bosons (W ′, Z ′) generated by the breaking
SU(2)L,1+2 × SU(2)L,3 → SU(2)L. In particular from the stringent Z ′ → `¯̀ bounds [31] we
deduce ΛΣ & 10 TeV. All these constraint can be satisfied for |λHΣ| ∼ 0.01 and

MH ∼ ΛΣ ∼ 10TeV . (4.12)

The range for MH is well compatible with present bounds on heavy Higgs fields.
Combining these indications with the request εL,R ∼ 10−1 from the light-fermion

spectrum, and the bound Λ12 & 103 TeV from flavour-changing processes involving the first
two generations of quarks [32], we end up with a coherent spectrum where each of the
four scales indicated in figure 1 are separated by one order of magnitude: starting from
Λ12 ∼ 103 TeV down to Λ4321 ∼ 1TeV, as summarised in figure 6. On general grounds, the
scalar sector of this framework is stable under quantum corrections if the scalars at a given
scale receive one-loop corrections only from scalars at the scale immediately above (and
not from those at the higher scales) [6]. In our case, this condition is respected but for one
exception, namely m2

u (i.e. the mass term of H1), which could receive one-loop corrections
from the ΣL,R fields. The natural expectation is thus mu & 1TeV and not mu . v. The
model therefore requires some amount of fine-tuning in order to reproduce the observed
value of the electroweak scale. However, this tuning is not worse than that present in any
realistic SM extensions, given current bounds on direct searches for new physics. This is
the manifestation of the so-called little-hierarchy problem [33] in our model.

4.2 Leptoquark phenomenology

We are now ready to analyse some of the phenomenological implications of our model at
both low and high energies. As summarised in table 2, the model posseses a rich spectrum
of new states at the TeV scale. A detailed analysis of the possible signatures of all these
states in high-energy pp collisions is beyond the scope of this paper: these signatures vary
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Energy [TeV]

ΛSM ≡ v Λ4321 ΛΣ εΛ12 Λ12

O(0.1) O(1) O(10) O(100) O(1000)

Figure 6. The relevant energy scales in our model, which are associated with different symmetry
breaking steps (as detailed in figure 1), are each separated by roughly an order of magnitude.

a lot depending on the mass matrices of the new sates which are poorly constrained by
low-energy data. On the contrary, rather precise predictions can be obtained for processes
mediated by the TeV-scale U1 leptoquark (LQ) generated by the 4321 →SM breaking.
Analysing these predictions is also interesting in order to compare the expectations of our
model with those of other 4321 completions.

In order to take advantage of a series of recent phenomenology analyses of 4321 models
(see e.g. [30, 34, 35]), it is convenient to write the effective U1 interactions with the SM
fermions as

Lint
eff = gU√

2
JµUUµ + h.c. JµU =

(
βiαL Q

i
Lγ

µLαL + βR bRγ
µτR

)
, (4.13)

introducing the effective couplings gU , βiαL and βR. By convention, the quark doublet Qi
is written in the down-quark mass-eigenstate basis (i = b, s, d), the lepton doublet LαL is
written in the charged-lepton mass-eigenstate basis (α = e, µ, τ ), and βbτL ≡ 1. Within our
model, in the limit εh → 0, i.e. neglecting the mixing of the light families with the third, we
have gU = g4, |βR| = 1, and all the βiαL vanish but for βbτL .

As in all 4321 models, a key constraint on the flavour structure of the theory comes
from the effective four-quark operators mediated by the TeV-scale color octet (coloron),
which is also generated by the 4321→ SM breaking. These effective operators are strongly
constrained by Bs–B̄s and Bd–B̄d mixing (see e.g. [30, 35]). Satisfying these bounds requires
the alignment of the third generation in the down sector, i.e. identifying the left-handed
quark doublet charged under SU(4) as

Q3
L ≈

(∑
q=u,c,t V

∗
ubqL

bL

)
. (4.14)

This justifies, a posteriori, the choice of the down-mass eigenstate basis in eq. (4.13). Recall
that, in our framework, this alignment condition follows from the hierarchy δd � δu, as
in eq. (3.41) above, which is a natural consequence of assuming that the 4321-breaking
vev occurred in the component labelled ωcb, as in eq. (3.32), given also that |〈H22+

a 〉| = 0.
This implies that the heavy→light mixing in the CKM matrix originates from the up-quark
sector and that βsτL , βdτL remain vanishing small, at the tree level, even if εh 6= 0.

