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ELEMENT-BY-ELEMENT CONSTRUCTION OF WAVELETS
SATISFYING STABILITY AND MOMENT CONDITIONS

WOLFGANG DAHMEN AND ROB STEVENSON

ABSTRACT. In this paper, we construct a class of locally supported wavelet bases
for C° Lagrange finite element spaces on possibly non-uniform meshes on n-

dimensional domains or manifolds. The wavelet bases are stable in the Sobolev

spaces H® for |s| < 2 (|s| < 1 on Lipschitz’ manifolds), and the wavelets can,

in principal, be arranged to have any desired order of vanishing moments. As a
consequence, these bases can be used e.g. for constructing an optimal solver of
discretized H*-elliptic problems for s in above ranges.

The construction of the wavelets consists of two parts: An implicit part involves
some computations on a reference element which, for each type of finite element
space, have to be performed only once. In addition there is an explicit part which
takes care of the necessary adaptations of the wavelets to the actual mesh. The
only condition we need for this construction to work is that the refinements of
initial elements are uniform.

We will show that the wavelet bases can be implemented efficiently.

1. INTRODUCTION

This paper is concerned with the construction of finite element based wavelet
bases with respect to arbitrary initial triangulations. This introductory section is
devoted to a brief summary of relevant background information which, in particular,
motivates specific requirements on the wavelet bases concerning stability in Sobolev
spaces and moment conditions.

1.1. Motivation and background. Let us denote by H*, s € IR (or |s| < t) a
scale of Sobolev spaces on an n-dimensional domain or sufficiently smooth manifold.
When s < 0 the space H® is understood to be the dual of H™* (whose precise
structure depends, of course, also on the boundary conditions incorporated in °).
Consider the variational problem: Given f € H™", find u € H" such that

(1.1) a(u,v) = f(v)  (ve#),
where a is a scalar product satisfying
a(v,v) S [0l
i.e., the problem (1.1) is symmetric and elliptic of order 2r. In order to avoid the

repeated use of generic but unspecified constants, by C' S D we mean that C' can be
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bounded by a multiple of D, independently of parameters on which C' and D may
depend. Obviously, C' 2 D is defined as D S C,and C T D as C S D and C 2 D.
As typical model examples for (1.1) we have in mind (variational formulations of)
— the differential equation —V - BVu + cu = f on a domain Q, where B(z) < I
and 0 < ¢(z) S 1, supplemented with suitable boundary conditions (r = 1),
— reformulations of Laplace’s equation on Q or IR"\(Q as an integral equation
on 09, like the single layer potential equation (r = —%), the hypersingular
equation (r = 3), or the double layer potential equation (r = 0).
Suppose we are given a sequence of nested closed subspaces, also called a mul-
tiresolution analysis,

SCS C--8§C---CH N L.
Then the Galerkin discretization of (1.1) reads as follows: Find u; € S; such that
(1.2) auj,vj) = f(v;) (v €8).
By fixing a basis {p;, : * € I;} of S; C H", (1.2) leads to a linear system of
equations
(1.3) Aju; =f1;.

The size of the matrix A; in realistic applications often excludes the use of direct
solvers. In order to solve (1.3) iteratively in an efficient or rather optimal way, the
following two questions are relevant:

— Can we select {¢;, : € I;} such that A, preconditioned by its diagonal,
is well-conditioned, i.e. the spectral condition number is bounded uniformly
as a function of j. It is easily verified that this property is equivalent to the
uniform H"-stability of the bases, defined as

z€l; z€l;

(For convenience, in the sequel we often refer to the property (1.4) by saying
that {¢;, : © € I;} is an H"-stable basis of S;, where we thus mean the
uniform H"-stability of the sequence of bases {¢;, : v € I;} for j =0,1,---).

Secondly, considering integral equations which generally lead to dense matrices:

— Can we select {¢;, : © € I;} so that it is possible to find a well-conditioned
and sparse approximation of A;, meaning that A; has only O(dimS;) non-
zero entries, such that the resulting approximate solution has, as function of j,
the same order of convergence as the exact Galerkin solution. This process of
finding a sparse, accurate approximation is usually called matriz compression.

In a sequence of papers (see [Dah97] and the references cited there), it was shown
that both questions concerning stability and compression can be answered affirma-
tively when suitable wavelet bases are employed. Let us briefly point out what is
meant by suitable wavelet bases in this context. Suppose that Wy 1 C Sk, is chosen
such that

Sit1 = Wip1 © S
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and let Uy = {414 : ¢ € Jg1} be a basis of Wiy C Lo. For convenience let
us also set Wy = &y equipped with some basis ¥,. This gives rise to the direct sum
decomposition

Sj = Bp=o W

which is sometimes called a multiscale decomposition. Consequently, ¥/ := ULO\I/;,C
is a basis of §; C Lo, called multiscale-, or wavelet basis.

Aiming at computationally optimal implementations, we will always assume the
availability of Lo-stable single-scale bases @y = {¢p, : © € I} of the spaces S,
which are locally finite, i.e., sup,c; #{y € Iy : sSupp@r, N supper, # 0} S 1.
Viewing bases as (column) vectors whose components are the basis functions, the
nesting Sy C Sky1 implies the existence of a refinement relation

(1.5) @{ - (I);}F+1Pk+1,0-

Here the zth column of the #1I;,, X #1 matrix Py, ¢ contains the coefficients for
the linear combination of ¢y, in terms of the ¢y, ,. We will assume that @ is local
with respect to @41, with which we mean that the rows and columns of Py, o have
a uniformly bounded number of non-vanishing entries. This situation is encountered
for any standard finite element discretization based on nested partitions. Clearly
the matrix Py, o represents a prolongation operator in multigrid terminology.

Given the single-scale bases ®;, we put ¥, = ®4 and search for complement bases
Wiy, such that W, is local with respect to ®;,;. In terms of two-scale relations
this means that we have to find #1j, X #J;1 matrices Py ; which are sparse in
the above sense so that

(1.6) \I’kT+1 - q’fﬂpkﬂ,l-

In that case ¥y 1 U Py is also local with respect to ®;,1. The fact that &, U Wy is
also a basis for Sy is equivalent to saying that the matrix Py := [Pgi1.0, Pri11] is
invertible. The matrices Pr,1,k =0,...,7 — 1 are the core ingredients of the basis
transformation T; in S; that takes the multiscale coefficients of an element in S;
into its single-scale coefficients. It can be implemented recursively from bottom-to-
top as a pyramid scheme which, on account of the sparseness of the Py, requires
O(dim ;) operations.
The question of H" -stability of wavelet bases can be separated into two issues:

Remark 1.1. If
(1.7) U, is an Lo-stable basis of Wi.

and
(1.8) I el T Ak
k=0 k=0

or some arbitrary constants \,, then ¥/ = o/ W, is an H"-stable basis of S;.
Y , k=0 J

vk I3, (vx € W)
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Indeed, from (1.8) and (1.7), we infer

| Z ChaVh | 3{ ~ Z Akl Z Ck,xl/)k,xH%Z ~ Z |Ch,a
k,xz k T

k,x
= D lenallonallF
k,x

2)‘19,7"

¥rellL,

The stability (1.7) on each refinement level is, in principal, relatively easy to check.
For example, assuming a normalization such that ||¢;,||r,, ||¥k2]lz, =1 (uniformly
ink, x € Iy, y € Ji), the Ly-stability of the basis ®;_; U ¥y is equivalent to the fact
that

(1.9) IPell, P21,

where || - || denotes the spectral norm.

By contrast, it is usually much less apparent how to assert the stability (1.8)
across all levels. In [Dah96], it was proved that for (1.8), it is sufficient that Wy, =
(8}) 22 N Spy1, where

S CS C---8;C--- C Ly,

is a “dual” sequence of nested closed subspaces, such that both (Si); as (Sy,)x satisfy

certain direct (or Jackson) and inverse (or Bernstein) estimates with respect to

suitable Sobolev norms. The precise formulation and a new proof of this statement

can be found in Section 2 and Appendix A respectively. In this case, we also have
1 =Wy @8, where W, | = (S)*£2 N S)_,. Since therefore

(1.10) St Ly Wity Sh Lp, Wi,

and so Wy Lp, Wy (¢ # k), the space decompositions @, Wy, and @, W, are called
biorthogonal space decompositions.

Now we turn to the question of matrix compression. Using the Bramble-Hilbert
lemma, aforementioned direct estimates are usually enforced by demanding that,
relative to their underlying meshes, S and S;, contain all piecewise polynomials,
possibly satisfying some global smoothness conditions, of sufficiently high degree,
say degree d — 1, and d' — 1, respectively. As a consequence, then the wavelets
are Ly-orthogonal to all polynomials of degree less than d’, or the wavelets are said
to have wvanishing moments of order d’. As first observed in [BCRI1], in case of
an integral operator it is this property that ensures that the stiffness matrix with
respect to the wavelet basis is close to a sparse one.

For this biorthogonal setting, at the end of a sequence of papers ([DKPS94,
DPS94, PS95]), it was proved in [DPS94, Sch95] that if

(1.11) d' > d—2r,

and if the Schwarz kernel of the integral operator is smooth off the diagonal and
exhibits a certain asymptotic behavior under differentiation, then the stiffness matrix
can be compressed to a sparse one by dropping small elements in an a priori way,
i.e., without computing these elements, in such a way that the order of convergence
is not reduced. More precisely, this was shown in [DPS94| where sparse meant that
the order of non-vanishing entries is dim S;(logdim S;)° for some b > 0, whereas the
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analysis in [Sch95] could even remove the logarithmic factor. Note that for r < 0,
condition (1.11) rules out the orthogonal space decompositions, i.e., S = S or
Wit1 = Sp1 6722 .

1.2. Construction of suitable wavelet bases. So far, for d' > d, which is needed
for integral operators of non-positive order, wavelet bases satisfying all desirable
conditions have been constructed primarily only for spaces S; that are spanned by
cardinal B-splines on uniform partitions of IR in [CDF92], and of [0, 1] in [DKU96].
Clearly, by taking tensor products, these constructions can be extended to IR" or
[0, 1]™.

Using these wavelet bases as building blocks, in [DS96] and later in [CTU97],
wavelet bases were constructed on manifolds that can be represented as disjoint
unions of smooth parametric images of the unit cube. With both approaches, H"-
stability is restricted to r > —1. Recently, in [DS97], see also [Dah97], this restriction
was overcome yielding H"-stability in principal for any r. The key in this latter
approach is a characterization of function spaces such as Sobolev or Besov spaces
on such manifolds in terms of partitions of that type by establishing isomorphisms
to product spaces whose components satisfy certain boundary conditions.

Although the above approaches cover, in principle, fairly general situations there
still appears to be a strong need for alternative concepts for the following rea-
sons. The fact that the above mentioned constructions are based solely on smooth
parametrizations of the unit cube may have several severe disadvantages from a prac-
tical point of view. There is little chance to make use of existing software packages,
and so essentially all algorithmic ingredients have to be put together from scratch.
More importantly, constants in the norm equivalences will strongly depend on the
parametric mappings so that strong distortions imposed by the domain geometry
will have a quantitative effect. Furthermore, the only scheme that also covers norm
equivalences for Sobolev spaces of regularity index r < —1/2 involves certain ex-
tension operators which have to be carefully chosen depending on the problem at
hand.

