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Abstract

Recently exact results for the complete electroweak two-loop contributions to the
effective weak mixing angle were published. This paper illustrates the techniques used
for this computation, in particular the methods for evaluating the loop diagrams and
the proper definition of Z-pole observables at next-to-next-to-leading order. Numerical
results are presented in terms of simple parametrization formulae and compared in de-
tail with a previous result of an expansion up to next-to-leading order in the top-quark
mass. Finally, an estimate of the remaining theoretical uncertainties from unknown
higher-order corrections is given.
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1 Introduction

One of the most important quantities for testing the Standard Model or its extensions is the

sine of the effective leptonic weak mixing angle sin2 θ
lept
eff . In the global fit of the Standard

Model to all relevant electroweak data, the effective leptonic weak mixing angle has a strong
impact on indirect constraints on MH. It can be defined through the effective vector and
axial-vector couplings, vl and al, of the Z boson to leptons (l) at the Z boson pole. Writing
the Z boson-lepton vertex as Γ[Zl+l−] = i lγµ(vl + alγ5)l Zµ, one obtains

sin2 θlept
eff =

1

4

(

1 + Re
vl

al

)

. (1)

Experimentally, sin2 θ
lept
eff is derived from various asymmetries measured around the Z boson

peak at e+e− colliders after subtraction of QED effects. It can also be determined from
asymmetries measured at center-of-mass energies away from the Z pole, requiring a theoret-

ical extrapolation in order to match it to sin2 θ
lept
eff on the Z pole. The current experimental

accuracy, sin2 θlept
eff = 0.23147 ± 0.00017 [1], could be improved by an order of magnitude at

a future high-luminosity linear collider running in a low-energy mode at the Z boson pole
(GigaZ) [2]. This offers the prospect for highly sensitive tests of the electroweak theory [3],
provided that the accuracy of the theoretical prediction matches the experimental precision.

Typically, the theoretical prediction of sin2 θ
lept
eff within the Standard Model is given in

terms of the following input parameters: the fine structure constant α, the Fermi constant Gµ,
the Z-boson mass MZ and the top-quark mass mt (and other fermion masses whenever they
are numerically relevant). The W -boson mass MW is calculated from the Fermi constant,
which is precisely derived from the muon decay lifetime. As a consequence, the computation

of sin2 θ
lept
eff involves two major parts: the radiative corrections to the relation between Gµ and

MW, and the corrections to the Z-lepton vertex form factors. The latter can be incorporated
into the quantity κ = 1 + ∆κ, defined in the on-shell scheme,

sin2 θlept
eff =

(

1 − M2
W/M2

Z

)

(1 + ∆κ) , (2)

At tree-level, ∆κ = 0 and the sine of the effective mixing angle is identical to the sine of the
on-shell weak mixing angle sin2 θW ≡ sW = 1 − M2

W/M2
Z. The quantity ∆κ is only weakly

sensitive to MW.
For the computation of the W -boson mass, the complete electroweak two-loop corrections,

including partial higher-order corrections, have been carried out in Ref. [4–7]. In this report,
the calculation of the corresponding contributions for the form factor ∆κ and combined

predictions for sin2 θ
lept
eff will be discussed.

The quantum corrections to sin2 θ
lept
eff have been under extensive theoretical study over

the last two decades. The one-loop result [8, 9] involves large fermionic contributions from
the leading contribution to the ρ parameter, ∆ρ, which is quadratically dependent on the
top-quark mass mt, resulting from the top-bottom mass splitting [10]. The correction ∆ρ
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enters both in the computation of MW from the Fermi constant (for a discussion see e.g.
Ref. [4, 5]), as well as into the vertex correction factor ∆κ,

1 + ∆κ(α) = 1 +
c2
W

s2
W

∆ρ + ∆κrem(MH), (3)

with c2
W = M2

W/M2
Z, s2

W = 1 − M2
W/M2

Z. The remainder part ∆κrem contains in particular
the dependence on the Higgs-boson mass, MH.

Beyond the one-loop order, resummations of the leading one-loop contribution ∆ρ have
been derived [11, 12]. They correctly take into account the terms of the form (∆ρ)2 and
(∆α∆ρ). Here ∆α is the shift in the fine structure constant due to light fermions, ∆α ∝
log mf , which enters through the corrections to the relation between Gµ and MW, since ∆κ =
∆κ(MW) is a function of MW. These resummation results have been confirmed and extended
by an explicit calculation of the pure fermion-loop corrections at O(α2) (i.e. contributions
containing two fermion loops) [13]. Recently, the leading three-loop contributions to the ρ
parameter of O(G3

µm6
t ) and O(G2

µαsm
4
t ) for large top-quark mass [14], as well as O(G3

µM
4
H)

for large Higgs mass [15] have been computed.

Higher order QCD corrections to sin2 θ
lept
eff have been calculated at O(ααs) [16] and for

the top-bottom contributions at O(αα2
s ) [17] and O(αα3

s ) [18]. The O(αα2
s ) contributions

with light quarks in the loops can be derived from eqs. (29)–(31) in [19] and turn out to be
completely negligible. For the electroweak two-loop contributions, only partial results using
large mass expansions in the Higgs mass [20] and top-quark mass [21–23] have been known
previously. Concerning the expansion in mt, the formally leading term of O(G2

µm4
t ) [21, 22]

and the next-to-leading term of O(G2
µm

2
tM

2
Z) [23] were found to be numerically significant

and of similar magnitude. Therefore, a complete calculation of electroweak two-loop correc-

tions to sin2 θ
lept
eff beyond the leading terms of expansions is desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θ
lept
eff,sub(MH) ≡ sin2 θlept

eff (MH) − sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-
ables [13,24]. They were shown to agree well with the previous results of the top-quark mass
expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections to

sin2 θ
lept
eff . In addition to the corrections to the prediction of the W -boson mass, which have

been analyzed before [4, 5], this includes all two-loop diagrams contributing to the Zl+l−

vertex on the Z pole. The diagrams can be conveniently divided into two groups; fermionic
contributions with at least one closed fermion loop, and bosonic contributions without closed
fermion loops. The genuine fermionic two-loop vertex diagrams are represented by the generic
topologies in Fig. 1 and some examples of bosonic two-loop diagrams are given in Fig. 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].
The results for the fermionic contributions have been confirmed in Ref. [28] and partial
results for the bosonic contributions were also obtained in Ref. [29]. This paper describes
the computational methods and analysis in more detail.

The paper is organized as follows. In section 2, the process e+e− → l+l− is analyzed at

2



(a)

γ,Z,W

(b)
W

W

W

(c)
γ,Z,W

(d)
γ,Z

H

Z

Figure 1: Genuine fermionic two-loop Zl+l− vertex diagrams contributing to sin2 θ
lept
eff .

next-to-next-to-leading order near the Z-boson pole and the O(α2) definition of the sin2 θ
lept
eff

is extracted. Furthermore the general strategies for the calculation of two-loop contributions
to the form factor ∆κ are discussed. Sections 3 and 4 explain the calculation of the fermionic
and bosonic two-loop diagrams in detail. For two-loop vacuum and self-energy diagrams,
well-established techniques exist and have been used for the computation of MW [4–6]. The
new part in this project are the two-loop vertex topologies, which have been treated with
two conceptually independent methods. A discussion of the numerical results and remaining
theoretical uncertainties due to unknown higher orders can be found in section 5. In addition
to the effective leptonic weak mixing angle, results are given also for the effective weak mixing
angle for other final state flavors, i.e. for couplings of the Z boson to other fermions. Finally
the implementation of our new results into the program Zfitter is described.

