
elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation ∗

M. Borland, ANL, Argonne, IL 60439, USA

Abstract

elegant (ELEctron Generation ANd Tracking) is the prin-

ciple accelerator simulation code used at the Advanced

Photon Source (APS) for circular and one-pass machines.

Capabilities include 6-D tracking using matrices up to third

order, canonical integration, and numerical integration.

Standard beamline elements are supported, as well as co-

herent synchrotron radiation, wakefields, rf elements, kick-

ers, apertures, scattering, and more. In addition to tracking

with and without errors, elegant performs optimization

of tracked properties, as well as computation and optimiza-

tion of Twiss parameters, radiation integrals, matrices, and

floor coordinates. Orbit/trajectory, tune, and chromatic-

ity correction are supported. elegant is fully compliant

with the Self Describing Data Sets [1, 2] (SDDS) file pro-

tocol, and hence uses the SDDS Toolkit for pre- and post-

processing. This permits users to prepare scripts to run the

code in a flexible and automated fashion. It is particularly

well suited to multistage simulation and concurrent simu-

lation on many workstations. Several examples of complex

projects performed with elegant are given, including top-

up safety analysis of the APS and design of the APS bunch

compressor.

1 INTRODUCTION

There is no shortage of accelerator codes in the world to-

day, so it seems that anyone presenting a new accelerator

code needs to justify its creation. The code should pro-

vide new or better algorithms, a new or better interface,

improved throughput, or some other clear benefit.

elegant (ELEctron Generation ANd Tracking) was cre-

ated in response to specific needs of the author that were

unmet by codes that existed at the time. Since then, it has

grown through meeting the challenges of designing and

commissioning a number of accelerators at the Advanced

Photon Source (APS). A consistent emphasis in develop-

ing elegant was to allow easily performed simulated ex-

periments that mimic those one might perform on a real

accelerator. For example, elegant can vary accelerator

parameters in nested loops and track to find the variation of

beam properties.

In addition, elegant is fully compliant with the Self-

Describing Data Sets (SDDS) data file protocol, which

gives users access to a suite of about 70 generic data pro-

cessing and display tools. These tools can be used to-

gether with scripting languages like Tcl to compose cus-

tomized postprocessing commands. This permits, for ex-

ample, users of elegant to perform an arbitrary number

∗Work supported by the U.S. Department of Energy, Office of Basic

Energy Sciences, under Contract No. W-31-109-ENG-38.

of similar simulations without additional effort in postpro-

cessing. In addition, elegant itself does not have or need

a postprocessor, which makes code maintenance and devel-

opment easier.

Contrary to recent trends, elegant does not have a

graphical user interface. I firmly believe that such inter-

faces to simulation codes are unproductive in a research

environment. A scripting interface is much more pow-

erful and more suited to the research physicist’s needs.

While elegant does not have a script language itself, cou-

pling elegant with SDDS and common external script

languages gives the same benefits.

The remainder of this paper is divided into five parts:

1. The architecture and flow of elegant as seen by the

user. 2. A review of the general capabilities of elegant,

including the types of analyses performed by elegant. 3.

A review of accelerator elements supported by elegant.

4. A review of output files produced by elegant and how

to obtain them. 5. The SDDS Toolkit and how it is used

with elegant. 6. Examples. This paper does not cover

details of commands and element definitions; for this, the

user should consult the manual [3].

2 ARCHITECTURE AND FLOW

An elegant run is driven by a command file. This file con-

sists of namelist-like commands and optional comments. A

sequence of commands is generally required to set up and

execute a calculation, such as tracking a beam. Generally,

a sequence consists of a number of “setup” commands fol-

lowed by a single “action” command that executes the cal-

culations specified in the setup commands. Several such

sequences may be given in a single input file. Sequences

do not communicate with each other, except by using ex-

ternal files to store and retrieve data. For brevity in what

follows, I’ll refer to a command sequence as a “run,” even

though an actual run may contain many such sequences.

In addition to the command file, the user must supply at

least one separate lattice file. The lattice file is similar in

structure to those used by the program MAD (Methodical

Accelerator Design) [4], with some differences due to vari-

ations in capabilities and the types of elements available.

Complex lattice files may be broken into simple lattice files

and then combined using a file inclusion facility.

Output from elegant takes two forms. The first is text

output that is intended to inform the user of the progress of

the simulation. The second is one or more SDDS files that

the user requests elegant to create. Requests for the cre-

ation of SDDS output files are made through the namelist

commands in the command file, and in some cases through

definitions of elements in a lattice file. Examples of SDDS

LS-287

1 



output files include final and intermediate beam coordi-

nates from tracking, parameters of elements, and Twiss pa-

rameters.

Input to elegant, other than the command and lattice

files, takes the form of SDDS files. These are frequently

SDDS files written by another elegant run, but may have

any source. Examples are input of beam coordinates for

tracking, element perturbation data, and starting Twiss pa-

rameters.

elegant has no embedded postprocessing or graphics

support. All such tasks are delegated to the SDDS Toolkit,

which provides a much more powerful system than could

reasonably be embedded in a physics code. In addition,

the SDDS Toolkit serves as a postprocessor for a number

of other codes, removing the need to write and maintain

dedicated postprocessors. A complex simulation typically

consists of an elegant command file, a lattice file, and a

script file containing SDDS commands to postprocess and

display the results of the run.

3 GENERAL CAPABILITIES

3.1 Alteration of Accelerator Elements

Alteration of accelerator elements refers to changing the

parameters of an accelerator component after it is defined

by the lattice file. elegant has the ability to simulate

multiple instances of the same system within a single run.

