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For beam dynamic 	nite element analysis, according to di
erential equation of motion of beam with distributed mass, general
analytical solution of displacement equation for the beam vibration is obtained. By applying displacement element construction
principle, the general solution of displacement equation is conversed to themode expressed by beam end displacements. And taking
the mode as displacement trial function, element sti
ness matrix and element mass matrix for beam �exural vibration and axial
vibration are established, respectively, by applying principle of minimum potential energy. A�er accurate integral, explicit form of
element matrix is obtained. �e comparison results show that the series of relative error between the solution of analytical trial
function element and theoretical solution is about 1×10−9 and the accuracy and eciency are superior to that of interpolation trial
function element. �e reason is that interpolation trial function cannot accurately simulate the displacement mode of vibrating
beam.�e accuracy of dynamic sti
ness matrix method is almost identical with that of analytical trial function. But the application
of dynamic sti
ness matrix method in engineering is limited. �e beam dynamic element obtained in this paper is analytical and
accurate and can be applied in practice.

1. Introduction

Dynamic structural analysis is essential in structure engi-
neering design. It is especially important for large-scale
structure in earthquake area, such as high-rise buildings,
dam, hydropower station, oil pipelines, and gas pipelines.
Dynamic problem of beam structure is common in engi-
neering. Vibration happens at beam under earthquake, gas-
liquid �ows, and impact. Resonance occurs when frequency
of external load is close to natural frequency of structure.
It is a great threat for structure safety. �erefore, perfecting
accuracy and eciency of dynamic structural analysis is to
ensure structure safety and reliability.

A large number of theories and methods for dynamic
structural analysis have been suggested. �e analysis meth-
ods include direct solving method, energy method, and
numerical method. Clough and Penzien [1] have obtained
analytical solution of displacement equation for �exural
vibrating beam and presented the 	rst three-order vibration

mode and the corresponding frequency of cantilever beam
and simply supported beam. Jin [2] provided analytical
solution of Timoshenko beam clamped two ends and sub-
jected to uniformly distributed load according to di
erent
jump condition. Guo et al. [3] established structure element
property matrix by energy principle considering �exural
and torsional deformation of T-beam, and the e
ect of
bridge local member (such as diaphragm plate). Fang and
Wang [4] attained beam natural vibration frequency by
analyzing dynamic property of external prestressing beam
using energy method, and the solution has a better match
with numerical solution. Lou and Hong [5] derived the
approximation analysis technique for dynamic characteristics
of the prestressed beam by applying the mode perturbation
method. Carrer et al. [6] analyzed the dynamic behavior of
Timoshenko beam by using boundary element method. Wu
[7] analyzed the dynamic behavior of two-dimension frame
with sti
ening bar randomly distributed by using elastic-
rigid composite beam element. De Rosa et al. [8] studied
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the dynamic behavior of slender beam with concentrated
mass at beam end, and numerical solution of frequency
equation was obtained. Among them, numerical analysis
represented by 	nite element is themain and ecientmethod
for dynamic analysis (such as natural vibration analysis and
forced vibration analysis). Finite element method was 	rstly
proposed by Clough [9] in an article about plane elastic
problem, and it is perfect in theory as a numerical method.

At present, themethods of constructing dynamic element
for beam include dynamic sti
ness matrix method, Galerkin
method, Ritz method, energy variation method. Dynamic
sti
ness matrix can accurately solve di
erential equation
of motion according to initial displacement 	eld without
any assumption, and then accurate results can be obtained
irrespective of element number. �is method was proposed
by Koloušek [10]. To gain more accurate results, sti
ness
matrix of tensile torsion bar and Euler beam about frequency,
that is, dynamic sti
ness matrix, was 	rstly derived from
analytical solution for studying vibration characteristics of
plane truss. A lot of work on the research and development
of dynamic sti
ness matrix method was also done by Long
and Bao [11], Hashemi and Richard [12], Chen et al. [13],
Banerjee et al. [14], and Banerjee et al. [15]. Shavezipur and
Hashemi [16] put forward an accurate 	nite element method.
In this method, closed form solution of di
erential equation
of beam not coupling �exural vibration torsional vibration
was obtained by merging Galerkin weighted residual method
and dynamic sti
ness matrix (DSM). Result of dynamic
sti
ness matrix is more accurate, but analytical solution
of di
erential equation cannot be derived when structure
load or displacement boundary condition is too complex.
�en dynamic sti
ness matrix method is not suitable any
more. According to principle of virtual displacement, a large
number of research achievements on dynamic analysis of
thin-walled open section beam, elastic foundation beam,
and composite beam have been conducted by Chopra [17],
Hu and Dai [18], Wang et al. [19], Hashemi and Richard
[20], and Pagani et al. [21]. Nabi and Ganesan [22] put
forward a 	nite element method based on free vibration
analysis theory of composite beam with the 	rst order shear
deformation. Zhao and Chen [23] developed the dynamic
analysis of a uni	ed stochastic variational principle and
the corresponding stochastic 	nite element method via the
instantaneous minimum potential energy principle and the
small parameter perturbation technique. On the basis of
energy variation principle,Wang et al. [24] derived governing
di
erential equation and natural boundary condition of
dynamic response for I-shaped beam and obtained closed
solution of the corresponding generalized dynamic displace-
ment.