2 Outline of the calculation

The two-loop corrections to the effective weak mixing angle sin2 θf

eff are part of the next-to-

next-to-leading order corrections to the process e+e− → f f̄ for center-of-mass energies near
the Z-boson mass,

√
s ≈ MZ. To set the scene for this calculation, a framework for the next-

to-next-to-leading order analysis of f f̄ production needs to be established. Furthermore it
has to be checked whether sin2 θf

eff is a well-defined, i.e. gauge-invariant and finite, quantity
at this order in perturbation theory.
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(a)

γ,Z

W

W

(b)

W
W

W

H

(c)

γ,Z,W

(d)

γ,Z,W

Figure 2: Examples of bosonic two-loop Zl+l− vertex diagrams contributing to sin2 θ
lept
eff .

2.1 Definition of the effective weak mixing angle at next-to-next-
to-leading order

In higher-order calculations, occurrences of unstable intermediate particles need to be treated
carefully in order to preserve gauge-invariance and unitarity. Currently, the only scheme
proven to fulfill both requirements to all orders in perturbation theory is the pole scheme
[30–32]. It involves a systematic Laurent expansion around the complex pole M2 = M2 −
iMΓ associated with the propagator of the unstable particle with mass M and width Γ. In
the case of the process e+e− → f f̄ , e 6= f , near the Z pole, the amplitude is written as

A[e+e− → f f̄ ] =
R

s −M2
Z

+ S + (s −M2
Z)S

′ + . . . (4)

with
M2

Z = M
2

Z − iMZΓZ. (5)

Owing to the analyticity of the S-matrix, all coefficients of Laurent expansion, R, S, S ′, . . .
and the pole location M2

Z are individually gauge-invariant, UV- and IR-finite, when soft and
collinear real photon emission is added.

The first term in (4) corresponds to a Breit-Wigner parametrization of the Z line shape
with a constant decay width. Experimentally, however, the gauge-boson mass is determined
based on a Breit-Wigner function with a running (energy-dependent) width,

A ∝ 1

s − M2
Z + isΓZ/MZ

. (6)

As a consequence of these different parameterizations, there is a shift between the experi-
mental mass parameter, MZ, and the mass parameter of the pole scheme, MZ, [33],

M
2

Z = M2
Z/(1 + Γ2

Z/M
2
Z), (7)
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amounting to MZ ≈ MZ − 34.1 MeV. In the following, barred quantities always refer to pole
scheme parameters.

The evaluation of higher order contributions in the pole scheme involves a simultaneous
expansion around the pole location and in the perturbation order α. Since near the Z pole
α, ΓZ and (s −M2

Z) are all of the same order, for a next-to-next-leading order calculation
R needs to be determined to O(α2), S only to O(α), while a tree-level result is sufficient for
S ′.

The effective weak mixing angle is contained in the pole term residue R in (4). For
further use, the following notations for vertex and self-energy form factors are introduced,

Zµ

f

f

≡ Γ[Zµf f̄ ] ≡ zf,µ = iγµ(vf + afγ5), (8)

γµ

f

f

≡ Γ[γµf f̄ ] ≡ gf,µ = iγµ(qf + pfγ5), (9)

V1,µ = γµ,Zµ V2,ν = γν,Zν
= Σµν

V1V2
, (10)

where the shaded blobs stand for one-particle irreducible loop contributions. It is also
convenient to define Zff̄ vertex form factors including the effect of Z-γ mixing,

ẑf,µ(k
2) = iγµ

[

v̂f(k
2) + âf(k

2)γ5

]

≡ iγµ

[

vf(k
2) + af(k

2)γ5

]

− iγµ

[

qf(k
2) + pf(k

2)γ5

] ΣγZ(k2)

k2 + Σγγ(k2)

=
Zµ

f

f

+
Zµ γµ

f

f

+
Zµ γµγµ

f

f

+ . . . ,

(11)
where k is the momentum of the external Z line. With these definitions, the residue R up
to next-to-next-to-leading order can be cast into the form [31]

R = z(0)
e RZZ z

(0)
f +

[

ẑ(1)
e (M2

Z) z
(0)
f + z(0)

e ẑ
(1)
f (M2

Z)
] [

1 + Σ
(1)
γZ

′

(M2
Z)
]

+ ẑ(2)
e (M2

Z) z
(0)
f + z(0)

e ẑ
(2)
f (M2

Z) + ẑ(1)
e (M2

Z) ẑ
(1)
f (M2

Z)

− iMZΓZ

[

ẑ
(1)
e

′

(M2
Z) z

(0)
f + z(0)

e ẑ
(1)
f

′

(M2
Z)
]

,

(12)

RZZ = 1 − Σ
(1)
ZZ

′

(M2
Z)

− Σ
(2)
ZZ

′

(M2
Z) +

(

Σ
(1)
ZZ

′

(M2
Z)
)2

+ iMZΓZ Σ
(1)
ZZ

′′

(M2
Z)

− 1

M4
Z

(

Σ
(1)
γZ(M2

Z)
)2

+
2

M2
Z

Σ
(1)
γZ(M2

Z) Σ
(1)
γZ

′

(M2
Z).

(13)
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Here the Lorentz indices have been suppressed. Based on the definition of sin2 θ
lept
eff in

eqs. (1),(2), the two-loop result of the effective weak mixing angle is derived from R as

sin2 θf
eff ≡

(

1 − M
2

W

M
2

Z

)

Re
{

1 + ∆κf
Z(M2

Z)
}

=

(

1 − M
2

W

M
2

Z

)

Re

{

1 +
â

(1)
f v

(0)
f − v̂

(1)
f a

(0)
f

a
(0)
f (a

(0)
f − v

(0)
f )

∣

∣

∣

∣

∣

k2=M2

Z

+
â

(2)
f v

(0)
f a

(0)
f − v̂

(2)
f (a

(0)
f )2 − (â

(1)
f )2 v

(0)
f + â

(1)
f v̂

(1)
f a

(0)
f

(a
(0)
f )2(a

(0)
f − v

(0)
f )

∣

∣

∣

∣

∣

k2=M2

Z

}

.

(14)

Since the pole scheme is based on a formal Laurent series of the physical amplitude, all
coefficients in the expansion and thus the effective weak mixing angle are manifestly gauge-
invariant and UV-finite. While the pole scheme formalism does not make any statement
about IR finiteness, it can be checked that eq. (14) is also a IR-safe quantity, i.e. all IR-
divergencies from photon exchange diagrams cancel. Similarly, collinear divergencies (or
Sudakov factors for massive fermions) also cancel. This can be explained by the fact that
the QED contributions in the soft and collinear limits factorize from massive loop effects
and therefore drop out in the ratio of the vector and axial-vector form factor in eq. (1). At
the diagrammatic level, this cancellation of divergencies occurs not only between two-loop
diagrams, but also between 2-loop and products of 1-loop diagrams, for example

Z
Z γ =

Z
γ + finite, with ⊗ =

Z
Z . (15)

Experimentally, the effective weak mixing angle is determined from measurements of
forward-backward and left-right asymmetries of the process e+e− → f f̄ . The derivation
of sin2 θf

eff from these asymmetries requires the subtraction of effects from QED and QCD
corrections, s-channel photon exchange and γ-Z interference, off-shellness of the Z-boson and
box contributions. These non-resonant effects enter into the amplitude through the next-to-
leading term S in the pole expansion (4), and need to be computed up to one-loop order.
In order to relate the O(α2) result (14) for sin2 θf

eff to the value quoted by the experimental
analyses, it needs to be checked that the subtracted effects are consistent with the pole
scheme prescription.