These instances may differ through addition of random er-

rors to element parameters; user-specified, regular varia-

tion of parameters; variation of parameters through loading

from an external file; variation of the initial beam for track-

ing; or various combinations of these.

This capability introduces two possibilities for some of

the physics commands: the possibility of immediate out-

put of computations for the unperturbed or unaltered sys-

tem, and the possibility of output for each instance of the

perturbed or altered system. For example, one might simu-

late a storage ring with focusing errors. One could request

Twiss parameter computations for the ideal ring, or for the

ring in each perturbed case.

1. Altering parameters directly. The alter elements

command permits altering a parameter of one or more ele-

ments to have a new value. For example, one could readily

compose a command to change the sextupole component

of a set of dipoles for a specific run, without having to alter

the lattice file.

2. Loading parameters from external files. The

load parameters command allows loading values of pa-

rameters of elements from an SDDS file. This may be done

once, to alter the starting definition of the lattice, or repeat-

edly, to load successive instances of the lattice. An example

of the former would be to load ideal quadrupole strengths

from a matching run into a tracking run. An example of the

latter would be to load successive sets of errors; this can be

useful if errors need to be computed in a way that elegant

does not support internally (e.g., an unusual statistical dis-

tribution or complex linkage of different errors).

3. Addition of random errors to parameters of elements.

This is accomplished using the error element command,

which supports the uniform and gaussian distributions with

user-specified cutoff. The user may “bind” errors for like-

named elements together, or allow them to be different. Er-

ror values may be saved to an SDDS file for later reloading

into the same or another run using load parameters.

4. Variation of parameters in loops. The vary element

command allows specifying regular variation of parame-

ters of elements. Any number of looping indices may be

defined, for multidimensional parameter sweeps. The vari-

ation is linear and equispaced by default, but may also be

geometric. In addition, a sequence of values may be loaded

from an SDDS file.

5. Linking of parameters of elements. The

link elements command allows specifying values of pa-

rameters of one element in terms of values of parameters of

another element. In MAD, this type of relationship would

be declared in the lattice file. elegant permits specifying

the position of the “source” element relative to the element

to be changed, which is useful when there are multiple ele-

ments with the same name. For example, misalignments of

many sets of elements on a series of girders could be linked

to the first element on each girder.

3.2 Saving Accelerator Element Information

elegant can alter element parameters in various ways,

some of which were outlined in the previous subsec-

tion. There are two ways to save this information. The

save lattice command writes a new lattice file that can

be read by another elegant run. The file contains all of

the elements in the original file, but with updated values

for parameters.

The save parameters command writes an SDDS file

that can be used with load parameters to restore the con-

figuration of the lattice at the time the save was made. This

is useful primarily in cases where one wants to selectively

restore parts of a configuration, or where one wants to cy-

cle through a series of configurations and perform similar

calculations for each. Since save parameters creates an

SDDS file, the SDDS Toolkit can be used for manipulation

of the data, such as selection of subsets.

Neither of these facilities saves the perturbed state of a

lattice. Instead, they save the reference state of the lattice,

or the lattice “definition.” The lattice definition is changed

by operations such as matching, altering elements, and (if

desired) loading parameters. It is not changed by random

errors or variation of parameter in loops.

3.3 Orbit and Trajectory

elegant has several commands that are related to com-

putation and correction of closed orbits and trajectories.

The closed orbit command computes closed orbits and

writes the orbits to an SDDS file. The user can control

2



the convergence parameters of the algorithm, which is use-

ful when the working point is near an integer. The user

may also specify that the orbit length should be fixed to the

length of the ideal orbit; this is a more realistic computation

than what is done in most codes, where the rf frequency of

the storage ring is implicitly assumed to change to compen-

sate for the path-length change.

The correct command corrects orbits or trajectories.

A number of SDDS output files are provided, giving or-

bit/trajectory and corrector data and statistics. The user

may specify which elements to use as correctors; for ex-

ample, quadrupole position may be used for steering. As

in the closed orbit command, the user may select fixed-

length orbit calculations. Noise may be added to beam po-

sition monitor readings to give more realistic results for the

accuracy of correction.

The correction matrix used for orbit or trajectory

correction may be output to an SDDS file using the

correction matrix output command. Both the re-

sponse and the inverse matrix are available, with and with-

out the fixed-length constraint. (This output is used in the

APS controls system for correction of the orbit in the APS

ring.)

Finally, elegant provides analysis of orbit amplifica-

tion factors for corrected and uncorrected cases. This al-

lows, for example, determining how large an orbit pertur-

bation will result from offsets of individual quadrupoles in

the presence and absence of orbit correction. It also pro-

vides the kick strength that is required by each perturbation

for each corrector.

3.4 Optics Calculations and Correction

elegant provides several types of optics calculations, all

available either for the reference or perturbed lattice. These

include Twiss parameters, radiation integrals, chromatic-

ity, and transport matrices. These are provided by the

twiss output and matrix output commands. Compu-

tation of chromaticity and nonlinear matrix data is con-

trolled by the default order control in the run setup

command, and also by the ORDER parameter on individual

elements. It is the user’s responsibility to set these param-

eters correctly to get data for the situation of interest. By

default, these calculations are performed to second order.

elegant provides for correction of the tune and chro-

maticity, using the correct tunes and chromaticity

commands. In both cases, the user provides the names

of two families of quadrupoles or sextupoles, where a

family is a set of elements with the same name. If

more than two families are involved, additional fami-

lies may be linked to the primary families (or elements)

using link elements. By default, neither tune nor

chromaticity correction changes the reference lattice, but

rather changes the lattice used for a particular simulation

step. This is the desired mode when simulating many

successive randomized machines with correction. One

may cause the reference lattice to be changed using the

change defined values control on these commands.