We emphasize that, in contrast to other 4321 models in the literature, the required
down-alignment of the quark Yukawa matrices does not have to be imposed by hand in this
model, but follows from a natural symmetry breaking structure that matches the deeper
UV dynamics onto 4321.
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4.2.1 RD(∗) and pp→ τ+τ− +X

Integrating out the LQ at tree-level leads to the following effective Lagrangian relevant to
b→ c`ν decays:

Lb→c = −4GF√
2
Vcb

[(
1 + CcLL

)
(c̄LγµbL)(τ̄LγµνL)− 2 CcLR (c̄LbR)(τ̄R νL)

]
, (4.15)

where

CcLL = v2

2Λ2
U

(
1 + βsτL

Vcs
Vcb

)
, CcLR = β∗R CcLL , (4.16)

where we have written these Wilson coefficients in terms of the effective couplings introduced
in eq. (4.13). The parameters CcLL(R) can be extracted from data via the lepton flavour
universality (LFU) ratios RD(∗) using the following phenomenological expressions [35]:

∆RD ≡
RD
RSM
D

− 1 = Re (2 CcLL − 3.00 Cc ∗LR) +O[(CcLL(R))2] ,

∆RD∗ ≡
RD∗

RSM
D∗
− 1 = Re (2 CcLL − 0.24 Cc ∗LR) +O[(CcLL(R))2] . (4.17)

According to the recent analysis of b→ c`ν data in [30], if |βR| = 1 (as expected in our model)
a very good fit to present data is obtained for βR = −1, a phase choice that maximises the
interference of left- and right-handed currents in eq. (4.17).14 The correspondingly preferred
value of CcLL is

CcLL|
exp
βR=−1 = 0.03± 0.01 . (4.18)

The maximal value of CcLL in the model is determined by the experimental lower bound
on MU/gU extracted from high-energy data. For large LQ masses, the high-energy process
pp→ τ+τ− +X, to which the LQ contributes via the t-channel exchange, turns out to be
the most effective probe. From the recent CMS analysis in [36], focused on the LQ t-channel
exchange amplitude, one extracts the bound ΛU & 1.6 TeV [30, 37], with a tantalizing 3σ
excess for ΛU ≈ 1.6 TeV. Setting ΛU = 1.6 TeV and βsτL = 0 we get CcLL|

th
βR=−1 = 0.012

or, equivalently,
∆RD ≈ 6.0% , ∆RD∗ ≈ 2.7% . (4.19)

These values are already within the 2σ range determined by low-energy data, implying a
significant agreement compared to the SM expectations in these obseravables. A further
improvement could be obtained with a value of βsτL ≈ 0.01, which could be generated beyond
the tree level (see the next section).15 In this case CcLL|

th
βR=−1 could raise up to ≈ 0.015,

which is well within the 90%CL experimental range.

14The phase of βR is a free parameter in our model determined by the relative sign of Md
33 and Me

33.
15We emphasize that, in ‘bottom-up’ 4321 models designed to fit the central value of RD(∗) , while being

compatible with pp → ττ data, the contribution to mixing from an additional vector-like fermion (not
present in this model) is crucial [30]. See also footnote 9.
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Figure 7. Box diagrams leading to an effective Q̄2
Lγ

µL2
LUµ interaction, induced by the exchange of

a (heavy) SU(3)l-singlet Higgs.

4.2.2 RK(∗)

The LQ effective interaction in eq. (4.13) also leads to a tree-level contribution to b→ sµ+µ−

amplitudes that, in turn, induce non-vanishing corrections to the neutral-current LFU ratios
RK and RK∗ . However, as we shall see, these effects are naturally quite small in our setup.

Adopting the standard convention to define the b→ sµ+µ− effective operators O9,10
(see e.g. [9]), we get

∆Cµµ9 = −∆Cµµ10 = − v2

2Λ2
U

(
2π
αem

βsµL β
bµ∗
L

VtbV
∗
ts

)
. (4.20)

In terms of these modified Wilson coefficients, the LFU ratio RK in the dilepton mass
interval m2

`` ∈ [1 GeV2, 6 GeV2] reads [35]:

∆RK = RK − 1 = 0.50 Re (∆Cµµ9 )|ΛU=1.6 TeV ≈ 0.13× Re
(
βsµL β

bµ∗
L

10−3

)
, (4.21)

and in the same m2
`` interval we have ∆RK∗ ≈ ∆RK .