In experimental studies, the program Zfitter [35] is widely used for prediction of the
contributions from QED and QCD corrections, s-channel photon exchange and γ-Z interfer-
ence, off-shellness of the Z-boson and box contributions. In Zfitter, the radiative correc-
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tions to the process e+e− → f f̄ are parametrized by four form factors ρef , κe, κf , κef ,

A[e+e− → f f̄ ] = 4πi α
QeQf

s
γµ ⊗ γµ

+ i

√
2GµM

2
Z

1 + iΓZ/MZ
I(3)
e I

(3)
f

1

s − M
2

Z + iMZΓZ

× ρef

[

γµ(1 + γ5) ⊗ γµ(1 + γ5)

− 4|Qe|s2
W κe γµ ⊗ γµ(1 + γ5)

− 4|Qf |s2
W κf γµ(1 + γ5) ⊗ γµ

+ 16|QeQf |s4
W κef γµ ⊗ γµ

]

(16)

Note that apart from the Z propagator, the gauge boson masses are defined according to
the running width prescription (un-barred symbols) instead of the pole scheme definition
(barred symbols). As a result the form factors κe, κf , κef can differ from the corresponding
form factors κe, κf , κef in the pole scheme. In the following, the relation between the two
sets of quantities will be worked out.

Zfitter includes all radiative corrections to e+e− → f f̄ consistently at the one-loop
level with some leading two-loop contributions. However, it has not been designed for a
complete next-to-next-to-leading order analysis and inconsistencies could occur at this level.
In Zfitter QED and QCD corrections are included via a convolution of the cross-section.
They will be discussed in more detail later. The effects from s-channel photon exchange,
γ-Z interference, off-shellness of the Z-boson and massive (non-QED) box contributions are
taken into account by the formulae [35]

κef(s) = κe(s)κf(s) −
M2

Z − s

s

1

(a
(0)
e − v

(0)
e )(a

(0)
f − v

(0)
f )

×
[

q(1)
e q

(0)
f + q

(1)
f q(0)

e − p
(1)
f q(0)

e

v
(0)
f

a
(0)
f

− p(1)
e q

(0)
f

v
(0)
e

a
(0)
e

− q(0)
e q

(0)
f

Σ
(1)
γγ

s
+ boxes

]

, (17)

κe,f(s) = κe,f
Z (s) +

M2
Z − s

s

[

q
(0)
e,f

a
(0)
e,f − v

(0)
e,f

p
(1)
f,e

a
(0)
f,e

+ boxes

]

, (18)

κf
Z(s) = κf

Z(M2
Z) + (s − M2

Z)
â

(1)
f

′

(M2
Z) v

(0)
f − v̂

(1)
f

′

(M2
Z) a

(0)
f

a
(0)
f (a

(0)
f − v

(0)
f )

. (19)
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From the pole expansion scheme one obtains in contrast to eqs. (17),(18)

κef(s) = κe(s)κf(s) −
M2

Z − iMZΓZ − s

s

1

(a
(0)
e − v

(0)
e )(a

(0)
f − v

(0)
f )

×
[

q(1)
e q

(0)
f + q

(1)
f q(0)

e − p
(1)
f q(0)

e

v
(0)
f

a
(0)
f

− p(1)
e q

(0)
f

v
(0)
e

a
(0)
e

− q(0)
e q

(0)
f

Σ
(1)
γγ

s
+ boxes

]

, (20)

κe,f(s) = κe,f
Z (s) +

M2
Z − iMZΓZ − s

s

[

q
(0)
e,f

a
(0)
e,f − v

(0)
e,f

p
(1)
f,e

a
(0)
f,e

+ boxes

]

. (21)

with

κf = κf

[

1 +
c2
W

s2
W

(

Γ2
W

M2
W

− Γ2
Z

M2
Z

)]

, (22)

κef = κef

[

1 +
c2
W

s2
W

(

Γ2
W

M2
W

− Γ2
Z

M2
Z

)]2

, (23)

Note that for next-to-next-to-leading accuracy it is not necessary to distinguish between

barred and un-barred symbols in the radiative corrections, since M
2

Z − M2
Z = O(α2).

From eqs. (17–21) one finds a difference for the derivation of the value of sin2 θf

eff between
Zfitter and the pole scheme:

sin2 θf
eff,Zfitter

= s2
W Re

{

κf
Z(M2

Z)
}

(24)

sin2 θf
eff,pole = s2

W Re
{

κf
Z(M2

Z)
}

= sin2 θf
eff,Zfitter

− ΓZ

MZ

q
(0)
f

a
(0)
e (a

(0)
f − v

(0)
f )

Im
{

p(1)
e

}

(25)

with

s2
W =

(

1 − M
2

W

M
2

Z

)

= s2
W

[

1 +
c2
W

s2
W

(

Γ2
W

M2
W

− Γ2
Z

M2
Z

)]

−1

. (26)

A similar deviation is found for the contribution of the form factors κef , κef between the two
schemes, which however cannot be expressed directly as a shift in sin2 θf

eff.
In principle, an additional discrepancy arises from the box contributions. The massive

boxes with Z and W boson exchange are included in Zfitter at the one-loop level, which is
sufficient for the next-to-next-to-leading order calculation in the pole scheme. Nevertheless,
in (21) an extra term stemming from the box contributions arises, which is proportional to
iMZΓZ. However, this term does not contribute to the squared matrix element since the
massive boxes have no absorptive part1.

1A special case is Bhabha scattering, f = e, where additional box and t-channel diagrams contribute. For
the purpose of this work, the subtraction of these contributions has not been analyzed in detail, justified by
the fact that the e+e− final state has a relatively small impact on the determination of the effective weak
mixing angle at present. In general, a more careful analysis of this process should be done in the future.
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Besides the contributions from s-channel photon exchange and boxes, the translation be-
tween the measured asymmetries and the effective weak mixing angle requires the subtraction
of QED and QCD corrections to the external fermions.

In the left-right asymmetry, the effect of final state QED and QCD corrections and initial-
final state QED interference cancels [36] up to next-to-next-to-leading order. Initial-state
QED radiation can be treated through convolution with a radiator function and has been
computed including the exact O(α2) corrections and higher-order leading contributions [37].

For the forward-backward asymmetry on the Z pole, the contribution from final-state
virtual and soft photon radiation vanishes for massless external fermions [12, 36, 38]. This
statement is valid up to corrections of the order O(α ∆Eγ/

√
s), where ∆Eγ is the soft-

photon cut-off, and terms of order O(α mf/
√

s, where mf is the final-state fermion mass.
Nevertheless, the complete one-loop contributions to final-state radiation are known and
taken into account in the extraction of the effective weak mixing angle [35]. The leading
effect of final-state fermion masses of O(α mf/

√
s) is also known and included [39], with

the remaining effects of order O(α2∆Eγ/
√

s), O(α2mf/
√

s, O(α m2
f/s) being numerically

negligible for the two-loop analysis for sin2 θf

eff under study here. Multiple hard final-state
photon radiation is taken into account by Monte-Carlo methods, see e.g. [40], with a small
numerical error. QCD final state effects are treated similarly to the QED contributions.

Interference of initial-final state photon radiation is also known up to order O(α)for the
forward-backward asymmetry. For sufficiently loose soft-photon cut, ∆Eγ

>∼ ΓZ, the initial-
final interference of soft and virtual photons at the Z pole is suppressed by the width ΓZ of
the Z boson [12,38], so that the O(α2) contribution is effectively of order O(α2ΓZ/MZ), i.e.
beyond the next-to-next-to-leading order corrections under study in this work. As before,
initial-state radiation to the forward-backward asymmetry is included up to O(α2), and
partially beyond, by means of a convolution. Thus while a complete next-to-next-to-leading
order calculation of QED corrections to the forward-backward asymmetry is not available,
the present treatment of QED corrections is sufficient for a two-loop analysis of sin2 θf

eff.
Nevertheless, a complete O(α2) calculation of QED effects would be desirable.