A different type of optics calculation supported by

elegant is inference of a first-order transport map from

tracking. This calculation, performed by the analyze map

command, is primarily useful for debugging new elements.

3.5 Optimization

A series of commands support the optimization fea-

ture of elegant. These include optimization setup,

optimization term, optimization variable, and

optimize. All but the last of these are setup commands

that prepare for optimization.

optimization setup is used to define the general pa-

rameters of the optimization, including the method (Sim-

plex is preferred), whether to minimize or maximize, how

many evaluations to perform, how frequently to provide

output, and, optionally, the optimization penalty function.

Unlike most other codes, the user must provide elegant

with the optimization penalty function. This provides con-

siderable flexibility, but can be more complicated. In or-

der to make it easier to create the penalty function, the

optimization term command may be used to specify in-

dividual terms in the function; the terms are summed to

obtain the total penalty function.

Depending on what computations the user has requested

prior to invoking the optimizer, the optimization equation

may refer to properties of the tracked beam (e.g., emittance

or centroid position); Twiss parameters at interior points or

at the end of the beamline; overall lattice properties (e.g.,

maximum beta function, equilibrium emittance, chromatic-

ity); first- and second-order matrix elements at the end of

the beamline; and floor coordinates at the end of the beam-

line. The ability to refer to so many properties of the lattice

and the tracked beam gives elegant the capability to per-

form optimizations that other codes can’t. For example,

elegant has been used to directly optimize the emittance

of the APS ring or to optimize the energy spread of a set of

macroparticles in a linac with wakefields.

3.6 Tracking

Tracking in elegant requires definition of a beam and a

tracking method. Definition of the beam is performed with

the bunched beam or sdds beam commands. The former

permits internal generation of a beam with a given emit-

tance, Twiss parameters, bunch length, and energy spread.

Various distributions are supported, such as gaussian, uni-

form, and shell.

The sdds beam command permits loading particle data

from an SDDS file. This SDDS file may be generated

by elegant itself, using the output parameter of the

run setup command to save the final coordinates from

tracking. It may also be generated by a WATCH element,

which provides phase-space output at a point in the lattice.

Finally, the SDDS file may be generated by another pro-

gram or script.

3



For both the bunched beam and sdds beam command,

elegant can track multiple times with the same bunch,

or it can track different bunches in succession. For the

sdds beam command, the latter requires having multiple

pages in the input file.

To invoke tracking, the user gives the track command.

Generally, this command has no arguments. The method

employed for tracking particles then depends on the partic-

ular elements used. For example, the user is free to employ

a symplectic implementation of a dipole together with a

first-order implementation of a quadrupole.

Other tracking controls appear in other commands. For

example, the number of instances to track, the order

of tracking, and other controls are provided through the

run setup command. However, track provides some

options, such as tracking longitudinal coordinates only in

a storage ring and tracking with a “linear chromatic” ma-

trix. The latter allows tracking with chromatic effects but

no other nonlinearities. These two modes are exceptions to

the general rule in elegant, namely, that tracking methods

are determined on an element-by-element basis.

A similar control is the concat order parameter of the

run setup command. It can be used to force concante-

nation of elements simulated with matrices into a single

matrix. In no case is a higher-order element concatenated

to a lower order, however. Instead, elegant concatenates

into a series of matrices of the request order, interspersed

with matrices of higher order and other elements that are

not implemented as matrices.

3.7 Miscellaneous

elegant performs other tasks that do not fit well into

the above categories. The find aperture command can

search for the aperture of a machine, whether dynamic,

physical, or a combination (e.g., horizontal “dynamic”

aperture limited by coupling into the vertical in the pres-

ence of a small vertical aperture).

Free Electron Laser (FEL) calculations are performed

using the sasefel command, which starts from the prop-

erties of the tracked beam and uses the parametrization of

Ming Xie [6]. The computations may be performed for

a user-specified number of beam slices, where each slice

contains the same number of particles. The gain length and

other FEL properties may be used in the optmizer.

The floor coordinates command may be used to ob-

tain floor coordinate output to a file and for use with the

optimizer. At present, elegant does not compute floor co-

ordinates correctly for beamlines involving vertical bends.

The subprocess command permits executing a com-

mand in the native command shell (e.g., UNIX shell). Such

“shell commands” typically preceed the main run, pro-

viding processing of input data for run setup, or follow

the main run, providing processing of output data. Shell

commands may also be used anywhere in namelist com-

mand, so that, for example, the result of an SDDS Toolkit

shell command may be used as a parameter of a namelist

command. The syntax for this is to give a sequence like

"{command}" instead of the normal value for the namelist

entry, where command is any command (SDDS-based or

otherwise) that can be executed in your shell.

Finally, the run setup and run control commands

provide overall control of the simulation. Many of the

output files are specified by run setup, as is the lattice

filename, the beamline name, the central momentum, the

default tracking order, the matrix concatenation order (if

any), and the random number seed. run control is used

to specify the number of configurations or beams to gener-

ate and track, the time spacing of successive bunches, the

number of passes for circular machines, and the number of

indices for variation of parameters.

At this point, the reader may well be confused and will

certainly not be able to use elegant after reading the

above. The best way to learn to use elegant is by studying

examples, a number of which are provided on our software

distribution Web page.

4 ACCELERATOR ELEMENTS

elegant supports about 75 different accelerator elements.

(I say “about” because some are mere place-holders while

others are obsolete.) Parameter lists, data types, and units

are listed in the manual. Here, I simply describe the ele-

ments in general terms.