As an alternative approach, for C° Lagrange finite element spaces of order d > 2
based on subdivisions into n-simplices (“triangulations”) of domains in n dimen-
sional Euclidean space, we introduce in this paper a construction of wavelet bases
that meets all aforementioned requirements in the following sense: The wavelet bases
are H"-stable for |r| < % , the wavelets are local with respect to the nodal bases,
and they have, in principal, any order d’ > 2 of vanishing moments. The construc-
tion is applicable to arbitrary initial meshes and for arbitrary boundary conditions.
The only condition we need is that of uniform dyadic refinements. Apart from this
condition, the appreciated flexibility of finite elements is fully retained.

The whole construction carries directly over to finite element type spaces on cer-
tain Lipschitz manifolds. More precisely, those manifolds are covered that consist
of patches, each of them the parametric image of a domain with triangulations as
above, such that the images of the triangulations match at the interfaces, and on
each domain the Jacobian determinant is piecewise constant with respect to the
initial triangulation.
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This means that we can handle manifolds consisting of patches that are for ex-
ample parts of hyperplanes, spheres or cylinders. We stress that the construction
yields also in this case H"-stable wavelet bases for the full range r € [—1, 1] which
appeared to pose essential difficulties in the above mentioned other approaches. Al-
though some of the resulting wavelets may have support which intersects more than
a single patch so that, due to the involved different parametric mappings, one cannot
resort to standard polynomial moment conditions we are still able to confirm cer-
tain cancellation properties needed to establish optimal decay estimates for matrix
compression.

Our construction requires solving once and for all some system on a reference
element, which depends on d, d and n. Having solved this system, the necessary
element-by-element adaptations of the wavelets to the mesh on the domain or man-
ifold, and possibly to boundary conditions are given ezplicitly. We will perform the
computations on the reference element for d = 2 (piecewise linears) in combination
withd =2 (n=1,20r3)ord =3 and d =5 (n =1 or 2). Note that d' = 2,
3 and 5 suffices for the hypersingular equation, the double layer potential equation
and the single layer potential equation, respectively. The results for d = d' = 2 were
published earlier in [Ste97h].

Compared to existing approaches, our construction seems easy and, as we will
show, it can be implemented efficiently. The clue of our approach is that we drop
one condition that is usually imposed, viz. the existence of a well localized dual
wavelet basis. Whereas for other applications of wavelets, such as signal analysis,
the availability of such a dual basis is essential and enters the computations, for our
goals viz. stability and matrix compression, there is no need for explicitly knowing
such dual wavelets. It appears that without this requirement the possibilities of
constructing efficient “flexible” wavelet bases are increased dramatically.

The remainder of this paper is organized as follows: In Section 2, we formulate
a somewhat modified version of a crucial theorem concerning stability of biorthog-
onal space decompositions, that was first proved in a somewhat more general Hilbert
space setting in [Dah96]. We have included a new proof of this theorem in Appendix A
for the following reasons. As indicated before, the formulation of the result is dif-
ferent and in this form essential for application in the present setting. It avoids
making any assumptions on dual bases, that in our applications will not be acces-
sible. Moreover, its proof for the corresponding slight specialization is shorter and,
as we think, better accessible.

The construction of stable bases of the subspaces generating a biorthogonal space
decomposition, i.e., the construction of the wavelets, is treated in Section 3.

In Section 4, the approach from Section 3 is specialized to C° Lagrange finite
element spaces. It will appear that in this case the construction of the wavelets
can be splitted into two parts: An implicit part involving only some computations
on a reference element and an explicit part taking care of the adaptations of the
wavelets to the actual mesh. We will perform the computations on the reference
element for linear finite element spaces and the order two, three and five of vanishing
moments. Special attention will be paid to showing that the wavelet construction
carries over to compact manifolds, and that resulting wavelets have cancellation
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properties essential for matrix compression. We give a quantitative analysis of the
costs of performing the wavelet transform.

2. BIORTHOGONAL SPACE DECOMPOSITIONS

In this section, we formulate sufficient conditions for existence and stability of
biorthogonal space decompositions. Partly based on arguments from [Sch95], we
give a shorter proof of a theorem concerning these properties (Theorem 2.1), that
in a more general setting was first proved in [Dah96]. Compared to [Dah96], in Part
(a) an assumption about uniform boundedness of certain projectors is replaced by
sufficient (and necessary) conditions for this property which are better suited for
the present context.

As pointed out in the introduction, we are primarily concerned with H"-elliptic
problems, where throughout this paper #®, s € IR (or |s| < t) denotes a scale
of Sobolev spaces, possibly incorporating boundary conditions, on an n-dimensional
domain or sufficiently smooth manifold. For s < 0, H® is to be understood as (H %)’
with respect to the dual pairing (u,v) — (u,v)p,.

Theorem 2.1 (cf. [Dah96]). Let S C S C So C --- and §§ C S C S, C --- be
sequences of nested closed subspaces of La, and let p > 1 be some constant.
(a) Suppose that

(C1) inf sup —| (g, U ) |

> 1
! ~Y b)
0Fuy €Sy 0#£ul, €S, ||u/€||L2 ||uk||L2

as well as the analogous condition (C1) with interchanged roles of (Si)r and (S})k
hold.
Then, there ezists a sequence (@)r of uniformly bounded projectors@,, : Ly — Lo,
with @) = Sk, SUI—Q}) = (S,)* 22, and likewise for the dual projectors, I@},) =
1 ST =Q@p) = (Sg)*2. Furthermore, one has @@y, =@ and @)D}y, =@
(b) In addition, assume that there exists 0 < v < d such that

(C2) ing o —uplln, S o~ ||ullws (u€ H*, 0< s <d) (direct or Jackson estimate),
U €Sk

(C3) |ugllas S p*||unlln, (ur € Sk, 0 < s <) (inverse or Bernstein estimate),

and that analogous assumptions (C2)' and (C3)" with constants 0 < ~' < d' hold for
(S )k
Then, with@_, := 0, one has

21 1wl

and

(2:2) D@ — @y )ully, S lul
k=0

e S P MllE, (o € S@ ~ @), s € (=)
k=0

e (u € H°, s € (=7, d)).

Fors e (—',7), u—= (@, —@,_1)u)k is a bounded mapping from H* onto ly (@) :=
{(We)e = v € S@p=@p 1), [1(wr)llesi@) 7= (2520 P2 uellZ,) 2 < 00}, with bounded
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inverse (vg)g — Y opeo k- That is, for s € (=7',7), the symbols “S” in (2.1) and
(2.2) can be replaced by “Z” symbols.

Analogous results (2.1)', (2.2)" are valid with @)y, replaced by @})r and with
interchanged roles of (v,d) and (v, d').

Remark 2.2. To relate the results of this theorem to the concepts discussed in Sec-
tion 1, let us denote by Wy = @, — @,_,) the range of the difference opera-
tors @, —@y_,. Then Wy = Sy, and by @, @,., = @, one easily confirms that
Ski1 = W1 © Sk and Wy = (S,) 2> N Sy11. Under its conditions, Theorem 2.1
shows that (1.8) holds for r € (—',~), where Moy = pz’“"

Analogous results hold for W}, .= S@), —@)_,), i-e., (1.10) is valid here.

The proof of Theorem 2.1 is given in Appendix A. Here we briefly comment only
on the hypotheses.

As spaces S; and Sj,, we have finite element spaces in mind. In that context the
validity of direct and inverse estimates are standard facts (cf. e.g. [Osw94]).

When the functions from the spaces S; and S;, are piecewise smooth and globally
t respectively ¢’ times continuously differentiable, under the usual assumptions for
quasi—uniform meshes with mesh sizes ~ pFon level k, the inverse estimates (C2)
and (C2)" are valid with v =t + 2 and v/ =t + 2, respectively (¢ (') :== —1 in case
of no continuity between elements)

The direct estimates (C3) and (C3)" are usually enforced by demanding that,
relative to their meshes, S and S, contain all ¢ or ¢’ times continuously differentiable
piecewise polynomials of degree d — 1 and d' — 1 respectively. In that case, since
by (1.10) Wyy1 C (S})* "2, basis functions of Wy, 1, i.e., the wavelets, will have d’
vanishing moments. As pointed out in Section 1, the property of having sufficiently
many vanishing moments is essential for the use of the wavelet basis for optimal
compression [DPS94, Sch95].

Finally, (C1) or (C1) are conditions concerning invertibility of certain linear oper-
ators that are usually encountered in connection with saddle point problems. Their
validity will be checked using the following criterion.

Lemma 2.3. Let = = {&. @ @ € Ik} and 5 = {§, + © € I} be Ly-stable
bases (cf. (1.4)) of S, and S|, respectively. (Note that (C1) and (C1) can be valid
simultaneously only if Sp and S, have the same cardinality, so it is no restriction to
use the same index set Iy, for both bases.) Define the possibly infinite matriz

M= (n e ) ’
Shapllallh ol TEI, e,
Then (C1) is equivalent to ||Myckl|les(ry) 2 1Ckllea(ry) (€k = (cha)eer, ), and analo-
1
(10 = Cser leral?)?

Proof. For the convenience of the reader we include the argument. Write u; =

erlk C’”H&fiil € S and uj, = Zxak dkx”gfk‘w' € S;.. The stability of =), and =y

[(upsuy)ry| = i(Mka,dk)zQ(zk)i .
shows that SUPxues, Tull,  ~ SUPozdiets(l) ~ Tdlnay IM.c||ey(r,) and

gously (01)' is equivalent to ||M;‘fck||42(1k) e ekl ea(ry)
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k||, = llcklles(r,) respectively. From these results the proof follows immediately.
U

3. A GENERAL CONSTRUCTION OF WAVELETS

Let (Sk)k, (Sp)r be nested sequences of closed subspaces as in Theorem 2.1. In
this section, we present a way of constructing Lo-stable bases of the spaces Wy =
(8;.)*22 N Sy, Having these stable bases at hand, and assuming an Ly-stable basis
of Wy = Sy as well, Theorem 2.1 implies that for s € (—~',~), the union of all basis
functions, called wavelets, of all spaces W is a stable basis of H*. In particular, in
this case the basis of the space S; defined as the union of the bases of Wy, ..., W;
is (uniformly) #*-stable (cf. Remark 1.1).

Theorem 3.1. Let ), = {qﬁ?w cy € Ity C Sk, Yirr = {Vkt10 1 @ € i1} C S
and Oy = {011,y 1y € I} C Sgy1 have the following properties:

(a). @), is an Lo-stable basis of Sy,

(b). Tii1 U Oy is an Ly-stable basis of Sk,

(¢). k41 is a dual basis of @}, i.e

(91€+1,Z/7 ¢;c,z)L2 ~ 6?/,3 9k+1,y||L2||¢);c,z||L2 (ya z € [k)

Then, defining

Z (Uk+ 1,2, ¢;c,y)L2

91€+1 Yo
yel, (9k+1,y7 ¢;c,y)L2

the collection Wy 1 = {tp11. : ® € Jpy1} is an Lo-stable basis of Wiy = (Sp) %2 N
Skt and Vi1 U Ok is an Lo-stable basis of Sgy1.