Accuracy and eciency of beam element depend on
beam displacement trial function by applying potential
energy variation principle to constructing beam displace-
ment element. For current beam element, cubic polynomial
displacement mode is used to obtain a series of static and
dynamic element widely applied to the so�ware, such as
ANSYS and NASTRAN. For dynamic analysis, vibrating
beam displacement mode has a big di
erence from polyno-
mial mode. Precision requirements cannot be met by taking

polynomial function as vibrating beam displacement trail
function. �e basic analytical solution is used as the element
trial function in analytical trial function method. Discrete
	nite element method takes advantage of analytical solution.
It embodies the superiority of trial function using basic
analytical solution.

�is paper focuses on constructing element for beam
dynamic analysis using analytical de�ection trail function
based on variational method of principle of minimum poten-
tial energy and displacement element construction theory.
�e fruits are useful to beam dynamic analysis.

2. Displacement Trial Function for
Beam Element

Selecting displacement trial function is one of the main
contents of constructing displacement element. Appropri-
ate displacement trial function should be in accordance
with element deformation behavior and should be easy for
integral of element energy functional. Element accuracy is
determined by the accuracy of displacement trial function.
�e corresponding functional integral has a direct e
ect on
element calculation eciency and accuracy.

With regard to beam element, displacement mode based
on interpolation function is used for element displacement
trial function of all kinds of problems. Linear polynomial
Lagrange interpolation function meeting the continuity con-
dition at �0 is used for axial displacement. Cubic polynomial
Hermit interpolation function meeting the continuity condi-
tion at �1 is used for �exural deformation.

Take �exural deformation, for example; for the static
problems of uniform cross section beam subjected to uniform

distributed load, ��(�4�(�)/��4) = � is sti
ness equilibrium
equation about de�ection w(x). Here, �� is beam section
�exural sti
ness and q is the uniform distributed load. �e
accurate solution of this equation is a cubic polynomial.
Cubic polynomial Hermit interpolation function meeting
the continuity condition of beam end displacement is actual
displacement of element. And the corresponding potential
energy functional has analytic, derivable, integrable solution.
For this reason, static beam element derived from Hermit
interpolation shape function is accurate element.

However, for dynamic and nonlinear straight beam and
every nonlinear beam, de�ection equation is not cubic
polynomial due to the change of equilibrium di
erential
equation mode. �erefore, element constructed by Hermit
interpolation trial function is an approximate element. �e
key of constructing accurate element for all kinds of problems
of beam is to search analytical trial function having functional
integrability.

3. Analytical Trial Function of Displacement
for Vibrating Beam Element

�emethod to construct analytical trial function of displace-
ment for vibrating beam element is as follows:

(1) to deduce the general solution of displacement equa-
tion for beam vibration containing undetermined
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Figure 1: Coordinate system and parameter positive direction.

parameters according to di
erential equation of equi-
librium for beam vibration;

(2) to determine the undetermined parameters in dis-
placement equation according to displacement con-
dition of vibrating beam end;

(3) towrite out displacement equation for beamvibration
expressed by beam end displacement, and then to
obtain displacement trial function for vibrating beam.

To construct beam dynamic element, local coordinate
as shown in Figure 1 is established. It is in accordance
with general beam element. �e positive direction of linear
displacement of beam end and force is in accordance with
coordinate direction, and the positive direction of rotation
angle and moment is in accordance with clockwise direction.