The common beam-transport elements are supported us-

ing a matrix implementation up to second order. This

includes drift spaces, dipoles, quadrupoles, sextupoles,

solenoids, and correctors. In addition, alpha magnets are

supported up to third order [7]. Matrix concatenation is

supported up to third order as well.

For tracking circular machines, it is well known that

second-order matrix tracking is not adequate for dynamic

aperture and other applications requiring many turns.

elegant provides two options to address this problem.

First, one may explicitly change the order of individual

elements. By setting the default order (in run setup) to

1 and setting the order of the sextupoles to 2 (using the

ORDER parameter of the elements), one obtains symplectic

tracking. Second, one may use the canonical variants of the

individual elements. This involves modification of the lat-

tice file, but allows retaining nonlinearities in dipoles and

quadrupoles. The canonical elements are CSBEND, KQUAD,

KSEXT, and MULT, where the latter is a general multipole.

The FMULT element permits simulation of a multiple speci-

fied as a list of component strengths in an SDDS file. These

elements also support classical synchrotron radiation en-

ergy losses.

elegant supports rf cavities with exact time depen-

dence. These include the RFCA element, which simulates

a basic rf accelerating cavity and the RFDF element, which

simulates an rf deflector. The TWLA element simulates a

traveling-wave linear accelerator, which is preferred for

low-energy beams.

elegant supports a number of time-dependent ele-

4



ments. The BUMPER element permits simulation of a

bumper (or kicker) magnet with a time-dependent wave-

shape specified via an SDDS file. The MODRF element pro-

vides simulation of an rf cavity with AM and PM modu-

lation of the phase. RAMPRF provides simulation of an rf

cavity with voltage, phase, and frequency waveforms from

an SDDS file. RAMPP provides ramping of the central mo-

mentum in a simulation fashion. Together, these elements

provide simulation of ramped machines, such as booster

synchrotrons.

Several elements provide simulation of collective ef-

fects. The CHARGE element is used to impart charge to the

beam. Having this as an element in the beamline allows

elegant to vary the charge or assign random errors to it.

The WAKE and TRWAKE elements provide Green-function-

based simulation of longitudinal and transverse wakes,

while the RFCW element combines simulation of an rf cavity

with longitudinal and transverse wakes. The ZLONGIT and

ZTRANVERSE provide simulation of impedances specified

as tables of real and imaginary components as a function

of frequency, or using a broad-band model. For multipass

effects, the RFMODE and TRFMODE elements simulate res-

onator impedances with specified frequency and Q.

The CSRCSBEND and CSRDRIFT elements allow simula-

tion of coherent synchrotron radiation (CSR) effects on the

beam. The method uses a line-charge approximation [5].

It does not assume steady-state CSR nor does it assume a

gaussian time distribution.

For storage rings, elegant simulates intra-beam scat-

tering using the IBSCATTER element. A number of other

elements also provide for beam scattering or excitation.

The MATTER element simulates scatter and energy loss

due to material in the beam path. The SCATTER element

provides general scattering under user control, while the

SREFFECTS element allows simulation of quantum excita-

tion and damping effects in storage rings.

Several elements provide apertures of various types. The

ECOL and RCOL elements provide elliptical and rectangular

collimators. The MAXAMP element permits defining an el-

liptical beam tube that is valid for all following elements

(until the next MAXAMP element). The SCRAPER element

provides a single-jaw, straight-edge scraper that may be in-

serted from either side, from the top, or the bottom. The al-

pha magnet element incorporates its own scraper controls.

The PFILTER element provides momentum filtration that is

very convenient for removing high- and low-energy tails.

Most elegant elements have misalignment and tilt con-

trols as part of the element definition. In addition, the

MALIGN and ROTATE elements provide for misalignment

and rotation of the beam. The CENTER element provides

for centering specified beam coordinates (e.g., x or y). The

MAGNIFY element provides for multiplication of particle

coordinates by user-specified factors, which is useful if not

particularly physical. The REMCOR element allows remov-

ing linear correlations among particle coordinates, which

can be used to simulate certain types of corrections (e.g.,

residual dispersion after a bunch compressor) without hav-

ing to perform them in detail.

elegant provides a number of elements for beam di-

agnostics. The HMON, VMON, and MONI elements are beam

position monitors (BPM); the user may supply equations

giving the BPM readout as a function of the actual x and

y position in the device. The HISTOGRAM element provides

SDDS output of histograms of transverse and longitudinal

data. The WATCH element has several modes that result in

output of beam data to an SDDS file; the user may choose

particle coordinates; beam centroids; beam centroids and

higher moments; or FFTs of turn-by-turn data (for storage

rings).

5 OUTPUT FILES

elegant produces a large number of SDDS output files,

but only when and as requested by the user. This prevents

generation of large amounts of unneeded or perhaps mean-

ingless information. At the same time, users may be con-

fused about how to obtain certain output. As noted previ-

ously, many of the individual commands result in produc-

tion of output files related to the computations they per-

form. In such cases, the user may give the command a

filename to use for each type of output generated by the

command. For example, the twiss output command not

only controls computation of Twiss parameters for internal

use, but also allows the user to request that Twiss parame-

ters be written to a file.

Many types of output are requested from the run setup

command. In general, any output that does not require spe-

cial parameters is requested via run setup. Also, any out-

put that may result from several different action commands

(e.g., tracking or optimization) is requested via run setup.

Finally, a few accelerator elements produce output as

well. In this case, the user specifies the name of the output

file in the definition of the element. Table 1 summarizes the

commands and elements that produce output files.