(3.1) Vi1, = Vhg1,g —

Proof. Let us first show that Wy, U©g, is an Lo-stable basis of ;1. To this end,
consider the (possibly infinite) matrix

B _ (Vkt1,0) Py ol Okl
= :
(Okt1,y5 Do) 22l Vkt1,0] .

For any dy41 = (dit1,0)wety,, and ¢ = (cry)yer, the Lo-stability of Ty, and @),
and condition (c) provide

[ PN A
Bidiyi,c = § d Ubtl.z E: 2 Py ls Pk
(Bidi1, €k )es(ny) WL oy ollny ' 2o BV ™ Ongr By )1y u«sz,yuh)h
TEJ k41 yEly
1
2
< Z Z| |2\|ek+1yuL2u¢ JE,
~ Chy [(Ok41,950% ) Lo1”
TEJL+1 yEly

~ ||dk+1||42(fk+1)||ck||l2(1k)7

which means that

(3'2) ||Bk||€2(1k)<—€2(=]k+1) 5 L.
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The definition of 9541, and the L2—stability of Tri1 U©Ogy imply that

S14 ) (Bl

yEl

||vk+1x||

and so, by the boundedness of By,
Given any ¢ji1 = (Chi1,0)octirs» Ak = (dry)yer,, the expansion

§ : c k410 § : COkga,y
kL2 1 2Ly by 0140z,

r€JL41 yely

can be rewritten as

Ukt COkqry
e +>
Z k+12 o0 2, fewTom e 10k+1,ylLy "

:DEJkJrl yEl}

Here the arrays exy1 = (€x41,0)ees,,, and fi = (fry)yer, are given by [exyy " =
Lk+1[ck+1 dk]T, where Ly, = [_BA:KLH (I)] and Ay, = diag (%)mehﬂ'
From ||¢k114)l2, = ||Uk+1.2]|z, and the boundedness of the mappings By (3.2) we
infer that both L, as L,;il are uniformly bounded mappings from ¢y (I U Ji11) —
l5(I), U Jgyq). Since, by assumption, i1 U Oy is an Lo-stable basis of Sy 1, the
boundedness of both Ly, and L,;il is equivalent to the property that Wy, U Ok
is an Ly-stable basis of Sg.y1.

As for the remaining part of the claim, suppose that v, = ZmeJk+1 Cht1,aVk+1,20+
Zyelk di 4y 0k+1, belongs to Wiy = (S}) 22 NSky1. One easily verifies that ¢y, €
(8p)*"2 (z € Jpy1). Now by taking Ly-scalar products with basis functions ¢,

we see that dy, = 0 for all 2 € I;. Therefore ¥, ; spans W, and hence is an
Ly-stable basis of Wy ;. O

Remark 3.2. As was already noted in Section 1, in order to get an optimal imple-
mentation, given some family of (locally finite, Lo-stable) “single-scale” bases ®y,
so that &y is local with respect to ®4,;, we need ¥, that is local with respect to
®y11. Generally in the context of Theorem 3.1, this necessarily means that both
Tri+1 and Oy are local with respect to @41, and that the matrix

(33) ((¢k+1,xa ¢;c,y)L2)

Remark 3.3. The construction presented in Theorem 3.1 is closely related to the
concept of so-called stable completions proposed in [CDP96]. Differences are that in
[CDP96], it is assumed that

(3.4) Op1 = Py, ie. (D, D)) is assumed to be a so-called biorthogonal pair of

Ly-stable bases of S, and S}, respectively.
(3.5) the basis functions are scaled such that ||¢y,

(¢k,y7 ¢;~c,y)lz2 =1
Under these two assumptions, the wavelets defined in (3.1) are exactly those yielded

by [CDP96, Theorem 3.3]. In fact, since Wyy; = (S},)"£2 NSg41 does not depend on
Sk, we may even replace in [CDP96, Theorem 3.3] S; by span®©y 1, and in particular,

is sparse.
€Il 41,yEl p

— 1 and

Lo ||¢;~c,y Lo |
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®; by O, 1, so that, upon assuming (3.5), this theorem also yields the wavelets from
our Theorem 3.1.

The fact that we avoid assuming some Ly-normalization of basis functions, and
correspondingly, that our definition of (1.4) of stability of a basis is independent of
the scaling of the basis functions involved, is of minor importance from a mathemat-
ical point of view. However, as was noticed in [Ste97a], in practical computations,
in particular cases of non-uniform meshes, the absence of scalings permits a more
efficient implementation.

The generalization that we allow O to be some dual basis of ®} in Sk 1, instead
of sticking to the initially given coarse generator basis ®y, is a crucial point of this
paper. Remark 3.2 says that we need ®; to be local with respect to ®4, whereas in
case Oy = @y, and thus (@, ®) a biorthogonal pair of bases, (3.3) is equivalent to
the property that ®) is local with respect to ®_ . So far, such biorthogonal bases
have been constructed for pairs ((Sk), (S;)) satisfying the conditions of Theorem
2.1 only for spaces Sy which are spanned by B-splines on uniform dyadic partitions
of the real line (in [CDF92]), or of the interval (in [DKU96]). In [CDF92], and
as a consequence partly also in [DKU96], the construction of the dual space S,
relies through the construction of biorthogonal generators still on Fourier techniques,
which restricts the field of applications essentially to uniform meshes and adaptive
refinements of such.

In contrast, as we will see in the next sections, our generalization concerning the
choice of ©,;; permits us to take for both Sy and S, standard finite element spaces,
also in more space dimensions and for non-uniform meshes.

On the other hand, as is known from the literature, for applications different
from the generation of well-conditioned stiffness matrices or matrix compression,
the wavelet construction starting with suitable biorthogonal pairs of bases offers
some potential advantages as will be described in the next remark.

Remark 3.4 (cf. [CDP96]). Let (®g, ®}) be a biorthogonal pair of bases, i.e., sup-
pose O = 4. Suppose Py is local with respect to @iy, and P} is local with
respect to @} .., i.e., both matrices Py, and Py from the refinement rela-
tions ®] = &7 Pj,10 and )" = @;HITP,CJZLO are sparse. Furthermore, assume
that Y, can be selected such that both Py = [Pyy19 Pgyig], defined by
@ YI.)= (I>£+1f’k+1, and f’,;il are sparse. Examples can be found in [DKU96].
Since O = Py, the definition of ¥y from Theorem 3.1 shows that [®] Ui, ] =
2 I _Zk (Uk+1 za(b, )L

o7, P here Py = P ze = (et

k+1 k+1, whnere k+1 k+1 |:0 I :|7 k ((z)k,yy(z)k,y)LQ yEIk,CEGJk.H
= AAI;IPZﬂ,oAkJrIijrLI and A, = diag((qﬁk,y,%’y)h)yelk. From the assumptions
on Py, P,;il and Py, 0, we conclude that in this case not only Py, but also
P;L is sparse.

As a first consequence, we note that now besides T, also the basis transformation
Tj’1 from single scale basis ®; to multi-scale basis ¥/ = U/_ ¥}, can be implemented
in O(dimS,) operations, by a recursive top-to-bottom application of P,;il (j—1>
k> 0).
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For the second application, it is convenient to assume scalings as in (3.5), which
means that Ay = I, P;, (Priio = I and Py, [Pl ]l T 1. Then, writing
(f’,;il)* = [Hgy10 Hgg1a], it is easily verified that (P,;il)* = [f’kﬂ,o Hpy11]
Defining (¥} ,)7 by [@," ¥,,,"] = @, ,"(Py},)", we find that ¥}, is an Lo-

stable basis of W | = S:LZ NS, 1, which is local with respect to @), ; and biorthog-
onal to Uy, (with scalar products equal to one when the indices match). So in this
case we obtain biorthogonal bases (J;5, ¥; and (J,5, ¥}, where the dual wavelets
have similar favorable properties as the primal ones.

As a consequence, in the context of Theorem 2.1, for s € (—+/,~) and f € H?, the
coefficients in the expansion f =3, ¢y ¥k, are now given by cro = (f, ¥ ) 1,-
Assuming that @} is locally finite, the coefficients (f, v} )z, for & < j can be
computed recursively from top-to-bottom in an optimal way.

4. WAVELET BASES OF C° LAGRANGE FINITE ELEMENT SPACES

In this section, we will choose for both S, and S, C° Lagrange finite element
spaces, on possibly non-uniform meshes. We confirm the validity of conditions (C2),
(C2)', (C3) and (C3)'. Furthermore, we reduce the problems of verifying (C1) and
(C1)', and the construction of the single-scale bases ®;, as well as the bases ®), O,
and T, to corresponding problems on the reference element. These questions on
the reference element will be treated for a number of concrete cases.

4.1. Finite element spaces. For some fixed m € IN, let 7_,, be a collection of
closed n-simplices such that U;¢7 7 is a partition, also called triangulation, of the
closure of some open domain 2 C IR". The construction of wavelets on manifolds
will be addressed in Subsection 4.3. We assume that the triangulation is conforming,
i.e., the intersection of any two simplices 7,7’ in 7_,, is either empty or a common
lower-dimensional face.

We include the possibility of imposing essential boundary conditions on part of
0. That is, we consider functions on Q that are zero on I'p C 95, where I'p is
the union of a number (possibly zero) of faces of simplices from 7_,,. We define H'
as the completion in H'(Q) of {u € C*°(Q) N H'(Q) : suppu N Tp = (0}, and for
0 <s# 31, we take H* = H' N H*(Q). When ', # 0, a similar definition of Ho>
would not yield a Hilbert scale. In this case we define Ho by interpolation between
L2 and Hl.

As we have already stated in Section 2, for s < 0, we define H* as (H*)" with
respect to the dual pairing (u,v) — (u,v)r,. Although we do not consider this
option, it will become clear that our analysis can easily be generalized to the case
of a weighted Ls-scalar product, if the weight function is piecewise constant with
respect to the triangulation 7,,.

Let us now describe the hierarchy of meshes and associated finite element spaces.
For —m < k € Z, let T; be the collection of n-simplices generated from 7T ; by
uniform, regular, dyadic refinement, i.e., each 7 € 7T;_; is subdivided into 2" con-
gruent n-simplices. Note that for n > 2, there are several possibilities to divide each
simplex in this way. However, for n = 3 this ambiguity concerns only subsimplices
whose 2-faces are not contained in any 2-face of the mother simplex. Thus the



ELEMENT-BY-ELEMENT CONSTRUCTION OF WAVELETS 13

refinement of adjacent simplices in 7_,, does not affect compatibility on common
faces. Therefore, to ease presentation, we will assume that n < 3, which means that
refinements can be made on an element-by-element basis with automatic matching
of the triangulation at interfaces of adjacent macro elements. The set of vertices of
all 7 € 7} is denoted by V.

For { € IN, k € Z with { < m, k > { —m, we define S(/, k) as the C° Lagrange
finite element space of degree 2! corresponding to the set of “nodes” Vj and the (-
times coarsened triangulation 7, ;. Note that the dimension of S(, k) only depends

on k, but not on . Restricting the polynomial degrees to powers of two ensures that
7
the sets of nodes are nested under refinement. Each 7 € 7,_; contains <2 - n)
n

nodes from Vj, which indeed equals the dimension of II,;, the space of polynomials

of total degree 2¢ on IR". In particular, one may verify that S(0, k) is well-defined
(e.g. see [BS94, Sect. 3]).