3.1. Governing Equation for Beam Free Vibration

and Displacement General Solution

3.1.1. Beam Flexural Vibration Equation. Dynamic equilib-
rium governing equation for beam �exural vibration is
expressed as [1]

��	4V (�, 
)	�4 + �	2V (�, 
)	
2 = 0. (1)

In (1), V(�, 
) is the displacement response for beam
�exural vibration.

By applying the method of separation of variables, ana-
lytical solution of de�ection equation for beam �exural
vibration is obtained [1]:

�� (�) = �1 sin� + �2 cos� + �3sh� + �4ch�. (2)

In (2), �exural vibration parameter  is connected with
circular frequency for beam �exural vibration ��, �� =2√��/�, EI is beam section �exural sti
ness, and� is beam
mass per unit length.

3.1.2. Beam Axial Vibration Equation. Dynamic equilibrium
governing equation for beam axial vibration is expressed as
[1]

���2���2 − �	
2�	
2 = 0. (3)

In (3), �(�, 
) is the displacement response for beam axial
vibration.

By applying themethod of separation of variables, analyt-
ical solution of de�ection equation for beam axial vibration is
obtained [1]:

�� (�) = �1 cos�� + �2 sin��. (4)

In (4), axial vibration parameter � is connected with cir-

cular frequency for beam axial vibration ��, �� = �√��/�,
and �� is beam section tensile (compressive) rigidity.

3.2. Analytical Trial Function of Displacement for Dynamic

Beam Element

3.2.1. Analytical Trial Function for Beam Flexural Vibration

(1) Parameter Determination of Displacement Function. Equa-
tion (2) can be further expressed as

�� (�) =
4∑
�=1
�� (�) �� = {�} {�} , (5)

where

{�} = {�1 �2 �3 �4}� ,
{�} = {�1 (�) �2 (�) �3 (�) �4 (�)}

= {sin� cos� sh� ch�} .
(6)

Beam end displacement is de	ned as {��}� =
{�1 �1 �2 �2}�.

According to (5), beam end displacement becomes

{��}� =
[[[[[
[

�1 (0) �2 (0) �3 (0) �4 (0)
−��1 (0) −��2 (0) −��3 (0) −��4 (0)�1 (�) �2 (�) �3 (�) �4 (�)
−��1 (�) −��2 (�) −��3 (�) −��4 (�)

]]]]]
]

⋅
{{{{{{{{{{{

�1
�2
�3
�4

}}}}}}}}}}}
= [�] {�} .

(7)

If 2 = �, with (6), [A] can be expressed as

[�] =
[[[[[
[

0 1 0 1
− 0 − 0
sin 2 cos 2 sh2 ch2

− cos 2  sin 2 −ch2 −sh2

]]]]]
]
. (8)

With (7), undetermined parameter of displacement func-
tion is expressed as

{�} = [�]−1 {��}� . (9)
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To perform matrix inversion, then

[�]−1 =
[[[[[
[

311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344

]]]]]
]
, (10)

where

311 = −331 = cos 2 sinh 2 + cosh 2 sin 24 ,
312 = −cos 2 cosh 2 + sinh 2 sin 2 − 14 ,

313 = −333 = − sin 2 + sinh 24 ,
314 = −334 = −cosh 2 − cos 24 ,

321 = 1 − sinh 2 sin 2 + cos 2 cosh 24 ,
322 = −342 = cosh 2 sin 2 − cos 2 sinh 24 ,

323 = −343 = cosh 2 − cos 24 ,
324 = −344 = sinh 2 − sin 24 ,

332 = 1 + sinh 2 sin 2 − cos 2 cosh 24 ,
341 = cos 2 cosh 2 + sin 2 sinh 2 − 14 ,

4 = 2 (cos 2 cosh 2 − 1) .

(11)

(2) Element Displacement Shape Function. By substituting
(9) into (5), displacement function for element �exural vibra-
tion expressed by beam end displacement can be obtained:

�� (�) = {�} [�]−1 {��}� . (12)

If

[7�] = {�} [�]−1 , (13)

(12) becomes

�� (�) = [7�] {��}� . (14)

[7�] is �exural vibration displacement trial function for
dynamic beam element. With (13), it can be expressed as

[7�] = {�} [�]−1 = [71 72 73 74] , (15)

where 71, 72, 73, and 74 are de�ection shape functions.
A�er matrix operation, they can be expressed as