In summary, it was found that the treatment of non-resonant contributions in Zfitter

is not consistent with the pole scheme at next-to-next-to-leading order. As a result, the
value of sin2 θf

eff needs to be corrected by a shift

s2
W δκf = − ΓZ

MZ

q
(0)
f

a
(0)
e (a

(0)
f − v

(0)
f )

Im
{

p(1)
e

}

. (27)

Numerically this shift amounts to s2
W δκf ≈ 1.5 × 10−6, well below the current experimental

error of 1.7 × 10−4 [1]. Therefore, this shift will be neglected in the analysis in section 5. It
was checked that a similar shift δκef in the form factor κef also leads to a negligible numerical
effect on sin2 θf

eff.

2.2 Renormalization

In this work the on-shell renormalization scheme is employed. It defines the mass parameters
and coupling constants in close relation to physical observables. The renormalized squared
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masses are defined as the real part of the propagator poles, while the external fields are renor-
malized to unity at the position of the poles. The electromagnetic charge is defined as the
coupling strength of the electromagnetic vertex in the Thomson limit. Explicit expressions
for the necessary counterterms can be found in Ref. [5].

As described in the previous section, the computation of radiative corrections to the
effective weak mixing angle entails the calculation of loop contributions to the Zff̄ vertex.
In principle this involves a field renormalization for the Z boson, which appears as an external
particle of the vertex. Beyond one-loop order, the treatment of field renormalizations for
unstable particles proves to be not straightforward [41]. However, in the calculation of
sin2 θf

eff all occurrences of the Z boson field renormalization drop out between the vector and

axial-vector form factors in eq. (14). The independence of sin2 θf

eff on the total normalization
of the Z boson field strength can already be seen in eq. (1), where the effective weak mixing
angle is defined through the ratio of vertex form factors.

While the on-shell counterterms cancel the UV-divergencies in the virtual loop correc-
tions, all IR- and collinear divergencies drop out in the quantity sin2 θf

eff, as explained in
the previous section. The computation of the loop integrals is performed using dimensional
regularization. With this regularization scheme, special care is needed for the treatment of
the γ5 matrix in triangle fermion sub-loops. A practical solution to this problem will be
discussed in detail in section 3.3.

2.3 Preliminaries

Throughout the calculation of the two-loop corrections, the masses and Yukawa couplings
of all fermions but the top quark are neglected. The quark mixing matrix is assumed to
be diagonal. The vector and axial-vector components of the vertex corrections ẑf,µ were
projected out by contraction with suitable projection operators,

v̂f(k
2) =

1

2(2 − D)k2
Tr[γµ p/1 ẑf,µ(k

2) p/2], (28)

âf(k
2) =

1

2(2 − D)k2
Tr[γ5 γµ p/1 ẑf,µ(k2) p/2], (29)

where D is the space-time dimension and p1,2 are the momenta of the external fermions. As
a result, only scalar integrals remain after projection, but there are non-trivial structures of
scalar products in the numerators of the integrals, which require further treatment.

3 Calculation of fermionic two-loop vertex diagrams

The computation of the two-loop corrections to the effective weak mixing angle can be
divided into the calculation of the vertex loop contributions to the Zff̄ vertex and the
on-shell counterterms. The latter involve two-loop vacuum and self-energy contributions,
similar to the two-loop corrections to the W -boson mass [4,5], while the former also contain
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Z

t

t

t
Figure 3: Example of a two-loop vertex diagram
with a top-quark sub-loop.

two-loop vertex topologies as a new complication. The generic two-loop vertex diagrams
with closed fermion loops are shown in Fig. 1.

The evaluation of the two-loop vertex contributions has been performed with two inde-
pendent methods, in order to allow for a non-trivial check of the result. One method is based
on large mass expansions for the diagrams involving internal top quark propagators and dif-
ferential equations for the diagrams with only light fermions. The second method makes use
of numerical integrations derived from dispersion relations and Feynman parameterizations.

3.1 Large top-quark mass expansions and analytical results

This approach divides the fermionic two-loop vertices in two categories: diagrams with
internal top quark lines and diagrams that have only light fermion lines.

Observing that the ratio x = M2
Z/m2

t ∼ 1/4 is a small number, the top-quark contri-
butions can be conveniently calculated by performing an expansion in x. The coefficients
of this large-mass expansion decompose completely into one-loop integrals and two-loop
vacuum integrals, for which analytical formulae are available in the literature [42].

An example of a typical scalar two-loop vertex diagram is shown in Fig. 3. The expansion
of this diagram reads

x
ζ(2)

3
+ x2

(

ζ(2)

12
− 5

36
+

1

12
log x

)

+ x3

(

ζ(2)

45
− 79

1200
+

1

20
log x

)

+ . . . (30)

Numerically this amounts to

0.1483 − 0.0081 − 0.0019 + 0.0003 + . . . (31)

The excellent convergence of this series is typical for all diagrams that only contain neutral
current exchange in the loop. Diagrams involving charged current exchange converge more
slowly, which is an effect of the top-bottom mass splitting.

For this work, the large-mass expansion is executed up to order x5 = M10
Z /m10

t , which
yields an overall precision of 10−7, by far sufficient for practical purposes. This high accuracy
is a substantial improvement over the previous work in Ref. [23], where only the first two
terms in an expansion for large mt were calculated. Please note that the large-mass expansion
was only used for the two-loop vertex diagrams. The two-loop counterterms, which in
addition to the mass scales MW, MZ and mt also involve the parameter MH, were evaluated
using one-dimensional integral representations as in Refs. [43,44]. In principle it would also
be possible to compute the counterterms using large-mass expansions. However, since in
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LF1(p2, m2) =
p

m

Figure 4: Example of scalar prototype in-
tegral. The thick line is massive with mass
m, while the thin lines represent massless
propagators.

general analytical results only exist for two-loop diagrams with up to two different scales,
this would require a simultaneous expansion in mt and MH, as in Ref. [23, 45]. In order
to obtain a precise result, the one-dimensional integral representations are more suitable
instead.

The contributions with light fermions contain only the scales MW and MZ and are there-
fore functions of only one dimensionless variable ω = M2

W/M2
Z. In this case it is possible to

evaluate all contributions analytically using the differential equation method [47]. The final
result is thus expressed through polylogarithms and generalized polylogarithms.

As a simple example consider the scalar integral in Fig. 4. Using integration-by-parts
identities [48], the following differential equation can be derived:

p2 d

dp2







 =
1

2

p2

p2 + m2

(

(4 − D)(4 + 5
m2

p2
)









+ (10 − 3D)







− (2 − D)

[ ]

)

.

(32)

Here the thick lines represent massive propagators with mass m and the thin lines denote
massless propagators. Besides the integral LF1 under study, the differential equation involves
a simpler scalar vertex integral and a vacuum integral on the right-hand side. Feeding in
analytical expression for these integrals from the literature [42,49], the differential equation
can be solved in terms of Nielsen’s polylogarithms [50]. The finite part of LF1 reads

LF1(p2, m2) = − Li2(−x)
(

−2 + 2 log(m2) + 3 log(−x) + log(1 + x)
)

+ 4Li3(−x) − S1,2(−x)

+
1

2
log(1 + x)

[

2ζ2 − log(−x)
(

(−4 + 4 log(m2) + 2 log(−x) + log(1 + x)
)]

,

(33)
with x = p2/m2 and Nielsen’s polylogarithm S1,2 defined in Ref. [51]. The integral LF1 has
also been calculated in Ref. [52]. However, some of the prototype integrals needed for this
project have not been known before and were computed for the first time in this work. All
integrals have been checked by different expansions in physical and unphysical regimes.

Several relevant integrals were also recently computed in Ref. [53]. However, their results
were presented in terms of generalized harmonic polylogarithms, which in general involve
numerical integrations for the numerical evaluation.