Now fix £, € IN and assume throughout the following that m = max{¢,¢'}. We
define

Sp =S, k)NH, SL=S(l,k)nH,

where the intersection with ' is made to impose possibly essential boundary con-
ditions. Note that £ = 0 is the lowest level on which both S; and S;, are defined.
Only for matters related to obtaining an efficient implementation, sometimes it will
be convenient also to consider spaces S(¢, k) for some negative k.

Remark 4.1. The sequences (Sg)r>0, (Sh) k>0 satisfy the conditions (C2), (C2)', (C3),
(03)" with p = 2 (dyadic refinement), and

7:7'23 d=2"+1,d=2"+1.

Assuming that (C1) and (C1)" are satisfied as well, so that, on account of Remark
2.2, Wiy = Sp1 N (Sp)* 22 is well-defined, elements Vpr1 € Wiyt will have d'
Vanlshlng moments. In case of essential boundary conditions, this holds true for
V41 for which suppvgy C U{7 € Tr_p : TN Tp = 0}.

As index set for bases of S(Z,k) NH', we will use

(41) Ik = Vk\(FD N ‘/I-c)

4.2. Reduction to a reference element. In this subsection, we will reduce the
problems of constructing single-scale bases @y, bases @), O;11 and Ty needed in
Theorem 3.1, as well as bases Z;, and =), needed in Lemma 2.3 for verifying (C1)
and (C1)’, to corresponding problems on some reference (macro) element 7, say with
vertices vy, ... ,Us+1 € IR" not all lying on one hyperplane.

Starting with the collection 7_,, = {7} consisting of the reference simplex only,
we define in analogy to the definitions in Subsection 4.1 sequences of triangulations
(T2)i>_m> nodes (Vi) ., and for £ < m, finite element spaces (S(f, k))zsz_,,- In
the following we will denote V; by I, which is in agreement with (4.1), since we do
not impose boundary conditions on 7.
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To describe certain symmetry relations which are relevant for the subsequent
construction consider the mapping

n+1 n+1
B:{aEIR”H:Zaj:L ajZO}—>7‘:a»—>Zajvj
j=1 j=1

which is a bijection from the standard n-simplex to 7 described in terms of barycen-
tric coordinates. For any permutation of the coordinates 7 : R"™' — R"™' we
define the bijection

S, =BomoB™!:

T —T.
For fized k > 0 —m, let {Grs:7€ I} € S(4,k) be a collection of functions on
the reference element satisfying

—

(A1) (@5, () © Sr)lgs = Pilss for all permutations 7 and all & € I,

(A2). @j:(7) = 0if for some i € {1,... ,n+1}, (B~ (9)); = 0, whereas (B~'(%)); #
0.

Assumption (A1) means that {¢; ;|,. 1 & € I;} is invariant under permutations of
the barycentric coordinates, whereas (A2) says that ¢y ; vanishes on all faces of 7
that do not contain . .

For k > k and z € I, let us now define Ora € S E)NH! by

~ _1 .
— SOI;:,T:I(:U) (TT (y)) if T,yerTe nflvcfm
(4.2) Pra(y) { 0 elsewhere

b

where 7). : 7 — 7 is an affine bijection. In case n > 2, we have to assume in addition
that T’ is a bijection between the triangulations 727,_7 in the reference domain and
{r. € T j:7,_; C 7T} in the physical domain. As mentioned before, for n < 2,
this is ensured automatically due to the uniqueness of uniform dyadic refinements.
However, for n = 3 there exist three possibilities to subdivide a tetrahedron into 8
congruent tetrahedra, see [DM88] for more details.

For any 7 47 € T,_j_,, with 7N 7 # (), and any T,, T; as above, there exists
a permutation 7 such that 7 o S, o T;1|mT = I. Assumption (Al) now implies
that ¢, is well-defined, and that it is continuous on 7 U T if z € 7N 7. On the
other hand, assumption (A2) shows that ¢y, vanishes on all faces of 7 that do not
contain . We conclude that ¢y, is continuous on Q, vanishes on ', and so that

¢k belongs to S(0, k) NH'.

Remark 4.2. In our applications, we will construct {¢; ; : & € I} ¢ S(¢,k) which
on the whole of 7, thus not only on 07 are invariant under all permutations of the
barycentric coordinates that, for n > 2, leave the mesh 727,_7 unchanged. So ¢y,
defined in (4.2) will be independent of the particular choice of T,. Note that this
construction of global bases is commonly used for affinely equivalent finite elements.

The analysis in the remainder of this subsection will be based on the following
trivial relation

(43)  (wo), =) gg}g;g (woTr,voT )iy (w0 € Ly, k> —m),

TET
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where T, : 7 — 7 are affine bijections. In particular, for ¢, defined in (4.2) this
yields

vol(7T -«
(4.4) leralZo = Y. EHGer -

{T€T_j_:TET}

Lemma 4.3. For some fized { < m, k > { —m, let {Prs 7 € I;} be a basis of
S(0, k) satisfying (A1), (A2). Then the collections {py, : © € I}, defined by (4.2),
form Lo-stable bases of the spaces S(0,k) N H, uniformly in k > k.

Proof. From the construction of ¢, and the definition of a finite element space, it
follows directly that {¢y, : © € I} } is a basis of M(¢,k) NH'. On account of (4.4),

one has
1 .
| Z Cka P,z |i2 = Z 3218 I Z Ck,CUSOI;:,TT_I(x)“%Q(‘F)
:L‘GI;C TET,C?,;?m ZL‘ElkﬁT
= 1 .
(4.5) RS- 2 N A 1 O [
TE€ET_iem x€lNT
= Z |Ck7x 2||<10k),1'||%27
€l
confirms Lo-stability. O

Definition 4.4. Let { < m be given. For k& > ¢ —m, with i)f;’N ={¢"N 7 eI} we
denote the nodal basis of S(7, k) defined by 67 (5) = 0:(7) (7 € Iy). Clearly, ®2"
satisfies (A1) and (A2). The corresponding global nodal bases of S(¢, k) (k > {—m),
induced by (4.2), will be denoted by @l,;’N = {¢if cx € I}

As “single-scale” basis @y of Sy = S(¢, k), we will always employ the nodal basis
&N
Q.
Proposition 4.5. Let Zg = {&; @ @ € Iy} and =) = {g(’)m . & € Iy} be bases
of S(£,0) and S(£',0), respectively, satisfying (A1), (A2). Moreover, suppose that
with respect to the Euclidean scalar product (-, - )ez(fo), the real part of the matriz
M, = ((5075,56@)“(%))1@0,?@0 is strictly positive, i.e. R(My) := (Mg + Mg) > 0.
Then, the pair (Sg,S}) satisfies (C1) and (C1).
Proof. Let 2y = {&p @ @ € I} and ), = {&,, : © € I} be defined by (4.2)

according to = and E{), respectively. By Lemma 4.3, = and =), are Ly-stable bases
of §; and .

Define the (possibly infinite) matrix M = (
(4.4), |1k

2 llewllerny and [MEekllem) 2 llekllom) (ck = (ckw)zer,). Since R(Mg) > 0 one

(gk,yyg;c,m)LQ )
Hgk,yllellgk,zllLQ x€IL,yEy
|z, ~ 1€k 2]l for Lemma 2.3 it is sufficient to check whether ||My.ci ||e,(r,)

. Since by
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has

§R< Z (glc,ya gllc,m)h Ck,y%)

xvyelk
- % 293 T oo
vol(¥) 0,77 " () So,17 Y (2)/ L2 (F) Chyy Oz
TETk—m zyelNr
vol(7) 2 — 2 9
20D B D dewal T lewal el
TETk—m el NT x€ly

so that %(Mk) 2 I with respect to (-, )s,(r,), which implies the desired properties

Proposition 4.6. Let

jfc = [v]“c\jkil, Jk = Ik\]—kfl.
Suppose that the collections ) = {q%y g € I}, T, = {01 : T € Ji} and
O, = {014 : § € Iy} have been chosen such that ®) and T, U O, are bases of S(¢',0)

and S(0, 1), respectively, both satisfying the Assumptions (A1), (A2). Furthermore,
assume that

(91,377%,2)L2(%) = 533,27 U,z € fo,

that is, ©, is a “local” dual basis to ®}.

By (4.2), define for k > 0 the corresponding “global” bases @), := {Pry : y € 11},
and for k > 1, Ty = {vgz;x € Ji} as well as Oy = {O,;y € Iy_1}. Then the
triple (9}, Yit1, Okt1)k>0 satisfies the conditions of Theorem 3.1.

Proof. For y, z € Ij, we have

vol(T) 1 p 7
(9k+1,y7¢;c,z)L2 = Z volg%;(gl,T:l(y)a¢:)7T;1(Z))L2(7‘)

{T€Th—my,2€T}

~ 6y72||9k+1,y||L2||¢;c,z |L2v

i.e., ©f41 is a dual basis of .. The Lo-stability of the bases @ and Y1 U ©Op4q
follows from Lemma 4.3. O

Recall from formula (3.1) that for computing the wavelets we need the quantities
(Uk+1’””’¢"”v’)L2. To this end, note that for z € Jy 1, y € I,

(Ok+1,95P% )Ly

~ VI 5

(Uk—l—la: ¢;C y)L er » }VOl(T) (Ul,T;l(x); ¢0,T:1(y))L2(7')
4.6 iy l 2 TETk-mwyEr
( ) (gk-l—l,ya d);g,y)LQ E VOl(T)

{r€Th—mwyeT}

In summary, we conclude that we have to check (M) > 0 (cf. Proposition 4.5) once
and for all on the reference element. Moreover, we have to provide the collections
Ti, O in terms of 9" as well as the values (V1,8 Do) ra(r) (T € J1, 9 € Ip).
Apart from that, in order to compute the wavelets, i.e. the basis functions of
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Wist = Sk N (S))* 22, we only need the geometry of the initial mesh which, in
particular, yields the volumes of the simplices.

Clearly, bases obtained by the above construction satisfy the locality conditions
formulated in Remark 3.2. This means that the basis transformation T; on §; from
wavelet- to nodal basis can be computed in O(dimS;) operations.

4.3. Wavelets on compact manifolds. In this section, it will be demonstrated
that the concept of an element-by-element construction of wavelets outlined above
applies as well to certain types of continuous compact n-dimensional manifolds I' C

Rn+1

4.3.1. Function spaces. Suppose that I' = U!_ T, where T; N T; = 0 when i #
j. We assume that each I'; is the image of a smooth regular parameterization
ki © Q; — T, where ; C IR" is an open domain. For each i, we assume that
T-m; is a collection of closed n-simplices, such that U,c7 ;7 is a triangulation
of Q;. Concerning matching of elements at the interfaces, we make the following
assumption: For each maximal subset I C {1,...,p} for which Nie;T; # 0, there
exist invertible affine mappings A; : IR" — IR" “gluing the €);’s together”, such that
the mapplng UiEIFi — UzEIAz(QZ) defined by

r s Ai(k7 (2)) when z €Ty,

has an extension as a homeomorphic mapping between U;c;I'; and U;c;A4;(€2;). We
assume that Uje; Urer,,; Ai(7) is a conforming triangulation of U;c; A;(€2;). Note
that these are mild requirements that conform with typical applications, for instance,
in the context of boundary element methods.