Within our model, a non-vanishing βbµL is generated by the diagonalization of the lepton
mass matrix,

|βbµL | ≈
∣∣∣∣Me

23
Me

33

∣∣∣∣ = O(εhδe) < 10−1 . (4.22)

On the contrary, the diagonalization of the quark mass matrices do not lead to a non-
vanishing βsµL in the limit of perfect down alignment.

An effective coupling of the LQ to second generation fermions is generated in the model
beyond the tree level by the one-loop diagrams shown in figures 7 and 8. These one-loop
diagrams generate a dimension-six operator of the type Q̄iLγµLαLωi3udDµ(ω3α

νe )† that, once
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Figure 8. Box diagrams leading to an effective Q̄2
Lγ

µL2
LUµ interaction, induced by the exchange of

a (heavy) SU(3)l-triplet Higgs (these components originate from the decomposition of H15).

the ω fields acquire their vevs, leads to a non-vanishing Q̄2
Lγ

µL2
LUµ effective interaction.

The βsµL thus generated can be written as

βsµL = ζ
Me

22Md∗
22

|Me
22||Md

22|
, (4.23)

where
ζ ≡

κ2
1,15λqλ`v3v1

16
√

2π2

∑
box diag.

Φ[MH,mξ` ,mξq ] , (4.24)

with λq,` denoting the couplings between ω, Ψh
R, and Ξ, and where the loop function is

Φ[MH,mξ` ,mξq ] ≡ −
M2
H −mξ`mξq +mξ`mξq log

(
mξ`mξq
M2
H

)
(
mξ`mξq −M2

H

)2 . (4.25)

The sum over all relevant box diagrams yields

ζ = λqλ`v3v1

16
√

2π2

(
κ2

1Φ[MH22+
1
,mξe ,mξd ] + κ2

15Φ[MH22+
15
,mξe ,mξd ] (4.26)

+ κ2
1Φ[MH22−

1
,mξν ,mξu ] + κ2

15Φ[MH22−
15
,mξν ,mξu ]

+ κ2
15Φ[MR2 ,mξe ,mξu ] + κ2

15Φ[M
R̃2
,mξν ,mξd ]

+ κa → κ̄a
)
.

The expression for βsµL in (4.23) is suppressed both by the loop factor 1/(16π2) and by
the scale ratio v2

1,3/M
2
H. If all the heavy scalars running inside the loops have masses of

O(10 TeV), as expected given that the corresponding scalar potential is characterised by
the scale ΛΣ, the corrections to RK(∗) should not exceed 1%. On general grounds, we thus
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expect tiny modifications to RK(∗) below the detectable level, consistent with the recent
findings of the LHCb Collaboration [19].

In specific regions of parameter space, mild cancellations in the effective potential could
bring some of the scalar masses down to the TeV range, leading to larger corrections to
RK(∗) , close to the maximal values allowed by present data. For instance, a consistent
benchmark point leading to ∆Cµµ9 ∼ −0.1 (hence ∆RK ≈ −5%) is obtained for

mξuq ∼ 1.4 TeV , mξeq ∼ 1.1 TeV , v3 ∼ 1.7 TeV , v1 ∼ 1.7 TeV ,

mH22±
1
∼ 12.3 TeV , mH22±

15
∼ 12.5 TeV , m

R2,R̃2
∼ 1.1 TeV . (4.27)

We emphasize that, to achieve such a shift in Cµµ9 , the masses of the R2 and R̃2 scalar
leptoquarks are an order of magnitude lighter than their ‘natural’ size of O(10 TeV).

5 Conclusion and outlook

In this paper we explore a new kind of gauge model for explaining the origin of flavour
in the Standard Model (SM). We suppose that physics in the UV is described by gauge
interactions that unify quarks and leptons but in a fundamentally flavour non-universal
way. We invoke a “2+1” family structure i.e. with the third family coupling to its own set
of UV gauge bosons. On the other hand, within the first two generations we employ the
rigid structure of electroweak-flavour unification. This unifying symmetry naturally controls
flavour-changing processes in the 1–2 sector to be small, while generating hierarchical masses
and mixing angles in the 1–2 sector through symmetry breaking steps at high energy scales.
At lower energies of O(10 TeV), the light- and heavy-sectors are linked together, to match
onto a non-universal ‘4321 model’, which is finally broken to the SM near the TeV scale.