71 = 14 [sinh 2 sin (� − 2) + cosh 2 cos (� − 2)
− cos (�) + cos 2 cosh (� − 2)
− sin 2 sinh (� − 2) − cosh (�)] ,

72 = 14 [− cosh 2 sin (� − 2) − sinh 2 cos (� − 2)
+ sin (�) + sinh (�) − sin 2 cosh (� − 2)
− cos 2 sinh (� − 2)] ,

73 = 14 [− sin (�) sinh 2 − cos (� − 2)
+ cos (�) cosh 2 − cosh (� − 2)
+ sin 2 sinh (�) + cosh (�) cos 2] ,

74 = 14 [− sin (�) cosh 2 + sin (� − 2)
+ cos (�) sinh 2 + sinh (� − 2)
− sinh (�) cos 2 + cosh (�) sin 2] .

(16)

3.2.2. Analytical Trial Function for Beam Axial Vibration

(1) Parameter Determination of Displacement Function. Equa-
tion (4) can be further expressed as

�� (�) =
4∑
�=1
9� (�)�� = {9} {�} , (17)

where

{�} = {�1 �2}� ,
{9} = {91 (�) 92 (�)}

= {cos�� sin��} .
(18)

Beam end axial displacement is de	ned as {��}� =
{�1 �2}�.

According to (17), beam end axial displacement is
obtained:

{��}� = [91 (0) 92 (0)91 (�) 92 (�)] {
�1
�2} = [?] {�} . (19)

If @ = ��, with (18), [?] can be expressed as

[?] = [ 1 0
cos @ sin @] . (20)

With (19), undetermined parameter of axial displacement
function is expressed as

{�} = [?]−1 {��}� . (21)
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To perform matrix inversion, then

[?]−1 = [[
[

1 0
−cos @
sin @ 1

sin @
]]
]
. (22)

(2) ElementDisplacement Shape Function.By substituting (21)
into (17), the following can be obtained:

�� (�) = {9} [?]−1 {��}� . (23)

If

[7�] = {9} [?]−1 , (24)

(23) becomes

�� (�) = [7�] {��}� . (25)

[7�] is axial vibration displacement trial function for
dynamic beam element. With (23), it can be expressed as

[7�] = {9} [?]−1 = [75 76] , (26)

where 75, 76 are axial vibration displacement shape func-
tions. A�er matrix operation, they can be expressed as

75 = cos�� − sin�� cos @
sin @ ,

76 = sin��
sin @ .

(27)

4. Element Potential Energy
Functional and Variation

Finite element formulation of dynamic beam element is
constructed by principle of minimum potential energy and
analytical trial function.

4.1. Potential Energy Functional. In the light of potential
energy, functional of total potential energy is given by

∏
�
= B + C

= 12 ∫
	

0
����2� (�) �� + 12 ∫

	

0
�����2� (�) ��

− 12 ∫
	

0
��2��2� (�) �� − 12 ∫

	

0
��2��2� (�) ��,

(28)

whereB is element strain energy andC is potential energy of
inertia force.

With element displacement, the following can be
obtained:

∏
�
= 12 ∫

	

0
��{��}�� [7��]� [7��] {��}� ��

+ 12 ∫
	

0
��{��}�� [7���]� [7���] {��}� ��

− 12 ∫
	

0
��2�{��}�� [7�]� [7�] {��}� ��

− 12 ∫
	

0
��2�{��}�� [7�]� [7�] {��}� ��.

(29)

4.2. Functional Variation and Transformation. In the light of
principle of minimum potential energy, that is, 	∏�/	{�}� =0, element equilibrium equation is obtained:

[H]� {�}� − �2 [I]� {�}� = 0, (30)

where [H]� and [I]� are dynamic sti
ness matrix and mass
matrix of beam element, respectively:

[H]� = ∫	
0
�� [7��]� [7��] �� + ∫	0 �� [7���]

� [7���] ��,
[I�]� = ∫	

0
�[7�]� [7�] �� + ∫	

0
�[7�]� [7�] ��.

(31)

5. Element Matrix

Flexural vibration and axial vibration are independent of one
another irrespective of large deformation. Element matrixes
at �exural vibration and axial vibration are obtained by
applying variation on �exural vibration displacement and
axial vibration displacement, respectively.