As in Section 4.1, by uniform, regular and dyadic refinement, on each €); we
define sequences of triangulations (7 ;)k>—m, nodes (Vi;)k>—m, and for ¢ < m, finite
element spaces (S;(/,k));>7_,,- We define

SO k) ={ueC):uok; € Si(l,k),1<i<p}
Due to our assumptions, the dimension of S™) (7, k) is equal to #1I, where
Iy = UZ£i(Via)

is now the set of nodes on the manifold.

Assuming that I' is globally Lipschitz continuous, the Sobolev spaces H® = H*(T')
can be defined for |s| < 1 in the usual way using a partition of unity relative to some
atlas (cf. [BGZ96]).With respect to the dual pairing (u,v) — (u, v) 1, ), where

(4.7)  (u,v) o) = /FuEdF = Z/Qlu(mi(z))v(mi(z))\/det(Dni(z)TDmi(z))dz,

one has H* = (H %)’ (s € [-1,0]) with equivalent norms.
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4.3.2. Space decompositions. We define the auxiliary spaces H, for s > 0 as the
closure of {u € C(I') : wok; € H*(),1 < i < p} with respect to the norm

lu||3, = \/ P luo /fi||§lsmi), and for s < 0 as (H_s)" with respect to the dual

pairing (u,v) — (u,v)r,r). The space H, should not be confused with the product
space [[5_, H*(T;) that is usually associated with the norm || - [|4,.

Fixing ¢,¢ € IN with m = max{/,/'}, we now take S, = S ({,k),
S k), k > 0. Exploiting the fact that the nodal interpolants from the spaces Sy,
and S}, reproduce polynomials of degree 2¢, 2! respectively, as well as the locality
of the nodal functionals, standard estimates confirm that, with respect to the H,-
spaces, (C2), (C2)', (C3), (C3)" are valid with d = 2¢+1,d' =2 +1and vy =+ =
For this to hold true, it is sufficient that x; € C™*{44}~1 with Lipschitz continuous
highest order derivatives. Assuming for the moment that also (C1), (C1)" are valid
with Wy = Sppr N (S,;)LLz(F) we conclude that for |s| < % the direct sum @y>0Wg
is a stable decomposition of the auxiliary space H, in the sense of Theorem 2.1.

We have to clarify next how the spaces H, and H* are interrelated. Since we admit
Lipschitz manifolds our primary concern is the range |s| < 1 of Sobolev regularity.
By the denseness of smooth functions in Sobolev spaces each element in H; is the
limit of patchwise C'°-functions that are globally continuous. It is well known that
such functions belong to H'. Since ||v o &;||g1(o,) = ||v]|m(r;) one concludes that
on H' the norms || - ||, and || - ||z are equivalent. Thus, by the previous remark,
we infer that the spaces H' and H; agree as sets and have equivalent norms. By
interpolation and duality we therefore conclude that

%52%57 _1§S§17

which establishes the desired H*-stability for |s| < 1 also for the case of wavelet
bases on Lipschitz manifolds.

At this point some comments on the alternative approaches mentioned in the
introduction are in order. In [CTU97, DS96] multiresolution spaces are constructed
which are spanned by continuous bases ®;, ®; which are biorthogonal with respect
to the inner product corresponding to the norm || - ||z, and which both satisfy norm
equivalences for the spaces Hy for 0 < s < 1. However, since in contrast to the
present approach biorthogonality refers to a modified inner product it is not clear
that the norm equivalences extend into the negative range beyond the interesting
case s = —1/2.

4.3.3. Wavelets. Now we come to the construction of the wavelets and the verifi-
cation of (C1) and (C1)". To reduce, as in the domain case, these questions to
corresponding questions on a reference element 7, we need a substitute for (4.3).
We will make the assumption that the parametrizations x; can be chosen in such a
way that for each i, z + /det(Dr;(2)T Dk;(2)) is piecewise constant with respect
to T_m;. Under this assumption, for u,v € Ly(I') and £ > —m we have

(4'3(F)) ’LL v L2 Z Z VO\IIO’? g u O KO TT7 UOK;© TT)L2(7V')’

v TE€ETh,
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where T, : 7 — 7 are affine bijections. Note that this assumption on the parametriza-
tions allows us to handle manifolds consisting of patches that are for example parts
of hyperplanes, spheres or cylinders.

[(u,0) Ly ()]
l[ll7.s
ones when the weight function g : I' — IR : 2 — +/detDrx;(k; *(x))T Dri(k; ()
(x € T;) is multiplied with a globally smooth, positive function, we can handle even
somewhat more general cases. That is, when for some collection {x;}, the function ¢
is a product of a piecewise constant and a globally smooth, positive function, we can
remove this smooth factor from the scalar product before constructing the wavelets
with respect to a spectrally equivalent modified inner product.

If we now replace (4.2) in the domain case, by

In fact, since the dual norms supg_,cys (s > 0) turn into equivalent

(4.20)) . (y) = {Sbk,T,l(nil(x))(TTl(ﬂfl(y))) if 57 (2), 67 (y) €T € Ty_jomy ,

’ 0 elsewhere
the construction of the bases ®; = @i’N and =y, =), and so the verification of (C1),
(C1)', as well as the construction of @), O , T and hence of the wavelets Uy
follows exactly the same lines as in the domain case. Thus, after constructing the
bases from Proposition 4.5 and 4.6 on a reference element for given n, £, ¢, we obtain
an H°-stable wavelet basis for |s| < 1. In particular, this covers the important case
of polyhedral manifolds.

4.3.4. Cancellation property. Recall that aside from the validity of norm equiva-
lences the vanishing moment property is a corner stone of wavelet concepts being
essential for compression and adaptivity. All wavelets which are supported inside a
patch retain in essence these vanishing moments (with respect to functions whose
pre-image is a polynomial) and thus unfold their usual compression power. However,
this may no longer be the case for wavelets whose support intersects several patches
[';. Its part on each patch is not a wavelet and thus has no vanishing moments. Nev-
ertheless, recall also that not the vanishing moments are important but the fact that
integration of a wavelet against a smooth function produces something small which
is perhaps more appropriately referred to as cancellation property. It is this fact
that is used to derive the compression results in connection with boundary integral
equations and we will point out next that the cancellation property remains valid
in a form that gives rise to optimal compression effects in the context of singular
integral operators.

Proposition 4.7. Under the assumptions from §4.3.1 and §4.5.3, the wavelets on
manifolds obtained by the element-by-element construction have the following can-
cellation properties: When v is a smooth function on T one has

(4.8) (v, Pr1.0) oyl S 272 ol k1

|L2(F)7

uniformly in k, where d' = 2¢ + 1, Okt1,4 15 some neighborhood of the support of

Vry12 of diameter Z 27% and |v]yyar (Ghp1e) = MAXa|=a’ SUPpes, | | D (n)].
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Proof. Consider the projector

(U7¢, )L T
Pk’U = Z kay/ L2(1) 9k+1,y7

(9k+1,y7 ¢;c,y)L2(F)

yEl

and note that, by construction, Py, = 0. Thus

(U7¢k+1,z)L2(F) = (U, (I - Pk)T/)k+1,m)L2(F) = ((I - P;i)“ﬂ/)kﬂ,z)h(r)-
In addition let
PMui= 3 vweny

yEl

denote the nodal projector associated with the nodal basis @f’N of §;. Since
P,;P,C(N) = P,C(N), one obtains

(4.9) (1= Poo = (I = B)(I = B,
so that
N
(4.10) (0, Yrs12) Loy < = PO = PEOYOl baorsn o 1ks 12l o),

where 0414 = supp (Yk4+1,4). Moreover,

N N
11— PO = PEYolliatoraney S 1T = PEY0 ]| naorsn)s

where 441, is the union of the supports of the 6, for which the support of gb;’y
intersects oy41 .. Thus one still has that diam (6411,,) < 2=% and thus Ok+1,2 1S COM-
prised of a uniformly bounded number of simplices in the underlying triangulation.
Hence it suffices to estimate ||(I — PIC(N))UHLQ(HZ'(T)) for some 7 € Ty_p; such that
k;(T) C Opy1,.. To this end, note that any continuous function ¢ on I' of the form
q |ki(y=po Iiz-_l where p is a polynomial of at most degree d' — 1 is reproduced by

P

. Therefore for any such ¢ one has

N N
1PN = 0|yt < 1o = @ll ey + 1PEV(G = 0) | grary -

Writing v = w o x; ' we can choose the polynomial p as a Taylor polynomial of w
and obtain a bound of the form 2_”k/22_kd'|v|wgé(m(7)) for the first summand. Since

N —n N
1EM (@ = )ity S 27 21BN (g = 0] b (s ()
—n Z,
< 272 ST (g =) W)leN e

yE€R (TNVi,i)
(4.11) < 27RO Vi) e — Wl

the same Taylor expansion argument as before yields again a bound of the form
2722 R [y] g (. y) SO for the second summand whence the assertion follows. [

Let us briefly point out now the relevance of the estimate (4.8) in the context

of matriz compression. Suppose that a(u,v) = (Au,v)r,r) where the operator
A:H" — H™" has the form

Av = / K (- n)o(n)dn,
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and the kernel K has global support. We wish to estimate the size of the entries

(4.12) (AYpi12, Vks1y)L, = /F FK(Ca77)¢k+1,m(77)1/%'+1,y(C)d77dC

= (K, Y412 ® Ypriy) o).

To this end, consider for any function v : I' X I' — IR and any two projectors P, (),
acting on functions defined on I', the Boolean sum

(4.13) (PeQu:=(Pv+(I®Q)v—(PRQ)v,

where, for instance, (P ® I') means that for any fixed 1 the projector P is applied to
the first variable (. The remaining expressions are defined in obvious analogy. One
readily infers now from (4.13) that

(4.14) (Pe @ Prr) (Yhs1,0 @ Yrrg1y) =0,
whereas it is straightforward to verify, on account of (4.9), that
(415) (I (Pl®PL)K =(I— (PLeP)I - (PN & PM)K.

Hence, on account of (4.12), (4.14) and (4.15), the same reasoning as in the proof
of Proposition 4.7 yields

|(Awk+1 T T/Jk'ﬂ y)L2 | <

+1l,y

(4.16) (I = (P & PE)) K Lo

Now the Boolean sum prOJector is designed to ensure that the coordinate errors
multiply, i.e.,

(4.17) I-(PMaerM)=1-P"Med-pPM.
By definition, one has
(I =Py (1P (Cn) = (I - P @ (I — 1@ PI)w)(C,n),

meaning that (I — I ® pN ))v acts on n for each ¢ as a parameter and then (I —

PIEN) ® I) acts on the result of the first operation but with respect to the variable
(. Hence as above one obtains

||( ( EB P’ ))K||L2 (Ok+1,0 X0k 11,5)
(4.18) S 22 (1 — PN @ 1) (T = T @ PIV)w)

||Loo(5'k+l,z><5'k’+1,y) °

Applying now the same argument used in (4.11) first with respect to the variable ¢
and then with respect to 7 yields

max |- PM eI -19PM )¢ )
(C,ﬂ)60k+1,mX0k/+l,y
< 27% max max IDE((I — T PM)0) (¢, )]

‘a|:d, (C:")E&IH—I,E Xf}k’_H y

— o—dk v max (I -1® P(/N))(D?U)(Ca n)|

\a|:d’ (C:n)e&k+l,z Xé’k’Jrl,
v

(4.19) < 27dFE) hax max | DS (Dgv) (¢, ),

|C¥|,|ﬁ|:d’ (C:n)e&k+l,z Xé’k’+1’y
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where we have used that taking derivatives with respect to the variable ( commutes
with the action of the nodal interpolant on the variable 7.