A model of this kind, while seemingly quite complex, is well motivated on general
grounds by our current knowledge of particle physics in both the electroweak and flavour
sectors. In summary, it naturally explains:

• the spectrum of quarks and leptons and their seemingly ad hoc pattern of hypercharges,
within each SM family, via enlarged SU(4) colour symmetries;

• the observed hierarchical pattern of fermion masses and quark mixing angles, with
O(1) Yukawa couplings for the third family;

• why there exist two generations that are ‘light’ i.e. with suppressed Yukawa couplings
� 1, that are in this sense similar from the point of view of the Higgs sector;

• why flavour-changing transitions in this 1–2 sector are consistent with the SM, probing
new physics contributions up to very high (effective) scales;

• why a SM Higgs boson of O(0.1 TeV) mass is not unnatural (beyond an unavoidable
tuning of about 1 part in 100 as per the ‘little hierarchy problem’), given our ladder
of symmetry breaking scales can be anchored at the TeV scale.
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The output of such a model-building framework, from the phenomenological perspective, is
a new physics sector coupled dominantly to the third generation fermions, in the vicinity of
the TeV scale.

We have not comprehensively studied the phenomenology of the new physics particles in
this work, but rather pointed out the most obvious effects. One of the lightest new particles
is a U1 vector leptoquark with flavour non-universal couplings. As in other 4321 models,
the leptoquark parameter space is cornered by high-pT data and complementary constraints
on the coloron and Z ′ gauge bosons that necessarily accompany it. An interesting aspect
of this model, compared to generic 4321 constructions, is the possibility to justify the
down-alignment of the heavy SU(4) gauge bosons –phenomenologically required to satisfy
the tight ∆F = 2 bounds — as a result of the vacuum structure of the link fields mediating
4321→ SM breaking. These link fields carry remnant light-flavour indices as a result of the
high-scale electroweak-flavour unification.

We discussed the extent to which the U1 leptoquark can explain the hints of new physics
in charged-current (b→ cτν) B-meson decays. The model can naturally accommodate a
6% and 3% increase in RD and RD(∗) respectively. While not matching the current central
values of these observables, these effects significantly ease the tension with respect to the
SM predictions. The relative impact on b→ sµµ amplitudes is naturally smaller, except for
very specific regions of the parameter range where it can reach at most the few % level,
consistent with recent findings [19].

Beyond these particles, there are other states near the TeV scale that differ from other
4321 models, most notably in the scalar sector. For example, we have a suite of heavy
scalar particles in the same representation as the SM Higgs, but with heavier masses and
with O(1) Yukawa couplings to the second generation fermions. There is also a set of
vector-like fermions, needed to generate the CKM rotation angles involving the third family,
which are also expected to be rather light (certainly if the U1 leptoquark is to mediate any
appreciable contribution to b→ sµµ transitions). We save phenomenological explorations
of the high-pT signatures of these particles for future work.

Another direction for future work, in a more theoretical vein, is to explore the per-
turbativity of this model (and other UV complete models of its ilk) up to scales of order
1000TeV (at least), where the 1–2 flavour sector is expected to originate dynamically (recall
figure 6). This requires a complete RG-evolution of the gauge and Yukawa couplings in the
model, and a systematic study of the model parameter space.

Finally, we reiterate that, even though 4321-like models grew out of the observed
anomalies in B-meson decays, the symmetry breaking patterns and UV dynamics that we
study here remain well-motivated even in the absence of any of the anomalies. The hypothesis
of flavour non-universal gauge interactions near the TeV scale is an attractive starting point
for explaining the flavour puzzle, which is simultaneously consistent with the absence of
new physics signals in high energy searches at the LHC, and the experimental constraints
from precision flavour physics. Moreover, if one tries to reconcile this hypothesis of gauge
non-universality with a quasi-natural fundamental Higgs up to scales of O(1− 10)TeV, as
we do here, then it can be argued that all natural options feature SU(4) unification in the
third family, and consequently U1 leptoquarks, below ∼10TeV [38].
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A Formulae for fermion masses and mixing angles

In this appendix we record the precise formulae for the quark and charged lepton masses
and mixings in our model, in terms of the fundamental UV couplings of the theory, obtained
by tree-level EFT matching at each symmetry breaking step.