5.1. Element Matrix for Beam Flexural Vibration

5.1.1. Sti
ness Matrix. A�er matrix operation, element
dynamic sti
ness matrix for beam �exural vibration is
expressed as

[H�]� = J
[[[[[
[

K�11 K�12 K�13 K�14
K�21 K�22 K�23 K�24
K�31 K�32 K�33 K�34
K�41 K�42 K�43 K�44

]]]]]
]
, (32)

where

K��
 = 1J ∫	
0
7����7������,

J = ��3L−2�M ,
M = 16 (1 + cos22ch22 − 2 cos 2ch2) .

(33)
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A�er integral, each sti
ness matrix coecient can be
obtained, such as

K�11 = (cosh 2 sin 2 + cos 2 sin 2 − sinh 2 cosh 2
−2cosh22 sin 2 cos 2)

⋅ (2L2� + L4� + 1)
+ 4 (L� − L3�) cosh 2 (sinh 2 sin 2 + cosh 2 cos 2)
− 2 (1 + L4�) cos 2 sin 2 cosh 2 sinh 2
+ 4L2�cos22 (2 − sinh 2 cosh 2)
+ (6L2� + L4� + 1) cos 2 sinh 2
+ (1 − L4� − 8L2�2) cos 2 cosh 2 + 4 (L� + L3�)
⋅ (cos 2 sinh 2 cosh 2 − cos22 sinh2 − sin 2
+cosh22 sin 2 − cos22 cosh 2)

+ (42L2� + L4� − 1) cosh22 + (1 − L4�) sin 2 sinh 2.
(34)

5.1.2. Mass Matrix. Mass matrix of element for beam �exural
vibration is given by

[I�] = S
[[[[[
[

��11 ��12 ��13 ��14
��21 ��22 ��23 ��24
��31 ��32 ��33 ��34
��41 ��42 ��43 ��44

]]]]]
]
, (35)

where

���
 = 1S ∫
	

0
7��7�
��, S = �L−2�M ,

M = 16 (1 + cos22ch22 − 2 cos 2ch2) .
(36)

A�er integral, each mass matrix coecient can be
obtained, such as

��11 = −1 [4 (L� + L3�)
⋅ (cos22 sinh 2 − cos 2 sinh2 cosh 2

− sin 2cosh22 + sin 2)
+ (42L2� + L4� − 1) cosh22
+ (1 − L4�) sin 2
⋅ (sinh 2 − 2 cos 2 sinh 2 cosh 2)

+ (L4� − 10L2� + 1) cos 2 sinh2
− (82L2� + L4� − 1) cos 2 cosh 2
+ 4 (L3� − L�)
⋅ cosh 2 (sin 2 sinh 2 − cos22 + 4 cos 2 cosh 2)
+ (2L2� + L� + 1) (sin 2 cos 2 − sinh 2 cosh 2)
+ 3L2�cos22 (4 sinh 2 cosh 2 + 2)
+ 2 (6L2� − 1 − L4�) sin 2 cos 2cosh22
+ (L4� − 14L2� + 1) sin 2 cosh 2] .

(37)

5.2. Element Matrix for Beam Axial Vibration. A�er matrix
operation, element dynamic sti
ness matrix for beam axial
vibration is expressed as

[H�]� = ��3[[[
[

−cos @ sin @ + @2 (cos2@ − 1)
@ cos @ + sin @
2 (cos2@ − 1)@ cos @ + sin @

2 (cos2@ − 1) −cos @ sin @ + @2 (cos2@ − 1)
]]]
]
. (38)

Mass matrix of element for beam axial vibration is given
by

[I�] = �[[[
[

sin @ cos @ − @
23 (cos2@ − 1)

@ cos @ − sin @
23 (cos2@ − 1)@ cos @ − sin @

23 (cos2@ − 1)
sin @ cos @ − @
23 (cos2@ − 1)

]]]
]
. (39)

5.3. Dynamic Beam ElementMatrix. Because of the indepen-
dence of axial vibration and �exural vibration, 6 by 6 matrix
is obtained by adding two rows and two columns to the above
4 by 4 matrix considering axial vibration without coupling of
axial vibration and �exural vibration. It is element sti
ness
matrix.