After performing the Dirac and Lorentz algebra for the relevant two-loop vertex diagrams,
the result contains a large number of different scalar integrals with terms in the numerator
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Figure 5: Scalar master integrals for diagrams with a light fermion loop. Thick lines indicate
massive gauge boson propagators, while thin lines correspond to light fermions of photons,
which are taken massless. The dot in the last diagram indicates that this propagator appears
two times.

that cannot be cancelled against any of the propagators in the denominator. Here it is
advantageous to perform an algebraic reduction to a minimal set of master integrals.

For the reduction to master integrals, the Laporta algorithm is used [54]. It is based on
integration-by-parts [48] and Lorentz identities [55], which establish linear relations between
scalar loop integrals. For a sufficiently large set of these relations, the linear equation system
can be solved in order to express the more complicated integrals with non-trivial numerators
in terms of a set of simple master integrals with unit numerators. This reduction algorithm
is implemented in the C++ library IdSolver [56], which allows for a fast evaluation of linear
systems involving several thousand equations.

The set of master integrals that appear within this calculation for the light fermion
contributions is summarized in Fig. 5. Analytical expressions were found by the differential
equation method for all but the fourth topology in Fig. 5, which was evaluated numerically.

3.2 Semi-numerical integrations

The second method employs numerical integrations for the master integrals. This technique
is based on a dispersion representation of the one-loop self-energy function B0,

B0(p
2, m2

1, m
2
2) =

∫

∞

(m1+m2)2
ds

∆B0(s, m
2
1, m

2
2)

s − p2
, (34)

∆B0(s, m
2
1, m

2
2) = (4πµ2)4−D Γ(D/2 − 1)

Γ(D − 2)

λ(D−3)/2(s, m2
1, m

2
2)

sD/2−1
, (35)

where D is the space-time dimension and λ(a, b, c) = (a− b− c)2 − 4bc. Using this relation,
any scalar two-loop integral T with a self-energy sub-loop as in Fig. 6 (a) can be expressed
as [43]

TN+1(pi; m
2
i ) = −

∫

∞

s0

ds ∆B0(s, m
2
N , m2

N+1)

×
∫

d4q
1

q2 − s

1

(q + p1)2 − m2
1

· · · 1

(q + p1 + · · ·+ pN−1)2 − m2
N−1

.

(36)

Here the integral in the second line is a N -point one-loop function, and the integration over
s is performed numerically. While in principle it is also possible to introduce dispersion
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p1 p2

pN-1pN

m1

mN-1

mNmN+1
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p1+p2

p2

1

23

4

5

→
xp1

p1+p2

p2+xp1

12
3

4

5

(a) (b)

Figure 6: (a) General representation of a two-loop scalar diagram with self-energy sub-loop.
(b) Reduction of triangle sub-loop to self-energy sub-loop by means of Feynman parameters.

relations for triangle sub-loops [44, 57], it is technically easier to reduce them to self-energy
sub-loops by introducing Feynman parameters [58],

[(q + p1)
2 − m2

1]
−1 [(q + p2)

2 − m2
2]

−1 =

∫ 1

0

dx [(q + p̄)2 − m2]−2

p̄ = x p1 + (1 − x)p2, m2 = xm2
1 + (1 − x)m2

2 − x(1 − x)(p1 − p2)
2.

(37)

This is indicated diagrammatically in Fig. 6 (b). The integration over the Feynman parame-
ters is also performed numerically. As a result, all master integrals for the vertex topologies
can be evaluated by at most 3-dim. numerical integrations.

The basic scalar two-loop integrals might contain UV- and IR-divergencies. These need
to be subtracted before the numerical integration can be carried out. An elegant method to
remove the divergencies is by subtracting a term from the integrand that can be integrated
analytically. This can be illustrated by the subtraction of UV divergencies in the following
example:

p1

p1+p2

p2

12

3

4

= 12

3

4

+

p1

p1+p2

p2

3

4

−
3

4

+









p1

p1+p2

p2

12

3

4









finite

. (38)

The UV divergent part of the two-loop vertex diagram can be identified by the sum of the
same diagram with zero external momenta and the contribution from sub-loop renormaliza-
tion. The first term corresponds to a two-loop vacuum diagram for which analytical formulae
are available in the literature [42], while the second and third terms are products of one-loop
functions,

p1

p1+p2

p2

3

4

= B0

(

(p1 + p2)
2, m2

3, m
2
4

)

× B0

(

m2
4, m

2
1, m

2
2

)

, (39)

3

4

= B0

(

0, m2
3, m

2
4

)

× B0

(

m2
4, m

2
1, m

2
2

)

. (40)
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Here the momentum scale m2
4 for the sub-loop counterterm was chosen to be able to handle

the case 0 = m1 = m2 6= m4. Subtracting these terms in the integrand of the two-loop
vertex integral results in a finite contribution, that can be integrated numerically,








p1

p1+p2

p2

12

3

4









finite

= −
∫

∞

(m1+m2)2
ds ∆B0(s, m

2
1, m

2
2)

×
[

C0

(

(p1 + p2)
2, p2

1, p
2
2, m

2
3, m

2
4, s
)

− C0

(

0, 0, 0, m2
3, m

2
4, s
)

+
1

s − m2
4

[

B0

(

(p1 + p2)
2, m2

3, m
2
4

)

− B0

(

0, m2
3, m

2
4

)

]

]

.

(41)

For all other two-loop vertex master integrals, the divergent parts can be removed in a similar
fashion.

As before, the reduction of integrals with irreducible numerators to a small set of master
integrals is accomplished by using integration-by-parts and Lorentz-invariance identities,
which were implemented in an independent realization of the Laporta algorithm within
Mathematica.

3.3 Diagrams with fermion loop triangles and treatment of γ5

Diagrams with a fermion triangle sub-loop pose a special problem in conjunction with the
use of dimensional regularization. The fermion triangle loop involves terms like

Tr(γαγβγγγδγ5) = 4i ǫαβγδ, (42)

which cannot be extended to D dimensions simultaneously with the anti-commutation rule
{γµ, γ5} = 0. However, renormalizability of the Standard Model demands that terms orig-
inating from expressions like eq. (42) are always UV-finite in any two-loop diagram. As
a consequence, the diagrams with a fermion triangle loop can be treated in two steps [4]:
First the complete diagrams are calculated using naive dimensional regularization with anti-
commuting γ5, where the trace in eq. (42) is zero. The finite contributions resulting in epsilon
tensors are computed independently in four dimensions, and finally the two contributions
are added.

An additional complication arises from diagrams with internal photon lines and massless
external fermions, Fig. 7, which could give rise to soft-collinear divergencies. While these soft
and collinear divergencies are spurious singularities, thus dropping out in the total result,
they result in inconsistencies if dimensional regularization is used. In this case the contri-
butions involving epsilon tensors from the fermion triangle cannot be treated consistently in
four dimensions anymore.

In this work, the soft and collinear divergencies in these diagrams were instead regulated
with a photon mass. In the complete result, the limit of zero photon mass was taken by
means of an expansion, involving a careful treatment in the mixed Sudakov/threshold regime.
The result for the diagrams with two photons has been checked against Ref. [46].
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Figure 7: Diagrams with fermion triangle sub-loops and soft-collinear divergencies.

3.4 Checks

The master integrals have been checked with published results where applicable [52,53]. Some
master integrals were tested by means of Mellin-Barnes representations, see also [59–61], and
with a low-momentum expansion. In addition, complete diagrams were tested with a low-
momentum expansion. In the comparison of the two methods explained in the previous
sections, complete agreement was found.

4 Calculation of bosonic two-loop vertex diagrams

As explained in the previous chapter, the calculation of the bosonic two-loop corrections
fall into two categories, the bare vertex diagrams and the on-shell renormalization terms.
The computation of the renormalization counterterms has been established previously [5,6],
whereas the calculation of the vertex diagrams will be addressed here. In our case, this
involves massive two-loop three-point function with one massive external leg and up to three
different mass scales.