Thus whenever K is sufficiently smooth on 0y, 4 X 6441, combining the estimate
(4.16) with (4.18) and (4.19) provides

A ! ' !
(Ao rstallel o k0002 s IDEDIK 1010k,
wiglle, ~ lal |8 =d

(4.20)

Now in many applications the kernel K is actually smooth away from its diagonal.
In fact, for the previously mentioned double-, single-layer or hypersingular operators
one has estimates of the form

IDEDEK ()| S dist (¢, ) ~(Hle+18l2n

when 2r is the order of the operator A. Combining this with (4.20), assuming that
the wavelets are normalized to ||t .||, = 1, one finally obtains for wavelets with
disjoint supports €2 , = supp ¢, the typical decay estimate

9 (kHk') (@ +n/2)

. U Y
dist (Qp41,00 Qprg1,9) 20

|(A1/)]€+1,£E7 ¢k’+l,y)L2 | 5

which all the above mentioned compression approaches are based upon, see [DPS94,
PS95, Sch95].

4.4. Some comments on implementation. Before we turn to the discussion of
several concrete realizations of the above concepts we will make some preparatory
comments concerning implementation. We will focus on the basis transformation
T; on S; from wavelet basis ¥/ = U‘L o ¥ to nodal basis @ﬁ As we already have
noted, T can be applied at the cost of O(dimS;) operations. Here we will make
some comments which our quantitative complexity analysis in each case will be based
upon. Before starting, we briefly explain our interest in the implementation of T
and its adjoint.
Given some f € H™", consider the problem of finding u; € S; such that

(4.21) a(uj,v;) = f(v;) (v €S)),

where a is a scalar product satisfying a(v,v) < ||v||%-, i.e. the problem (4.21) is

symmetric and elliptic of order 2r. Let us denote the matrix-vector equations corre-

sponding to (4.21) with respect to @;‘J-’N and W7 respectively by A enUgen = Fyon
J J

J
and AyiUy = Fy;. When r is in the stability range (—7',7) of the wavelet
bases, the stiffness matrix Ag;, preconditioned by its diagonal, is uniformly well
conditioned. On the other hand, since the wavelets on lower levels have large sup-
ports, Fyi = (f(Yrz))k=o.... juwes, cannot directly be computed in O(dim S;) opera-
tions, and UL, ¥/ is frequently not the representation of u; that one likes to have.
However, both problems can be solved by using the relations Fy; = T;Fg .~ and
Ugen = T;Uy;. Of course, the situation requires a different appraisal when em-

J
ploying adaptive methods so that the subspace spanned by those wavelets needed
to approximate the solution within a desired accuracy might have a significantly
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smaller dimension than the full trial space &; where j is the highest level of resolu-
tion appearing in the wavelet subspace. We will, however, not discuss this issue in
this paper.

Secondly, when a(-,-) stems from a differential equation the stiffness matrix Ay,
will, in contrast to Acbg,zv, not be (fully) sparse. Nevertheless, upon using the relation

Ay = T;.‘Aq)f,zv T, the application of Ay, to a vector can be computed in O(dimS;)

operations. Note that in case a(-, ) stems from an integral equation, the situation is
reversed. Although both Ay; and A~ are generally densely populated, it is Ay;
J

that, thanks to the cancellation property, which will be close to a sparse matrix.

In the following, we order the wavelets in such a way that U7, again viewed as a
column vector, can be written as (U/)7 = (¥7, ... W), From (¥/)" = (&5™)TT,
Wy = ®gand (U7, (®5™)T] = (€))7 [Prs1 Pri), we obtain the basic version
of the pyramid scheme

TO - I, T]' — [Pj,l Pj’gijl] (] - ]_,2, . )

We will refer to this version as the “naive” implementation.
We discuss two improvements of this implementation. Theorem 3.1 shows that

T _ ~T T
\I]k:+1 - Tk-q—l - ®k+1zk+la

where the #1Ij, X #Ji41 matrix Z; is defined by (Zgy1)y. = W In our
Y P k,y/ 2

concrete realizations discussed below in Section 4.5, we will always choose
LN ¢,N
(4.22) Tro = {dp10 17 € T} C Py,

that is, TkT+1 = (@i’fl)TEkH, with the #I;,1 X #Jp,1 matrix E;; defined by
(Ek+41)ay = 0zy. Denoting by Gy the #I,1 X #I, matrix defined by ©F; =
(@) "G, we obtain

P =Ep — GrpiZppa.

Thanks to the fact that the sparse matrices Gy, and Zj,; have smaller sizes than
P11, at least for n > 1 making use of this “factorized” form of Py ; results in a
more efficient implementation.

In our realizations we will construct 41, (y € Ij) as linear combinations of

i’flfm (x € Ijy1—) for 0 < i < m+1— ¢, where m = max{/,¢'}. As a second

improvement, instead of expressing for 7 > 0, d)i,ivlfi,m directly in terms of d)i’fl’z, we

can exploit the fact that the prolongation operations needed for this purpose have

to be executed anyway. This observation has been also made in [Swe95, LO96].
More specifically, let

m+1
(4.23) Oty = > (P ) Gy
1=0

Then setting (d/)" = (d7,---,dg)" (dy € @#%), the arrays ¢; = T;d’ can be
computed by performing the following steps:
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djy1 = =djym:=0

Cop= =Copyri=0

Coizdo

fork=1toj+m—/{do
qx = Zdy

c, = E,d;, — Gk,OQk
fori=1tom+/¢+1do
Cr—i = Cr—i — Gy _iQy
end
Cr-mtt ‘= Ch—mit + Pkomi0,0Ck—mie—1
end

We will refer to this implementation as the “advanced” implementation. Ignoring,
for the case £ < m — 1, a few computations on levels with negative indices, we note
that besides the costs of applying the prolongation operators Py (1 < k < j),
that are determined by the multiresolution analysis Sy C S; C - -+, and the costs of
applying the Z; (1 < k < j), determined by the ®}_,, the costs of the “advanced”
implementation of the pyramid scheme depend on the total number of of non-zero
entries in the matrices G ;. In our realizations we will minimize this number of
non-zero entries in the non-unique representation (4.23). The resulting version of
“advanced” implementation will turn out to be significantly more economic than
the “ naive” one.

4.5. Applications, realization of concrete cases. We will confine the discussion
to piecewise linear wavelets, i.e., £ = 0, in combination with the following cases:

- 0'=0,n€{l,2,3},

- 0'=1,n¢€{l,2},

—0'=2,n¢e{l,2}.

In all cases one has m = max{(, '} = ', so that 7_p = {7}. We choose
F={reR":0<a < <, <2°M,

so that I, = 7 N2"FIN™ (—¢' < k < 1). In particular, I_p is the set of the n + 1
vertices of 7.

Concerning (C1) and (C1)’, when ¢ = 0 we have S, = S, and so both conditions
are trivially satisfied. For the other cases we have verified the sufficient condition
R(M,) > 0 from Proposition 4.5, where we took Zg = ®0"" and = = e

As we have already announced in (4.22), in all cases we fix

Tl = {VO’N 1T E jl},

1,%

and thus

Tivr ={dpi1e: @ € Jrp}-

For the above mentioned cases, in the following we define the remaining ingredi-
ents of the wavelet construction, viz. a basis &) = {¢g; : § € o} of S(¢,0), and a

dual set ©, = {6, : € Iy} € S(0,1) such that T, U©; is a basis of S(0,1):
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4.5.1. The case ' =0, n € {1,2,3}. In this case To = {7}, Iy is the set of vertices
of 7, and .J; is the set of midpoints of the edges of 7.
We set

5! &0,N
(I)o—q’o

and search for él,g (3 € Iy) as a linear combination of the fine- and coarse-grid nodal
basis functions Q;(l);v and gzvﬁgév . Some computations reveal that

3 LO,N n+1 10,N

015 =2(n+1)! (¢1,g - (%) +1¢0,g )
satisfies (él,g, ég:g)LQ(f) = (5@75 (g, Z € jg), for any n € IN.

The union T, U®©; is a basis of S(0,1). Both ® and T, U®); satisfy the condition
(A1) of invariance on 07 under permutations of the barycentric coordinates, as well
as the condition (A2) which says that basis functions labeled with & vanish on faces
that do not contain . Taking ¥, = <I>8.’N, the application of Proposition 4.6 and
Theorem 3.1 now yields a basis ¥/ = Ui _ U, of S; that is uniformly stable in H*
for [s| < 3 (|s| < 1 for Lipschitz manifolds). Moreover, its elements, except those
from the coarsest level, have vanishing moments of order 2¢ + 1 = 2 (respectively

satisfy estimates of the type (4.8)).
By construction, we have

(¢ x? )
z/)Ic+1,:z: ¢k+1z - Z L k’y 9k+1,y (/‘7 >0,z ¢ Jk+1)
yEIk (9k+1,y7 ¢ )

with 011, = 2(n+1)! (¢k+1 v (;)"“qﬁzg) As shown in (4.6), the computation of

(¢k+1 ma(bk y )L2 J0,N

the coefficients can be reduced to the computation of (¢ , vg:?])v)LQ(i—)

(Okt1,y.0p Y )L2
for & € Jy, j € I.
For n < 2, the involved basis functions on the reference element, and so the
corresponding scalar products are invariant under permutations of the barycentric
coordinates (cf. Remark 4.2). For n =1,

(¢1x’ O,y) (“):% (536:71,?361:0)-

An illustration of the wavelet construction in this case is given in Fig. 1.
Forn=2 3 € J, y € Iy one has

(vo,{v vo,{v) o % if 7,y share an edge
18270y /1a(7) = if &,y do not share an edge

Recall that for n = 3 the dyadic subdivision of tetrahedra is not unique. More
precisely, the convex hull of the midpoints of the edges has yet to be decomposed into
four tetrahedra. This can be done by making any two midpoints of edges that have
no vertex in common the end points of a new edge. There are three such possibilities
to form a dyadic triangulation 7;. Once such a decomposition has been fixed the set
Ji can be splitted into the set A containing these two midpoints connected with the
new edge, and the set B of the remaining midpoints. Note that the elements of A
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9k+1,y1 9k+1,y2
_ 4O0,N 1 H;
wkﬂ,m - ¢k+1,x - Zie{l,Z} 5Hi+l33 9k+1,yi

{<a} =L, {¢} = Jen1

F1GURE 1. Wavelet construction forn =1, £ = ¢ = 0.

are vertices of six tetrahedra, while each element of B is shared by four tetrahedra.
One can verify that for £ € .J;, §y € I one has

if £ € A and %,y share an edge
if £ € A and %,y do not share an edge

a8

2

Y

(¢1x7 O,y) La(7) % if £ € B and 7,y share an edge
1

48

if £ € B and %,y do not share an edge.

As an application of the complexity analysis carried out in Section 4.4, we give
an asymptotic operation count (for j — oo) per unknown for performing the basis

transformation on S;. For the case n > 1 we assume that the mesh is uniform, i.e.,
Q=10,1]" and

={2Fa+{z e R0< 2,0y < - < Ty <27}t € {1,... ,2F -1},

o a permutation of {1,... ,n}}.