We begin by writing the mass matrices Mf for each type of fermion, f ∈ {u, d, e}.
There are contributions from both the ‘light-Higgs sector’ fields {H22±

a }, which recall get
vevs |〈H22±

a 〉| = εhη
±
a v, and from {Ha}, for which we parametrize the vevs as

〈H1〉 = v−1 B1 ⊗ C2 − v+
1 B2 ⊗ C1 , (A.1)

〈H15〉 =
( 3∑
i=1

Ai ⊗A∗i − 3A4 ⊗A∗4

)
⊗
(
v−15B1 ⊗ C2 − v+

15B2 ⊗ C1
)
, (A.2)

using the bases defined in section 2.1 of the main text. While in the main text we adopt
the hypothesis that η+

a = 0, as given by eq. (4.9), in this appendix we give general formulae
valid for any η±a .

Each mass matrix can be decomposed into the following ‘2+1’ block structure
√

2Mf =
(
εhM̂f εhδf n̂f

0T Mf
33

)
, (A.3)

where recall the δf parameters are defined in eq. (3.41). Defining Γ1 = 1 and Γ15 = −3,
which encodes the relative values of the Higgs vevs on the charged leptons, and summing
over a ∈ {1, 15}, we have

Mu
33 = y3

av
−
a + y3

av
+∗
a , (A.4)

Md
33 = y3

av
+
a + y3

av
−∗
a , (A.5)

M e
33 = Γa[y3

av
+
a + y3

av
−∗
a ] . (A.6)

The U(2)-breaking vectors n̂f that mix the light families with the third are each given by

n̂f =
(
εL 0
0 1

)
nf , (A.7)

where

nu = v
(
βaL(κaη−a + κaη

+∗
a ), (κaη−a + κaη

+∗
a )

)T
= (nu1 , nu2)T , (A.8)

nd = v
(
βaL(κaη+

a + κaη
−∗
a ), (κaη+

a + κaη
−∗
a )

)T
= (nd1, nd2)T , (A.9)

ne = v
(
βaLΓa(κaη+

a + κaη
−∗
a ), Γa(κaη+

a + κaη
−∗
a )

)T
= (ne1, ne2)T , (A.10)
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still summing over a ∈ {1, 15} in each term (the relative weighting by β1,15
L means that the

first component of these vectors is not simply a rescaling of the second component by the
same factor).

Finally, we define the upper-left 2-by-2 blocks, whose structures are generated by the
EWFU mechanism. It is convenient to pull out the overall εL,R dependence, by defining

M̂f =
(
εLεRMf

11 εLM
f
12

εRMf
21 Mf

22

)
. (A.11)

Then the ‘reduced’ matrix elements are

Mu
11 = v

[
(βaLR + 2βaLβaR)z+ + (β∗LR + 2βaLβa∗R )z∗−)

] (
ylaη
−
a + ylaη

+∗
a

)
, (A.12)

Mu
12 = v βaL

(
ylaη
−
a + ylaη

+∗
a

)
, (A.13)

Mu
21 = v (z+β

a
R + z−β

a∗
R )

(
ylaη
−
a + ylaη

+∗
a

)
, (A.14)

Mu
22 = v

(
ylaη
−
a + ylaη

+∗
a

)
. (A.15)

To obtain the corresponding formulae forMd, simply replace ylaη−a +ylaη
+∗
a by ylaη+

a +ylaη
−∗
a

everywhere. To obtain the formulae forMe, additionally insert factors of Γa.
Using matrix perturbation theory, we calculate the eigenvalues of these matrices, to

give the mass formulae:

mt = |Mu
33| , (A.16)

mb = |Md
33| , (A.17)

mτ = |M e
33| , (A.18)

mc = εh|Mu
22| , (A.19)

ms = εh|Md
22| , (A.20)

mµ = εh|Me
22| , (A.21)

mu = εhεLεR
|det(Mu)|
|Mu

22|
, (A.22)

md = εhεLεR
|det(Md)|
|Md

22|
, (A.23)

me = εhεLεR
|det(Me)|
|Me

22|
. (A.24)

As described in the main text, the rough hierarchies are, in terms of our small model
parameters εL,R,h, given by m2/m3 ∼ εh and m1/m2 ∼ εLεR.