In order to make it easier for the user to generate names

for output files without constant editing of the command

and lattice files, elegant supports the concept of “incom-

plete” filenames for output files. The user specifies an in-

complete filename by including the sequence “%s” in the

filename. elegant detects this and substitutes the “root-

name” for the simulation run. The rootname is derived au-

tomatically from the name of the command input file by

removing the extension, or it may be specified explicitly in

the run setup command. This is discussed further in the

manual.

6 SDDS TOOLKIT AND ELEGANT

As mentioned above, the SDDS Toolkit is the sole postpro-

cessor for elegant and a number of other physics codes.

This suite of programs provides general-purpose data anal-

ysis and display that can be used directly from the com-

mandline or from within scripts prepared by the user. The

programs can also be called from within elegant using

5



the subprocess command and the command-substitution

syntax, as discussed above.

Users concerned about the stability of the Toolkit and the

long-term accessibility of SDDS data may be reassured to

know that SDDS is also a critical part of the APS control

system. In fact, SDDS was originally developed for this

purpose. Starting with commissioning in 1994, the vast

majority of accelerator data was collected in SDDS files.

The data logging system, orbit control system, configura-

tion management system, and other vital systems all use

SDDS files and Toolkit programs.

In this section, I will review some of the most-used

SDDS Toolkit programs and give an indication of the appli-

cation of each to elegant simulations. Because the Toolkit

is based on the concept of self-describing data, each of the

programs may be used with any of the data files described

in the last section. However, there are some combinations

that are used frequently and it is helpful to the new user to

review these. Detailed syntax for using these programs is

available in the manual [8]. In addition, all programs return

a usage message if executed without arguments.

Like elegant itself, the SDDS Toolkit is not based

on a graphical user interface (GUI), for the same reason.

We have found a scripting, command-oriented environment

more productive and better suited to the needs of research

than the confines of a GUI environment.

6.1 Structure of SDDS Files

It will help to review briefly the structure of an SDDS file.

An SDDS file begins with a header that describes the data

in the file. Essentially, the header describes a complex data

structure. Following the header are zero or more instances

of this structure. Each instance is referred to as a “data

page” or “page.”

The header defines three types of entities: parame-

ters, columns, and arrays. Each defined entity may have

one of six data types: short integer, long integer, single-

precision floating point, double-precision floating point,

character, and character string. Parameters are scalar val-

ues. Columns are vector values that form a single table; that

is, all the vectors have the same length and corresponding

entries in the vectors form rows of data. Arrays are arbi-

trary, multidimensional entities and are the most flexible

form. However, arrays are usually unnecessary and few

applications use them.

The example of storing Twiss parameters and related

data may make this clearer. In the output file from the

twiss output command, elegant uses parameters to

store overall properties of a lattice, such as the tunes, chro-

maticities, equilibrium emittance, and momentum com-

paction factor. Not all parameters appear in all Twiss output

files all the time; elegant “knows” which data is meaning-

ful or valid and only puts that data in the file. elegant uses

columns to store Twiss parameters as a function of s, along

with element names and apertures.

In some cases, multiple pages of Twiss parameter data

will be generated. For example, the user may invoke ran-

dom errors and request output of the Twiss data for each set

of errors, or the user may vary some magnet strengths and

request Twiss data for each case.

If the user requests other data besides Twiss parame-

ters, it will in most cases have the same page structure.

For example, if transport matrix output is requested, each

page of the matrix output file will correspond to the same

page of the Twiss parameter file. The only guaranteed ex-

ceptions are the corrector and orbit output files from the

correct command; these require multiple pages for each

case because they must provide data before, during, and

after correction. Even in these cases, the user can employ

the sddsprocess program (see the next section) to remove

unwanted pages and restore a one-to-one correspondence

with other output files.

6.2 Commonly-Used Toolkit Programs

sddsplot is without a doubt the most-used Toolkit pro-

gram. Some typical uses include scatter plots of particle

phase space data, Twiss parameters vs. position, matrix el-

ements vs. position, optimization progress vs. step number,

turn-by-turn phase-space movies, and so on. sddsplot is

used not only to display data directly from elegant, but

also to display the results of processing with other Toolkit

programs. In most cases where data is processed with the

Toolkit, it ends up being displayed with sddsplot.

sddsprintout is another popular means of displaying

data. Unlike other programs, elegant does not directly

generate printouts of data. Doing so is not only inefficient

in terms of disk space, but the printouts often do not satisfy

the users’ needs, containing insufficient accuracy, uninter-

esting data, or the wrong data. Instead, sddsprintout is

used to create customized printouts from any SDDS file.

The user can thus see only the data that is interesting,

to the required precision, and in a specified order. Like

sddsplot, sddsprintout is frequently found at the end

of a chain of SDDS processing commands, but can be used

directly on the files generated by elegant.

sddsprocess is a general-purpose data processing and

filtering utility. It performs statistics on column data and

places the results in parameters. So, for example, one can

use it to compute the average of the horizontal and vertical

beta functions, or the maximum dispersion. It also cre-

ates new columns and parameters based on user-supplied

equations. Hence, one could use sddsprocess to make a

new column containing β
3

2

x and then a new parameter 〈β
3

2

x 〉.
In addition to accepting equations, sddsprocess accepts

equation templates, so that one can process many similar

columns or parameters in a similar fashion. Taking statis-

tics of multiple columns is similarly easy using wildcards

to select the columns of interest. Filtering of data can be

performed based on numerical values or string values. For

example, one could select all quadrupoles from a Twiss file

and compute the average beta functions at those locations

only.

6



Some other frequently-used tools are:

• sddshist and sddsmultihist for histograms.