Contrary to the fermionic corrections, the bosonic diagrams do not depend on the top
quark. On the other hand, there is a dependence on the Higgs boson mass, which is not a
fixed parameter and can assume a broad range of values. Due to complexity of the problem
with several hundred diagrams and many more different algebraic integral structures, the
calculation cannot be performed in a straightforward way with any known computational
method. Here the task is approached by using an expansion in the various parameters in
order to obtain a result expressed through single scale integrals, which have to be evaluated
numerically in a final step.

In a first step, we apply an expansion in the difference of the masses of the W and Z
bosons, where the expansion parameter is just s2

W. Since there are diagrams where there is a
threshold when MW = MZ, the appearance of divergences at higher orders in the expansion
is inevitable. In this case, we apply the method of expansions by regions, see [62]. In this
approach, one analyzes the momentum regions which can contribute to the integral and
expands the integrand in each region with a different expansion parameter. The two regions
that contribute to the result come from the ultrasoft momenta, q1,2 ∼ s2

WMZ, and hard
momenta, q1,2 ∼ MZ, where q1,2 are the loop momenta. Then the reduction to the set of
master integrals proceeds with Integration-By-Parts identities [48] solved with the Laporta
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algorithm [54] as implemented in the IdSolver library [56].
The MH dependence is treated in two regimes. For low values of MH an expansion in the

mass difference between MH and MZ is used, with the expansion parameter defined to be

s2
H = 1 − M2

H

M2
Z

, (43)

where this time no non-trivial thresholds are encountered. It is found that a good precision
is achieved by performing the expansion to the sixth order in s2

W and s2
H. The second regime

is for large values of MH ≫ MZ, where a large mass expansion [62] is used.
The resulting single scale master integrals are treated with various methods, usually with

two or three different ones for test purposes. Most integrals can be obtained with numerical
integrations based on dispersion relations as described in section 3.2. The advantage of
this method is that with reasonable investment of computer time, it can be pushed to
high precision, which is required since large numerical cancellations are observed between
individual integrals. Diagrams of simpler topologies can also be evaluated with differential
equations [63, 64] and large mass expansions. For more complicated topologies, Mellin-
Barnes representations are employed, using the MB package [59], see also [60, 61]. After
simplification, the Mellin-Barnes representations can be evaluated by numerical integrations
or infinite series. In principle, this method could be used for all scalar integrals, however,
depending on the mass configuration, the integration and/or the series evaluation does not
converge. The convergence behavior can be improved by rotating the integration contours
into the complex plane, but this also solves the problem only in a few cases. Whenever
possible the results were cross-checked with sector decomposition [65].

The reduction to master integrals can occasionally can produce spurious 1/(D− 4) poles
in the coefficients of some master integrals. In principle, this problem can be avoided by
choosing an appropriate basis of master integrals, at the expense, however, that some of these
integrals are more complicated. Here, on the other hand, a basis was chosen that introduces
only relatively few spurious poles, but in front of simple integrals. Since it is advantageous
to check the cancellation of divergencies exactly, it was thus necessary to evaluate the finite
pieces of some master integrals analytically. These integrals are presented in Ref. [66].

As a final algebraic check of the whole procedure, the cancellation of the gauge parameter
dependence in a general covariant Rξ gauge was verified. Due to the enormous complexity of
the intermediate expressions, this test was only possible for the first orders in the expansion,
but nevertheless allowed a non-trivial cross-check between different diagram topologies.

5 Numerical Results

In order to arrive at a precise prediction for the effective weak mixing angle, the electroweak
corrections of one- and two-loop order are combined with one- and two-loop QCD corrections
[16, 17], and leading three-loop corrections of order O(G3

µm
6
t ) and O(G2

µαsm
4
t ) [14]. Other

higher-order corrections to the rho parameter of order O(G3
µM

4
H) [15] and O(Gµm

2
t α

3
s ) [18]

are very small (for MH < 1 TeV) and thus not included in the numerical analysis. The result
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Input parameter Value

MW 80.404 ± 0.030 GeV

MZ 91.1876 ± 0.0021 GeV

ΓZ 2.4952 GeV

mt 172.5 ± 2.3 GeV

mb 4.85 GeV

∆α(M2
Z) 0.05907 ± 0.00036

αs(MZ) 0.119 ± 0.002

Gµ 1.16637 × 10−5 GeV−2

Table 1: Experimental input parameters used in the numerical evaluation; from Refs. [67,68].

is expressed as a perturbative expansion in α, not Gµ.Instead, all higher-order reducible
contributions, that arise from terms proportional to ∆α and ∆ρ, are included explicity at
the given loop order in the computation. A finite b quark mass was retained in the O(α)
and O(ααs) contributions, but neglected in all higher-order terms.

In Tab. 2, the effects of the various loop contributions on the vertex form factor ∆κ are
shown for the input parameters in Tab. 1. ∆α is defined as the real part of the shift of the
photon vacuum polarization function Π(q2) between q2 = 0 and q2 = M2

Z that stems from
light fermions,

∆α = Re
{

Πlf(0) − Πlf(M
2
Z)
}

, Π(q2) = Πlf(q
2) + Πrest(q

2). (44)

It is important to note that the experimental values for the W and Z boson masses in
Tab. 1 correspond to a Breit-Wigner parametrization with a running width, that have to be
translated to the pole mass scheme used in the loop calculations [4]. In effect, this translation
results in a downward shift [69] of MZ by 34 MeV and MW by 28 MeV, respectively.

As evident from the table, the fermionic and bosonic contributions to ∆κ are of the same
magnitude. This changes, however, when expressing the result through the Fermi constant
Gµ as input parameter. For this, the corresponding loop corrections, ∆r, to the W boson
mass need to be incorporated,

M2
W

(

1 − M2
W

M2
Z

)

=
πα√
2Gµ

(1 + ∆r) . (45)

The inclusion of the corrections to MW lead to an enhancement of the fermionic two-loop

corrections to sin2 θ
lept
eff , but to a partial cancellation between the bosonic two-loop corrections

in ∆κ and ∆r. The effect of the different loop orders in sin2 θ
lept
eff with Gµ as input parameter

is summarized in Fig. 8. The figure shows that the contribution from the fermionic two-loop
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MH O(α) O(α2)ferm O(α2)bos O(ααs) O(αα2
s ) O(α2αsm

4
t ) O(α3m6

t ) red.

[GeV] [10−4]

100 413.33 1.07 -0.74 -35.58 -7.25 1.15 0.14 0.69

200 394.02 -0.32 -0.47 -35.58 -7.25 1.90 0.07 0.70

600 354.06 -2.89 0.17 -35.58 -7.25 3.70 0.08 0.72

1000 333.16 -2.61 1.11 -35.58 -7.25 4.53 0.91 0.72

Table 2: Loop contributions to ∆κ with fixed MW as input parameter as a function of the
Higgs mass MH. Here ”red.” corresponds to reducible three-loop contributions stemming
from ∆α and ∆ρ.

corrections amount to roughly ∼ 10−3, while the resulting effect of the bosonic two-loop
corrections is about or less than ∼ 10−5, so that the two curves for O(α+ααs +αα2

s +α2
ferm)

and O(α + ααs + αα2
s + α2

ferm + α2
bos) practically overlap.

For the analysis in the following sections, the new full result always includes terms of the
orders α, α2, ααs, αα2

s , α2αsm
4
t and α3m6

t ,

sin2 θlept
eff

∣

∣

full
= sin2 θlept

eff

∣

∣

α+α2+ααs+αα2
s+α2αsm4

t
+α3m6

t

. (46)

5.1 Comparison with previous results

The most precise previous result for the two-loop electroweak corrections to sin2 θ
lept
eff was

obtained from the calculation of the next-to-leading term O(G2
µm

2
tM

2
Z) in an expansion for

large values of the top-quark mass mt [23]. The impact of the new result, as defined in
eq. (46), is shown in Tab. 3 (a) by comparing with the previous result as in the fitting
formula in Ref. [70] and in the implementation of the program Zfitter 5.10 (and later
versions) [35].