The CKM matrix is a little more involved. We have, firstly, the unsuppressed CKM
elements on the leading diagonal:

Vud = M
d∗
22Mu

22det(MdMu∗)∣∣Md
22Mu

22det(MdMu)
∣∣ , (A.25)

Vcs = Md
22Mu∗

22∣∣Md
22Mu

22
∣∣ , (A.26)

Vtb = Mu
33M

d∗
33∣∣Mu

33M
d
33
∣∣ . (A.27)
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The next largest elements are the Cabibbo-suppressed CKM elements mixing the first and
second generations, where we emphasise the suppression by εL ∼ λ in blue,

Vus = 1∣∣Md
22Mu

22
∣∣
(
Md

12Mu
22

det(Mu∗)
|det(Mu)| −M

d
22Mu

12

)
εL , (A.28)

Vcd = 1∣∣Md
22Mu

22
∣∣
(
Mu∗

12Md∗
22

det(Md)
|det(Md)| −M

u∗
22Md∗

12

)
εL . (A.29)

Next, the CKM elements mixing the second and third generation are

Vcb = 1∣∣Md
33Mu

22M
u
33
∣∣ (nd2Mu∗

22 |Mu
33| δd −Md

33n
u
2 |Mu

22| δu
)
, (A.30)

Vts = 1∣∣Md
33Md

22M
u
33
∣∣ (nu∗2 Md

22

∣∣∣Md
33

∣∣∣ δu −Mu∗
33 n

d∗
2

∣∣∣Md
22

∣∣∣ δd) , (A.31)

where the suppression by factors of δu,d ∼ λ2 are denoted in red. Finally, we have the CKM
elements mixing the first and third family,

Vub = 1∣∣Md
33
∣∣
(
nd1Mu

22
|Mu

22|
det(Mu∗)
|det(Mu)|δd −

nd2Mu
12

|Mu
22|

δd −
Md

33n
u
1

|Mu
33|

δu

)
εL , (A.32)

Vtd = 1
|Mu

33|

(
nu∗1 Md∗

22∣∣Md
22
∣∣ det(Md)
|det(Md)|δu −

nu∗2 Md∗
12∣∣Md

22
∣∣ δu − Mu∗

33 n
d∗
1∣∣Md

33
∣∣ δd

)
εL , (A.33)

which, as expected, are doubly-suppressed.
For completeness, we conclude this appendix by giving a formula for the Jarlskog

invariant J = Im [VusVcbV ∗ubV ∗cs], which captures the CP -violating phase in the CKM matrix.
First defining

J1 ≡
(
Md

22Mu
12|det (Mu) | −Md

12Mu
22det (Mu∗)

)
, (A.34)

J2 ≡
[
|Mu

33|nd∗1 Mu∗
22det (Mu)− |det (Mu) |

(
|Mu

33|Mu
12n

d
2 + |Mu

22|Md
33n

u
1
δu
δd

)∗ ]
, (A.35)

which are generically O(1) quantities, we have

J =
[

Md
33Mu

22Md∗
22n

u
2

|Mu
22|3|det (Mu)Md

22M
d
33M

u
33|2
− |Mu

33|Md∗
22n

d
2

|Mu
22|2|det (Mu)Md

22M
d
33M

u
33|2

δd
δu

]
J1J2δuδdε

2
L

(A.36)

B Basis of Sp(4) generators

For ease of reference, a basis for the 10-dimensional Lie algebra sp(4), in the defining
representation, is

λ1 = 1
2


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 , λ2 = 1
2


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

 , (B.1)
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λ3 = 1
2
√

2


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , λ4 = 1
2
√

2


0 i 0 0
−i 0 0 0
0 0 0 i

0 0 −i 0

 , (B.2)

λ5 = 1
2


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , λ6 = 1
2


0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 , (B.3)

λ7 = 1
2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , λ8 = 1
2


0 0 0 0
0 0 0 i

0 0 0 0
0 −i 0 0

 , (B.4)

λ9 = 1
2
√

2


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , λ10 = 1
2
√

2


0 0 0 i

0 0 i 0
0 −i 0 0
−i 0 0 0

 (B.5)

The normalization is such that
Tr (λaλb) = 1

2δab . (B.6)
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