• sddsenvelope for finding maximum beta functions,

beta beats, and so on, over many configurations.

• sddsfft for frequency domain analysis.

• sddssmooth for smoothing data.

• sddspfit, sddsexpfit, and sddsgfit for polyno-

mial, exponential, and gaussian fits, respectively.

• sddscollapse is used to collapse a file containing

many pages with parameters and columns to a file

containing a single page. This single page contains

one row for each page in the original files. The

former parameters become columns in the new file.

sddscollapse is commonly used to “throw away”

detailed data after analysis has been performed.

• sddsxref adds selected parameters, columns, and ar-

rays from one file to another file. It can line up rows

in the files by comparing user-specified columns. It

could be used, for example, to bring data from the

Twiss parameter file into a file containing closed or-

bit data.

• csv2sdds converts comma-separated-value data to

SDDS. plaindata2sdds converts unadorned text or

binary data to SDDS; sdds2plaindata performs the

reverse conversion.

• sddsquery provides a printout showing what param-

eters, columns, and arrays are in an SDDS file. The

printout includes data types and units.

7 EXAMPLES

In this section, I give several examples of the application of

elegant to real-world problems. My intention is to show

that elegant can be applied to some very complex prob-

lems and that it is very useful when designing and upgrad-

ing accelerators. I will not present these examples in great

detail, since this is not a tutorial. Instead, I will summarize

how elegant was used in each case so that the reader can

judge the capabilities of the program.

Like many projects that use elegant and other SDDS-

compliant simulation codes, most of these projects made

use of a multi-workstation queue [9] utilizing up to 50 Sun

workstations. Because scripts are used for setting up, sub-

mitting, and postprocessing jobs, it is possible to run many

jobs simultaneously for greatly improved productivity. The

desire to use this kind of computing environment is one

of the reasons that elegant is not GUI-based. The GUI

model tends to assume a single user in front of a single

computer.

7.1 APS Positron Accumulator Ring Design

One of the first accelerators designed using elegant was

the Positron Accumulator Ring (PAR) [10, 11, 12] for the

APS. The PAR is a small ring with a 30.7 m circumference

and eight, 45-degree dipole magnets having a bending ra-

dius of 1.02 m. Other magnets include 16 quadrupoles in

4 families, and 6 sextupoles in 2 families. The PAR has

two rf systems, a first-harmonic system for capturing the

beam, and a twelfth-harmonic system for compressing the

bunch length. In many ways, the PAR is more difficult

to model than a third-generation light source, as the lat-

ter generally has large bending radius, single rf systems,

single-turn kickers, and relatively quick damping.

Matching for the PAR was done using MAD, while

tracking and other analyses were performed with elegant.

Some of the simulations performed with elegant include:

• Simulation of injection and extraction processes us-

ing measured waveforms for the kickers. Since the

kicker pulses are longer than a single turn, simula-

tion was needed to ensure that the partially-damped

stored beam was not lost during injection. Extraction

involves three kickers, two of which form a closed

bump, making for a multi-turn extraction. elegant

was used to find the optimum kicker strength for ex-

traction.

• Simulation of final bunch purity for various ramp-up

profiles of the twelfth-harmonic cavity. These simula-

tions included radiation damping and excitation.

• Simulation of beam stability in the presence of de-

tuned harmonic cavity. This was used to specify the

required detuning of the harmonic cavity when un-

powered. As predicted, the PAR was found to ex-

hibit a sawtooth instability prior to detuning of the

harmonic cavity.

• Simulation of dynamic aperture as a function of mo-

mentum and in the presence of random and systematic

strength, multipole, and alignment errors.

• Testing of diagnostics placement in the transport lines

leading to and from the PAR, and testing of injection

in the presence of errors in the transport lines.

7.2 APS Dog-leg Lattices

The APS has 40 straight sections, each about 5 m long.

Originally, it was thought that users would desire long

undulators, but experience has shown that most individ-

ual users are satisfied with an undulator that requires only

half the available space. This means that half the space

is unused. Recently, a proposal was made to install three-

magnet bumps in one or more straight sections, such that

two insertion devices could occupy the straight section,

with a separation angle of about 1 degree between the

beamlines. This is known as an “ID Dog-Leg.”

7



Concerns about the dog-leg idea included whether the

emittance would be spoiled by one or more such inser-

tions, how much the ideal orbit length would change, and

the usual concerns about dynamic aperture. elegant was

used to match a series of dog-leg configurations for sep-

aration angles of up to 1 degree, with emittances from 8

nm to about 3.5 nm. The matching was highly automated

and performed in stages, starting with no separation and

working up to the maximum separation. Splicing of dog-

leg and non-dog-leg cells was also performed to verify that

the emittance and dynamic aperture did not suffer.

Because elegant uses SDDS files, automation of the

process was relatively easy. Scripts were written to set up

a series of runs for different emittances and gradually in-

creasing separation angle. Because elegant can directly

perform matching on quantities like the equilibrium emit-

tance, it was easy to obtain lattices that had the desired

emittance for the dog-leg, non-dog-leg, and transitional

cells.

elegant was also used to determine the change in the

length of the central orbit, which involved simulating sev-

eral girder rotations and displacements. The program was

further used to explore alternate configurations that re-

duced the path-length change and others that involve distor-

tion of the sectors around the dog-leg to eliminate pollution

of x-ray BPMs by bending magnet radiation [13].