A more detailed analysis reveals that there are several sources for the deviations listed
in Tab. 3 (a). First of all, there is the effect of the truncated series expansion in m−2

t ,
which was evaluated only up to order m2

t in Ref. [23]. In addition, the genuine light-fermion
two-loop contributions were not included in that work. Moreover, the implementation of
the correction form factor ∆r to the W mass and the parametrization with Gµ instead of
α in Ref. [23] introduces higher-order terms that can be sizeable. Here it is important to
note that the OSI scheme in Ref. [23], which is the basis for the implementation of these
corrections in ZFITTER, uses the MS definition for ∆ρ, which is numerically larger than the
leading m2

t term, so that the resummation effects of ∆ρMS are rather large. Finally, Zfitter

versions before 6.40 use an outdated implementation of the QCD corrections. Since all these
contributions are non-negligible at the current level of precision, it is interesting to study
them separately.

In particular, using the results of section 3.1 the effect of the truncated top-mass expan-
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Figure 8: Contribution of several orders of radiative corrections to the effective leptonic weak

mixing angle sin2 θ
lept
eff as a function of the Higgs mass MH. The tree-level value is not shown.

sion is shown in Tab. 3 (b)2. It turns out that the expansion converges quite well for realistic
values of mt and MH. However, the terms beyond the order m2

t induce a difference of 4.3% in
the two-loop corrections with top-bottom loops, corresponding to a shift of about 0.2×10−4

in sin2 θ
lept
eff , which is roughly a quarter of the total difference reported in Tab. 3 (a). As a

cross-check, also the result for very large values of mt and MH are shown in Tab. 3 (b), to
illustrate that in this case the series converges much faster.

5.2 Error estimate

While the inclusion of the fermionic two-loop corrections is a substantial improvement of

the prediction of sin2 θ
lept
eff in the Standard Model, uncertainties from missing higher order

contributions can still be sizeable. Here we try to give an estimate of the error induced
by these unknown contributions. The most relevant missing higher order contributions are
corrections of the order O(α2αs) beyond the leading m4

t term, O(α3) beyond the leading m6
t

term and O(αα3
s ). Since the final prediction for sin2 θ

lept
eff is based on Gµ as input, the loop

effects in the both quantities ∆r (for the computation of MW) and ∆κ (for the Zl+l− vertex
corrections) need to be considered.

When combining the two form factors, it turns out that there are some cancellations
between the known corrections to MW and the Z vertex. It is expected that similar cancel-
lations occur when adding an additional QCD loop, since QCD corrections enter with the
same relative sign in the corrections to MW and the Z vertex. Since the dominant missing

2As a by-product of this comparison, we found a typo in Ref. [45], where a term 3

2
m2

t/(M2
Zs2

W) log c2
W is

missing in the expression for MH ≫ mt.
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(a)

MH

[

∆ sin2 θlept
eff

]

ZFITTER

[

∆ sin2 θlept
eff

]

[70]

[GeV] [10−4] [10−4]

100 -0.45 -0.40

200 -0.69 -0.72

600 -1.17 -0.94

1000 -1.60 -1.28

(b)

mt, MH ∆[m4
t ] ∆[m2

t ] ∆[m−4
t ]

[GeV]

175,400 20% 4.3% 0.02%

800,1800 5% 1.9% 0.00002%

Table 3: (a) Difference between the new result of eq. (46) and the previous result from
Ref. [23], as implemented in Zfitter (left column) and from the fitting formula in Ref. [70]
(right column). (b) Convergence of the expansion in m−2

t for the two-loop diagrams with top
propagators. Here ∆[mk

t ] = [sin2 θlept
eff ](α2mk

t
)/[sin2 θlept

eff ](α2exact) − 1 is the relative difference
between the exact and the expanded result at the given order.

Geometric progression Scale dependence Leading mt terms

O(α2αs) beyond leading m4
t 3.3 . . . 2.8 × 10−5 0.8 . . . 2.1 × 10−5 1.2 . . . 4.3 × 10−5

O(αα3
s ) 1.5 . . . 1.4 0.3 . . . 0.2

O(α3) beyond leading m6
t 2.5 . . . 3.5 0.3 . . . 0.8

Sum 4.4 . . . 4.7 × 10−5

Table 4: Estimation of the uncertainty from different higher order contributions for sin2 θ
lept
eff ,

with the quadratic sum of all error sources. Where applicable, two or three different methods
for the error estimate have been used.

higher order effects are contributions with an additional QCD loop, it is assumed in the
following that these cancellations are natural and it is justified to study the theoretical error
of both quantities ∆r and ∆κ in conjunction.

A simple method to estimate the higher order uncertainties is based on the assumption
that the perturbation series follows roughly a geometric progression. This presumption
implies relations like

O(α2αs) =
O(α2)

O(α)
O(ααs). (47)

From this one obtains the error estimates in the second column of Tab. 4 for the different
higher order contributions, which are given for a range of the Higgs MH mass between 10
GeV and 1000 GeV. To account for possible deviations from the geometric series behavior,
an ad-hoc overall factor

√
2 was included in all error determined via this method.

Alternatively, the error from a higher-order QCD loop can be assessed by varying the scale
of the strong coupling constant αs or the top-quark mass mt in the MS scheme in the highest
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available perturbation order. By varying thus the scale µ of mt,MS in the O(α2) contributions
between m2

t/2 < µ2 < 2m2
t one obtains an error estimate for the O(α2αs) contributions

between 0.1 and 3.9 × 10−5, depending on the value of MH for 10 GeV < MH < 1000 GeV.
Similarly, by varying αs(µ) in the O(αα2

s ) corrections between m2
t/2 < µ2 < 2m2

t leads to
an error estimate for the O(αα3

s) contributions of less than 10−6, see Tab. 4.
An independent third estimate of the error of the O(α2αs) and O(α3) contributions can

be obtained from the existing leading terms in the expansion for large top quark mass.
Experience from the O(α2) corrections suggests that for moderate values of MH, the leading
mt-term and the remaining non-leading terms are of similar order. These contributions are
shown in the last column of Tab. 4.

As evident from the table, all methods give results of similar order of magnitude, while
the geometric progression method tends to lead to the largest error evaluation. The total
estimated error is therefore computed by summing in quadrature the error from different
contributions obtained by this method. It is found to amount to δthsin

2 θlept
eff = 4.7 × 10−5.

5.3 Parametrization formulae

Following Ref. [26], the numerical results are expressed in terms of a fitting formula, which
reproduces the exact calculation with maximal and average deviations of 4.5 × 10−6 and
1.2 × 10−6, respectively, as long as the input parameters stay within their 2σ ranges and
the Higgs boson mass in the range 10 GeV ≤ MH ≤ 1 TeV. For the sake of comparability
with the result of Ref. [26], the slightly outdated central values for the experimental input
parameters used there are also kept in the formula

sin2 θf
eff = s0 + d1LH + d2L

2
H + d3L

4
H + d4(∆

2
H − 1) + d5∆α

+ d6∆t + d7∆
2
t + d8∆t(∆H − 1) + d9∆αs

+ d10∆Z ,
(48)

with

LH = log

(

MH

100 GeV

)

, ∆H =
MH

100 GeV
, ∆α =

∆α

0.05907
− 1,

∆t =
( mt

178.0 GeV

)2

− 1, ∆αs
=

αs(MZ)

0.117
− 1, ∆Z =

MZ

91.1876 GeV
− 1.

(49)

The values of the coefficients for the effective leptonic weak mixing angle sin2 θlept
eff are given

in the second column of Tab. 5. This parametrization includes all relevant known corrections
at this time, as in eq. (46).