Element sti
ness matrix is given by

[H]� =
[[[[[[[[[[[
[

K11 0 0 K14 0 0
K22 K23 0 K25 K26

K33 0 K35 K36
K44 0 0

symmetry K55 K56
K66

]]]]]]]]]]]
]

, (40)
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where

K11 = −��3 (cos @ sin @ + @)2 (cos2@ − 1) ,

K14 = ��3 (@ cos @ + sin @)
2 (cos2@ − 1) ,

K22 = JK�11,
K23 = JK�12,
K25 = JK�13,
K26 = JK�14,
K33 = JK�22,
K35 = JK�23,
K36 = JK�24,

K44 = −��3 (cos @ sin @ + @)2 (cos2@ − 1) ,
K55 = JK�33,
K56 = JK�34,
K66 = JK�44.

(41)

Element mass matrix is given by

[I]� =
[[[[[[[[[[[
[

�11 0 0 �14 0 0
�22 �23 0 �25 �26

�33 0 �35 �36
�44 0 0

symmetry �55 �56
�66

]]]]]]]]]]]
]

, (42)

where

�11 = � (sin @ cos @ − @)23 (cos2@ − 1) ,

�14 = � (@ cos @ − sin @)
23 (cos2@ − 1) ,

�22 = S��11,
�23 = S��12
�25 = S��13,
�26 = S��14,
�33 = S��22,
�35 = S��23,
�36 = S��24,

�44 = � (sin @ cos @ − @)23 (cos2@ − 1) ,
�55 = S��33,
�56 = S��34,
�66 = S��44.

(43)

6. Example and Comparison

To verify the dynamic beam element constructed by ana-
lytical trial function method, the comparisons between the
calculation results of this element, general beam element, and
theoretical solution are conducted.

6.1. Calculation Model

(1) Four Kinds of Typical Beams. Free vibration of four kinds
of typical beams are analyzed, including cantilever beam,
simply supported beam, one end clamped and another simply
supported beam, and clamped-clamped beam.

(2) Structure and Material Parameters. �e parameters of
calculation model are as follows: beam dimension is 6m× 0.2m × 0.3m, material elastic modulus � = 210GPa,
Poisson’s ratio W = 0.3, and material density X = 7800 kg/m3.
(3) �eoretical Solution. According to theoretical equation of
free vibration for distributed mass beam, base frequencies of
free vibration for all kinds of beam are obtained by using
analytic method [1].

(4) Dynamic Sti
nessMatrixMethod.According to governing
equation of free vibration for distributedmass beam, sti
ness
coecient [11] of beam vibration is provided, and then
base frequencies of free vibration for all kinds of beam are
obtained.

(5) Finite Element Model of General Beam Element. By
using the so�ware ANSYS, 	nite element model of beam
vibration is established and modal analysis is conducted.
Element BEAM3 is used to simulate beam. BEAM3 is general
two-dimension elastic beam element and uniaxial element
bearing tension, pressure, and bend. Every node has three
degrees of freedom, that is, �-axis linear displacement, Z-axis
linear displacement, and \-axis angular displacement. Cubic
polynomial interpolating function is used as its displacement
trial function. Beam is divided into one beam element. Block
Lanczos method is used for modal extraction.

(6) Model in �is Paper. Equilibrium equation of beam
�exural free vibration is given by

H (�) Δ (
) + I (�) Δ̈ (
) = 0, (44)

where H(�) is structure sti
ness matrix with boundary
displacement restraint and I(�) is structure mass matrix
with boundary displacement restraint. According to natural
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Table 1: Base frequency of beam free vibration and its comparison (rad/s).

Beam type
�eoretical
solution

Dynamic sti
ness matrix
method

Interpolation trial
function element

Analytical trial function
element

Absolute
value

Relative error
(%)

Absolute
value

Relative error
(%)

Absolute
value

Relative error
(%)

Cantilever beam 43.8875389 43.8875390 2.89� − 07 44.0740 0.423 43.8875391 3.12� − 07
Simply supported
beam

123.1941891 123.1941888 −8.59� − 08 136.5902 10.874 123.1941889 −6.37� − 08
One end clamped and
another simply
supported beam

192.4528355 192.4528348 −1.50� − 07 255.4366 32.727 192.4528349 −1.53� − 07
Clamped-clamped
beam

279.2673996 279.2673991 −1.32� − 07 283.4156 1.485 279.2673992 −1.27� − 07
Note: calculation of eigenvalue and eigenvector cannot be conducted due to all DOFs of two ends of clamped-clamped beam being restrained. If the beam is
divided into one element, semistructure is used for vibration simulation of clamped-clamped beam.

Table 2: Comparison of di
erent element results (relative error, %).