We do not count scalar operations when they are combined with vector operations.
For n =1, Y41, equals ¢2’+N1,z minus some linear combination of two 041 ,’s, i.e.,
the matrices Zy,q from Section 4.4 contain only two nonzero entries per column.
By expanding each 601, in terms of <I>k+1, we see that each wavelet is a linear
combination of 5 nodal basis functions on its level. For both the “naive” and the
“advanced” implementation, the operation count is 8 operations per unknown.

For n =2, Ypy14 — qﬁi’_ﬁvl,x is a linear combination of four 641 ,’s, in the uniform
mesh case yielding a wavelet that is a linear combination of 23 nodal basis functions
on its level (see [Ste97b]). The operation count for the advanced implementation is
8 operations, compared to 25% for the naive implementation. Thus, the advanced
implementation realizes the basis transformation at the same expense as the naive
implementation of the basis transformation for a wavelet basis where the wavelets
are linear combinations of an average of 5% nodal basis functions.

. . O.N . . . . .
For n = 3, in the uniform mesh case ¢x; 1, — ¢, , is a linear combination of six

(3 of 7 cases) or eight (4 of 7 cases) 0y11,’s, or each wavelet is a linear combination
of 77 or 101 nodal basis functions on its level (see [Ste97b]). The operation count
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for the advanced implementation is 10% operations, compared to 92% operations for
the naive implementation.

To compare this, with ¢4, = ¢2’+NL$, i.e., with the hierarchical basis (cf. [Yse86]),
an analogous operation count for the basis transformation to nodal basis yields 4
3% and 3% operations per unknown, for n = 1, 2 and 3, respectively. Of course,
the hierarchical basis neither has any cancellation properties nor gives rise to norm
equivalences within the relevant scope of Sobolev regularity.

4.5.2. The case /' = 1, n = 1. In this case T_; = {7}, 7 = [0,4], Iy = {0,4},
Jo = {2} and J; = {1,3}. Whenever this is relevant, we order elements from the
index sets with increasing sizes.

An obvious choice for @6 would be to take @é’N, i.e., the nodal basis of second

order polynomials with respect to the nodes I,. However, note that we may add a
multiple of qﬁoiv to gzﬁ(l]év and ¢, iv, since then (A2) is retained. We use this freedom

to minimize the number of non-zero coefficients (gzﬁm, ,d)o,g)LQ(T) (7 € Ji, § € L),
and thus the number of non-zero coefficients in (3.1). We take

1 0 0
« T < 1N
& =@M F 15
0 0 1

This choice yields

1o
_ 2 24 .
(( 11' ’¢07y)L2( )>:E€j1,gej0 0 31

1
24 2

We wish to represent 6, g for g € {0,4} as a linear combma’mon of ¢ o 3;5 and

oo 'y » and 0, 2 as a linear combination of ¢0 Y and ¢ > - Another option would be to

select 0, 0 €.g. as a linear combination of ¢1 0 ?iv and ¢1 » , and analogously for

9174. This choice would minimize the supports of the resulting wavelets. However,
note that with the latter 91,0 and 91,4, global dual basis functions 1, with y € I}
a boundary point of a “macro element”, i.e. y € I,_1, would be linear combinations
of 5 nodal basis functions. With our choice, global dual basis functions 6., are
linear combinations of 3 or 2 (y € I;_; or y € Ji) nodal basis functions, however,
belonging to different levels. Nevertheless, as explained in Section 4.4, this latter
fact is harmless as far as the cost of implementation is concerned.

At this point we stress that the favorable effect on the costs of the implementa-
tion of selecting él,g as a linear combination of nodal basis functions from different
levels is more enhanced in more dimensions. On the other hand, it will appear
that in more dimensions, there is less freedom in selecting a clever ®} such that

(( e A ) La(7 )> has possibly many zeros.
’ ‘]lvyeIO
Some computations show that
3 JON | 16 50 y
b5 = 6(]5 l,y 200 + ?6(15 y €1{0,4},
01,0 17 5_7(/)
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satisfy (6,4, %’é)hm =6, (9,2 € Ip), and T, U O, is a basis of 5(0,1).
Since ®) and T, U O, satisfy (A2), and are invariant under permutations of the

barycentric coordinates (cf. Remark 4.2), Proposition 4.6 and Theorem 3.1 yield
an H*-stable wavelet basis for |s| < 2 (|s| < 1), now consisting of wavelets having

2¢ + 1 = 3 vanishing moments. An illustration is given in Fig. 2.

0,N 17 1 H
%F ——————————————————— Qlﬁl’yl 1/}16—1—1,:1: = ¢k+1,x - ﬂgk-i-l,w - §HITQHQQk+1,y1
9k+17y2
{o} = I
{<t =k
{o} = Jrna

F1GURE 2. Wavelet construction forn =1, /=0 and ¢ = 1.

As in thecase £ =0, n =1, Ypq14 — ¢2’+Nm is a linear combination of only two
Or+1,'s, which itself are linear combinations of 3 and 2 nodal basis functions from
different levels. With the “advanced” implementation as exposed in Section 4.4, for
J — oo the basis transformation T; on S; from wavelet- to nodal basis costs 8%
operations per unknown.

4.5.3. The case !’ = 2, n = 1. In this case T_y = {7}, 7 = [0,8], I_, = {0,8},
J,1 = {4}, J() = {2,6} and Jl = {1,3,5,7}
Following the ideas described in §4.5.2, we define

1 0 0 0 0

29781 1 439 —417 2551

T 2 NAT 315868 1132 5807 315868

il _ (H2 —2585 1420 1420 —2585
((I)O) o ((I)O ) 157934 5807 1 5807 157934
2551 —417 439 1 29781

315868 5807 1132 315868

0 0 0 0 1
The resulting @}, is a basis of M (2,0), and

12 5057

29 5807 0 0 0

5 5 o 1281 2723 0

(( ?JV A )[/(V)> _ 17421 3396

BP0y e (T) s o 2 T 272 11281

Y zeJ1,9€ly 0 0 ﬁ T‘;gl 0

5057 12

0 0 0 5807 29
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) 15 6
10, 1
3

FIGURE 3. Numbering of I_; = {0}, Jy = {<} and J, = {e}.

With
i) _ AVO, 1091 7O,N |, 137 7 . 70
91,0 - 25(15 400 10“L 900 70,0 + 30 180 ¢
i _ 5807 1 + 23228 ON 2781553 VO,NjL 4053286 10,N 795559 10,N
L2 — 75835 5835 733265 71,3 2199795 %1,4 ~ 2199795 ¥'1,5
i _ 16414 ON 535436 0N+4874392 70,N
L4 — 408457 —-1,4 — 106197 70,4 530985 * 1,4

and é1,67 91,8 defined by permuting the barycentric coordinates, one has (él,g, qgf),é)Lz(f) =
052 (7,2 € I), and T, U O is a basis of 5(0,1).

Both &) and T, U ©, satisfy (A2), and are invariant under permutations of the
barycentric coordinates (cf. Remark 4.2), and so we obtain an H*-stable wavelet
basis for [s| < 3 (|s| < 1), consisting of wavelets having 2¢ + 1 = 5 vanishing
moments.

The above choice of ©; yields a minimizer for the cost of implementation. For
J — oo, the basis transformation T; on S; for j — oo from wavelet-to-nodal basis
can be performed with 10% operations per unknown.

4.5.4. The case /' =1, n=2. Inthiscase T = {7}, 7 ={z € R*: 0< 2y < x5 <
4}. For convenience, we introduce a hierarchical numbering of elements of I, Jy
and J; as indicated in Fig. 3, and in the following we will identify sets I i and j];:
with the corresponding sets of numbers.

We will define (I>’ and O, invariant under permutations of the barycentric coor-
dinates. This means that it is sufficient to specify ¢o,y and Hl,y for g € {1,6}.

In view of (A2), we have to take

. JLN
(Z)f) 6 = Do -
We may look for (]50 1 as a linear combination of ¢0 L and qﬁo 4+ ¢0 5 (However, be-
cause of (A1), an arbitrary linear combination of qﬁo 1 éiv and opY 5 s not allowed).
We use this freedom for making (¢ 115 qﬁo Dinny = (B0 125 ¢0 is7) = 0. One may

verify that it would be equally efficient to make (¢1,:E ,¢071)L2 () = 0 for 2 = 14,15.
Instead, arranging this scalar product to be zero for £ = 7,8 or £ = 9,10 or £ = 13
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would save only half the number of operations. With
T1,N LN | LN
¢01— +%( o4 T Po ),
one has

112 336 84 21
111 9 1 23
32 96 32 48 48

27 5 g 1 11"
(( 1m7¢)0,y)L2( )) )

#=7,9,11,13,14, §=1,6 [

whereas the other quantities (q§1 PN y)L2 for & € .J;, § € I, follow by permuting
the barycentric coordinates.
YON  JO,N

0N y
We search for 6, ; as a linear combination of qﬁ 11 o1 @11 and @73, and 6 5 as

a linear combination of ¢0 6 > [l],év, ?ivg and () 11 + @y 12) Although these choices

do not minimize the supports of the resuvltmg Wavelets they do minimize the costs
of the implementation. Requiring that (01, & ;)r.r) = 05,2 (9, 2 € Ip), we found

él,l = §¢ —3¢ +16¢ +0¢1 13

3 _ =38 ON 376
bhe = 53 Qo6 T 63 3¢113 (111+¢112)

whereas the other él,g are obtained by permuting the barycentric coordinates. Note
that the resulting global dual basis functions ), , are linear combinations of three
(y € I1) or six ((;VS?{VB is doubled) (y € Ji) nodal basis functions from different
levels.
The constructed ®, and T, UO, are bases of S(1,0) and S(0, 1), respectively, and
satisfy (A1) and (A2). By Proposition 4.6 and Theorem 3.1, an H*-stable wavelet
3

basis is obtained for |s| < 3 (|s| < 1), consisting of wavelets having vanishing

moments of order 2¢ +1 = 3.

For a uniform mesh and the number of levels tending to infinity, the basis transfor-
mation from wavelet to nodal basis via the “advanced” implementation as described
in Section 4.4, costs 11 5 operations per unknown.

4.5.5. The case ¢! =2, n = 2. In this case T o = {#Fh,7={z€eR?*:0< 2, <1, <
8}. We number the elements of j_g, j_l, jo and J; as indicated in Fig. 4. Based on
this numbering we will identify in the following T i and j,; with corresponding sets
of numbers.

We will define ®) and ©, invariant under permutations of the barycentric coor-
dinates, and so we only have to specify gz%y and él,g for y € {1,6,7,13}. Following
the ideas developed in §4.5.1-4.5.4, we take

1 _ I2,N 18073 ( 72 N 1547703 68623
%,1 - ¢0z1 - 3761398( + d) ) 7522796( + d) ) 7522796( + ¢0 10)
54503 2,N 6415 (¢ ¢ )
3761398 70,13 ~ 7522796 \ 70,14 0,15

) 72 N 111981 ¢ 72,N 2,N 5459 72,N 18549 12,N 12
¢0,6 = ¢0,6 178628 (¢0,11 + ¢0 12) + 178628 ¢0 13 89314 (¢0,14 + ¢0,15)
. B w9 1 9
¢6,7 - + d) 15 §¢)0 13 — 0 14 15 ¢0 15

7 _ 32 N 229
%,13 = Ppi3t+ 527( 0, 14 + ¢0 15)
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1 16 7 22 4 24 9 18 2

e | a ¥}

17 28 31 37 39 33 29 20

8 32 13 43 14 35 11

23 38 44 45 41 26

) 40 15 42 6

25 34/ 36 27

10 30 12
19 21
3

FIGURE 4. Numbering of I_y = {0}, J_, = {0}, Jy = {<} and .J, = {e}.