For some purposes, it is however useful to have a numerical result for the two-loop
electroweak form factors ∆κ and ∆r alone. For ∆κ, the following parametrization provides
a good approximation,

∆κ(α2) = ∆α ∆κ(α) + ∆κ(α2)
rem , (50)

∆κ(α2)
rem = k0 + k1LH + k2L

2
H + k3L

4
H + k4(∆

2
H − 1) + k5∆t + k6∆

2
t + k7∆tLH

+ k8∆W + k9∆W∆t + k10∆Z ,

(51)
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with

∆W =
MW

80.404 GeV
− 1. (52)

From a fit to the exact computation, the coefficients are obtained as

k0 = −0.002711, k1 = −3.12 × 10−5, k2 = −4.12 × 10−5, k3 = 5.28 × 10−6,

k4 = 3.75 × 10−6, k5 = −5.16 × 10−3, k6 = −2.06 × 10−3, k7 = −2.32 × 10−4,

k8 = −0.0647, k9 = −0.129, k10 = 0.0712.

(53)

This reproduces the exact result for ∆κ(α2) with maximal deviations of 1.8 × 10−5 for 10
GeV ≤ MH ≤ 1 TeV and the other input parameters in their 2σ ranges. This error in
∆κ corresponds to an error of 4 × 10−6 for sin2 θlept

eff . Since the experimental values for the
top quark mass and the W -boson mass might change substantially with future updates of
measurements from the Tevatron and the LHC, it is useful to see how well the fitting formula
works for larger ranges of these two parameters. If the top quark mass and the W -boson
mass vary within 4σ of their current experimental uncertainty, the formula eq. (50) is still
accurate to 3.6 × 10−5, corresponding to an error of 8 × 10−6 for sin2 θlept

eff .
Similarly, for ∆r, the numerical result can be cast into the form

∆r(α2) = (∆α)2 + 2∆α ∆r(α) + ∆r(α2)
rem , (54)

∆r(α2)
rem = r0 + r1LH + r2L

2
H + r3L

4
H + r4(∆

2
H − 1) + r5∆t + r6∆

2
t + r7∆tLH

+ r8∆W + r9∆W ∆t + r10∆Z ,

(55)

where

r0 = 0.003354, r1 = −2.09 × 10−4, r2 = 2.54 × 10−5, r3 = −7.85 × 10−6,

r4 = −2.33 × 10−6, r5 = 7.83 × 10−3, r6 = 3.38 × 10−3, r7 = −9.89 × 10−6,

r8 = 0.0939, r9 = 0.204, r10 = −0.103.

(56)

This agrees with the exact result within maximal deviations of 2.7×10−5 for 10 GeV ≤ MH ≤
1 TeV and the other input parameters in their 2σ ranges, corresponding to an error of 0.4
MeV for MW and 8 × 10−6 for sin2 θlept

eff . For the top quark mass and the W -boson mass
varying in their 4σ ranges, the formula eq. (54) is accurate to 4.3 × 10−5, corresponding to
an error of 0.65 MeV for MW and 12.5 × 10−6 for sin2 θlept

eff .

5.4 Results for other fermion flavors

The results presented in the previous sections and in Refs. [26, 27] give the effective weak

mixing angle sin2 θ
lept
eff defined for the leptonic Zl+l− vertex. For the Zff̄ vertex with other

light flavors f = ν, u, d in the final state, there are small but non-zero differences with
respect to the leptonic effective weak mixing angle. In this section, results are given for
sin2 θf

eff for different final state fermions except b-quarks. For the bb̄ final state, the two-loop
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f e, µ, τ νe,µ,τ u, c d, s

s0 0.2312527 0.2308772 0.2311395 0.2310286

d1 [10−4] 4.729 4.713 4.726 4.720

d2 [10−5] 2.07 2.05 2.07 2.06

d3 [10−6] 3.85 3.85 3.85 3.85

d4 [10−6] −1.85 −1.85 −1.85 −1.85

d5 [10−2] 2.07 2.06 2.07 2.07

d6 [10−3] −2.851 −2.850 −2.853 −2.848

d7 [10−4] 1.82 1.82 1.83 1.81

d8 [10−6] −9.74 −9.71 −9.73 −9.73

d9 [10−4] 3.98 3.96 3.98 3.97

d10[10−1] −6.55 −6.54 −6.55 −6.55

Table 5: Coefficient of the fitting formulae eq. (48) for different final states f f̄ .

electroweak corrections are still missing, since they involve new topologies with additional
top-quark propagators.

Since the numerical effect of the fermionic electroweak two-loop corrections is much larger
than the corresponding bosonic contributions, only the fermionic O(α2) diagrams are taken
into account. As before, the complete one-loop corrections and the (flavor independent)
contributions of order O(ααs), O(αα2

s ), O(α2αsm
4
t ) and O(α3m6

t ) are also included.
As before, the numerical results are expressed through the parametrization in eq. (48),

which reproduces the exact calculation with maximal deviations of 4.5 × 10−6, when the
input parameters stay within their 2σ ranges and the Higgs boson mass in the range 10 GeV
≤ MH ≤ 1 TeV. The values of the coefficients for the various final state flavors are listed in
Tab. 5.

5.5 Implementation into global Standard Model fits

The fermionic two-loop corrections and some higher-order contributions as listed in eq. (46)
are implemented in the current version 6.42 of the program Zfitter [35,71], which is widely
used for global fits of the Standard Model to electroweak precision data [67]. Due to the
complexity of the two-loop computation, the implementation of the exact result was not
possible, so that instead the numerical fitting formula eq. (48) was included in the code.
More details can be found in Ref. [71].

The fitting formula has been incorporated exactly only for the leptonic effective weak

mixing angle sin2 θ
lept
eff , i.e. for the Zl+l− vertex. Results for other light flavors f = u, d, c, s, ν

in the final state are implemented in an approximate way, which reproduces the complete

24



results of section 5.4 within an error of about 10−5 for f = u, d, c, s and 2 × 10−5 for f = ν.
For the bb̄ final state, no two-loop electroweak corrections beyond the leading m4

t are
included in Zfitter 6.42. They shall become available in a future version. However, the
current version 6.42 was adjusted with respect to previous version to include complete two-
loop corrections in the initial state vertex for the process e+e− → (Z) → bb̄, see Refs. [71,72]
for details.

6 Conclusion

In this paper, the evaluation of the complete two-loop contributions to the effective weak
mixing angle has been described, expatiating the computational methods and the quantita-
tive implications of the new result.

It was shown how the effective weak mixing angle can be defined at next-to-next-to-
leading order through the vector and axial-vector couplings of the Z-boson. The computation
of the vertex loop diagrams using two independent techniques for the fermionic part and a
combination of several computational methods for the bosonic part was elucidated in detail.

Numerical results for the effective weak mixing angle for different final state flavors were
given in terms of accurate numerical parameterizations, which are valid for Higgs masses up
to 1 TeV. The new result has been compared in detail with a previous result obtained by an
expansion in powers of mt up to next-to-leading order.

Furthermore, the remaining theoretical uncertainties due to unknown higher orders were

analyzed and an overall uncertainty of the effective leptonic weak mixing angle sin2 θ
lept
eff of

4.7 × 10−5 was estimated.
Electroweak precision data allows very precise tests of the Standard Model at the quan-

tum level and puts the strongest constraints on the Higgs boson mass and new physics. With
the completion of the electroweak two-loop corrections, the accuracy of the electroweak pre-
cision test was significantly enhanced, with theoretical uncertainties now under much better
control.
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[18] Y. Schröder and M. Steinhauser, Phys. Lett. B 622, 124 (2005);
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