Beam type
Element number for analytical

trial function
Element number for interpolation trial function

1 1 2 10 20

Cantilever beam 3.12� − 07 0.4249 −0.0003 −0.0489 −0.0489
Simply supported beam −6.37� − 08 10.8739 0.2909 −0.1018 −0.1018
One end clamped and another
simply supported beam

−1.53� − 07 32.7269 0.8037 −0.1169 −0.1202
Clamped-clamped beam −1.27� − 07 1.4854 1.4854 −0.1255 −0.1278

vibration governing equation of beam, beam natural vibra-
tion is harmonic vibration. �e following assumption can be
obtained:

Δ (
) = b sin�
. (45)

Substituting (45) into (44) yields

I−1 (�)H (�) b = �2b. (46)

Assuming c = �2, then �(c) = I−1(c)H(c).
�e following equation can be obtained:

� (c) b = cb. (47)

Beamnatural vibration analysis is converted to eigenvalue

and eigenvector analysis of matrix �(c) = I−1(c)H(c).
Iteration method is used to calculate base frequency of

beam vibration. �rough circular calculations, the iteration

stops when frequency relative error reaches d� = (��+1 −
��)/�� < 10−8.
6.2. Result Comparison and Analysis

6.2.1. Element Accuracy. Vibration analysis is conducted by
dividing beam into one element. Table 1 shows base frequency
of beam free vibration and the relative error between calcu-
lated solution and theoretical solution.

As shown in Table 1, the following results can be obtained.(1) By applying analytical trial function element to the
analysis, a more accurate solution can be attained when the

relative error is less than 10−8. �e series of relative error
between this solution and theoretical solution is about 1 ×
10−9. It can be supposed that this error is calculation error of
iteration eciency.(2) By applying interpolation trial function element to
the analysis, the maximum relative error between the solu-
tion and theoretical solution reaches 30%. It indicates that
dynamic beam element constructed by taking polynomial
function as displacement trial function has bigger error.(3)�e solution of dynamic sti
ness matrix method [11]
is close to theoretical solution. �e relative error is almost
identical with that calculated by analytical trial function
method. �e reason is that their displacement curves for
vibrating beam are both derived from dynamic equilibrium
governing equation. Element load value and node balance
condition need to be analyzed in dynamic sti
ness matrix
method. Dynamic sti
ness matrix of beam element can be
directly obtained in analytical trial function method. �e
latter is more simple and intuitive and widely applied.

6.2.2. Element Eciency. �e beam is divided into 1 element,
2 elements, 10 elements, and 20 elements, respectively. Beam
vibration numerical simulation is conducted by applying
interpolation trial function method. �e relative error of
calculated base frequency of free vibration for every typical
beam and theoretical solution is obtained. Table 2 presents
the results.

As shown in Table 2, the result of interpolation trial
function is closer to theoretical solution with the increasing
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of element number. But it is obvious that base frequency
becomes smaller and its di
erence with theoretical solution is
larger.�e reason is that the more the elements are, the lower
the structure calculation sti
ness is.�e greater the di
erence
between the actual sti
ness and calculation sti
ness. �en
the calculated base frequency further has large di
erence
with theoretical solution. It indicates that actual deformation
curve for vibrating beam is not polynomial, and polynomial
function cannot be taken as displacement trial function for
vibrating beam.

7. Conclusions

Based on the results of this investigation, the following
conclusions can be drawn.(1) �e result of interpolation trial function element
for simulating beam vibration is not in accordance with
theoretical solution, and the relative error is larger. With
element number increasing, base frequency becomes smaller
and has large di
erence with theoretical solution. It indicates
that vibrating beam displacement mode is di
erent from
polynomial mode, and the precision requirement cannot be
met by taking polynomial function as displacement trial
function for vibrating beam.(2)�e solution of dynamic sti
ness matrix method for
simulating beam vibration is close to theoretical solution.
But, in this method, element load value and node balance
condition need to be specially analyzed, and it is not easy to
derive nonstructural question. Its application in engineering
is limited.(3)Dynamic sti
ness matrix of beam element is obtained
by applying analytical trial function put forward in this
paper. Base frequencies of four typical beams are attained by
analyzing eigenvalue and eigenvector and are compared with
theoretical solution.�e results show that the series of relative
error is about 1 × 10−9, and it is actually calculation error of
iteration eciency. �e dynamic beam element in the light
of analytical trial function put forward in this paper is high-
precision element.
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