Then

((d) 1,% 7¢30,y)L2( ))@ =

=16,18,20,22,24,26,28,29,31,33,35,37,39,41,43,45, j=1,6,13

'[ 41058559  —88145 0 4733767 —1030601 0 427722 —1728 1T
180547104 180547104 180547104 180547104 1880699 1880699
289767 —8208 0 94659 —9936 864 0 0 ]
3761398 1880699 7522796 1880699 1880699
[0 4685 635179 0 3263 2337265 0 48895
178628 6430608 535884 6430608 267942
4387 108937 139431 39479 3971 1125260 13197 46507 |
1071768 1071768 357256 2143536 714512 2143536 133971 178628
[ B 1937 0 49583 13393 11 25655 115
37944 303552 303552 151776 12648 50592 1084
24691 4225 641 11697 50365 263 26009 24263 |
A 33728 16364 5952 16364 101184 1984 33728 50592
<(¢1 z 170 7)L2(T)> 16<#<45
(2087 163 59 ( ( ( 20 7T 583 2 () Isdl 91 _1
4320 720 864 4320 1080 1440 2160 2160 540 540
56197 1039 1 6l T 373 39 —ll5 28 =37 -19 93 -3 287
135 540 2160 432 540 540 2160 2160 216 540 540 540 108 1080 2160 °

whereas the other (d)(l): , 90.5) La(7) for @ € Ji, 3§ € I follow by permuting the barycen-
tric coordinates.
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With
é _ 491 JON 1447 1 4 1556 0N_|_7936 VO,N 32 JO,N 200 70,N
L1 — 63840%—2,1 " 1140 11 285 1995 285 71,13 = B7 V1,28
24 70,N
+% 145WL ( 131+¢132) ( 143+¢144)
é _ 39552736427842 7O,N  115253331674198 70,N _ 50086735845548 VO,N _ 15579765892424 70,N
1,6 =™ 16415540169075 7 —1,6 16415540169075 70,6 16415540169075 16415540169075 7 1,13
+ 1073782164671 70,N + 163041515506583 10,N 46695093990479((]3 + ¢ )
16415540169075 * 1,28 16415540169075 7 1,45 5471846723025 1,15
_75538846833187( + ¢ ) 85694636471981(“0,N )
32831080338150 120 1,21 10943693446050 1,26 127
é _ 521770882944 70,N + 1438064282366 70,N + 228057857077 7O,N 2057981328101 ;0,N
LT = 316151143997 71,4 316151143997 71,7 948453431991 71,13 1264604575988 7' 1,16
_ 652279514773 7 + 530136572039 70,N 318838046349 70,N + 197161204745 10,N
T 632302287994 122 1264604575988 * 1,24 1264604575988 71,31 1896906863982 * 1,32
1432064752285 70,N + 715847976 70,N 4164167977237 70,N 46192346505 70,N
3793813727964 7 1,33 316151143997 71,34 3793813727964 71,37 632302287994 71,38
+5449028597573 70,N 5506954693 10,N + 18811161423 70,N
3793813727964 1,39 28312042746 71,43 632302287994 1,44
é __ 252514670598911312 10,N + 581506357809065767 1 + 13466719718137331 10,N
L13 = 32123023372190565 70,13 32123023372190565 113 12849209348876226 1,28
_|_36849360316746824 70,N + 902873612494110469( + (b )
32123023372190565 " 1,45 556799071784636460 131 1,32
_ 68672167167430439 ( + ¢ ) 28971942655711213 ( + ¢ )
111359814356927292 133 1,34 185599690594878820 135 1,36
20805027809585291 321019232499078934
+ 9279984529743941 ((151 37 T (151 38) 139199767946159115( 1 39 + ¢1 40)
and the other Qly for y € Iy obtained by permuting the barycentric coordinates,

one has (0, 4, &, 2)La(7) 6 (7, 2 € Iy). The constructed &) and T, U O, are bases
of $(2,0) and S(0,1) and satlsfy (A1) and (A2). Proposition 4.6 and Theorem 3.1
yield an H*-stable wavelet basis for |s| < 2 (]s| < 1), consisting of wavelets having
vanishing moments of order 2¢ +1 = 5.

With the “advanced” implementation as described in Section 4.4, in case of a
uniform mesh and the number of levels tending to inﬁnity, performing the basis
transformation from wavelet to nodal basis costs 24 g operations per unknown.

APPENDIX A. PROOF OF THEOREM 2.1

We start with proving Part (a). The assertion is closely related to a well-known
criterion by Fortin [F77] for the validity of the LBB-condition which is relevant in
the context of saddle point problems. Let @}, : Ly — S;, C Ly denote the orthogonal
projector of Ly onto S}, defined by

(A1) (t, uk) 1, = (@t ) 1, (u € Ly, uy € ),

and let Ry denote its restriction to Sg. Clearly, ||Rg||z,cr1, < 1, whereas (C1) is
equivalent to ||Ryug||z, 2 [|ukllr,, (ur € Sk). Since S is closed, both properties
of Ry show that (Ry) is closed in S}, and so $(Ry) # S, would mean that there
exists a 0 # wj, € S} such that uj, L;, S(Rg). However, this would contradict
supy, es, |(Ur, u})r,| > 0, which is a consequence of (C1)’. We conclude that the

inverse R,;l : S, — Sk exists, and that it is uniformly bounded.
By substituting u = R, 'Q}v in (A.1), we find

(RIZIQ;cUau;c)Lz = (Q;cvau;c)Lz = (Uvu;c)l@ (U S LQ? u;c S Sllc)
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This equation shows that (I — R, 'Q}) C (S,)**> and, by using (C1), that R, 'Q},
is the identity operator on S;. We conclude that @, = R,'Q} is a uniformly
bounded projector satisfying (@) = Sk and, because v € (S’)LLz 1mplies Qv =0,
S(I —@,,) = (S;)*=2. From these properties one directly infers that the adjoint
projector @), satisfies I@},) = S, and S(I —@},) = (Sx)**>. Note that S, C S,
implies @}, @), = @},, which, in turn yields @,@,,, = @,. Analogously, we have
Q@)1 =@, which proves the first part of the assertion.
Now we come to the proof of (2.1) and (2.1)'. Suppose s € IR is such that for
some € > 0 one has

(A.2) vk ll2gse S P=¥ 0|, (vk € S@, —@i—1))-
Then
DY okl = O v Y v S vkl vellage—
k k V4 k >k
S O 0T o okl ) (0% lvell,) S ZPMHU 17,
k 0>k

Condition (C1) shows inequality (A.2) for s+¢€ € [0,7). Now let t = s+e € [—-d', 0].
Then

_ | (i, w)1s| | (e, @), — @p—1) W), |
lvgl|lgt = sup ———% = sup
0AweH ||| -¢ 0£weH—t [[w |9

; (v € S@ —@p—1))-

From ||@, —@% )wllz, < @ —@k 1 llLoer, infu;_ es,_, lw—uj_y ||z, combined with
(C2)" we obtain inequality (A.2) for this case. We conclude that for s € (—d',7),
the mapping

GQ : 52,5(@) — H: ('Uk)k —> Z’Uk

k=0

is bounded, i.e., (2.1) is valid. The same proof shows (2.1)".
We will now show that (2.1)" implies (2.2) and, analogously that (2.1) implies
(2.2)". To this end we will make use of the following fact.

Lemma A.1. With respect to the dual pairing < (v})k, (Vk)r >= > 1 (Vs Vk)1, ON
ly_s@") x lss(@), one has lss@)" = lo,—s(@") with equivalent norms. The analogous
result is valid with interchanged roles of @ and @'.

Proof. The above assertion is a consequence of similar more general results from
[T78], Section 1.11.1, see also [Dah95], Theorem 4.5.1 or [Dah96], Theorem 5.1. Since
the proof for the above version is relatively short we include it for the convenience
of the reader. For (v})i € l2—s(@"), term-wise application of the Cauchy-Schwarz
inequality shows that the functional (vg)r — Y, (i, vk)r, is bounded on f5 (@)
with norm less than or equal to ||(v)||e._. @)
/ : _

If (v},)r, # 0, then v, # 0 for some /. Defining v = {@l _%11)7)4 g Z ;g , we
obtain < (v}), (vk)e>= [|v}[|7, # 0, i.e., the mapping from fo _,(@") to 5,(@)" is
injective.
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Now let f € ¢5,(@)'. By Riesz’s representation theorem, there exists an (wy); €
l2,s(@), with [[f]| = [|(wk)klle, . (@), satistying

F(e)e) = (we)k ()k)e.@ = Y P (W ve) L,

= <P @) —@)_)wr) s (ve)r>, (vk)k € los@).

The uniform boundedness of ||@}]|r,« 1, shows that

>0 Mot @~ @iz, S w7
k k

ie., (p**@, — @), )wi)k € lo_s@"), its norm being bounded by some multiple of
171 O
Now let s € (—9/,d). Then by (2.1)', Gy : la,s@") = H™* : (V) — Dopey V), I8
bounded. For u € H® and (v},)x € las@'), we have
(u, G (v )k)re = > (u,vh) L, =<(@) — @p_) )i, (V})>

k
L.e., the dual operator Gg, : H* — l>,5(@) is defined by Ggu = (@ —@4_,)u)k- The
boundedness of Ggy is equivalent to (2.2).

Finally, let s € (—9',7v). We have to show that the bounded mappings Gy :
ls@) — H° and Gy : H® — b (@) satisfy GgyGg = I and GGy =1 .
Let (vi)r € lo5(@), then ), vy, is convergent in H?, so that

GI /GQ(’Uk)k = kli_)rgo(vo, V1y.oo , Vg, 0, .. ) = (Uk)lc

Since for u € H* one has GeGgu = 3777 (@) — @p—1)u = limy, @, u, we have
to show that this limit equals u. For § € (—/,7), we define Fyy ; : H® — (> :(@) by
(Ghu)e ifl<k . : : :
'EW)e = . . Y "k y ’
(Fgr xu) ‘% 0k Clearly, Fg . is bounded uniformly in %, and so is
D, = GpFy . - H? — H?. Now, let t € (0,7) and t' € (0,7) such that s € (—#',1).
k L,
By @41, 1, S 1 and (C2), (C2) we obtain that
1T = @plly=v e <N =@l e 1 = @il zyrr S o7 8.

This estimate together with |1 —@,||»¢ 3 S 1 shows that [|[I—@p||wscnut S p~
by interpolation. Since H! C H?® is dense, and ||@; |lxsc s S 1, from

lu = @pulle < inf {I@y(v = u)llne + (1 = @)

we conclude that limy @, u = v on H?, which completes the proof.

(t—s)k

'Hs}a

s+ ||u— v
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