7.3 APS Top-Up Safety Tracking

“Top-up” [14] refers to a new mode of operating a syn-

chrotron radiation source. Traditionally, synchrotron radia-

tion sources are filled with shutters closed, then shutters are

opened (giving light to the users) while the beam decays

over many hours. In top-up mode, injection occurs fre-

quently with shutters open. A concern with top-up mode is

whether injected beam might, due to some equipment fault,

exit a user beamline, resulting in serious injury. Clearly, if

a dipole magnet were to fail, this is physically possible. In

order to prevent such an accident without interlocking ev-

ery dipole, APS was interested in simply interlocking on

the stored beam, on the assumption that if there was stored

beam, then the dipoles must all be operating properly. An-

alytical methods [15] showed that this was plausible. The

goal of top-up safety tracking [16] was to provide greater

certainty that such an interlock was sufficient.

Top-up safety depends on having apertures in the ring

that limit the possible excursion of the stored beam. Hence,

elegant’s ability to have various types of apertures was

important. For top-up safety tracking, about 500 runs

are required for each aperture configuration. Runs are

grouped according to whether they simulate stored beam

or backward-tracked injected beam, and according to the

“failure scenario.”

A failure scenario always involves a single dipole that

is either fully or partially shorted. In most cases, it also

involves another assumed failure, such as another nearby

magnet that is adjusted so as to make an accident most

likely. For example, if a corrector downstream of the

shorted dipole is driven to maximum current, it might cor-

rect the orbit for the stored beam, thus fooling the interlock.

While this is improbable, we felt it necessary to explore

such possibilities in order to ensure that an accident could

not occur.

For each scenario type, a Tcl/Tk script is used to set up

and submit the simulation runs. This script is itself usually

invoked by another script that starts all the runs involved

in a particular aperture configuration. These scripts greatly

simplify the task of setting up and running a new round of

simulations.

For each scenario, a specific script is used to postprocess

the data and produce a simple results file (again, an SDDS

file). These scripts also detect problems (e.g., missing data

that might result from a workstation crashing), and to pre-

vent using bad data, any simulations with problem data are

deleted and must be run again. The user can easily do this

by reinvoking the submission script. Like startup, post-

processing can be invoked with a single command. This

command executes the scenario-specific scripts, then col-

lates the scenario-specific results files into a single result

file. In addition, the script produces a single value showing

whether the configuration is unsafe.

Both the startup and postprocessing scripts use the

SDDS Toolkit for data preparation and analysis. In ad-

dition to using SDDS files for all output, elegant uses

SDDS files for configuration of tracking and for tracking

input. Most of these files are prepared automatically by the

scripts or by other elegant runs (a few represent exter-

nal input, e.g., the apertures, and are prepared manually).

Further, different aspects of the same scenario sometimes

share data. Because data is passed between simulations us-

ing SDDS files, there is no risk of transcription error.

7.4 APS Bunch Compressor Design and

Tolerance Analysis

The APS has an FEL project known as the Low Energy

Undulator Test Line (LEUTL) [17, 18]. In order to push

this FEL to saturation with fewer undulators and at shorter

wavelengths, we embarked on a rapid program to build a

bunch compressor for the APS linac [19]. It was desired

to have a system that permitted variation of the R56, which

would be achieved by moving the magnets, rather than hav-

ing very wide magnets. In addition, we desired a system

with variable symmetry, to test the hypothesis that such a

system has smaller CSR-induced emittance growth. All of

the matching and simulation for this project was done with

elegant [20].

The optics of the APS linac were originally designed for

creation and capture of positrons. A first step in the bunch

compressor project was a new optics configuration for the

linac, which involved rearranging the existing quadrupoles

and performing matching for the thermionic and photo-

cathode guns. This new configuration made the linac

bunch-compressor-ready, in addition to improving oper-

8



ations prior to bunch compressor installation. Response

matrix measurements indicated good agreement between

elegant and the reconfigured linac.

Because the bunch compressor chicane is flexible and

because we have multiple sources of beam, it was neces-

sary to perform matching for many configurations. This

was required to ensure that we could accomodate various

R56 values, beam sources, and acceleration profiles within

reasonable limits for power supplies.

The starting point of the simulations was matching of

about 80 chicane configurations for a grid of R56 and asym-

metry values. This matching included matching of disper-

sion and floor coordinates, to ensure that the various con-

figurations were physically compatible.

Next, longitudinal matching was performed for selected

configurations for the photocathode gun, to obtain desired

beam currents, energy profiles, and minimal energy spread

at the end of the linac. The longitudinal dynamics in the

linac are sensitive to the initial distribution and wake fields,

so that matching had to be performed by tracking a beam

of macro-particles.

Following this, beta function matching was performed

for each configuration. This matching started from a “hand

matched” configuration, working down the linac in four

stages. Data transfer from the chicane configuration, to

longitudinal matching, to transverse matching, was per-

formed automatically using SDDS files and scripts. Once

the scripts and input file templates were prepared for these

runs, any number of configurations could be explored with

little additional work. This was very important given the

rapid nature of the project, since it allowed quick evalua-

tion of proposed changes.

After the matching was completed, tolerance simulations

were performed for all of the configurations. This started

with parameter “sweeps,” wherein a single accelerator pa-

rameter (e.g., an rf phase) was swept over a range to deter-

mine its impact on important beam properties (e.g., bunch

length, gain length). Once all the parameter sweeps were

completed, the results were analyzed to determine which

configurations were least sensitive to errors, and what the

tolerances were. Finally, all-inclusive random-error simu-

lations were performed for those configurations, confirm-

ing the tolerance determination and assessing the impact of

relaxed tolerances.

8 ACKNOWLEDGEMENTS

I developed the early versions of elegant while work-

ing at the Stanford Synchrotron Radiation Laboratory un-

der Helmut Wiedemann. Since then, elegant has grown

and improved dramatically, thanks in no small part to

bugs found and suggestions made by users, including Paul

Emma, Louis Emery, Zhirong Huang, Eliane Lessner, John

Lewellen, Steve Milton, and Nick Sereno. I’m grateful to

John Galayda for the opportunity to work on elegant and

SDDS while at APS.

9 REFERENCES

[1] M. Borland, ”A Self-Describing File Protocol for Simulation

Integration and Shared Postprocessors,” Proc. of the 1995

PAC, Dallas, Texas, pp 2184-2186 (1996).

[2] M. Borland, ”A Universal Postprocessing Toolkit for Ac-

celerator Simulation and Data Analysis”, Proc. of the 1998

ICAP, Monterey, California, to be published.

[3] M. Borland, “User’s Manual for elegant,” available

on-line at http://www.aps.anl.gov/asd/oag/manuals/ ele-

gant ver14.1/elegant.html.

[4] H. Grote and F. C. Iselin, “The MAD Program (Methodical

Accelerator Design),” CERN/SL/90-13(AP), 1991, Geneva,

Switzerland.

[5] E. L. Saldin, E. A. Schneidmillter, and M. V. Yurkov, “On the

coherent radiation of an electron bunch moving in an arc of a

circle,” NIM A 398 (1997) 392.

[6] M. Xie, “Design Optimization for an X-Ray Free Electron

Laser Driven by SLAC Linac,” Proc. 1995 PAC, Dallas, May

1-5, 183.

[7] M. Borland, “A High-Brightness Thermionic Microwave

Electron Gun,” SLAC Report 402, Chapter 3, February 1991,

Ph. D. thesis.

[8] M. Borland, “Users Guide for SDDS Toolkit,” avail-

able on-line at http://www.aps.anl.gov/asd/oag/manuals/

SDDStoolkit/SDDStoolkit.html.

[9] T. P. Green, “Research Toward a Heterogeneous Networked

Computer Cluster: The Distributed Queuing System Version

3.0,” SCRI Technical Publication, 1994.

[10] M. Borland, “Commissioning of the Argonne Positron Ac-

cumulator Ring,” Proc. of the 1995 PAC, May 1-5, 1995, Dal-

las, Texas.

[11] M. Borland, “Construction and Commissioning of the

Positron Accumulator Ring for the APS,” Proc. of the 1994

Conference on Applications of Accelerators in Research and

Industry, NIM.

[12] M. Borland, “Update on the Argonne Positron Accumulator

Ring”, Proc. of the 1993 PAC, Washington, DC, May 1993.

[13] G. Decker, O. Singh, “A Method for Reducing X-ray Back-

ground Signals from Insertion Device X-ray Beam Position

Monitors,” Phys. Rev. ST Accel. Beams, 2, 112801 (1999).

[14] L. Emery, M. Borland, “Top-Up Operation Experience at

the Advanced Photon Source,” Proc. of 1999 PAC, March 29-

April 2, New York, 200-202.

[15] L. Emery, M. Borland, “Analytical Studies of Top-Up Safety

for the Advanced Photon Source,” Proc. of 1999 PAC, March

29-April 2, New York, 2939-2941.

[16] M. Borland, L. Emery, “Tracking Studies of Top-Up Safety

for the Advanced Photon Source,” Proc. of 1999 PAC, March

29-April 2, New York, 2319-2321.

[17] S.V. Milton et al., “The FEL Development at the Advanced

Photon Source,” Proc. FEL Challenges II, SPIE, January

1999, to be published.

[18] S. V. Milton et al., “Observation of Self-Amplified Sponta-

neous Emission and Exponential Growth at 530 nm,” Phys.

Rev. Let., 85(5), 988-991.

9



[19] M. Borland et al., “A Highly Flexible Bunch Compressor

for the APS LEUTL FEL,” Proc. 2000 LINAC Conference,

Monterey, to be published.

[20] M. Borland, “Design and Performance Simulations of the

Bunch Compressor for the APS LEUTL FEL,” Proc. 2000

LINAC Conference, Monterey, to be published.

[21] J. W. Lewellen, et al., “A Hot-Spare Injector for the APS

Linac,” Proc. of 1999 PAC, March 29-April 2, New York,

1979-1981.

10



Table 1: Output files created by elegant and command used to obtain them

output command parameter

amplification factors amplification factors several

inferred linear matrix from tracking analyze map output

closed orbit closed orbit output

closed orbit or trajectory before and after correction correct trajectory output

orbit corrector values before and after correction correct corrector output

beam/corrector statistics before and after correction correct statistics

orbit/trajectory response matrix correction matrix output response, inverse

random error values for elements error control error log

dynamic aperture find aperture output

dynamic aperture search boundary find aperture boundary

floor coordinates floor coordinates filename

transport matrices matrix output SDDS output, printout

optimization log (text) optimization setup log file

element dictionary (text) print dictionary filename

final particle coordinates run setup output

centroids vs. s from tracking run setup centroid

sigma matrix etc. vs. s from tracking run setup sigma

final particle and accelerator properties run setup final

initial coordinates of transmitted particles run setup acceptance

coordinates of lost particles run setup losses

magnet layout run setup magnets

lattice parameters run setup parameters

SASE FEL computations sasefel output

lattice file (text) save lattice filename

Twiss parameters twiss output filename

particle coordinates at interior points WATCH element FILENAME

beam centroids at interior points WATCH element FILENAME

beam sigmas at interior points WATCH element FILENAME

beam histograms at interior points HISTOGRAM element FILENAME

CSR wakefields CSRCSBEND element OUTPUT FILE

11


